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A mini-max spanning forest approach to the political districting problem
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We formulate the problem of political districting as a mini-max spanning forest problem, and present some local
search-based heuristics to solve the problem approximately. Through numerical experiments, we evaluate the
performance of the developed algorithms. We also give a case study of a prefecture in Japan for the election of
the Lower House Members of the National Diet. We observe that ‘hyperopic’ algorithm usually gives satisfactory
solutions, with the resulting districts all connected and usually balanced in size.
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1. Introduction

Gerrymandering (Morris 2006) is a form of districting
in which electoral district or constituency boundaries
are manipulated for an electoral advantage. To prevent
this and to design more fair and reasonable districting,
mathematical methods have been explored (Balinski
and Young 1982) . For example, the split-line algorithm
(Smith and Kok 2008) and the Voronoi method
(Balinski, Brams, and Pukelsheim 2004) are based on
geographical configuration of the region and divided
into constituencies with artificial, piecewise linear
boundaries.

Cluster analysis (Romesburg 2004) and statistical
physics have been applied to this problem. These
methods introduce such measures as compactness
quotients (Nguyen and Kreinovich 1999; Bottman,
Essig, and Whittle 2007) or Hamiltonian energy (Chou
and Li 2006) to evaluate the appropriateness of the
resulting districts and try to find the districting that
maximises (or minimises) the sum of such measures
over all constituencies. Lush, Gamez, and Kreinovich
(2007) observed that naive clustering approach can
lead to a disproportional representation.

In the mathematical programming approach cost
is associated with each possible district, and the
problem is usually formulated as a sort of the set
packing/covering problem (Lawler 1976) to minimise
the sum of these costs over all possible combination of
districts. Some heuristic algorithms have been pro-
posed to solve this 0-1 linear programming problem
approximately, using tabu search (Bozkaya, Erkut, and
Laporte 2003) or GRASP (Rios-Mercado and

Fernandez 2009) methods. Exact algorithms have
also been explored to solve this problem to optimality.
These include techniques such as column generation
and branch-and-price (Mehrotra, Johnson, and
Nemhauser 1998), network optimisation (George,
Lamar, and Wallace 1997), and capacitated transpor-
tation problem (Hojati 1996).

In all these works, the objective function was a sum
of some measure of appropriateness over all constitu-
encies. Unfortunately, the resulting districts can be
unbalanced; we may have some very large districts
together with some small ones.Also, in the optimisation
approach, unless district costs are carefully defined,
we may obtain disconnected districts as a part of an
optimal solution.

The purpose of this article is to take connectedness
and balance of constituencies explicitly into account,
and present a mathematical method to solve this
problem to some point of satisfaction. To this end,
in Section 2 we formulate the problem as a kind of
mini-max spanning forest problem (MMSFP), and
explain the relation of this formulation to the
MMSFPs studied in earlier works (Yamada,
Takahashi, and Kataoka 1996, 1997). Section 3
presents two kind of heuristic algorithms to solve this
problem approximately. After a numerical example for
a small-sized example in Section 4, Section 5 gives
a summary of numerical experiments for larger
artificial instances. Finally, Section 6 describes a case
study of Kanagawa Prefecture, Japan for the election
of the Lower House Members of the National Diet.
Through these we observe that the ‘hyperopic’
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approach gives satisfactory solutions to these large-
scale districting problems.

2. Political districting and the MMSFP

We model the region under consideration as an
undirected planar graph G=(V, E), where V' is the set
of nodes and EC V x V is the set of edges. Here each
node represents an electoral unit such as cities and
counties, and edges represent the adjacency relations
between these units. Each node v € V has an associated
integer weight w”(v)>0. Usually this is the population
of that electoral unit. Each edge ¢ € E may also have an
associated weight w”(e), which represents the distance
or the cost of that edge. It is often the case that we have
a set of root nodes U = {uy, us, . .. ,u,} € V, which implies
the ‘core’ of each constituency. Thus, the problem is
to divide the graph into connected subgraphs, each
including one and only one root node, and the
populations of constituencies as balanced as possible.
In graph-theoretic terms, a constituency is a
connected subgraph that can be spanned by a tree,
and a set of mutually disjoint trees that cover all nodes
of G constitutes a spanning forest of that graph. Given
a set of root nodes U, a U-rooted spanning forest Fis a
spanning forest of G consisting of r disjoint trees 71,
T, ..., T, such that u; is a node of T(i= 12 o)
For a tree T, its weight is defined as the sum of the
weights of its constituent nodes and edges.
Furthermore, to obtain a balanced districting, we
introduce the objective function of such a forest as

w(F) := {I:i!‘r{w(ﬂ)}- (1)

