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Abstract — Previous plausible theoretical assumptions
about the cosmic 3-manifold, such as isotropy, orientabil-
ity, and compactness, have been unable to reduce the
number of candidate topologies to a finite set. We now
consider several new possible assumptions inspired by re-
lationships between microscopic physics and cosmic topol-
ogy. The most important are

1. “No-twist” assumption that there does not exist a
twisted closed geodesic (to allow photons to exist in
momentum-polarization eigenstates),

2. At most one isotopy class of nonseparating surface
exists (related to charge quantization and seems nec-
essary to allow charge to exist),

3. Orthogonal and/or commuting smooth vector fields
exist, either locally or globally (may be needed to
generalize quantum mechanics to curved spaces).

We also introduce “1-curvature homogeneity,” a weakened
version of the common “constant curvature” assumption.
We show that various combinations of these assumptions
are powerful enough to winnow the candidate topologies
down to a finite set.

We also present new “reasons for the 3-dimensionality of
the universe”and a new argument the universe is spatially
finite.
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1 Introduction

This paper is about the topology of the universe. It is
presently difficult or impossible to determine that topology
by observations. Probably the best such attempt was made
by Cornish et al. [43], who did an enormous computer search
for“circle in the sky”statistical anomalies (caused, essentially,
by multiple views of the same stuff) in the cosmic microwave
background (CMB) sky. They found nothing. This, they re-
port, strongly suggests that the shortest closed geodesic in the
universe is at least 78 × 109 light years long. But no matter
how much observing and computing is done in future, they do
not believe their techniques will be able to tell anything about
the topology of the universe if its shortest closed geodesic ex-
ceeds 92×109 light years. Furthermore, if the universe is very
large, then we dispute all other claims to date of success at
restricting the topology of the universe by examining CMB
fluctuation statistics.

But it is possible to make progress purely by thinking. Con-
tinuing the theme of the preceding two papers [151][150], we
argue that

1. topology, combined with
2. some fairly straightforward postulates one might think

would arise from microscopic physics,
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can together produce surprisingly strong conclusions about
the shape of the universe. These techniques remain equally
valid regardless of the universe’s size.

Unfortunately, it is presently unclear which of the postulates
we propose are valid (and sometimes also unclear precisely
how they should be phrased). We leave that decision to the
reader. A chart at the end of the paper (§10) summarizes ev-
erything and allows the reader to choose his favorite assump-
tion subset and see what conclusions result. Because some
assumptions are more probable than others, there is also an-
other chart there giving my personal estimates of the odds of
each.

Some notes to the reader. §2 reviews both our old and
our new arguments and results. After that come detailed in-
dividual discussions of our new arguments. Most sections end
with a concise “summary” and should be readable largely in-
dependently.

Some of our arguments cannot be understood without
preparatory material. Specifically, to understand §7 and espe-
cially §8 it helps to appreciate the “Thurston Geometrization
Conjecture” (TGC), the notion of “k-curvature homogeneity,”
and the “Seifert fiber spaces,” all described in §6. To best ap-
preciate §8 one should have read the previous [151]. The main
proof in §7 depends on notions of “ergodicity”of various kinds
of “flows”; for which see §7.3. The material in §4-5.2 requires
an appreciation of “commuting” vector fields and “orthogonal
curvilinear coordinate systems”; we provide extensive reviews.

1.1 Notation

Our tensor notation imitates [113].

Sn is the n-dimensional manifold that is the surface of a
sphere in Rn+1. Superscripts (here n) and prefixes (“n-
manifold,”“n-sphere,”“n-geometry”) denote intrinsic dimen-
sion. The n-dimensional torus T n is the cartesian product of n
copies of S1. The real and complex projective planes are RP2

and CP2; the latter is 4 (real) dimensional. We shall often
use these names to mean “or any manifold diffeomorphic to
these.” We shall sometimes use M2 to mean“an (unspecified)
2-manifold of constant curvature.” A “geometry” is a locally
homogeneous manifold, i.e. one in which neighborhoods of
any two points are isometric. (Weakened notions such as “k-
curvature homogeneous,” are defined in §6.) A “hyperbolic”
manifold means one with constant negative curvature. Some
arguments favor a flat 3-torus T 3 (parallelipiped with oppo-
site faces identified) as the shape of the universe. There are 4
variants of T 3 got by possibly allowing some of the parallelip-
iped sidelengths to be infinite. For brevity we shall denote
the entire set of them as “T 3

∞.”

