
Sādhanā Vol. 34, Part 1, February 2009, pp. 193–220. © Printed in India

Formalizing Arrow’s theorem

FREEK WIEDIJK

Institute for Computing and Information Sciences, Radboud University
Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
e-mail: freek@cs.ru.nl

Abstract. A small project in which I encoded a proof of Arrow’s theorem—
probably the most famous results in the economics field of social choice theory—in
the computer using the Mizar system is presented here. The details of this specific
project, as well as the process of formalization (encoding proofs in the computer)
in general are discussed.

Keywords. formalization of mathematics; Mizar; social choice theory; Arrow’s
theorem; Gibbard–Satterthwaite theorem; proof errors.

1. Introduction

1.1 The project

Some time ago Krzysztof Apt suggested to me to formalize a proof of Arrow’s theorem. He told
me that this theorem is considered important by economists, and for this reason a formalization
of that theorem might generate some attention from the economics community. Also it would
show that formalization can be useful beyond mathematics and computer science.

Formalizing is the activity of creating a formalization, a very detailed representation of a
mathematical theory (both consisting of definitions and theorems) in the computer. Creating
a formalization is done using a computer program called a proof checker or proof assistant.
Such a proof assistant helps with the creation of the formalization – although the main part
of the work is done by the human user — and checks everything for correctness. Once a
proof of a theorem has been formalized, it is impossible for that theorem to be false. (Human
beings are fallible, but computers are very good at checking even the smallest details. For a
discussion of the reliability aspect of formalization, see Section 9.)

For a while I wondered whether I should follow Krzysztof’s suggestion or not. He had
suggested that I might formalize one of the proofs from John Geanakoplos’ Three Brief Proofs
of Arrow’s Impossibility Theorem (Geanakoplos 2001). These proofs indeed are brief, as each
of them is about a single page long. Now a reasonable rule of thumb when formalizing is
that it takes about one week of full time work to formalize a textbook page. For this reason
my expectation was that if I would try this, it would take me one week of work, and it would
be straight-forward and uneventful. It was not clear to me what I would have shown if that
expectation happened to be true. (It turned out that, after I made a false start – described in
Section 4—of about two days, I formalized the first of the three proofs in another three days.
This second attempt indeed was uneventful. My expectation had been quite accurate.)

193

194 Freek Wiedijk

In the end I decided that, despite my doubts about the usefulness of the project, I would
write the formalization anyway. My main reason for this was that I wanted to show Krzysztof
what a formalization of Arrow’s theorem would be like, and since it was not a lot of time
that I was investing, it would not be a big loss if the project turned out to be not too
interesting.

1.2 The proof assistant

When formalizing, the first step is to thoroughly understand the proof that will be formalized.
Once one is using a proof assistant, the technical details of the formalization process distract
quite a bit from the understanding of the proof. The time lost by taking the time to thoroughly
understand the proof before starting the formalization is more than paid back by the time
gained during the formalization process. (One could imagine a proof assistant so helpful that
it would assist in exploring the informal proof, in which case this first step would not be
necessary, but unfortunately such a proof assistant does not exist yet.) In the case of Arrow’s
theorem however, this first phase had not to take very long as John Geanakoplos’ paper was
quite clear and explicit.

Another first step is to select the proof assistant to be used for the formalization. Here is a
list of important current proof assistants that were options for this:

(i) Mizar: A proof assistant for mathematics, developed in Poland under the direction of
Andrzej Trybulec at the University of Białystok. Development of Mizar started in the
early seventies and continues until today. Mizar is based on set theory and has the
feature that formalizations look quite similar to non-formalized mathematics. Mizar
offers basic automation of proof steps, but this automation cannot be extended by the
users of the system (only by the system’s developers). Mizar has the largest library
of formalized mathematics of the current systems. This library, called MML (Mizar
Mathematical Library), currently consists of 2.1 million lines of code, proving more
than 55 thousand lemmas. Mizar has been used to formalize a major part of a graduate
level textbook in mathematical logic (Bancerek & Rudnicki 2003).

(ii) Coq: A proof assistant for both software correctness and mathematics, developed in
France at the INRIA institute. Development of Coq was started in the eighties by Gérard
Huet and Thierry Coquand, but has since then been continued by many people. Coq is
based on a foundational competitor of set theory called type theory, which is a synthesis
between logical systems of Jean-Yves Girard and Per Martin-Löf. For this reason the
natural way of reasoning in Coq is constructive, which means that you only can prove
something to exist if a computer can be programmed to calculate it. However, Coq also
supports the usual, classical, kind of mathematics. Formalized proofs in Coq do not look
like normal proofs, and only can be understood by ‘replaying’ them on the computer.
Coq has been used for the most impressive formalization thus far, the formalization
of the Four Color Theorem by Georges Gonthier in 2004 (Gonthier 2006). For this
formalization an improved input language for Coq called ssreflect was implemented.
Coq also has been used to prove a realistic C compiler correct, in the Compcert project
of Xavier Leroy (Leroy 2006, Blazy et al 2006).

(iii) HOL: A proof assistant both for hardware and software correctness as well as for
mathematics, developed in the UK by Mike Gordon at the University of Cambridge.
HOL was developed in the eighties as a close successor to the LCF system from the
early seventies. The LCF and HOL systems are not based on set theory or type theory,
but on a weaker and typed variant of set theory called higher order logic. (Because it is

Formalizing Arrow’s theorem 195

typed, higher order logic shares some concepts with type theory.) This is also what gives
the system its name. The HOL logic and its implementation are the simplest that one
can find among the proof assistants listed here. A HOL proof, like a Coq proof, does not
look like a normal proof, and also needs ‘replaying’ on the computer to be intelligible.
The HOL proof language is rather difficult to learn. The HOL system supports strong
proof automation, and the user of the system can easily extend this by implementing
programs that generate parts of proofs.
HOL is one of the most well-known proof assistants, and for that reason has been
implemented several times:

(iv) HOL4: This is the current version of the original HOL system. It is still in development
at the University of Cambridge in the UK, and probably the most popular version of
HOL. HOL4 has been used by Anthony Fox to prove the correctness of a real micro-
processor (the ARM6 micro-architecture) (Fox 2003).

(v) HOL Light: This is a lean and clean reimplementation of HOL by John Harrison, made
in the late nineties as part of his PhD research at the University of Cambridge. Originally
this system was being referred to as HOL Done Right (Harrison 1995). Currently it
is being used at Intel for verification of algorithms used in floating point processors.
The HOL Light system has the largest library of formalized mathematics of the HOL
variants, and provides strong proof automation. The HOL Light library contains many
interesting theorems, and is much better organized than the Mizar library. HOL Light
has been used by John Harrison to formalize a proof of the prime number theorem that
uses a significant amount of complex analysis (Harrison 2008).

(vi) ProofPower: ProofPower is a reimplementation of HOL by Rob Arthan and Roger
Jones, to have a version of HOL that supports the Z notation for set theory. Originally
it was a commercial product, but nowadays it is open software. ProofPower also has
been significantly used for mathematics.

(vii) Isabelle: A direct successor to the HOL system, that however is different from HOL
in many ways now. Isabelle has been developed in the UK by Larry Paulson at the
University of Cambridge and in Germany by Tobias Nipkow and Makarius Wenzel at
the Technische Universität München. An important difference between Isabelle and
HOL is that Isabelle did not hardwire the mathematical foundations into the system,
but keeps it as a parameter of the system. (However, the HOL implementation on top
of Isabelle, called Isabelle/HOL, is the only variant of the system that is significantly
used.) Another difference between Isabelle and HOL is that Isabelle has a readable
proof language inspired by the Mizar language called Isar. This means that Isabelle can
be used to make formalizations that are readable like normal mathematics. Like HOL,
Isabelle has been used extensively, both for computer science applications as well as
for formalization of mathematics.

(viii) PVS: A proof assistant for hardware and software correctness. PVS was developed in
the nineties in the US by Natarajan Shankar and John Rushby of SRI International. PVS
means ‘Prototype Verification System’, but the system is far more than a prototype. It
actually is one of the most popular proof assistants for computer science applications
today. PVS has strong proof automation, and also has an integrated model checker,
which makes it possible to explore finite state transition systems automatically. PVS
is based on a variant of higher order logic, but one that is substantially different from
the foundation of HOL and Isabelle/HOL. A PVS formalization is like a Coq or HOL
formalization in that it only can be understood by replaying it on a computer. (In PVS
the proof parts of the formalization are not even stored in a humanly readable way.)

196 Freek Wiedijk

PVS has been used less for non-computer science related mathematics than the systems
mentioned above.