Then, the MMSFP(G, w”,wf, U) is to find a U-rooted
spanning forest that minimises w(F) over all U-rooted
spanning forests of G.

In a previous paper (Yamada et al. 1996), we
considered MMSFP without node weights, i.e.
MMSFP(G, %, w”, U). In political districting we usually
consider only populations. In this case we have
MMSEP without edge weights, i.e. MMSFP(G,w",
@, U). Both of these are special cases of MMSFP(G, w”,
wE, U), and we can convert MMSFP(G, w”, wF, U)into
MMSFP(G, ¥, w*, U) using the following node splitting
technique. That is, we transform a graph G = (V, E) with
node weights (and possibly with edge weights as well)
into a graph without node weights. To do this, for each
node ve ¥ we prepare its copy vV and an edge (v,v)
between these nodes. Let V= VU{/|v € V}_aEd
E=EU{(v,v)|ve V'}, and define the graph G = (V, E).
Next, we introduce edge weights to G by defining the
weight for (v, V) as wE(v, V) = w"(v). Edge weights on
E are inherited to those on E.

Thus, MMSFP(G,w",w” U) can be solved by
solving MMSFP(G, 9, wE, U), which is denoted as
MMSFP for simplicity, and hereafter we are primarily
concerned with these type of problems. MMSFP with
more than one root nodes is NP-hard (Yamada et al.
1996). The problem of political districting formulated
as MMSFP(G, w”, 0, U) is also N'P-hard. This can be
shown by direct reduction from PARTITION (Garey
and Johnson 1978) to this problem for the case of
complete graph K,,, with integer node weights
{0,0,wy,...,w,}, where the first two are the root
nodes. Indeed, the answer to PARTITION is YES
if and only if we have w(T}) = w(T2) = )__; wi/2 in
MMSEFP.

Previously we developed heuristic and exact algo-
rithms to solve MMSFP with r=2 (Yamada et al.
1996, 1997). In this article, we discuss MMSFP with
more than two root nodes, as this is usually the case in
political districting. The exact algorithm (Yamada
et al. 1997) is able to solve only tiny instances, so we
extend our heuristic algorithm to the case of r>2.
The algorithm is based on the local search (Johnson,
Papadimitriou, and Yannakakis 1983) strategy,
which is a sort of the hill climbing method (see, e.g.
Papadimitriou and Steiglitz 1982). The straightforward
application of this method to MMSFP is referred to as
a myopic strategy. However, the resulting algorithm is
not satisfactory in accuracy. To overcome the short-
coming of this approach, we propose a hyperopic
strategy, and compare these strategies on a series of
computational experiments. We find that the hypero-
pic algorithm is much superior to the myopic in
solution quality.

3. Myopic and hyperopic strategies

In this section, we apply the local search method and
derive two kinds of heuristic algorithms to solve
MMSFP approximately. In both of the algorithms,
we start from an arbitrary spanning forest and improve
the forest, step-by-step, by scanning its neighbours for
a better forest. If such a forest is found we take this as
a new solution, and repeat the whole process until no
further improvement is possible.

As for the starter, a spanning forest consisting of
trees of almost balanced weights appears to be
preferable. The following greedy method (Lawler
1976) aims to construct such a spanning forest by
successively adopting the feasible edge that induces
the least increase in the objective value of the updated
forest. This algorithm usually yields a spanning forest
of reasonable objective value. To describe this, let F’
be a (not necessarily spanning) forest of G. For e € E,
F'U{e} is the subgraph with ¢ added to F".
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Let Ep:={e€E|e is incident to F’, and F'U{e} is
a forest}. Then, the algorithm is:

Algorithm GREEDY.

