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Abstract 

Various properties of preferential election rules are described, including nine forms of mono- 
tonicity. It is shown that Condorcet’s principle is incompatible with many of them. Some progress 
is made towards the task of determining all maximal mutually compatible subsets of these prop- 
erties. To that end, a survey is given of the monotonicity properties of many known single-seat 
preferential election rules, and four new rules are described, including one that is offered as 
a more monotonic practical alternative to the Alternative Vote. 
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1. Introduction 

It is well known [4, lo] that the Single Transferable Vote (STV) fails various tests 

of monotonicity. A major unsolved problem is whether there exist rules that retain 

the important political features of STV and are also more monotonic. Because this is 

such a difficult problem in general, I concentrate here on the special case of single- 

seat elections, in which STV reduces to AV, the Alternative Vote. However, the basic 

definitions are given (in Section 2) and the properties are described (in Section 3) in 

a form that applies equally well to multi-seat elections. Two impossibility theorems 

are proved in Section 4, which show that various properties, including Condorcet’s 

principle, are incompatible with many forms of monotonicity. The monotonicity prop- 

erties of many single-seat election rules are surveyed in Sections 5-7: some known 

non-Condorcet rules in Section 5, some Condorcet-type rules (including two new ones, 

PMM and MMG) in Section 6, and two new rules (QLTD and DAC) in Section 7. 

DAC is proposed as a more monotonic practical alternative to the Alternative Vote. 

A summary of properties is given in Table 1. 
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2. Definitions 

2.1. Terminology and axioms jbr ekction rules 

Candidates will be denoted by lower-case letters a, b, c, . . . Each voter casts a ballot 

containing a preference listing of the candidates, which is written as (for example) 

abc, to denote that the voter places a first, b second and c third, with no fourth choice 

being expressed. A preference listing is complete if it includes all candidates, and 

truncated otherwise. A projile is a weighted family of preference listings, such as 

might represent the ballots cast in an election. Profiles are represented as for Elections 

1 and 2 below, indicating either the proportion, or the absolute number, of ballots of 

each type cast. 

Election 1 

(1 seat) 

ab 0.17 

a( 0.16 

bat 0.33 

cb 0.34 

Election 2 

(2 seats) 

a 9 ea 4 

b 9 eb 4 

c 10 1 

d 10 ;;I 1 

fe 6 

In an election to fill s seats from n candidates, an outcome is a set of s candi- 

dates; so there are (:) different outcomes. As in [20], a (preferential) election rule 

(for filling s seats) is a function that associates with each profile a probability space 

on the set of corresponding outcomes. The ‘normal’ situation is that all outcomes are 

given probability 0 except for one, which has probability 1; if anything else hap- 

pens, then we say that the result is a tie between all the outcomes that have non-zero 

probability. For example, if AV is used for Election 1 above, then it elects a with 

probability i, and b and c with probability i each; and if STV is used for Election 

2, then it elects {a, b} with probability $ and {c,e} and {d,e} with probability i 

each. 

This definition implies that every election rule is anonymous, meaning that the re- 

sult depends only on the number of ballots of each type in the profile. It is neutral 

(hence, being anonymous, it is symmetric) if, whenever a permutation is applied to 

the names of the candidates on all the ballots, then the same permutation is applied to 

the result. It is homogeneous if the result depends only on the proportion of ballots of 

each type, not on their absolute number. And it is discriminating if, for every possible 

set of preference listings, the proportion of profiles that give rise to a tie, out of all 

profiles that include only preference listings from that set, tends to zero as the number 

of voters in the profile tends to infinity. (This is a rather stronger form of discrimi- 

nation than is usually imposed, but we shall need it in the proof of Theorem 3. The 

imposition of discrimination in any form rules out systems that use random selection 

as an intrinsic feature and not just as a last resort; such systems are of great interest 
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[ 1, 81 but they are outside the scope of this work.) A proper election rule is one that is 

symmetric, homogeneous and discriminating. Henceforth we shall consider only proper 

election rules. 

Note that election rules involving transfers of fractional votes are seldom homo- 

geneous in practice, because replicating each ballot a large number of times will reduce 

the effect of any rounding errors. We shall count an election rule as proper if an 

idealized version of it is proper, even though a specific implementation of it may 

not be. 

2.2. Notation ,fkw profiles 

We shall always denote the set of candidates by C, the number of seats (= the 

number of candidates to be elected) by s, the total number of votes (= ballots in the 

profile) by c, the number of ballots containing candidate x by L(X), and the num- 

ber with x in ith place by u;(x). The Droop quota is v/(s + 1). A voter, ballot or 

preference listing prefers x to y if he, she or it lists x above (before) y, or lists x 

but not y. We write S(X) for the set of voters who are solidly committed to a set 

X C C, that is, who prefer every candidate in X to every candidate not in X (see 

[7]). We write E(X) for the set of candidates in X who are elected (by the election 

rule currently under consideration); P( ]FIE(X)] 3 1) is the probability that this num- 

ber is positive, and Pn(x) = P(IE({x})] = 1) is the probability that candidate x is 

elected. 