(ix) ACL2: A proof assistant for hardware and software correctness. It is the direct successor
to nqthm, the ‘Boyer–Moore prover’, that was developed in the seventies in the US
by Bob Boyer and J Moore. ACL2 is quite close to nqthm but was developed from
scratch by J Moore and Matt Kaufmann at the University of Texas. Both nqthm and
ACL2 have been used for mathematics, but the foundation of the system, primitive
recursive arithmetic, is too weak to express advanced mathematics. ACL2 is very closely
related to the Lisp programming language (ACL2 means ‘A Computational Logic for
Applicative Common Lisp’), and ACL2’s mathematical definitions all are executable
as Lisp programs. ACL2 is more of an automated theorem prover than an interactive
theorem prover: one does not enter the proofs into the system oneself, but has the system
discover these proofs in a guided fashion. The proofs that ACL2 discovers are printed
in a very verbose but readable English format.

For the Arrow theorem formalization project I decided to use the Mizar proof assistant,
which is one of the three proof assistants that I know well (Mizar, Coq and HOL). A gentle
introduction to the Mizar system is my Writing a Mizar article in nine easy steps (Wiedijk
2007).

Mizar makes it possible to have the formalized version of a proof be quite close to the
normal English version. When I started the Arrow’s theorem formalization this was my reason
for selecting Mizar. It would make the project interesting to see how close to the text in John
Geanakoplos’ paper I could get with my formalization. (However, in the end I did not pursue
this aspect of the project, as described at the end of Section 4.)

1.3 Earlier formalizations of Arrow’s theorem

Some time months after I finished my formalization of Arrow’s theorem, I attended the TTVSI
(‘Tools and Techniques for Verification of System Infrastructure’) workshop in London,
which was held on March 25 and 26, 2008. It was a celebration of the sixtieth birthday of the
creator of the HOL system, Mike Gordon. At this workshop there was a talk by one of the
creators of the Isabelle system, Tobias Nipkow from the Technische Universität München in
Germany. In this talk he presented a formalization of Arrow’s theorem under the title A Bit
of Social Choice Theory in HOL: Arrow and Gibbard–Satterthwaite. An abstract of this talk
was included in the proceedings of this workshop (Nipkow 2008).

In Tobias’ talk I learned that Arrow’s theorem had already been formalized by him long
before I had done it. (However, I had submitted it to the Mizar library MML and its accom-
panying journal Formalized Mathematics in August 2007. My formalization still might be
the first published formalization of Arrow’s theorem. The details of the submission process
to the MML of my Arrow formalization are described in Section 13.) Tobias had formalized
Arrow’s theorem in Isabelle/HOL in 2002, and afterwards also had formalized the Gibbard–
Satterthwaite theorem.

During the talk Tobias mentioned that both Arrow’s theorem and the Gibbard–Satterthwaite
theorem also had been formalized (and in Isabelle/HOL as well) by Peter Gammie who was
at that time at the University of New South Wales and National ICT Australia. Peter finished
his formalization of Arrow’s theorem in December 2006 and Gibbard–Satterthwaite in April
2007.

Here I will not compare my formalization with the Isabelle formalizations of Tobias and
Peter. That would turn this paper into a comparison between the Mizar and Isabelle systems,

Formalizing Arrow’s theorem 197

which is not its intended topic. Instead I will focus on the process of writing my Mizar
formalization of Arrow’s theorem.

Tobias stated in the questions session after his talk at the TTVSI workshop that his for-
malization had not been particularly difficult, which suggests that his experiences with the
formalization of Arrow’s theorem had been similar to mine.

1.4 Outline

The rest of the paper describes my formalization of Arrow’s theorem in Mizar. Section 2
gives a brief introduction to Arrow’s theorem. Section 3 presents the proof that I formalized.
Section 4 describes my first, aborted, attempt at a formalization, while Sections 5 to 7 present
the formalization that was finished. Section 5 explains how I formalized orders and preorders.
Section 6 presents a fragment of the formalization in detail, and Section 7 gives an example of
how the formalization can be used to get very precise information from the proof. Section 8
discusses whether flaws in the original proof were found by formalizing it, while Sections 9
and 10 discuss the question whether we can now guarantee that the proof will not have any
further mistakes. Section 11 discusses possible variations on the statement of the theorem
in the formalization (of which one also was formalized). Sections 12 and 13 describe how
the formalization was submitted to the library of the Mizar system. Finally, in Section 14
I conclude with some possibilities to extend the work that is presented here.

Below I will present fragments of the Mizar formalization of Arrow’s theorem. For this
I will use the version of the formalization that is in the library of version ‘7.8.10_4.99.1005’
of the Mizar system. This formalization is also on the web on its own at the URLs:

http://www.cs.ru.nl/˜freek/mizar/arrow-7.8.10_4.99.1005.miz
http://www.cs.ru.nl/˜freek/mizar/arrow-7.8.10_4.99.1005.abs

(The first file is the full formalization. The second file is the ‘abstract’ of this formalization,
in which all proofs have been automatically removed.)

2. Arrow’s theorem

Arrow’s theorem says that it is impossible to have a fair rule for combining the preferences
of a group of individuals. The theorem says that the only rule that satisfies some combination
of reasonable restrictions (given below) is to take one of the individuals to be a dictator, and
to just always follow that individual’s preferences. That clearly is not a fair rule.

Arrow’s theorem is also known as the impossibility theorem, the dictatorship theorem, or
Arrow’s paradox. The theorem was first proved by the economist Kenneth Arrow (a 1972
Nobel prize winner in economics) as part of his 1950 PhD work (Arrow 1950). However, one
might claim that the first fully correct proof was given by Richard Routley in 1979 (Routley
1979).

There are various versions of Arrow’s theorem. Here is a basic version:
Let there be a finite number N of individuals that have to rank a finite set of alternatives

A. We want a rule for combining the preferences of each individual into a preference for the
whole group. Here a preference is a linear order on the set of alternatives, from least to most
acceptable. The rule for combining these preferences now should be seen as a constitution
for the democratic process of combining the individual preferences.

198 Freek Wiedijk

Here are the two requirements that we would like this rule to satisfy:

(i) If for two alternatives a, b ∈ A all the individuals prefer b to a, then the outcome for the
rule should be that the group as a whole also prefers b to a. This is the requirement of the
rule respecting unanimity.

(ii) For two alternatives a, b ∈ A, it should not be possible for an individual to change the
group decision on the order of a and b by manipulating his or her preference for a third
alternative c. This is the requirement of independence of irrelevant alternatives.

Arrow’s theorem says that if the size of A is at least three, then the only possibility for a rule
satisfying these two requirements is to be:

– There is an individual n, called the dictator, such that the rule is to take the group
preference always to be identical to the preference of this individual. This is the property
of the rule being a dictatorship.

(If the size of A is equal to two, then the theorem does not apply. In that case deciding by
majority works. It is easy to check that if there are only two alternatives, then that satisfies
the two requirements.)

Before we look into why naive attempts at a fair rule do not work, and how one proves
this theorem, let us first look at some basic variations on the theorem. First, one can allow
ties between alternatives, either in the preferences of the individuals, in the preference for
the whole group (the outcome of the rule), or both. It turns out that surprisingly this does not
make much of a difference. Second, one can drop the finiteness condition on the number of
individuals, on the number of alternatives, or both. Again, this does not make a difference for
the theorem (although in that case the proof that we present below will not work anymore).

Here is the notation that we will use for preference between alternatives. We will write
a ≤ b when either b is preferred to a or when a and b are considered to be equivalent (when
‘ties’ are allowed). We will write a < b when a ≤ b but not b ≤ a. We always will have
that between any two alternatives a and b at least one of a ≤ b or b ≤ a holds: this means
that a < b coincides with the the negation of b ≤ a. In fact, in the Mizar formalization this
is the definition of a < b, as shown on page Section 10. You should think of a preference as
a linearly ordered sequence of small clusters of alternatives, where all alternatives within a
cluster are considered to be equivalent.

Now why is it that naive approaches for taking the group decision do not work?
The naive solution for choosing which one of two alternatives a, b ∈ A to prefer for the

group as a whole, is to tally how many people prefer a to b and how many prefer b to a. If N

is odd, there will be a majority vote for this, and then it seems natural to follow this for the
group as a whole.

The problem with this solution is that it does not lead to a transitive group preference.
Suppose the preferences of three individuals are a < b < c and b < c < a and c < a < b

(three cyclic permutations), where we write a < b to mean that the individual prefers b to a.
Now in that situation two out of three people prefer b to a, so in the group decision one would
like to have a < b. However, similarly one would have b < c and c < a. But that does not
constitute a transitive relation! Which means that this approach does not work.