Step 1. Let the forest F' =(77{,...,T)) be initially
T/=(V,E) with V;i={uw} and E;:=
o(i=1,...,r). Its value is w(F') =0.

Step 2. Take e’ := argmin,cg, {w(F' U {e})}, and put
F' < F'U{¢}.

Step 3. Stop if F’ is a spanning forest. Otherwise, go
to Step 2.

The computational complexity of GREEDY is
O(| V]| E|), since in Step 2 it scans all the edges to find
a minimising ¢/, and Steps 2 and 3 are repeated at most
| V] times.

We prepare some notations before describing
the procedure for improving spanning trees. Let
F=(T\,T,,...,T,) be a spanning forest of G. For
an arbitrary node u € V, there exists a unique path
along F from this node to a root node.
The corresponding root node is denoted as r(u).
Any nodes on the path from u to r(u) are ancestors of
u, and u is a descendant of such a node. By u-rooted
subtree of F we mean the subgraph induced by the set
of nodes « and its descendants. This is denoted as F,.
The parent node u* of u is the ancestor of u which is
adjacent to u. An edge (u,v) € E is said to be a bridge
of Fif r(u) #r(v).

Let us define i*(F):=arg max,<;,.{w(7})}, which
is also denoted as /* if it is not confusing. We also
introduce the set of bridges between T; and 7; by
B(T;, T;):=(u,v) € ElueT;, ve T;}, where u e T; means
‘u is a node of 7.’ We further introduce B(F):=
UiiB(T;, T;) and B*(F):=U»B(T, T)). These repre-
sent the set of all bridges in F, and the set of those
incident to the tree of maximum weight, respectively.

Given a spanning forest F=(Ty,...,7T,) and
a bridge e=(u,v)€ B(T;, T)), we can obtain another
spanning forest F(T}, T; : u, v) by disconnecting F, from
T; and attaching it to 7; through e. This operation,
illustrated in Figure 1, is referred to as the swapping of

uj UI J

Figure 1. Swapping of trees: (a) before and (b) after
swapping.

T; and T; with respect to (u, v). F(T}, T;: u,v) consists of
trees T} := T\ F,\{(x, u")}, T;:=T;UF,U{e} and T,
(l#1,j). Correspondingly, the value of the forest
changes from w(F) =max{w(T}),...,w(T},)} to w(F(T,,
T;:u,v)) =max{w(T}), w(Tj’), max,.; ;w(T))}, where
w(T) =w(T)—w(F,)—w({u,u*}) and w(T}); = w(T))+
w(F,) +w(e). Let 8AT;, T;:u,v):=max{w(T), w(T))
—max{w(T}), w(T))}. This represents the degree of
improvement of 7; and 7 by this swapping.

The myopic algorithm starts with the spanning
forest obtained by GREEDY. Next, it tries to improve
the objective value by performing a swapping with
respect to some bridge. Such a bridge is taken from
B*(F), since otherwise the objective value will not be
improved. This process is repeated over and over
again. When no further improvement is possible by
such a procedure, let the spanning forest at this stage
be F=(Ty,...,T,), and define V; as the set of nodes
of T(i=1,...,r). Let G; denote the subgraph of G
induced by V.. Note that G; (i=1,...,r) are mutually
disjoint. Let 7; be the minimum spanning tree within
G;. By definition w(7;)<w(T;), and thus we obtain
w(F) < w(F) for F=(Ty,...,T,). Obtaining F from
F is referred to as re-optimisation of the spanning
forest F. The whole algorithm is as follows:

Algorithm MYOPIC.

Step 1. Using GREEDY, find an initial spanning

forest F°, and let F <« F°.

If there exists a bridge (u, v) € B*(F) between

T;» and some other tree 7} such that §7(T},

T:u,v)>0, go to Step 3; else go to Step 4.

Step 3. Update the spanning forest by swapping
T and T; with respect to (u,v), namely,
F < K(Tx, Tj:u,v). Go to Step 2.

Step 4. Re-optimise F to obtain F. If F#F, let
F — F and go to Step 2; else stop.

Step 2.