We write g(x, y) for x’s gross mujority over y, that is, the number of voters who 

prefer x to y. Then n(x, y) = g(x, y) - g(y,x) is x’s net mujority over y. We define 

the minimum gross score mings(x), minimum net score minns(x) and musimum net 

untiscore maxna(x) of candidate x by 

mings(x) = min g(x,y), 
JEC\{,Y} 

maxna(x) = ,:y’; l ~(YJ>. 
r 

Clearly minns(x) = -maxna(x) 

minns(x) = min n(x, v), 
?,EC\{Il 

and, in the absence of truncated preference listings, 

mings(x) = i(tl + minns(x)); but there is no direct connection between mings(x) and 

minns(x) in general. 

3. Properties of election rules 

It is convenient to divide these into global or absolute properties on the one hand, 

and local or relutive properties on the other. The former say something about the result 

of applying an election rule to a single profile, whereas the latter say how the result 

should (or should not) change when certain changes are made to the profile. 
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3.1. Global or absolute properties 

The essential feature of STV, which makes it a system of proportional representation 

(within each constituency), is what I call the Droop proportionality criterion or DPC. 

The single-seat version of DPC is what 1 call MAJORITY. PLURALITY is a rather weak 

property that surely must hold in any real election. 

l DPC. If, for some integer k and set X 2 C satisfying 0 < k < 1x1, /S(X)1 exceeds 

k Droop quotas, then I/Z(X)1 3 k (with probability 1). 

l MAJORITY. If iS(X)l > ;Y, then I/Z(X)1 2 1. 

l PLURALITY. If u(x) < Q(JJ), then PE(x) c&(y). 

We say that x beats y or ties with y (in pairwise comparisons) if n(x, y) (defined 

in Section 2.2) satisfies n(x, y) >0 or = 0, respectively. A Condorcet winner (resp. 

Condorcet non-loser) [5] is a candidate who beats (resp., beats or ties with) every other 

candidate in pairwise comparisons; note that all Condorcet non-losers (if any) must tie 

with each other. The Condorcet top tier is the smallest non-empty set T C C such 

that every candidate in T beats every candidate (if any) outside T. (This concept was 

apparently first introduced by Nanson [ 151.) Let W (resp. L) be the set of Condorcet 

winners (non-losers). Then 1 WI < 1 and L C T, and if 1 WI = 1 then W = L = T. 

Condorcet’s principle and the two strengthenings of it given below were formulated 

originally for single-seat elections in which every voter provides a complete preference 

listing; but I have reworded them here so that they make sense (even if they are not 

necessarily sensible) for all preferential elections. 

l COND~RCET [5]. If there is a Condorcet winner w, then w should be elected. 

l SMITH~CONDORCET [ 171. /E(T)/ 3 1. 

l EXCLUSIVE-C• NDORCET (see [9]). If L # 0 then IE(L)I 3 1. 

Note that SMITH-C• NDORCET and EXCLUSIVE-C• NDORCET both imply CONDORCET, and 

SMITH~CONDORCET also implies MAJORITY. It is easy to see that, in multi-seat elections, 

DPC and CONDORCE~ are mutually incompatible. Many authors have found CONDORCET 

an attractive principle for single-seat elections, although others [9] have found it less 

plausible, and we shall see in Theorem 2 that it conflicts with many monotonicity 

properties. 

3.2. Local or relative propertie,, 

We shall say that a candidate x is helped or harmed by a change in the profile if the 

result is, respectively, to increase or to decrease &(I). The following two properties 

are well known to hold for STV. 

l LATER-NO-HELP. Adding a later preference to a ballot should not help any candidate 

already listed. 

l LATER-NO-HARM. Adding a later preference to a ballot should not harm any candidate 

already listed. 

Next we come to the different versions of monotonicity. The basic theme is that a 

candidate x should not be harmed by a change in the profile that appears to give more 



D. R. Woodalll Discrete Applied Mathematics 77 11997) 81-98 85 

support to x; but one gets different flavours of monotonicity if one specifies different 

ways in which the profile might be changed. 

MONOTONICITY. A candidate x should not be harmed if: 

l (MONO-RAISE) x is raised on some ballots without changing the orders of the other 

candidates; 

l (MONO-RAISE-DELETE) x is raised on some ballots and all candidates now below x on 

those ballots are deleted from them; 

l (MONO RAISE-RANDOM) x is raised on some ballots and the positions now below x on 

those ballots are filled (or left vacant) in any way that results in a valid ballot; 

l (MONO-APPEND) x is added at the end of some ballots that did not previously contain 

x; 

l (MONO--SUB-PLUMP) some ballots that do not have x top are replaced by ballots that 

have x top with no second choice; 

l (MONO-SUB-TOP) some ballots that do not have x top are replaced by ballots that have 

x lop (and are otherwise arbitrary); 

l (MONO-ADD-PLUMP) further ballots are added that have x top with no second choice; 

l (MONO-ADD-TOP) further ballots are added that have x top (and are otherwise arbi- 

trary); 

l (MONO-REMOVE-BOTTOM) some ballots are removed, all of which have x bottom, below 

all other candidates. 

There is also the following property, which is not strictly a form of monotonicity but 

is very close to it (and is again reworded here for multi-seat elections). 

l PARTICIPATION [14]. For X s C, the addition of further ballots that are solidly com- 

mitted to X should not reduce P(]E(X)( >, 1). 

All the monotonicity properties seem superficially desirable, except that, as explained 

in [20], 1 do not think that MONO-REMOVE-BOTTOM is desirable in multi-seat elections. 