Now there seems to be a way out of this problem if one is allowed to have ties in the
group decision. That would mean that in the example (because the group apparently is not
able to decide between a, b and c) one could consider the alternatives to be all equivalent in
the group preference. An order in which ties are allowed (formally: which is allowed to be

Formalizing Arrow’s theorem 199

not antisymmetric) is called a preorder. However, even with ties the naive majority rule still
does not work. In that case the third person can affect the outcome of the vote by moving
a up (instead of c < a < b his preferences then becomes c < b < a), in which case the
majority vote becomes b < c < a. Instead of b being equivalent to c then c is preferred to
b, and therefore the relationship between b and c has changed by only one person changing
his preference for a. Clearly this violated the requirement of independence of irrelevant
alternatives.

Another approach to try to make a fair rule is to have two alternatives be considered
equivalent whenever there is no unanimity about it. However, that also does not work. If the
three preferences are a < b < c and b < a < c and a < c < b, then this rule would make a

equivalent to b, b equivalent to c, but a < c. Clearly again this is not transitive.
Apparently naive attempts at a good rule that satisfies the two requirements without being a

dictatorship do not work. Arrow’s theorem states that no non-naive attempts will give a good
voting rule either.

3. The proof

We formalized the first proof from John Geanakoplos’ Three Brief Proofs of Arrow’s Impossi-
bility Theorem (Geanakoplos 2001). (This was the same proof that Tobias Nipkow formalized
in Isabelle/HOL.) The three proofs in that paper successively get more abstract. Generally,
abstract mathematics is easier to formalize than concrete mathematics. For this reason the
first proof from the paper seemed the most challenging.

Formalization becomes particularly difficult when in a proof an appeal is made to ‘visual
intuition’. In the first proof there were little pictures of alternatives being moved around in
a preference. I wondered whether this would make the formalization difficult. (In the end it
turned out that it was not that difficult to do this ‘visual’ reasoning formally. The way that we
handled this is described in Section 5.)

The statement of Arrow’s theorem in the formalization was:

reserve A,N for finite non empty set;
reserve a,b for Element of A;
reserve i,n for Element of N;
reserve o for Element of LinPreorders A;
reserve p,p’ for Element of Funcs(N,LinPreorders A);
reserve f for Function of Funcs(N,LinPreorders A),LinPreorders A;

theorem Th14:
(for p,a,b st for i holds a <_p.i, b holds a <_f.p, b) &
(for p,p’,a,b st

for i holds (a <_p.i, b iff a <_p’.i, b) &
(b <_p.i, a iff b <_p’.i, a)

holds a <_f.p, b iff a <_f.p’, b) &
card A >= 3 implies
ex n st for p,a,b st a <_p.n, b holds a <_f.p, b

(This is a slightly modified version of lines 530–542 of the formalization. We removed the
variable reservations that were not used in the statement.)

200 Freek Wiedijk

We will now explain this statement in some detail. The Mizar syntax for the universal
quantifier

for x st A holds B

should be read as
∀x (A ⇒ B)

(the ‘st A’ part also may be omitted), while the syntax for the existential quantifier

ex x st A

should be read as
∃x A

In both cases ‘st’ abbreviates ‘such that’.
Now one should read

a <_o, b

as
a <o b

and take it to mean ‘b is preferred to a in preference o’. Using this notation ‘b is preferred to
a by individual i’ becomes

a <_p.i, b

and ‘b is preferred to a by the group preference’ becomes

a <_f.p, b

The variable p describes the function that maps individuals to their preferences, and the
variable f describes the rule for combining these preferences together.

The statement of Arrow’s theorem in the formalization has the form

A1 ∧ A2 ∧ A3 ⇒ A4

in which a free variable f occurs, and in which the four subformulas are:

A1 = for p,a,b st for i holds a <_p.i, b holds a <_f.p, b]

This is the requirement of unanimity. If each individual i prefers a to b, then that also holds
in the group preference f (p).

A2 = for p,p’,a,b st B2 holds a <_f.p, b iff a <_f.p’, b

B2 = for i holds (a <_p.i, b iff a <_p’.i, b) &

(b <_p.i, a iff b <_p’.i, a)

This is the requirement of independence of irrelevant alternatives. If we have two situations
p and p′ that only differ in preferences for alternatives different from a and b (this is the
condition labelled B2), then the group preferences f (p) and f (p′) for those two situations
also match on a and b.

A3 = card A >= 3

Formalizing Arrow’s theorem 201

This is the requirement that there are at least three alternatives.

A4 = ex n st for p,a,b st a <_p.n, b holds a <_f.p, b

This states that there is a dictator called n. There exists an n such that if n prefers b to a, then
that also will hold in the group preference f (p).
The proof of Arrow’s theorem consists of four steps. (These are the four steps of John Geanako-
plos’ proof, which are reflected in four steps in the formal Mizar proof.)

– First one proves that if every individual puts an alternative at the lowest or at the highest
place (so no one puts it between other possibilities) then in the group ranking it also is
at an extremal place.
Here is how this statement was rendered in the Mizar formalization (lines 550–552):

defpred extreme[Element of LinPreorders A,Element of A] means
(for a st a <> $2 holds $2 <_$1, a) or (for a st a <> $2

holds a <_$1, $2);
A4: for p,b st for i holds extreme[p.i,b] holds extreme[f.p,b]

The expression extreme[o,a] is defined to mean that alternative a is at the extreme
point of the preference o. (In this definition the text ‘$2 <_$1, a’ means ‘the second
argument of this macro is less than a in the preference which is the first argument of
the macro.) The third line states the first step in the proof of Arrow’s theorem. It is
labelled A4 (the labels in the proof are A1, A2, A3, and so on). The proof of this step in
the formalization consists of lines 553–619.
We will present the proof of this fact below, but first will continue with the statement of
the second step in the proof.

– Second, one proves that for each alternative b there is a person n(b) and a specific
situation tailored to this person, such that n(b) by just changing his preference for b can
move the group preference for b from the bottom to the top.
In Mizar the counterpart for this step is stated in lines 620–624:

A20: for b holds ex nb,pI,pII st
(for i st i <> nb holds pI.i = pII.i) &
(for i holds extreme[pI.i,b]) & (for i holds extreme[pII.i,b]) &
(for a st a <> b holds b <_pI.nb, a) &
(for a st a <> b holds a <_pII.nb, b) &
(for a st a <> b holds b <_f.pI, a) &
(for a st a <> b holds a <_f.pII, b)

This says that there are two situations pI and pII, which only differ in the preference of
nb, such that the group preference for b is extremal in both cases, but because nb moves
b from lowest to highest position, in the group preference it goes from lowest to highest
as well. The proof of this statement is lines 625–797 of the formalization.
Clearly the formalized statement gives more specific (and even redundant) informa-
tion than the informal statement. The reason for this is that in that way the formal-
ization becomes easier. If the less specific statement had been used, work would have
been needed later to get back information that already is present in the proof of the
statement.

– Third one shows that n(b) is a dictator over each pair of alternatives a and c that both
are different from b.

202 Freek Wiedijk

In Mizar this is lines 798–801:

A53: for b holds ex nb,pI,pII st
(for i st i <> nb holds pI.i = pII.i) &
(for i holds extreme[pI.i,b]) &
(for a st a <> b holds b <_f.pI, a) &
(for a st a <> b holds a <_f.pII, b) &
(for p,a,c st a <> b & c <> b & a <_p.nb, c holds a <_f.p, c)

which is proved in lines 802–917.
Again this gives more information than needed, which again is just for convenience, to
prevent the need to ‘regenerate’ information that one already has. The informal statement
of the third step corresponds to just the fourth line of the formal statement.

– The fourth step says that n(c) = n(b) for any alternative c different from b. Hence this
n(b) is a dictator for all alternatives, and the proof is done.
In the Mizar version this is not a single statement, as there the existence of n(b) from
the previous steps is asserted, but this existence is not turned into a function. For this
reason the proof asserts the existence of n(b) in lines 919–924, the existence of n(c) in
lines 939–942, and then in line 943:

nc = nb

which is proved in lines 944–968.

The following table summarizes how the lines of the formalization are distributed over these
four steps in the proof:

statement of the theorem lines 530–542
step 1 of the proof lines 550–619
step 2 of the proof lines 620–797
step 3 of the proof lines 798–917
step 4 of the proof lines 919–968

the full theorem lines 530–971
the full formalization lines 1–1121

The part of the formalization before the proof consists of the definition and properties of the
linear orders and preorders that we used. This will be discussed in Section 5. The part of
the formalization after the proof derives a variant of Arrow’s theorem. This is discussed in
Section 11.