A smooth k-manifold is “parallelizable” if there exist k
everywhere-orthonormal smooth tangent vector fields on it.
Two manifolds A,B are “homeomorphic” if some continuous
function with continuous inverse maps each point of A to each
point of B. (This function is the homeomorphism; if differen-
tiable then it is a “diffeomorphism.”) They are “homotopic” if

they are homeomorphic and there is a continuous function
F (a, t) (“the homotopy”) for a ∈ A and 0 ≤ t ≤ 1 with
F (a, 0) = a and F (a, 1) being the homeomorphism from A
to B, while F (a, t) is a homeomorphism for each fixed t with
0 ≤ t ≤ 1. Two objects A,B (e.g. submanifolds) embedded
in a manifold M are “isotopic” if there is a homotopy from A
to B with every intermediate-t version also being embedded.

2 Summary of arguments and results

We shall regard the universe as a smooth connected bound-
aryless Riemannian 3-manifold1. The question we address is:
what can we say about its topology, geometry, and finiteness?

The unidirectionality of time and the chiral “left handedness”
of microscopic physical phenomena (e.g. neutron decay [176])
leave little doubt that the universe is an orientable manifold.

The observed angular uniformity of the distance-ℓ sky (over
a large range of particular distance scales ℓ) combined with
the assumption of the non-specialness of the Earth’s loca-
tion forces [150] the universe to be a “harmonic manifold,”
which for 3-manifolds is the same thing as both an “Einstein
manifold” and a manifold of constant curvature. The stan-
dard Friedmann-Robertson-Walker cosmical model [113] had
of course postulated a universe of constant curvature since the
1920s (motivated by philosophical desires for symmetry and
the desire to simplify the analysis), but [150] gave perhaps
for the first time a theorem supplying the logical connection
needed to justify that assumption via experimental evidence.

However, with this understanding comes the realization that
that experimental evidence is insufficient. If angular sky uni-
formity is not perfect, then the universe could be a 3-manifold
of slightly non-constant curvature, e.g. a non-isotropic uni-
verse such as S2 × S1. This is still entirely compatible with
present observational evidence if the size of the S2×S1 is large
enough. No amount of sky-uniformity observational evidence
alone could ever suffice to rule that out; the most it could
do would be to force larger and larger size lower bounds2.
Assuming the universe has such an anisotropic topology (but
nowadays looks isotropic at the length scales at which we
can observe it) might be quite useful, because it gives extra
freedom to make the early universe do more things which ex-
ploit the anisotropy. Thus many people might wish either
to drop the assumption of constant curvature entirely (which
would devastate attempts to restrict the universe’s topology)
or merely to replace it with some weaker postulate, such as
“1-curvature homogeneity” (defined in §6).

As far as present-day measurements can tell, the universe is
exactly charge-neutral. The positive charges (the vast ma-
jority in the form of +2/3-charged up-quarks) are balanced by
the negative charges (the vast majority of which are electrons,
with charge −1, and down-quarks with −1/3 charges) to a
precision of better than 1 part in 1034, otherwise Coulombic
repulsion would exceed gravitational attraction and no stars
or galaxies (assuming they are made of the same particle-
mixture as the universe as a whole) would exist3. A priori,

1Note that this ignores time. However, the previous papers [151][150] have addressed that issue to some extent, and we shall also in our §3 and
§9. A (3 + 1)-manifold which is foliated by spacelike 3-manifolds has often been called “totally hyperbolic” in the general relativity literature.

2On the other hand if it somehow became known that the universe was small, it then might become possible to prove its isotropy.
3There perhaps is reason to suspect the balancing is better than 1 part in 1037: otherwise either electrons or positrons would be repelled from

galaxies, assuming galaxies had the same charge distributions as the universe as a whole.
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this is very surprising. Consider the ≈ 1079 charged particles
in the observable part of the universe. One would a priori
have expected, with high probability, that exactly a 1/3 frac-
tion of each type would have been chosen, to precision 1 part
in 1039, leading to an enormous negative charge. But what is
found is a 1:2:1 ratio.

Why is the universe so neutral? If the universe is compact and
Maxwell’s equations hold and have a solution, then charge
neutrality is logically forced by Gauss’ divergence theorem.
This explanation of an otherwise perhaps-inexplicable fact,
suggests that the universe is compact.4

We present in §3 an independent and new argument, based
on the nature and effect of mass fluctuations, apparently also
proving that the universe must have fintie volume.

But merely demanding that the universe be a compact ori-
entable 3-manifold of constant curvature – and the compact-
ness and constant curvature assumptions both are debatable
– would still leave us with an infinite set of candidate topolo-
gies. This falls far short of the goal of reducing the candidates
down to a small finite set. The purpose of the present paper
is to introduce and analyse three new assumptions powerful
enough to accomplish that goal:

1. “No twist” postulate (related to existence of photon
momentum-polarization eigenstates),

2. Postulate of the nonexistence of two nonisotopic com-
plete nonseparating surfaces (related to charge quanti-
zation),

3. Postulate of the local or global existence of orthogonal
and/or commuting vector fields (related to quantum me-
chanics in curved space).