Of course, any of these properties may be undesirable in practice if it turns out to 

have undesirable consequences. MONO-RAISE-RANDOM, in particular, is very restrictive. 

Among many questions that I cannot answer is whether there exists an election rule that 

satisfies both MONO-RAISE-RANDOM and MAJORITY; if not, then I would certainly regard 

MAJORITY as the more important property to preserve. 

Theorem 1. The following implications hold: 
(a) MONO-RAISE-RANDOM + (MONO-RAISE and MONO-RAISE-DELETE); 

(b) (MONO-RAISE and LATER-NO-HELP) =+ MONO-RAISE-DELETE; 

(c) (MONO-RAISE-DELETE and LATER-NO-HARM) + MONO-RAISE-RANDOM; 

(d) MONO-SUB-TOP + MONO-SUB-PLUMP; 

(e) (MONO-SUB-PLUMP and LATER-NO-HARM) + MONO-SUB-TOP; 

(f) (MONO-APPEND and MONO-RAISE-DELETE) + MONO--SUB-PLUMP; 

(g) (MONO-APPEND and MONO-RAISE-RANDOM) + MONO-SUB-TOP; 

(h) MONO-ADD-TOP + MONO-ADD-PLUMP; 

(i) (MONO-ADD-PLUMP and LATER-NO-HARM) * MONO-ADD-TOP; 

(j) PARTICIPATION * MONO-ADD-TOP. 



86 D. R. WoodaNl Discrete Applied Mathematics 77 (1997) 81-9X 

Moreover, in single-seat elections, 

(k) PARTIClPATlON + MONO-REMOVE-BOTTOM. 

Also, if truncated prejerence listings are not allowed, then 

(1) MONO-RAISE-RANDOM =+ MONO-SUB-TOP. 

Proof. These are all straightforward. 0 

4. Impossibility theorems 

We shall prove two multi-part impossibility theorems. Note that if a number of 

properties are compatible in general, then in particular they must be compatible for 

single-seat elections, and so it suffices to prove their incompatibility in this case. We 

shall assume throughout that all election rules are proper. 

Theorem 2. (a) Even if truncated preference listings are not allowed, CONDORCET is 

incompatible with PARTICIPATION, MONO-RAISE-RANDOM and MONO-SUB-TOP. 

(b) In general, CONDORCET is incompatible with LATER-NO-HELP, LATER-NO-HARM, 

MONO-RAISE-DELETE, MONO-SUB-PLUMP and, in the presence of PLURALITY, MONO-ADD-TOP. 

(c) There is no election rule that sutisfies LATER-NO-HELP and LATER-NO-HARM, and 

that also satisfies CONDORCET whenever there are no truncated preference listings. 

Proof. For the incompatibility of CONDORCET with PARTICIPATION, see [14] 

Election 3 Election 4 

(1 seat) (1 seat) 

abc 3 acb 2 ab 11 

bca 3 bat 2 b 7 

cab 3 cba 2 C 12 

Consider Election 3. By symmetry, the result must be a 3-way tie; but, by the axiom 

of discrimination, there must be a profile P arbitrarily close to this (in the proportions 

of ballots of each type) that does not yield a tie. Without loss of generality, suppose a 

is elected in P. But c becomes the Condorcet winner, and so must be elected by 

CONDORCET, if half the but ballots in P are replaced by abc and half by acb (contrary 

to MONO-RAISE-RANDOM and MONO-SUB-TOP), or if all the abc ballots are replaced by a 

(contrary to LATER-NO-HELP), or if all the bat ballots are replaced by a (contrary to 

MONO-RAISE-DELETE and MONO-SUB-PLUMP), or if all the abc ballots are replaced by acb 

(contrary to LATER-NO-HELP and LATER-NO-HARM together). This proves (a), (c) and three 

parts of (b). 

Suppose we modify the profile in Election 3 by deleting the second and third choices 

from all the abc, bca and cub ballots. Again, there must be a profile P’ arbitrarily close 

to the modified profile that does not yield a tie, and we may suppose w.1.o.g. that a is 
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elected in P’. But b becomes the Condorcet winner if we replace the a ballots in P’ 

by ubc, contrary to LATER-NO-HARM. 

Finally, consider Election 4. Again, even if this yields a tie, there must be a profile 

P” arbitrarily close to it that does not. By PLURALITY, a cannot be elected in P” (because 

of c); by CONDORCET and MONO-ADD-TOP, b cannot be elected, because adding two hrr 

ballots would make a the Condorcet winner; and similarly c cannot be elected, because 

adding five ch ballots would make b the Condorcet winner. This contradiction completes 

the proof. 0 

We shall see in later examples that CONDOKCET (with or without PLURALITY) is compat- 

ible with all fotms of monotonicity not specifically ruled out by Theorem 2. I interpret 

Theorem 2(b) as saying that CONDORCET is not desirable when truncated preference 

listings are allowed. 

Theorem 3. A proper election rule thut satisfies MAJORITY, LATER-NO-HELP and L~TLR- 

No-HARM cannot sutisjj my of’ the ,fol~owim~: 

(i) MONO SUB-PLUMP 01 MONO-SUB-TOP; 

(ii) MONO-RAISE, MONO-RAISE-DELETE OY MONCI~RAISE-R~~NDOM; 

(iii) MONO~REMOVE-BOTTOM OY PARTICIPAllON. 