We will now explain how the four steps of the proof are proved:

(i) If every individual puts an alternative b at an extremal place then in the group ranking
it always also is at an extremal place: The proof goes by contradiction. Suppose that in
the group ranking it would not be at an extremal place, so that in the group ranking we
have a ≤ b ≤ c for some a and c. We are going to move a and c around in everyone’s
preference in such a way that the relative positions of both a and c with respect to b do
not change. (That still leaves us a lot of freedom as b is at the far end of each individual’s
preference. We can move a and c almost everywhere as long as we leave b at the far end.)
We will move a and c in such a way that have c < a for everyone (specifically: move a

just above c for everyone), because then by unanimity in the group preference we also

Formalizing Arrow’s theorem 203

will have c < a. That will then give a contradiction with the fact that we had a ≤ b and
b ≤ c from the relative positions of a and c with respect to b (which did not change, and
which therefore also did not change in the group preference).

(ii) For each alternative b there is a person n(b) and a specific situation tailored to this
person, such that n(b) by just changing his preference for b can move the group preference
for b from the bottom to the top: This is proved by considering the following process.
Start with everyone with b at the very bottom. In this situation by unanimity b will also
be on the bottom in the group preference.
One by one have the individuals move b in their preference from the very bottom to the
very top. From the previous fact we know that after this move in the group preference b

then still either has to be at the very bottom or at the very top. As long as in the group
preference b is at the bottom we keep doing this. When the b flips to the top, we have
found our individual n(b) and the situation from the statement.
There has to occur a flip from the bottom to the top at some point, because after everyone
has had his turn moving b to the top, by unanimity b also will be at the top in the group
preference.
We will call the situation just before n(b) moved b from bottom to top p I, and the
situation just after this move we will call p II.

(iii) The individual n(b) from the previous step is a dictator over each a and c that is different
from b: Suppose that n(b) has the preference a < c. We are going to show that then in
the group preference we also have a < c.
To do this, for each individual but n(b) move b to the extremal position that it has in the
situations p I and p II from the previous step. However for n(b) put it in between a and
c. This means that n(b) now has a < b < c.
This does not affect the placing of a with respect to c, so the group preference between
a and c is not affected by this, and we still need to show that in this new situation a < c.
Now we will show that in the group preference after the preferences for b were moved
in this way, both a < b and b < c hold.
We get b < c, because the relative positions of b and c are now for everyone the same
as in p I, and there we had b < c (as there b was less than everything), so we get that in
our group preference we also have b < c.
By the same argument for p II we also get a < b. Hence by transitivity we find a < c

and we are done.
(iv) For any b and c the dictators n(b) and n(c) coincide: Take some a different from b and

c. Dictator n(b) can move b from the very bottom to the very top. In particular, he can
affect the order between a and b that way. But according to the previous step n(c) is the
dictator for the group preference between a and b. Hence only n(c) can affect that order,
and we find that n(b) and n(c) are the same individual.

4. An aborted formalization

When I first started the formalization, I decided that I would try to mimic the paper as much
as possible. This is the technology of formal proof sketches, where one makes a skeleton of
a formalization as close as possible to the informal original (Wiedijk 2004).

However, it turned out that this proof was not really suited to this approach, and
I aborted this attempt. John Geanakoplos’ proof contains sentences like (from the middle of
page 2):

204 Freek Wiedijk

[. . .] this would continue to hold even if every individual moved c above a,
because that could be arranged without disturbing any ab or cb votes.

This is too far from the formal statements of Mizar to make a formal proof sketch that is
sufficiently close to this to be attractive. (Of course the sentence can easily be expressed using
the Mizar language, but the result will not at all be structurally similar to the natural language.)

For my first version of the formalization I defined the terminology that is used in the paper.
For instance I introduced a type called ‘Alternatives’ for finite sets that have at least three
elements, and a type ‘Constitution’ for functions that determine a group preference from
the preferences of the individuals. The statement to be proved then became:

reserve A for Alternatives;
reserve N for non zero (natural number);

theorem
for f being Constitution of A,N st
f is independent_of_irrelevant_alternatives &
f is respecting_unanimity

holds f is a_dictatorship;

However, this is not what I put in my file, as in Mizar such a statement is more naturally
expressed as a so-called cluster:

registration let A,N;
cluster
independent_of_irrelevant_alternatives respecting_unanimity ->
a_dictatorship Constitution of A,N;

. . .

end;

A cluster is the way that one provides Mizar’s type system with information about properties of
‘attributes’, argumentless type modifiers. This cluster would mean that every time the type of
a Mizar term would contain the attributes independent_of_irrelevant_alternatives
and respecting_unanimity, the Mizar type system would also automatically give it the
attribute a_dictatorship. The advantage of a cluster is that the type system will infer
properties of terms expressed by attributes automatically, relieving the user from that kind of
reasoning.

The three definitions that I had in my file for the terminology in the cluster were:

definition let A,N,f;
attr f is independent_of_irrelevant_alternatives means
for p,p’,a,b st
for i holds (a <_p.i, b iff a <_p’.i, b) &

(b <_p.i, a iff b <_p’.i, a)
holds a <_f.p, b iff a <_f.p’, b;

end;

definition let A,N,f;
attr f is respecting_unanimity means
for p,a,b st for i holds a <_p.i, b holds a <_f.p, b;

end;

Formalizing Arrow’s theorem 205

definition let A,N,f;
attr f is a_dictatorship means
ex n st for p,a,b st a <_p.n, b holds a <_f.p, b;

end;

(The bodies of these definitions clearly are three parts of the statement that I formalized in
my eventual formalization.) The definitions of the types involved in this were:

definition let A,N;
mode Constitution of A,N is
Function of Funcs(N,LinPreorders A),LinPreorders A;

end;

notation let A;
synonym Alternative of A for Element of A;

end;

notation let N;
synonym Individual of N for Element of N;

end;

Clearly I could have put this notation back on top of my final formalization. However, I decided
not to do this. Generally I like to only have definitions for notions that are used more than
once. In this case the only use of these definitions would have been cosmetic, and it would
have made the final statement a bit less transparent.

5. Moving alternatives around in preferences

5.1 Modelling orders and preorders

Arrow’s theorem and its proof is about orders and preorders. I had to decide how to model this
in my formalization. One consideration for this was that I did not have a single fixed order,
but many orders simultaneously. In Mizar there is a large amount of theory about orders, but
not one in which the order is explicitly indicated in the notation. For that reason I had to
introduce my own definitions. (When I submitted the formalization to the Mizar library the
referee did not like that at all. See the description of this submission process in Section 13.)

In my definitions of orders and preorders I could have used some notions already defined
in the Mizar library, but it would not have saved me time. Relating my notions to the existing
ones would just have added work.

I could have used the extreme possibility to represent the orderings as set of pairs and to
just write

[a,b] in o

which is Mizar notation for
〈a, b〉 ∈ o

However, I really wanted to have the less-than symbol in my statements. For this reason
I introduced definitions that allowed me to write an ASCII counterpart to my preferred notation

a <o b

The closest that one can get to this in Mizar is to use either

a < b ,o

206 Freek Wiedijk

(‘a < b in the order o’), or

a <_o, b

At first I used the first possibility, but after a while I changed my mind and used the second.
After I introduced my own definitions of orders and preorders, I had to develop the basic

properties of these notions, like antisymmetry and transitivity and so on. That took lines 83–
344 of the formalization. I put in a small token theorem to link my notions to the rest of the
library by proving in lines 201–283:

definition
let A;
redefine func LinOrders A means :Def3:
for R being set holds R in it iff R is connected Order of A;

. . .

end;

5.2 Moving elements around

Once I had my orders and preorders defined, I had to think about how to model moving
elements around. But it turned out that I did not need that! All I needed was to prove that
certain orders existed in which the relative positions on a few elements were the same as in
the original order.

For instance, instead of defining an operation to move an element a to the bottom (and
keeping the rest of the elements in the same order), all I needed was to prove a lemma (lines
421–448 of the formalization):

theorem Th10:
a <> b & a <> c implies ex o st
a <_o, b & a <_o, c &
(b <_o, c iff b <_o’, c) & (c <_o, b iff c <_o’, b);

This says that if I have an order o′, then I can find an order o where b and c are in the same
order as in o′, and a is below both of them.

Altogether I had seven lemmas like this, which I proved in lines 346–524.