Our first such powerful postulate [150] is that the universe
should not contain any closed geodesic with the property
that parallel translation along one cycle of it induces a
“twist” different from an integer multiple of 2π radians. Be-
cause: if it did then electrons taking a hypothetical jour-
ney round the universe along that geodesic could not exist
in a momentum-spin eigenstate. Similarly, photons could
not exist in a momentum-polarization eigenstate. Both of
these, apparently, would contradict experimental reality5 (al-
though admittedly all such “experiments” necessarily are of
the gedanken sort). This no-twist postulate alone is pow-
erful enough to rule out a large number of candidate topolo-
gies. In fact we shall see in §7 that it rules out every compact
orientable 3-geometry except for T 3, S3, S2 × S1, M2 × S1,
and “symmetric T 2|S1 bundles.”

Now [150] consider the highly publicized analysis [158] of
WMAP satellite measurements of the cosmic microwave back-
ground radiation, which suggested that the Earth may be
sitting on a short closed geodesic pointing roughly to-
ward Virgo. If so, then under the assumption of the “non-
specialness of the Earth’s location,” we would conclude that

a positive measure subset of locations in the universe are suf-
ficiently Earthlike as to have at least one, and at most a
countably infinite number, of bounded-length closed geodesics
passing through them. This and the previous “no-twist” as-
sumption suffice [150] to eliminate all the constant-curvature
candidate topologies except for T 3

∞. The only leap here is be-
lieving that the massaged WMAP data really shows a short
closed geodesic; neither this data, nor (especially) this inter-
pretation of it, are tremendously convincing at present.6

Nevertheless, this deduction of flatness happens to jibe with
recent supernova and CMB-fluctuation measurements sug-
gesting the universe has low |curvature| – at least at the length
scales small enough for us to see, corresponding to light travel
times of order .1010 years.

A different possible interpretation of the WMAP data would
be that it is the first observation of the fact that our universe
actually is anisotropic.

Topology was employed in an entirely different manner in
[151] to consider the question “why do all electrons
have the same charge?” An explanation once proposed
by P.A.M.Dirac had been “at least one isolated magnetic
monopole exists.” This, Dirac showed, most convincingly
by considering the behavior of solutions of his electron wave
equation, would in various ways logically force quantization of
charge. One may attack that explanation both on experimen-
tal grounds (no monopole has ever been found, despite many
searches) and on theoretical ones: monopoles would neces-
sarily have some extreme and extremely peculiar properties,
arguably could never be created in isolation no matter how
much energy was supplied [151], according to an argument of
S.Weinberg [169] would be acausal, according to an argument
of C.Fronsdal [61] would be logically forbidden, and indeed
[151] described how point monopoles are forbidden by Dirac’s
equation itself.

Instead [151] proposed an alternative explanation of charge
quantization, based on a small “topologically trapped mag-
netic field” going around some uncontractible loop on the
universe 3-manifold. This field was postulated to have been
created during the birth of the universe, and thereafter could
never vanish. It was shown in [151] that this too would logi-
cally force quantization of charge. The charge quantum would
be a topological invariant. The question then becomes: which
topologies for the universe allow the charge-quantization ar-
gument of [151] to work? (And, indeed, if the universe is one
of those topologies, then the onus would be on opponents of
this idea, to explain why the trapped magnetic field should
miraculously be exactly zero.) Smith showed that the argu-
ment works for every compact orientable 3-manifold topology
(simplest examples: the flat 3-torus T 3 and S1 × S2) except
for the“rational homology spheres”(simplest examples: the 3-

4On the other hand, if some ultra-precise measurement ever reveals the universe is not exactly charge neutral, we would then know it is not
compact.

5For example, the existence of photon momentum-polarization eigenstates seems essential to get the thermodynamic Planck blackbody distri-
bution right.

6More recent drafts of [158] have stepped away from the “short geodesic interpretation” (which had been touted in newspaper articles at the
time as the “bagel shaped universe”) indeed arguing that searches for “circles in the sky” anomalies centered on the Virgo bidirection (ala [43]) have
refuted that hypothesis [125]. Our view is that they have not refuted it (because the geodesic might be a little too long for those techniques to be
applicable, but still short enough to cause the anomaly) but they have cast doubt on it (because the plausible length range now seems much more
restricted).
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sphere S3, the Poincaré homology 3-sphere7 and the Brieskorn
homology 3-spheres8.) It can be further argued [151] that,
were the universe to contain two or more disjoint nonseparat-
ing surfaces (with uncontractible cycles, generically contain-
ing nonzero magnetic flux, passing through each, and neither
distortible to merge into the other) that would force charges
simultaneously to obey two different quantization conditions
– which in the generic9 case where the ratio of the two quanta
was irrational would prevent any charges from existing at all,
contradicting experiment.