Proof. We again consider only single-seat elections. By Theorem 1, in the presence of 

LATER-NO-HELP and LATER-NO-HARM, the two MONO-SUB properties are equivalent, as are the 

three MONO-RAISE properties. Also (for single-seat elections) PARTICIPATION implies MONO 

REMOVE-BOTTOM. Thus it suffices to prove the incompatibility using the first property 

mentioned in each of (i)-(iii). We write P(X + x) for the probability that x is elected 

(by the rule currently under consideration) in profile X. 

(i) This is a stronger version of the theorem (and proof) from [IS]. Suppose an elec- 

tion rule satisfies MAJORITY, LATER-NO-HELP, LATER-NO-HARM and MONO-SUH-PLUMP. Consider 

the following profiles. 

.40 AI A2 A3 244 A5 A6 

a 0.335 - ic a ab 0.34 + (5 a ah 0.34 + b ab ah 0.3+1: 

h 0.33 + i: b b 0.33+i: b b 0.3fc b bu 0.3+>: 

c 0.335 - $ c c 0.33 -ii ~ E c L 0.36ii-l; c r 0.4 ~ 21: 

By the axiom of discrimination, we can choose 6 and c so that j61+ 1~1 < 0.001 and nei- 

ther of profiles Al and A3 results in a tie. Since P(A0 + a) = P(A0 --i c) by symmetry, 

it follows by MONO-SUB-PLUMP that P(A I ---f L.) d P(AO + c) < i, whence P(A, - c) = 

0. By similar arguments, P(A3 d a) = P(A) + b) = 0, and so P(Al + a) = I. Now 

P(A2 + a) 3 P(AI + a) = 1 by LATER-NO-HARM, 

P(A4 + b) < P(A2 + b) = 0 by MONO-SUB-PLUMP, 
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P(A6 + b) < P(A5 --) b) = 0 by LATER-NO-HELP. 

However, P(A6 + b) = P(A6 4 a) = k by MAJORITY and symmetry, and this contradic- 

tion proves (i). 

(ii) I am indebted to B.J. Tarlow for the central part of the argument in (ii) and (iii). 

Consider the following profiles. 

Bo B1 B2 B3 B4 BS & 

ac ac acb abc a acb acb 0.3 + 6 

b b b bat bat bat bat 0.3 + E 

ca c cba c c C cba 0.4 - 6 - E 

CO Cl c2 

ac 0.35 - ft: acb 0.33 0.33 

b 0.3 + E bat 0.3 + E 0.33 

ca 0.35 - fs cba 0.38 - E 0.33 

Suppose an election rule satisfies MAJORITY, LATER-NO-HELP, LATER-NO-HARM and MONO- 

RAISE. Let Bi denote the profile obtained from Bi by interchanging 6 and E. By the 

axiom of discrimination, we can choose 6 and E so that 161 + 1.~1 < 0.001 and none 

of profiles B1, B’,, B3 and Bi result in a tie. Since P(B3 -+ a) + P(BG --+ a) = 1 by 

MAJORITY and symmetry, we may suppose by interchanging 6 and E if necessary that 

P(B3 -+ a) = 1. Since P(Co -+ a) = P(Co --+ c) = i by MAJORITY and symmetry, 

P(BI + c) 3 P(Bo --f c) > P(Co + c) = ; by LATER-NO-HELP and MONO-RAISE, 

and so P(B1 -+ c) = 1. Also 

D. R. WoodalllDiscrete Applied Mathematics 77 (1997) 81-98 

I’(_44 -+ a) 6 I’(,43 + a) = 0 by LATER-NO-HELP, 

P(AS --f c)>P(A4 -+ c)= 1 by MONO-SUB-PLUMP, 

and 

P(Bs + a) 3 P(B4 + a) 3 P(B3 + a) = 1 by LATER-NO-HARM and LATER-NO-HELP. 

Now 

P(B2 + c) 2 P(BI ---f c) = 1 by LATER-NO-HARM, 

P(&j + b) < P(B2 -+ b)= 0 by LATER-NO-HELP, 

P(& + C)< P(Bs ---) C)= 0 by LATER-NO-HELP, 

P(Cl + a) 3 P(B6 -+ a) = 1 by MONO-RAISE, 

and 

P( c2 --) c) < P( Cl --) c) = 0 by MONCRAISE. 
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However, P(Cz+c) = P(Cz+a) = P(C2 -b) = $ by symmetry, and this contradic- 

tion proves (ii). 

(iii) The argument here is very similar to that of (ii), but with different start and 

finish. Let a, /3 and y be positive integers, let ~1 := max(x, I), and suppose ;: > p and 

2~ > ;(x + p + I>). Consider the following profiles. 