6. A small sample of Mizar code

To give an impression of what the proof of Arrow’s theorem looks like in Mizar code, I will
now transcribe the formalization of the first step in this proof. Here is the Mizar version (with
line numbers in the right margin):

552A4: for p,b st for i holds extreme[p.i,b] holds extreme[f.p,b]
553proof
554assume not thesis;
555then consider p,b such that
556A5: (ex a st a <> b & a <=_f.p, b) & (ex c st c <> b & b <=_f.p, c) &
557for i holds extreme[p.i,b];
558consider a’ such that
559A6: a’ <> b & a’ <=_f.p, b by A5;
560consider c’ such that
561A7: b <> c’ & b <=_f.p, c’ by A5;

Formalizing Arrow’s theorem 207

562ex a,c st a <> b & b <> c & a <> c & a <=_f.p, b & b <=_f.p, c
563proof
564per cases;
565suppose
566A8: a’ <> c’;
567take a’,c’;
568thus thesis by A6,A7,A8;
569end;
570suppose
571A9: a’ = c’;
572consider d such that
573A10: d <> b & d <> a’ by A3,Th2;
574per cases by Th4;
575suppose
576A11: d <=_f.p, b;
577take d,c’;
578thus thesis by A7,A9,A10,A11;
579end;
580suppose
581A12: b <=_f.p, d;
582take a’,d;
583thus thesis by A6,A10,A12;
584end;
585end;
586end;
587then consider a,c such that
588A13: a <> b & b <> c & a <> c & a <=_f.p, b & b <=_f.p, c;
589defpred P[Element of N,Element of LinPreorders A] means
590(a <_p.$1, b iff a <_$2, b) & (b <_p.$1, a iff b <_$2, a) &
591(b <_p.$1, c iff b <_$2, c) & (c <_p.$1, b iff c <_$2, b) & c <_$2, a;
592A14: for i holds ex o st P[i,o]
593proof
594let i;
595per cases by A5;
596suppose for c st c <> b holds b <_p.i, c;
597then
598A15: b <_p.i, a & b <_p.i, c by A13;
599consider o such that
600A16: b <_o, c & c <_o, a by A13,Th7;
601take o;
602thus thesis by A15,A16,Th4,Th5;
603end;
604suppose for a st a <> b holds a <_p.i, b;
605then
606A17: a <_p.i, b & c <_p.i, b by A13;
607consider o such that
608A18: c <_o, a & a <_o, b by A13,Th7;
609take o;
610thus thesis by A17,A18,Th4,Th5;
611end;
612end;
613consider p’ being Function of N,LinPreorders A such that
614A19: for i holds P[i,p’.i] from FUNCT_2:sch 3(A14);
615reconsider p’ as Element of Funcs(N,LinPreorders A) by FUNCT_2:11;
616a <=_f.p’, b & b <=_f.p’, c by A2,A13,A19;
617then a <=_f.p’, c & c <_f.p’, a by A1,A19,Th5;
618hence contradiction;
619end;

208 Freek Wiedijk

In English this proof can be read as follows:

We are going to show that if for each individual i the alternative b is at the
extreme point of i’s preference, then it is also at the extreme point of the
group preference (line 552).
Suppose by contradiction that this is not true (line 554–557). Then there
are a′ and c′ (both different from b, but maybe not different from each
other), with in the group preference a′ ≤ b ≤ c′ (lines 558–561). We use
this to find a and c that again satisfy a ≤ b ≤ c, but where we also have
a �= c (line 562). For this we do a case distinction (line 564): either already
a′ �= c′, in which case we can take a = a′ and c = c′ (lines 565–569), or
we have a′ = c′ (line 570–571). In this latter case we use the fact that there
are at least three alternatives (this is the assumption labelled A3) to obtain
an alternative d different from both b and a′ = c′ (lines 572–573). Now
either d ≤ b in which case we can take a = d and c = c′ (lines 575–579)
or b ≤ d in which case a = a′ and c = d works (lines 580–584).
We therefore have a ≤ b ≤ c with a �= c (line 587–588). Now for each
individual i change the preference to one in which b is in the same position
relative to a and c, but where c < a (lines 589–592 and lines 613–615).
It is easy to see that such a preference always exists (lines 592), by a
case distinction (lines 595) with the kind of extreme that b was for i (the
statement that b was an extreme was on line 556 with label A5). Either
b is the lowest choice of i (line 596), in which case any preference with
b < c < a will work (lines 599–602). Or b is the highest choice (line
604), in which case we use c < a < b (lines 607–610).
With the modified preferences, independence of irrelevant alternatives (the
statement labelled A2) gives us that in the group preference b still is in
the same relative order to a and c as before, i.e., we still have there that
a ≤ b ≤ c. By transitivity this gives a ≤ c, but we also now have that all
individuals have preference c < a, so by unanimity (the statement labelled
A1) that also holds in the group preference (line 617). Together this clearly
is a contradiction (line 618), which finishes the proof (line 619).

This proof is a bit more subtle that the proof in the paper of John Geanakoplos. We will
discuss this in Section 8.

7. Where is the cardinality assumption used?

Mizar requires one to make explicit what is the relation between the steps in the proof through
the use of labels, that are subsequently referred to using the keyword ‘by’.

Furthermore, the system has a utility called relprem that will point out which of those
labels actually are not necessary. This utility is one among many similar ones (relinfer,
reliters, trivdemo, chklab, inacc, etc.) that are often called the irrelevant utilities, as
they point out which parts of the formalization are irrelevant. These utilities all have been
run on the Arrow’s formalization. Therefore all the references to labels that occur in the
formalization are needed to make the formalization correct.

We can use this to gain a better understanding of the proof. As a specific example, consider
the assumption in the theorem that the cardinality of the set of alternatives is at least three.
Where in the proof is this used?

Formalizing Arrow’s theorem 209

In the formalization this assumption is stated as

A3: card A >= 3;

Therefore, we should be looking for justifications of the form

by . . . , A3, . . . ;

It turns out that there are three of these:

– The first use of the assumption is on line 573 of the formalization, in the first step of the
proof, which was detailed in the previous section. It is used to deal with the possibility
that we get a ≤ b ≤ c with a = c, in which case the movement of c with respect to a

will not be possible.
– The second use of the assumption is on line 717 of the formalization, in the second

step in the proof. Actually the only thing that is used there is that there are at least two
alternatives. This is used to make the proof easier: we are looking for an individual where
b moves from the bottom to the top. If the number of alternatives is equal to one, then
it is at the top already, and the proof breaks the way it is formalized.
It probably is possible to get rid of this second use of the assumption by being a bit more
careful in the way that we determine n(b).

– The third use of the assumption is on line 938, in the fourth step in the proof. This
corresponds to the sentence ‘take some a different from b and c’ on page above.

The possibility to do this kind of very careful proof analysis is one of the attractive sides of
using formalization technology.

8. Did formalization show errors in the informal proof?

Formalization is also called proof checking, and what is the point of checking something if it
will not find errors? Of course Arrow’s theorem is very well known, and the paper that was
formalized has been widely read. Still an interesting question is: did I find any errors?

The answer is that, no, I did not find real errors. (Nor did Tobias Nipkow according to his
talk in London.) However, I did find ‘omissions’ of some trivial cases. The formalized proof
seemed to have more case distinctions than I experienced when I read the original proof. All
these case distinctions do not amount to much, but when formalizing one still has to navigate
all those possibilities, thinking ‘ah yes, in that case of course it is trivial.’ Those cases were
not (consciously) present in my mind when I studied the proof without the computer’s help.

The only case distinction where one might claim that the proof from John Geanakoplos’
paper really misses something is the one that already was presented in Section 6. In the paper
it reads:

Suppose to the contrary that for such a profile and for distinct a, b, c, the
social preference put a ≥ b and b ≥ c. By independence of irrelevant
alternatives, this would continue to hold even if every individual moved c

above a, [. . .]

However, it is not shown that this moving around of c with respect to a is possible, as we do
not have the information that a �= c ! From the way that a and c are found we know that a

and c both are different from b, but this is not sufficient to establish that a �= c.

210 Freek Wiedijk

Of course the situation with a = c is easy to deal with as well (as the detailed proof in
Section 6 shows), but it might be claimed that the proof by John Geanakoplos is incomplete
because it does not make this case explicit. At least, I had not seen it coming, and was surprised
when Mizar forced me to think about it.

9. Is it now absolutely certain that the proof is flawless?

Human beings are fallible, and any non-trivial computer program has bugs. Everyone knows
that. Therefore, how reliable is it when a proof assistant tells me that the proof that I formalized
is flawless? Is it thinkable that the proof still might be wrong in some way?

We are getting into the very dangerous territory of philosophy here. The answer is: of course
it might be wrong! Absolute certainty does not exist in any way. For example, the existence of
India is not certain either. One might be mistaken about that as well. (Even if you happen to
be in India, that does not guarantee that India exists. You might very well be mistaken about
where you are.) But questioning the existence of India is not interesting. And therefore the
question of absolute certainty is not interesting. If the certainty of the correctness of my proof
is of the same magnitude as the certainty of India existing, there is no point in discussing that
certainty.