This algorithm is termed myopic since at each step it
moves to a strictly improving solution. As we shall
observe later in numerical experiments, the myopic
strategy frequently ends up in a poor local optimum.
This is because requiring a strictly improved solution at
each iteration is too restrictive, and the algorithm tends
to terminate at relatively early stages by failing to find
a bridge as required in Step 2. Taking this into account
we modify the myopic algorithm to obtain the
following.

Algorithm HYPEROPIC.

Step 1. Using GREEDY, find an initial spanning
forest F°, and let F « F°.

If there exists a bridge (u, v) € B(F) between
two distinct trees 7; and 7 such that § (77,
T;:u,v)>0, go to Step 3; else go to Step 4.

Step 2.
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Step 3. Update the spanning forest by swapping 7;
and T; with respect to (u,v), namely, F <«
KT, T;:u,v). Go to Step 2.

Step 4. Re-optimise F to obtain F. If F#F, let
F — F and go to Step 2; else stop.

Except for Step 2, the algorithm is identical to
MYOPIC. However, since in Step 2 we take a bridge
from B(F) (2B*(F)), the objective value may not be
improved by such a swapping. Even if this is the case
we perform swapping, hoping to obtain a better
solution in later stages. Note that for r=2 the
distinction between myopic and hyperopic algorithms
vanishes since B(F)= B*(F) in this case.

The computational complexity of one iteration
(Steps 2 and 3) is O(|E[) both in MYOPIC
and HYPEROPIC, since it needs to evaluate
8T, T;:u,v) for all (u,v)€E. Step 4 requires addi-
tional computation, but this is rarely encountered
in practice.

4. An example of electoral districting

We consider electoral districting for a region
represented as the graph P46 of Figure 2. Here we
have 20 nodes and 46 edges, and five root nodes are
depicted in black. The population (in thousands) at
each node is given in Table 1, and all edges are of zero
weight.

Solving MMSFP for this graph we naturally obtain
an electoral districting. Figure 3 depicts the results of
MYOPIC and HYPEROPIC, where constituencies
A to E are shown as trees. Populations of the
constituencies produced by these methods are shown
in Table 2, where the column of ‘Unbalance’ gives the
ratio of the maximum population of the constituencies
over the minimum.

Figure 2. Planar graph Py 46

5. Numerical experiments

To evaluate the heuristic algorithms developed in the
previous sections, especially for the districting pro-
blems of larger sizes with many root nodes, numerical
experiments are carried out for planar graph P, ,, with
n nodes and m edges. We consider the case of n
between 200 and 1000, and the number of root nodes
is between 10 and 30. The population at each node is
distributed uniformly random over the integer interval
[2.20], and root nodes are randomly taken on the
graph. We implemented the heuristic algorithms of
Section 3 in ANSI C language and computation was
done on a DELL DIMENSION 8400 computer
(CPU Intel Pentium 4(R), 3.4 GHz).

Table 3 summarises the results of experiments.
For each method, graph and the number of root nodes

Table 1. Pag46 population data.

City Population City Population City Population City Population

1 3 6 17 11 10 16 9
2 18 7 6 12 12 17
3 15 8 18 13 15 18 13
4 13 9 10 14 8 19
5 10 10 18 15 12 20 7]

(a)

TITTTT T T IO AT T AT Ty T v rr o oooT
10 20 30

Step

Figure 3. Electoral districting for P46 (a) MYOPIC and
(b) HYPEROPIC.
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Table 2. Electoral districting results. (#Roots), it shows the number of iterations (Step 2-4)
and the degree of unbalance (the ratio of the maximum

Constituency population of constituencies over the minimum) in the

Method A B C D . B Ushaling columns labelled ‘Iter.” and ‘Unbalance’, respectively.

Each row is the average over 30 independent random

MYOPIC 42 39 45 51 s] 1.31 runs. In all cases, CPU time was <ls, and thus
HYPEROPIC 48 47 47 42 44 1.14 negligible.

For these problems, MYOPIC usually gave unsa-

tisfactory results with unbalanced ratio frequently

Table 3. Numerical experiments. larger than 100. In HYPEROPIC this ratio is always

<2, and often it is near to 1.0. Thus, we conclude that

HYPEROPIC overperforms MYOPIC for districting

Graph  #Roots Iter. Unbalance Iter. Unbalance problems with hundreds of electoral units and 10 or
more root nodes.