Do Dl 02 03 04 05 

UC x UC ac 2 acb x CI p 

b Pb j b fl bat P B P 

CU x ca R c 7 cba Y P P 

Cba y-cc 

Suppose an election rule satisfies MAJORITY, LATER-NO-HELP, LATER-NO-HARM and MONO- 

REMOVE-BOTTOM. By majority and symmetry, P(D0 -+ a) = P(D0 + c) = i. Therefore 

P(D1 --f a) < P(Do + a) = i by MONO-REMOVE-BOTTOM 

and 

P(D2 ---f C) > P(D, ---f C) 3 ; by LATER-NO-HELP, 

since P(Dl + a) tP(D1 -+ c) = 1 by MAJORITY. So P(Bt 4 c) 2 i whenever b and I: 

are sufficiently small. As in (ii), we can choose 6 and E so that (6/f IE/ < 0.001 and none 

of profiles Bi, B’,, BJ and Bi result in a tie, and we may suppose that P(B3 ---) a) = 1 

and can deduce from the above that P(Bl --) c) = 1. We can now follow the argument 

of (ii) to deduce that P(B6 + a) = 1, which implies that P(D3 + a) = 1 for suitable 

I, fi, 1’. Now 

P(D4 ---f U) >, P(D3 + a) = 1 by MONO-REMOVE-BOTTOM 

and 

P(D5 i X) < P(D4 -+ X) = 0 by MONO-REMOVE-BOTTOM, 

where x = b if p # a and x = c if ,LL = cx But symmetry requires that P(Ds --f x) = f , 

and this contradiction completes the proof of Theorem 3. 0 

We shall see by considering the Alternative Vote that MAJORITY, LATER-NO-HELP and 

LATER-NO-HARM are together compatible with all properties not specifically ruled out by 

Theorems 2 and 3. 

5. Known non-Condorcet election rules 

In the remainder of this paper we shall analyse a number of single-seat 

election rules, whose properties we summarize in Table 1. In this section we 

consider several known rules not satisfying Condorcet’s principle. In most cases it 
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is fairly obvious which properties hold, but it is useful to have counterexamples for 

those that do not. Recall the definitions of C, c, t:(x) and t.i(_*.) from 

Section 2.2. 

Election 5 

Llhc 2.5 

hut 30 

cXih 45 

Election 6 

crhc 10 

hca 8 

cab I 

First-Preference Plurality (FPP), or First-Past-the-Post, elects the candidate x for 

whom z.i(x) is largest. To see that this does not satisfy MAJORITY or CONDOR~ET, consider 

Election 5, where FPP chooses c, but MAJORITY requires that a or b should be elected, 

and cl is the Condorcet winner. It is easy to see that FPP satisfies all the local properties 

we have mentioned, although it satisfies LATER-NO-HARM only if second and subsequent 

preferences are ignored totally, and not used to separate ties. (We shall describe election 

rules as if there is no tie; if there is a tie, that is, more than one candidate satisfies the 

specified criterion for election, then it is assumed that all such candidates are elected 

with equal probability.) 

Point Scoring (PS) methods are those where, for some real numbers al > 02 > 
. :.O, one elects the candidate x for whom Cl’l aivi(x) is largest. To see that such 

methods do not satisfy MAJORITY or CONDORCET, suppose $ + I: of the voters vote rrhc 

and i - c vote bca, where c > 0. Then both MAJORITY and CONDORCET require that 

a should be elected, but any PS method will choose b provided that i: is small enough. 

The remaining properties are fairly obvious. Note that MONO-RAISE-RANDOM and MONO 

SUR-TOP do not hold in general, but the former holds if a, 3 2a, + 1 for each i, and the 

latter holds if ai 3 2~. 

Approval Voting (ApV) [3] elects the candidate .Y for whom c(x) is largest. (It was 

devised as a non-preferential system, and our use of it here is silly if truncated pref- 

erence listings are not allowed, when u(x) = c for all x.) Note that just as FPP is the 

limiting case of PS as Eli --f 0 for each i 3 2, so ApV is the limiting case as u, + I 

for each i. ApV therefore has the same properties as PS. (For the failure of M~AJOR- 

ITY and CONDORWT, remove the last candidate from every ballot in the profile cited 

for PS.) 

The Alternative Vote (AV) is the system where one repeatedly excludes the candidate 

with the smallest number of votes until there is only one candidate left, each vote being 

given at each stage to the first non-excluded candidate on the ballot. (If there is more 

than one candidate with the smallest number of votes, then one of them is chosen at 

random for exclusion. In practice one can stop as soon as some candidate has more than 

half the votes.) AV does not satisfy CONDORCET since it chooses b in Election 5, where 

a is the Condorcet winner. It is easy to see that it satisfies the other properties ticked 

in Table 1, although it satisfies LATER-UO-HARM only if ties are separated at random and 

not by looking ahead to later preferences. To see that it does not satisfy any other 

local properties, use Theorem 3. Alternatively note that, in Election 6 above, (’ is 
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excluded and a is elected; but if two of the bca ballots are removed, or replaced by 

a or by abc or by anything else starting with a, then b is excluded and c is elected 

instead of a. 

Approval AV (ApAV), which I proposed in [19], is a variant of AV in which 

one excludes at each stage the candidate x with smallest v(x), stopping as soon 

as some candidate becomes the top non-excluded candidate on more than half the 

non-empty ballots. ApAV does not satisfy CONDORCET or MONO-ADD-TOP (add a sin- 

gle bc ballot in Election 5 to ensure that a, the Condorcet winner, is excluded first, 

so that b is elected; and then add a further two ba ballots to ensure that c is ex- 

cluded first and a is elected). But, like AV, ApAV clearly satisfies MONO-APPEND 

and MONO-ADD-PLUMP, and unlike AV it also clearly satisfies MONO-RAISE and MONO- 

REMOVE-BOTTOM. It is easy to find examples to show that none of the other properties 

hold. 