There is one significant aspect in which a proof might have a problem despite the fact that
it has been coded and verified with a proof assistant. This is the possibility that the definitions
of the notions that were used in the formalization do not correspond to your understanding
of them. In that case your formalization proved something, which means that it is not strictly
speaking false, but it might not have proved the thing that you thought you proved, so in
that sense it then is incorrect. (This has happened in the Isabelle system once. There was
a definition of a prime number being a number with precisely two divisors, and several
formalized lemmas about this notion. However, the ‘mistake’ was that the numbers in this
formalization were integers, which meant that prime numbers p had four divisors: 1, p, −1
and −p. All those theorems, which were of the form ‘if we have a prime number, then it has
the following properties’ in fact were true, as there were no ‘prime numbers’. Still, one could
not consider those theorems to be really flawless.) A proof assistant can establish that if the
definitions are correct, then the theorem is correct, but it cannot establish that the definitions
themselves are correct.

Bugs in the proof assistant also might be a reason that a proof might be incorrect despite
it having been formalized, but this is not a significant risk (and it will even be smaller in the
long term) for the following four reasons:

– First of all, bugs in a proof assistant are similar to bugs in a compiler. In practice, when a
program is wrong it hardly ever is caused by compiler bugs. When you write a program
and it does not behave the way you expect it to, you do not expect compiler bugs to be the
cause. And proof assistant bugs are even less harmful than compiler bugs, as a compiler
need to generate object code, while a proof assistant just needs to ‘generate’ a Boolean
value (whether the proof is correct or not), which generally is a simpler process. And
people try to make their formalizations correct, so it is not that the formalizer is working
against the proof assistant.
I do not know of a proof of a false statement ever accidentally having been accepted by a
proof assistant because of bugs in the system. Certainly there have been bugs that allowed
one to prove false statements. But in that case those ‘proofs’ were contrived examples,

Formalizing Arrow’s theorem 211

and not real proofs that people believed to be correct. Also, every time a bug in a proof
assistant was found the library of the system still was okay after the bug had been fixed.
The correctness of a proof assistant is similar to the correctness of a compiler in another
way. The fact that the system has behaved correctly on many many inputs gives a lot of
trust in the system.
(There is an asymmetry here. Every time the kernel of a system is modified, it might
have become incorrect. Now the system will be tested on its library, which means that
if it starts to reject correct formalizations, this has a large probability of being noticed.
However, generally there will not be a regular dual test to investigate whether it has
started accepting incorrect formalizations.)

– Then there is a very powerful method to further minimalize the risk of a proof assistant
giving the wrong answer: to use a micro-kernel architecture. In this approach one has
only a very small part of the proof assistant (the logical kernel) guarantee the correctness
of the mathematics. This is also called the LCF architecture, after the LCF system from
the seventies that used this approach for the first time. Yet another name for this approach
is the de Bruijn criterion (although in the proposal of de Bruijn from which this name
was derived, the kernel was not part of the program but a separate checker.)
The current serious system that has the smallest kernel in this style, is the HOL Light
system by John Harrison. Its logical kernel is only 394 lines long (less than 20 pages of
code, of which about half is comments.)

– Another way to reduce the risk of mistakenly accepting a proof is the approach of multiple
implementations. This is not used so much in its pure form. However, there are systems
to convert the mathematical library of one system to be usable in another (Naumov et al
2001, Obua & Skalberg 2006, Asperti et al 2007), and then the second system rechecks
the library of the first, which is a form of having multiple implementations.
This approach also is applicable to reduce worries about the correctness of the compiler
and processors that are used to run the proof assistant. One can gain confidence in the
correctness of the behaviour of the proof assistant by using different compilers for the
same programming language (this often is made more difficult by the fact that the system
is written for a specific language for which only one compiler exists) and run it on
different architectures.

– And finally one can prove the (kernel of the) system to be correct, and not just on paper
but as a formalization. This has not really been done yet for a serious proof assistant, but
it will happen in the foreseeable future. Currently there already have been experiments
with correctness proofs of simplified versions of logical kernels, like the Coq in Coq
project (Barras & Werner 1997, Barras 1999) and the HOL in HOL project (Harrison
2006).
(Of course there is a circularity in using a system to verify its own correctness. However,
the trust that one gains about the correctness in this way clearly is orders of magnitudes
higher than the trust that one can have without.)
Also proof assistant technology is sufficiently advanced that serious compilers and pro-
cessors can be proved correct using a proof assistant. This again allows one to get the
certainty of a proof being correct closer to that of India existing.

Another possible problem, which takes us back to philosophy, is that the logical foundation of
the system might turn out to be inconsistent (i.e., that one can prove false theorems from it).
Consider a proof assistant based on Cantor’s naive set theory (which is inconsistent because
it has the Russell paradox) or one based on Martin-Löf’s first version of type theory (which is

212 Freek Wiedijk

called type-in-type: this system is inconsistent because of Girard’s paradox). If one formalizes
a proof in such a system, strictly speaking one would not have established anything, as any
statement can be proved in such a system. Still, even if one only has checked a proof in a
system that is inconsistent, but where one needs to work very hard to exploit that inconsistency,
it does not seem a serious possibility that one will do so accidentally.

10. How do we know that this really is Arrow’s theorem?

According to the previous section one should not seriously worry about whether the theorem
that was proved holds or not. However, one could worry about whether it actually was Arrow’s
theorem. It might be the case that we made a mistake in the statement of the theorem in such
a way that it states something different from Arrow’s theorem. It might for instance be the
case that the assumptions that we put in the statement happened to be contradictory, leaving
the statement vacuously true.

It is not possible to be utterly certain that in the definitions of the notions and the statement
of the theorem no mistakes were made, but there are three ways in which we still can be
reasonably certain about this:

– First of all, we generally can keep the statement simple, and the chain of definitions
of the notions in the statement reasonably short. This is one reason for not wanting to
introduce too much terminology (which was the approach described in Section 4 that
I aborted after a short while), but to leave the content of the statement explicit.
The definitions that occur in the Mizar statement of Arrow’s theorem (that was given in
Section 3) are for the orders and preorders:

reserve A for non empty set;
reserve a,b,c for Element of A;

definition
let A;
func LinPreorders A means
for R being set holds R in it iff
R is Relation of A & (for a,b holds [a,b] in R or [b,a] in R) &
(for a,b,c st [a,b] in R & [b,c] in R holds [a,c] in R);

end;

definition
let A;
func LinOrders A -> Subset of LinPreorders A means
for R being Element of LinPreorders A holds R in it iff
for a,b st [a,b] in R & [b,a] in R holds a = b;

end;

reserve o for Element of LinPreorders A;

definition
let A,o,a,b;
pred a <=_o, b means
[a,b] in o;

end;

notation

Formalizing Arrow’s theorem 213

let A,o,a,b;
synonym b >=_o, a for a <=_o, b;
antonym b <_o, a for a <=_o, b;
antonym a >_o, b for a <=_o, b;

end;

If one traces back from these definitions and from the statement of the theorem, one also
encounters the notions of

• the types of the elements and subsets of a given set
• pairs (written [a,b])
• relations over a given set A

• cardinality of finite sets as a natural number
• the order relation ≤ on the natural numbers
• the number 3

These all are very standard notions in the Mizar library MML, that have been used
in a very large number of formalizations, and therefore one can really trust that their
formalized definitions correspond to the standard ones.

– Second, one can ‘justify’ the formal definitions in the formalization by proving many lem-
mas about them. For instance the Arrow formalization proves eleven lemmas (labelled
Th3 to Th13) about orders and preorders.
The fact that it is possible to prove many familiar properties of the notions that are
defined, gives some confidence that the formal definitions corresponds to our intuitive
understanding of them.

– Third, the fact that one can accurately follow the informal proof in the formal system
is evidence that the formal notions correspond to the original versions. The fact that
we were able to exactly follow John Geanakoplos’ proof is an evidence that the formal
notions that we are reasoning about are in fact the notions that occur in that proof.

When I first started on the formalization of Arrow’s theorem, it took me a while to find the
exact right formal statement that corresponded to the statement from the paper. This surprised
me! I had thought that it would be quite apparent what the right statement would be. However,
it turned out that there were various possible formal interpretations, and that only ‘the right
one’ made the formal proof work.

The fact that the statement is about preorders (that is, the preferences that it reasons about
allow ‘ties’ between alternatives) made this even harder.

For example, at first I had interpreted the property of respecting unanimity to be the fact
that if every individual has a ≤ b, then the group preference also has a ≤ b. However,
that turned out to be the wrong reading! With this interpretation the theorem does not even
hold, as in that case one can for the group preferences take all alternatives to be equivalent.
All the properties then are satisfied without there having to be a dictator. (The alternative
interpretation of a < b for every individual implying a < b for the group turned out the right
one. To my surprise, that interpretation is not stronger than the wrong interpretation. Each of
them can be true with the other one being false.)

As another example I wondered whether it would be sufficient to just take the simple

for p,p’,a,b st
for i holds a <_p.i, b iff a <_p’.i, b

holds a <_f.p, b iff a <_f.p’, b)

214 Freek Wiedijk

as the interpretation of independence of irrelevant alternatives instead of

for p,p’,a,b st
for i holds (a <_p.i, b iff a <_p’.i, b) &

(b <_p.i, a iff b <_p’.i, a)
holds a <_f.p, b iff a <_f.p’, b)

which is now in the formalization. That would have worked. However it would have made
the theorem stronger, as this simpler statement is a more restrictive property.