MYOPIC HYPEROPIC

Pr00.560 10 23.6 35.02 69.0 1.04
20 311 31.74 115.6 1.43
30 44.8 18.07 96.2 1.46 i tud
Pwosizo 10 583  13.60 959  1.03 S oy L _
20 41.8 88.74 196.2 1.33 Figure 4 is a graphical representation of Kanagawa
30 47.6 62.14 198.6 1.60 Prefecture, Japan, where nodes and edges represent
Pe00,1680 10 775  130.93 227.1 1.02 cities (including counties and wards) and their adja-
20 81.6 89.34 280.3 1.37 cency relations. Table 4 gives the population of these
30 83.1 49.03 236.6 1:22 A .
cities (Shimbun 1994).
Psoo.2240 10 7.5 14.07 209.6 1.01 Under the revised law for the election of Members
20 89.4 71.86 279.1 1.05 ] £
30 100.2 77.31 348 1 1.14 o.f _the Lonef HOI',ISC (The_Jdpan Times 1.994), .these
P 10 98.6 18931 271 4 1.02 cities are d!wded into 17 s'mgl.e-sc'aat. constltuenC}es as
20 101.3  155.86 422.1 1.15 shown in Figure 5(a). In this districting, the maximum
30 1252 12340 405.5 1.16 and minimum populations of constituency are 585,000

and 377,000, respectively, and the ratio of these two

Figure 4. Graph representation of Kanagawa Prefecture.
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Table 4. Population (in thousands) of the cities in Kanagawa Prefecture.

No. City Population No. City Population No. City Population
=] Tsurumi 2442 18 Saiwai 141.7 *35 Yamato 187.2
2 Kanagawa 200.8 19 Nakahara 181.0 36 Isehara 83.4
3 Nishi 76.2 20 Takatsu 157.8 37 Ebina 101.1
4 Naka 112.1 *21 Tama 163.7 38 Zama 107.0
5 Minami 195.8 22 Miyamae 170.2 39 M-Ashigara 425
6 Hodogaya 191.7 23 Aso 119.6 40 Ayase 759
9 Isogo 166.0 *24 Yokosuka 433.1 41 Miura-C 29.9
*8 Kanazawa 191.0 25 Hiratsuka 238.7 42 Kouza 42.7
=0 Kohoku 293.3 *26 Kamakura 176.7 43 Naka-G S 7
*10 Totsuka 237.0 27 Fujisawa 341.3 4 Ashigara-K 29.5
%11 Konan 225.0 *28 Odawara 190.2 45 Ashigara-S 9.6
*12 Asahi 244.0 29 Chigasaki 197.3 46 Tsukui 14.5
13 Midori 150.0 30 Zushi 571 47 Aiko 13.1
14 Seya 117.3 =31 Sagamihara 508.6 *48 Aoba 14.3
15 Sakae 122.7 32 Miura 52.1 49 Tsuzuki 11.6
16 [zumi 1222 33 Hadano 146.5
*17 Kawasaki 193.9 *34 - Atsuki 185.9

Figure 5. Districting results: (a) current and (b) HYPEROPIC.

m Current
Population (thousand)

m Proposed

Constituency

Figure 6. Population per constituency.

numbers, 155.2%, represents a measure of unbalance
in the current system.

We took 17 root nodes as the biggest cities in the
current constituencies, as shown with * in Table 4
and depicted in bold circles in Figure 4, and applied

HYPEROPIC to this problem. The districting
obtained is shown in Figure 5(b). The maximum and
minimum populations of constituency in this district-
ing is 517,000 and 388,000. In this case the unbalance
ratio is 133.2%, which is 20.0% smaller than in the
current system. Figure 6 illustrates the population of
each constituency with the current and proposed
districting.

7. Conclusions

In this article we presented two heuristics to solve the
problem of electoral districting approximately. We
found that HYPEROPIC gives a satisfactory solution,
with the resulting districts all connected and usually
better balanced in size.

However, in this work we only took population at
each node into account. Edge weights, such as
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distance, time and cost to travel between nodes, are not
explicitly considered. To obtain a more geographically
acceptable districting, we need to combine these edge
weights with node weights. This is an important and
interesting issue for future research.
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