It is clear from Table 1 that the sets of properties satisfied by PS, ApV and ApAV 

are properly contained in those satisfied by FPP, FPP and QLTD (see Section 7) 

respectively. However, those satisfied by FPP and AV are maximal: 

Theorem 4. Among the properties listed in Table 1, there are precisely two maximal 

sets of mutually compatible properties that include both LATER-NO-HELP and LATER-NO- 

HARM; they are the sets satisfied by FPP and AV. 

Proof. Among sets of mutually compatible properties that include both LATER-NO-HELP 

and LATER-NO-HARM, we see from Table 1 and Theorems 2 and 3 that the set of properties 

satisfied by FPP is the unique maximal set not containing MAJORITY, and the set satisfied 

by AV is the unique maximal set containing MAJORITY. q 

6. Condorcet-based election rules 

6.1. Naiiie rules 

There is an obvious na’ive method of modifying the above rules so that they satisfy 

Condorcet’s principle: exclude all candidates not in the Condorcet top tier (closing 

up the gaps in the preference listings when candidates are excluded from them), and 

apply FPP, PS or AV to the remaining candidates. (One could use ApV or ApAV 

instead, but only if truncated preference listings are allowed.) The resulting rules are 

described in Table 1 as C-FPP, C-PS and C-AV. It is easy to see that they all satisfy 

PLURALITY. They do not satisfy EXCLUSIVE-C• NDORCET: in Election 7, the Condorcet top 

tier is {a, b, c}, and all three rules elect c if k is large enough, whereas b is the unique 

Condorcet non-loser. However, the rules could easily be modified so that they do 

satisfy EXCLUSIVE-C• NDORCET, just by redefining the Condorcet top tier in the event that 

there are Condorcet non-losers. Fishbum [9] has modified a method of Black [2, p. 661 
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in just this way; the modified method, called B-F in Table 1, is to declare the result 

a tie between all Condorcet non-losers if there are any, and otherwise to use PS 

(specifically, Borda counts). 

Election 7 Election 8 

lih<~ k + 2 ahc k + 2 

IKLl li + I hccr k + I 

(‘0 k cu k 

chr k + 1 chu k 

To see that none of these four Condorcet methods satisfy MoNo~REMovT.-R(~TToh,l. 

note that in Election 8 the Condorcet top tier is (0, h,~} and all four methods elect 

c if k is large enough. But if two abc ballots are removed, then b becomes the 

Condorcet winner. The same example shows that C-AV does not satisfy MONO RAISE. 

since replacing two abc ballots by cab will cause a to be excluded instead of b. 

so that h is elected instead of c. It is easy to see that the other three methods satisfy 

MONO RAISE, and all four satisfy MONO ADD-PLUMP and MONO-APPEND. The failure of the 

remaining properties follows from Theorem 2, except for the failure of B-F to satisfy 

VAJORITY (and, therefore, SMrrit-CoNpoRc.m-). This can be seen from Election 9 and 

modifications of it, where MAJORITY requires that N, b or c should be elected, but B-F 

will elect u’. 

Election 9 

dxxlc?f 102 

cabd<f 10 1 

hcadcf’ 100 

de@bc 98 

d+ub 99 

tkfbcu 100 

6.2. 0th knolcw Condorcet v&s 

In [9], Fishburn considers nine election rules satisfying Condorcet’s principle. Three 

of them fail the axiom of discrimination and so are not proper election rules accord- 

ing to our definition. Two others should be mentioned briefly. Roughly speaking, 

Nanson’s rule [ 15, 161 is successively to delete the candidate with the smallest Borda 

count (recalculating the Borda counts after each deletion) until only one candidate 

is left; and Dodgson’s rule [6] is to elect the candidate who can be made into a 

Condorcet non-loser by the smallest (fractional) number of transpositions of adjacent 

preferences in the preference listings in the profile. Fishburn gives examples 19, p. 4781 

to show that neither of these rules satisfies MONO-RAISE, and 1 shall not consider them 

further. 

Of the four remaining rules discussed by Fishbum [9], we have already consid- 

ered B-F, and we now consider the other three. Young’s rule (Y) [21] elects the 

candidate who can be made into a Condorcet winner by deleting the smallest 

(fractional) number of ballots. The minimax rule (MM), ascribed in [9] to Condorcet 

[5], elects the candidate who can be made into a Condorcet winner by adding the 
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smallest number of additional ballots. Kemeny’s rule (K) [I 1, 121 first finds the lin- 

ear ordering of the candidates that gives the largest agreement with the profile, and 

then elects the first candidate in that order; here the agreement of an order 0 with 

a profile P is CBEPA(O,P), where A(O,P) is the number of ordered pairs (x,y) 

of candidates such that x is above y in the order 0 and x is preferred to y by the 

ballot /3. 

Although Y and MM look similar, MM depends only on the net scores n(x, y) 
- in fact, it elects the candidate x for whom maxna(x) (defined in Section 2.2) 

is minimal, whence the name minimax - whereas Y depends on the ballots them- 

selves, since one cannot remove ballots that are not there. Nevertheless, the two meth- 

ods have very similar properties. They both choose d in Election 9, showing that 

they do not satisfy MAJORITY or (therefore) SMITHCONDORCET, whereas it is not dif- 

ficult to see that K does satisfy SMITHCONDORCET and hence MAJORITY. However, Y 

and MM satisfy EXCLUSIVE-C• NDORCET, whereas K does not as it stands (see [9]), al- 

though it suffices to specify a suitable tie-breaking rule in order for K to do so. 