There is a third interpretation issue that I missed at first. The proof in John Geanakoplos’
paper does not establish full dicatorship. If the dictator takes two elements to be equivalent,
then the proof does not guarantee that the group also takes them to be equivalent. This means
that the dictator can force elements apart, but not together. (This problem does not occur in
the variant of the theorem in the next section.)

11. A variant of the theorem

After I finished the formalization of the proof by John Geanakoplos, I wondered whether
this was the strongest result possible. It seemed to me that if one restricts the options of the
individuals more, then it becomes even stronger.

For this reason I considered the theorem in which the group was allowed to have ties
between the alternatives, but the individuals were not allowed this freedom.

After some thought it seemed clear to me that this did not help much: if one could have a
non-dictatorship rule for that situation, then one could extend it to preferences with ties by
consistently breaking any ties in the individuals’ preferences first (according to some fixed
order on the alternatives) and then feeding that variant into the rule.

However, I was not entirely certain that I was not deluding myself with this argument. For
this reason I decided to formalize this argument in Mizar too. That is, I then derived from the
statement that I already had proved the variant (lines 530–532 and 977–984):

reserve A,N for finite non empty set;
reserve a,b for Element of A;
reserve i,n for Element of N;
reserve p,p’ for Element of Funcs(N,LinOrders A);
reserve f for Function of Funcs(N,LinOrders A),LinPreorders A;

theorem
(for p,a,b st for i holds a <_p.i, b holds a <_f.p, b) &
(for p,p’,a,b st

for i holds a <_p.i, b iff a <_p’.i, b
holds a <_f.p, b iff a <_f.p’, b) &

card A >= 3 implies
ex n st for p,a,b holds a <_p.n, b iff a <_f.p, b

This is almost the same as the original, but with orders for the individuals’ preferences, instead
of preorders.

Also, because of this modification, the property of being independent of irrelevant alterna-
tives could now be phrased a bit more economically. Just to be sure I made no mistake with
this, the fact that for orders the simpler statement is equivalent to the larger statement was
also proved as a lemma (lines 479–482):

Formalizing Arrow’s theorem 215

theorem
for o,o’ being Element of LinOrders A holds
((a <_o, b iff a <_o’, b) & (b <_o, a iff b <_o’, a)) iff
(a <_o, b iff a <_o’, b)

Deriving this variant on Arrow’s theorem from the one in John Geanakoplos’ paper took quite
a bit more work than I had expected from my informal understanding of the argument. This
part of the formalization is lines 975–1120.

12. A journal of formalizations

The library of Mizar formalizations has two versions:

– A computer library of Mizar input text. This is called the Mizar Mathematical Library or
MML. Another name for it is the Journal of Formalized Mathematics or JFM. The name
depends on whether one thinks of it as a computer library or as a mathematical journal.
Each formalization is in the MML in two versions:

– The full formalization (called the ‘article’). In the case of the Arrow formalization,
this is the file arrow.miz.

– An automatically generated version of the formalization (called the ‘abstract’) in
which all proofs have been removed. In the case of the Arrow formalization, this
is the file arrow.abs.

– A paper journal with abstracts in the English language (everything but the proofs), that
are fully automatically generated from the Mizar input. This journal is called Formalized
Mathematics or FM. Although in practice no one ever looks at these abstracts (everyone
uses the MML files), it is nice that it exists too.

The version of the formalization of Arrow’s theorem in Formalized Mathematics is slightly
over three pages long (Wiedijk 2007a). The statement of Arrow’s theorem in this ‘pretty-
printed’ version of the formalization is (on page 173):

3. Arrow’s Theorem

For simplicity, we follow the rules: A, N are finite non empty sets,
a, b are elements of A, i, n are elements of N, p, p′ are elements of
(LinPreorders A)N , and f is a function from (LinPreorders A)N into
LinPreorders A.

We now state the proposition
(14) Suppose that

(i) for all p, a, b such that for every i holds a <p(i) b holds a <f (p) b,
(ii) for all p, p′, a, b such that for every i holds a <p(i) b iff a <p′(i) b

and b <p(i) a iff b <p′(i) a holds a <f (p) b iff a <f (p′) b, and
(iii) card A ≥ 3.

Then there exists n such that for all p, a, b such that a <p(n) b holds
a <f (p) b.

216 Freek Wiedijk

The fact that the Mizar group calls Formalized Mathematics a journal, and even sends the
authors reprints of the abstracts that are published in it, is a bit misleading. A journal is meant
to be read, while this text generation is just a nice tour de force, with no one ever really looking
at the abstracts after they have been printed. In a certain sense, the ‘journal’ called Formalized
Mathematics mainly is there to satisfy university administrators who want to see publications.

However, related to this there is a real issue. Writing a formalization can be a lot of work,
and it is important that it is done to exercise the technology. However, the academic credit
that a researcher gets out of it is minor. One can publish a small report about it, but that is not
in proportion to the amount of work that went into it. (Recently a new journal called Journal
of Formalized Reasoning was started by Andrea Asperti, to be a platform for reports about
formalizations. However, until now it has not had many submissions.)

13. Referee reports for a formalization

Generally libraries of formalizations (like the contribs of the Coq system and the Archive of
Formal Proofs for Isabelle) are just collections of formalizations without much attention to
unity and quality. The Mizar people are taking this aspect more seriously than the other proof
assistant communities, but still the Mizar library is quite inhomogeneous.

Recently the Mizar community has decided to pay more attention to this aspect. I was very
surprised that after I submitted my work on Arrow’s theorem to their library, instead of just
getting a nice ‘thank you for your work, we will add it to our library’ e-mail, I got referee
reports. It suddenly felt surpringly much like submitting a article to a scientific journal.

I got three referee reports that gave my formalization the following judgments:

– Confidence: A, A, A

A = very confident
B = quite confident
C = not very confident

– The decision: B, A, A

A. accept as is (editorial changes only, can be done by the editor)
B. accept, requires changes by the author to be approved by the editor
C. reject, substantial author’s revisions needed before resubmission for another

review
D. decision delayed, MML revision needed
E. reject, no hope of getting anything of value

– Presentation: 2, 2, 3
– The quality of formalization: 2, 2, 3
– Significance for MML: 3, 2, 3

0 – very poor
1 – poor
2 – good
3 – very good

Apart from these judgments, the referees had some objections:

– All referees thought that I had divided the formalization in too many subsections. (This
is done in Mizar using the keyword ‘begin’.) For instance the first referee wrote:

Formalizing Arrow’s theorem 217

In my opinion, the number of sections is too high as for file with no
more than 1200 lines; it is o’k for the Mizar article, in ‘Formalized
Mathematics’ it will look rather ugly.
I would expect some more material in here but I let Editors to decide
what to do.

Apparently this referee also thought the article was too short. (I had been trying to
keep the formalization as short and compact as possible. If I had written a less compact
formalization, I would not have gotten this criticism.)

– The first referee did not like it that I had introduced my own version of orders and
preorders, instead of using the already existing definitions in the Mizar library:

Main shortcoming of the formalization is that the Mizar apparatus is
not fully used; instead of the ordering wrt the relation, appropriate
structure can be used. Also redefinition for ‘Orders’ seems to be
unnecessary. I understand however that the point is in the one-to-one
translation from its informal counterpart.

However, I had to introduce my own definitions to get the notation that I wanted. I could
have used some definitions from the library in them, but then I just would have had a bit
more work to translate between those definitions and mine, and it would not have made
the definitions that I added more useful to others.

– The third referee had an issue related to a technical point that I had been fighting with.
I needed the ‘p.i’ that occur in the formalization to have the appropriate type, in order
for them to work with the ‘a <_o, b’ notations. However, the definitions in the Mizar
library did not give me the right types.
(Specifically: variables that have type Element of LinOrders A also automat-
ically have type Element of LinPreorders A, and if p has type Element of

Funcs(N,LinOrders A), then p.i automatically gets type Element of LinOr-

ders A. However, the expression p.i did not get type Element of LinPreorders A.)
To get around this problem with the Mizar type system, I had added the ‘redefinition’
(lines 27–37):

definition
let A,B’ be non empty set;
let B be non empty Subset of B’;
let f be Function of A,B;
let x be Element of A;
redefine func f.x -> Element of B;

. . .

end;

(To express my irritation with the fact that the Mizar library made the types behave in a
difficult to understand way, I had put a comment ‘Mizar weirdness’ in front of this.
The first referee thought that this was ‘too informal’.)
Now the third referee wanted me (for a reason that I still do not fully grasp) to use a
different notation for function application with this redefinition:

218 Freek Wiedijk

I would rather use a new notation for the redefinition of Element:

notation
let A,B’ be non empty set;
let B be non empty Subset of B’;
let f be Function of A,B;
let x be Element of A;
synonym f(.)x for f.x;

end;

Keeping the original notation might be troublesome for people using
the definition in other articles. It may override other redefinitions.
I have attached corrected text. I do not insist on ’(.)’, maybe the
Author could find something better.