But none of the three satisfy PLURALITY, since all elect a in Election 4. The fail- 

ure of K to satisfy MONO-ADD-TOP and MONO-REMOVE-BOTTOM follows from an exam- 

ple of Fishbum [9, p. 4841, and the other entries in Table 1 all follow from 

Theorem 2. 

6.3. PMM, or plurality-minimax 

This is a rather heavy-handed modification of MM that satisfies CONDORCET, PLU- 

RALITY and MONO-REMOVE-BOTTOM (and is designed solely to prove that these three 

properties are mutually compatible). Say that a candidate x is debarred by PLURAL- 

ITY if u(x) < ~1 (y) for some other candidate y. Note that a candidate who is debarred 

by plurality remains so if some complete preference listings are removed from the 

profile; that is, adding complete preference listings cannot cause a candidate to be- 

come debarred who was not so before. Let Dp denote the set of candidates x such 

that x is debarred by plurality in the profile obtained by removing all ballots in 

which x is bottom, below all other candidates. Clearly Dp # C, since any candidate 

with the largest number of first-preference votes after all complete preference listings 

have been removed from the profile is in C\Dp. (If there are no truncated preference 

listings then Dp = 0.) PMM elects the candidate x in C\Dp for whom minns(x) is 

maximal. 

PMM clearly satisfies CONDORCET and PLURALITY. (A Condorcet winner cannot be in 

Dp.) It is easy to see that the winning candidate x cannot be moved into Dp if some 

ballots that have x bottom are removed, or if n is raised on some ballots, or if x is 

appended to some ballots that did not contain x, or if extra ballots are added that plump 

for x; and since these operations cannot decrease minns(x) nor increase minns(y) for 

any y # x, it follows that PMM satisfies the only four monotonicity properties that are 

possible for a rule that satisfies CONDORCET and PLURALITY. 



D. R. Woodalll Discrete Applied Mathemutics 77 11997) 81-98 95 

6.4. MMG, or maximin gross 

As we have seen, Condorcet-minimax (MM) elects the candidate x for whom maxna(_u) 

is minimal, or, equivalently, for whom minns(x) is maximal. Like all Condorcet-based 

rules, it fails many forms of monotonicity, and so arguably it is not suitable for use 

when there are truncated preference listings. MMG is a workable system that, although 

it does not satisfy CONDORCET, can nevertheless be thought of as extending Condorcet’s 

principle monotonically to profiles that include truncated preference listings. It elects 

the candidate x for whom mings(x) is maximal. Note that MMG agrees with MM. 

and hence satisfies CONDORCET and EXCLUSIVE-C• NDORCET, if all preference listings are 

complete; therefore three properties fail by Theorem 2(a). Note also that adding a 

candidate y at the end of a ballot already containing x can raise mings(y) but cannot 

change mings(x); thus MMG satisfies LATER-NO-HELP but not LATER-NO-HARM. and it is 

easy to see by the same reasoning that it satisfies the other monotonicity properties 

ticked in Table 1. It also satisfies PLURALITY, because if a(x) < cl(y) then 

mings(x) < v(x) < cl(y) < mings(y). 

6.5. Unanslt’ered questions 

Among many unanswered questions are the following: 

Question 1. Does there exist any election rule that satisfies MAJORITY, CONDORCET, und 

either or both ?f’ MONO-ADD-TOP and MONO-REMOVE-BOTTOM? 

Question 2. Does there exist any election rule that satisjies all the properties satisfied 

b?l MMG, together with MAJORITY? 

Theorem 5. If the answer to Question 1 is negatitle, then 

(i) among the properties listed in Table 1, there we precisely three maximal sets 

of mutuully compatible properties that include CONDORCET they ure the sets satisfied 

by MM, PMM and C-PS (modified so us to satisfy EXCLUWE-CONDORCW); 

(ii) the set of properties sutisjied by MMG is also a maximal set. 

Proof. Assuming that the answer to Question 1 is negative, and considering only sets 

of mutually compatible properties that include CONDORCET, Theorem 2 shows that MM 

satisfies the unique maximal set containing MONO-ADD-TOP; PMM, the unique maximal 

set containing MONO-REMOVE-BOTTOM but not MONO-ADD-TOP; and C-PS, the unique max- 

imal set containing neither of these. Finally, a negative answer to Question 1 implies 

a negative answer to Question 2, and now Theorem 2(c) shows that MMG satisfies a 

maximal set of compatible properties. 0 

Needless to say, an affirmative answer to Question 1 would have no such conse- 

quences, and would leave open the determination of the maximal sets of mutually 

compatible properties satisfying CoNo0RcE.r. 
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7. New rules satisfying MAJORITY 

7.1. QLTD, or quota-limited trickle-down 

This rule is largely superseded by DAC (below), but I have included it here be- 

cause it is simpler. For x E C and t > 0, let zj(x, t) = c/j, u;(x) + (t - Lt])urtl (x). 

Let E(t) = {x E C: n(x, t) 2 iv}. If (exceptionally) E(t) = 8 for all t, then QLTD 

elects the candidate x for whom u(x) = v(x, ICI) is largest (as in ApV); otherwise 

let to = inf{t : E(t) # 0) and declare the result a tie between all candidates in E(to). 

(Normally there will be just one.) 

It is easy to see that QLTD satisfies PLURALITY, because if v(x) < VI(~) then v(x, t) d 

v(x) < u,(y) d u(y,t) for all t 3 1, and v(x,t) = tul(x) < tvl(y) = u(y,t) if t < 1. It 

satisfies MAJORITY as well, because if IS(X)1 > iv then v(x, 1x1) > iv if x E X and 

u(x, 1x1) < iv if x eX, so that to < 1x1 and E(to) LX. Many forms of monotonicity 

are obvious, since if x is the candidate elected then the changes involved will not 

decrease G‘(x, t) nor increase u(v, t) for any y # x or any t. But MONO-ADD-TOP fails in 

Election 9, where to = 2.97 and a is elected, whereas if six extra ad ballots are added 

then to = 2.0 and d is elected. LATER-NO-HARM and the other monotonicity properties 

that fail, do so for broadly similar reasons. QLTD does not satisfy CONDORCET even 

when there are no truncated preference listings, since it elects a in Election 10, in 

which c is the Condorcet winner. 

Election 10 Largest acquiescing coalitions 

acbd 6 {a,b,c,d} 25 
adbc 3 {a,b,c} 14 
adcb 3 Ia> 12 

bead 4 {a, cl 10 

cabd 4 {a, dl 6 

dbca 5 

7.2. DA C, or descending acquiescing coalitions 

If X 2 C then A(X), the coalition acquiescing to X, comprises all voters who do 

not prefer any candidate not in X to any candidate in X. This includes S(X) (as in 

Section 2.2) together with those voters who vote for fewer than (XJ candidates in total, 

these forming a proper subset of X. In DAC one first lists all the acquiescing coalitions 

in decreasing order of size, and then takes the intersection of the corresponding sets 

of candidates from the top down (ignoring any set that would give empty intersection) 

until one is left with a single candidate. For example, in Election 11, the eight largest 

acquiescing coalitions are as listed. The intersection of the largest two is {a, b,c}. 
The third, {d}, is disjoint from this, and so one ignores it. (It does not help in 

distinguishing between a, b and c.) Taking the intersection with the fourth gives 

{a,b,c} n {a,4 = {a>, an so a is elected. If the four dabc ballots were removed, d 
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then the result would be a tie between c (the result if there were 8 + i: cabd ballots) 

and b (the result if there were 8 + c dbca ballots). 

Election 11 

adcb 5 

bead 5 

cobd 8 

duhc 4 
dhcu 8 

Largest acquiescing coalitions 

{a,b,c,d} 30 {a,c} 8 

{a,b,c} 13 {b,c,d} 8 

{dt 12 {b,d) 8 

{a,d} 9 (~1 8 

DAC elects a in Election 10, where c is the Condorcet winner, showing that it does 

not satisfy CONDORCET even when there are no truncated preference listings. If two 

of the dabc ballots in Election 11 were replaced by acbd then c would be elected, 

showing that DAC does not satisfy MONO-RAISE-RANDOM or MONO-SUB-TOP. The failure 

of LATER-NO-HARM is shown by the profile of Election 4 with two c ballots removed, 

where b is elected, but changing the 11 ah ballots to CI causes a to be elected. 

If U(X) < pi(y) and y $! X then 

14x,1 d c - VI(Y) < 2: - t.(x) < IA(C’,{x})(, 

and so if IA(X)( 3 IA(C\{x})l then _v EX. It follows from this that x is excluded 

before y, and so DAC satisfies PLURALITY. To see that it satisfies MAJORITY, note that 

if /S(X)\ > 4~ and IA(Y)1 > IA(X)\ (> ;u), then either X i Y or Y cX, and so the 

winning candidate must be in X. The fact that DAC satisfies LATER-NO-HELP and most 

monotonicity properties follows from the observation that an increase in JA(X)( (keep- 

ing (,4( Y)i fixed for all Y #X) cannot decrease &(X) for any x E X, nor increase Pc(.u ) 

for any x @ X. To see that it satisfies PARTICIPATIOK, note that the effect of adding an 

extra ballot that is solidly committed to Y is to increase IA(X)\ for some sets X such 

that X C: Y or Y cX; the latter cannot decrease Pr(x) for any x in Y, and the for- 

mer cannot increase PE(x) for any x not in Y, and so together they cannot decrease 

P(lE(Y)I a 1). 
DAC seems to me to be a workable system (provided that the votes can be processed 

by computer) with almost all the properties that one could reasonably expect in a single- 

seat election rule. Among many unanswered questions, the following seem to me to 

be the most important: 

Question 3. Does there exist any single-seat pwfkrential election rule that .ratisjir.s 

all the properties satisjied by DAC toyether with either MONO-RAISE-RANDOM or MONO 

SUB-TOP? 

Question 4. Does there exist any multi-seat preferential election rule that satisfies 

DPC and all the properties satisfied by DAC except for MONO-REMOVE-BOTTOM, and that 

reduces to DAC in single-seat elections? 
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