My reaction to this was that I found it completely unacceptable to have to use a different
notation for the very standard function application operation, just because I needed it to
have the correct type. It would mean doing something very bad (using strange notation
for something common) to prevent the possibility of something a little bad (a definition
being hidden) from happening.

When I submitted the formalization I had expected to have been finished with it already, and
I did not feel like putting in much more time. For this reason I just addressed the first point
by reducing the number of subsections and making my comments a bit more polite. Then
I mailed the Mizar people that essentially I had no interest in addressing the other two points
and that they could take it or leave it. After which they took it.

14. Conclusions

14.1 Formalization can be useful outside mathematics and computer science

Outsiders to the field of formalization might expect that its use is restricted to mathematical
logic and computer science, or may be also to pure mathematics, but not beyond that. The
example from this paper shows otherwise.

It is important for formalization technology to be widely applicable, that this technology is
exercised in many different domains. The formalization presented in this paper can be seen
as being part of that effort.

I believe that in any field where one reasons in a mathematical style, even in an applied
science like economics, one can make good use of proof assistants.

14.2 Possible future work

There are various ways in which one might continue the work described in this paper.
One might also try to formalize the other two proofs from the Three Brief Proofs of Arrow’s

Impossibility Theorem.
The Gibbard–Satterthwaite Theorem, is generally mentioned together with Arrow’s theo-

rem. Therefore it is natural to formalize this theorem after formalizing Arrow’s theorem. This
is what both Tobias Nipkow and Peter Gammie did.

After I finished my formalization, Krzysztof Apt pointed out to me Philip Reny’s Arrow’s
Theorem and the Gibbard–Satterthwaite Theorem: A Unified Approach (Reny 2000). In this

Formalizing Arrow’s theorem 219

article both Arrow’s theorem and the Gibbard–Satterthwaite Theorem are proved, with both
proofs next to each other in two columns, showing how closely they are related. It would be
interesting to investigate whether one could do the same thing in Mizar, that is, to have two
Mizar proofs run in parallel in a similar manner.

Of course one also can look into formalization of other theorems from economics. There
are many other theorems from the field of social choice theory (like the ones in (Taylor 2005))
that one could formalize.

A nice theorem outside of social choice theory that might be interesting for formalization
is a theorem by Kenneth Arrow called the Arrow–Debreu Theorem (Varian 1992). Krzysztof
Apt already sent me a chapter from a set of course notes that explains this proof (Papadimitriou
2008). The Arrow–Debreu Theorem happens to be a direct consequence of Brouwer’s fixed
point theorem, which already has been formalized in various proof assistants. However, the
version of this theorem in Mizar is not the n-dimensional simplex version that is needed
for the Arrow–Debreu Theorem, but just a 2-dimensional version. This means that the real
work in formalizing the Arrow–Debreu Theorem in Mizar would be to formalize the more-
dimensional generalization of Brouwer’s fixed point theorem.

14.3 Investing into formalization

Formalization is a relatively labor-intensive activity, but on the other hand it is not impossibly
difficult. The work reported on in this paper altogether took about one work-week (including
the false start). Writing the final formalization took about three work-days, which in between
other kinds of work took slightly over one week.

The fact that the project described here only took this modest amount of time strongly
suggests that more people should look into formalizing their work. This will allow them to be
able to then really trust their results, and to gain a very precise understanding of their proofs.

Thanks are due to Krzysztof Apt for suggesting the project to me. Thanks to Tobias Nipkow
and Peter Gammie for telling me about their formalizations in Isabelle/HOL and for helpful
comments. Author would like to thank the referees of the Mizar library for their feedback on
my work and to the referees of this journal for many helpful comments on this paper.

References

Arrow K 1950 A Difficulty in the Concept of Social Welfare. Journal of Political Economy 58(4):
328–346

Asperti A, Coen C S, Tassi E, Zacchiroli S 2007 Crafting a Proof Assistant. In T Altenkirch, C McBride,
eds., Types for Proofs and Programs, International Workshop, TYPES 2006, Nottingham, UK, April
18–21, 2006, Revised Selected Papers, volume 4502 of Lecture Notes in Computer Science, pages
18–32. Springer

Bancerek G, Rudnicki P 2003 A Compendium of Continuous Lattices in Mizar. Journal of Automated
Reasoning 29(3–4): 189–224

Barras B 1999 Auto-validation d’un système de preuves avec familles inductives. Thèse de doctorat,
Université Paris 7

Barras B, Werner B 1997 Coq in Coq. <http://pauillac.inria.fr/˜barras/coqincoq.ps.gz>
Blazy S, Dargaye Z, Leroy X 2006 Formal Verification of a C Compiler Front-end. In FM 2006: Int.

Symp. on Formal Methods, volume 4085 of Lecture Notes in Computer Science, pages 460–475.
Springer

220 Freek Wiedijk

Fox A 2003 Formal Specification and Verification of ARM6. In D A Basin, B Wolff, eds., Theo-
rem Proving in Higher Order Logics, 16th International Conference TPHOLs 2003, Rome, Italy,
September 8–12, 2003, Proceedings, volume 2758 of Lecture Notes in Computer Science, pages
25–40. Springer

Geanakoplos J 2001 Three Brief Proofs of Arrow’s Impossibility Theorem. Technical Report
1123RRR, Cowles Foundation

Gonthier G 2006 A computer-checked proof of the Four Colour Theorem.
<http://research.microsoft.com/˜gonthier/4colproof.pdf>

Harrison J HOL Done Right 1995 <http://www.cl.cam.ac.uk/users/jrh/papers/holright.ps.gz>
Harrison J 2008 Towards self-verification of HOL Light. In U Furbach, N Shankar, eds., Proceedings of

the Third International Joint Conference IJCAR 2006, volume 4130 of Lecture Notes in Computer
Science, pages 177–191, Seattle, WA: Springer

Harrison J 2008 Formalizing an Analytic Proof of the Prime Number Theorem (extended abstract). In
R Boulton, J Hurd, K Slind, eds., Tools and Techniques for Verification of System Infrastructure,
pages 17–22, London: The Royal Society

Leroy X 2006 Formal Certification of a Compiler Back-end, or: Programming a Compiler with a Proof
Assistant. In POPL’06, Charleston, South Carolina, USA

Naumov P, Stehr M-O, Meseguer J 2001 The HOL/NuPRL Proof Translator: A Practical Approach to
Formal Interoperability. In R J Boulton, P B Jackson, eds., The 14th International Conference on
Theorem Proving in Higher Order Logics, volume 2152 of LNCS, pages 329–345. Springer-Verlag

Nipkow T 2008 A Bit of Social Choice Theory in HOL: Arrow and Gibbard-Satterthwaite. In R Boul-
ton, J Hurd, K Slind, eds., Tools and Techniques for Verification of System Infrastructure, page 9,
London: The Royal Society

Obua S, Skalberg S 2006 Importing HOL into Isabelle/HOL. In U Furbach, N Shankar, eds., IJCAR,
volume 4130 of Lecture Notes in Computer Science, pages 298–302. Springer

Papadimitriou C 2008 CS294-1 Algorithmic Aspects of Game Theory, Lecture 2: January 23.
<http://www.cs.berkeley.edu/˜kunal/cs294-1-lec2.ps>

Reny P 2000 Arrow’s Theorem and the Gibbard-Satterthwaite Theorem: A Unified Approach
Routley R 1979 Repairing Proofs of Arrow’s General Impossibility Theorem and Enlarging the Scope

of the Theorem. Notre Dame Journal of Formal Logic, XX(4)
Taylor A D 2005 Social Choice and the Mathematics of Manipulation. Outlooks. Cambridge University

Press
Varian H R 1992 Microeconomic Analysis. W W Norton, 3rd edition
Wiedijk F 2004 Formal Proof Sketches. In S Berardi, M Coppo, F Damiani, eds., Types for Proofs

and Programs: Third International Workshop, TYPES 2003, Torino, Italy, April 30–May 4, Revised
Selected Papers, volume 3085 of LNCS, pages 378–393

Wiedijk F 2007 Writing a Mizar article in nine easy steps.
<http://www.cs.ru.nl/˜freek/mizar/mizman.pdf>

Wiedijk F 2007 Arrow’s Impossibility Theorem. Formalized Mathematics 15(4): 171–174

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