This all suggests our second powerful postulate: that the uni-
verse must have exactly one such nonseparating surface thus
explaining charge quantization while nevertheless generically
permitting charges to exist10.

This would permit the universe to be S1×S2, but, as §8 shows,
eliminates a vast number of candidate topologies (including
T 3, the apparently [151] simplest example!).

One may ask whether there is some topological reason for
the 3-dimensionality of the universe. One interesting
property of the number “3” is that it is the largest dimen-
sion n such that every n-manifold may be triangulated. The
fact that 2-manifolds always may be triangulated, i.e. con-
verted into a homeomorphic piecewise-linear (PL) manifold,
was shown by Radó in 1925 (and seems obvious for compact
2-manifolds once Moebius’ classification [7] of 2-manifolds is
known), and for 3-manifolds this was Moise’s theorem of 1952
[115][20][116][154]. Freedman in 1982 constructed a nondiffer-
entiable analogue of the complex projective plane ([60] §8.3
and 10.1) and this fake CP2 is a 4-manifold that cannot be
triangulated as a combinatorial manifold. By combining this
with work of A.J.Casson (see [3] and p.xvi of [4]) one obtains
examples of topological11 4-manifolds that cannot be trian-
gulated at all. In contrast topological, smooth, and piecewise
linear (≤ 3)-manifolds are all essentially the same thing, and
any two triangulations of a (≤ 3)-manifold are combinato-
rially equivalent – one may be obtained from the other by a
finite sequence of local combinatorial modifications or“moves”
[58]. This “Hauptvermutung” [136]. reduces (≤ 3)D topology
to combinatorics. However, the Hauptvermutung is false in
dimensions n ≥ 4; there exist homeomorphic, but not PL-

homeomorphic, n-dimensional PL-manifolds [90][136][60] for
each n ≥ 4. Finally, we remark that the question of deciding
whether two n-manifolds are topologically equivalent is algo-
rithmically undecidable if n ≥ 4 (a fact [103] which is highly
related to the undecidability of isomorphism for groups pre-
sented as generators and relations [134]) – but is decidable if
n = 2 due to Moebius’ classification of 2-manifolds [7]. The
question is open in dimension n = 3, but conjecturally even-
tually a decision-procedure will be found [159].12

All of the above suggest that perhaps any attempt to do
physics on general curved n-manifolds with n ≥ 4 would be
defeated by severe and fundamental pathologies, which, how-
ever, do not exist when n = 3. Although numerous arguments
(surveyed in [151]) have been made before about why the uni-
verse “must” be 3D, these somehow seem more fundamental.

Here is another argument favoring 3-dimensionality. Al-
though we do not know what the laws of physics might be in
some other (or other-dimensional) universe, let us postulate
that they admit solutions which lead to n mutually orthonor-
mal smooth vector fields in the n-dimensional universe. For
example, a“photon momentum-polarization eigenstate”wave-
function for a photon in the universe would lead to a vector
at each point in space giving the photon’s momentum direc-
tion, an orthogonal vector giving its electric field, and a third
orthogonal vector indicating its magnetic field. (Actually the
latter two vectors are better viewed not really as “vectors,”
but rather as “bidirections,” but that still suffices for our pur-
poses.)

Theorem 1 (Dimension 3 and parallelizability). Every
compact orientable 3-manifold admits a parallelization; but
this is not true (even in the smooth case) if any other number
n ≥ 2 is substituted for “3.”

Proof: The fact that every compact orientable 3-manifold is
parallelizable arises by pasting together known topology the-
orems [151] dating back to Seifert. The n-sphere Sn is not
parallelizable [1] for any n ≥ 2 besides n = 3 and n = 7. Al-
though many 7-manifolds are parallelizable [e.g. S7, T 7, and
SO(5)/SO(3)], the compact orientable 7-manifold RP 5 × S2

7The“Poincaré homology sphere” is a non-simply connected orientable 3-manifold with the same homology as the ordinary 3-sphere. It has as its
fundamental group the “binary icosahedral group” of order 120. It is the only Seifert – and only known – homology sphere with (non-trivial) finite

fundamental group. Threlfall and Seifert’s construction of the Poincaré sphere is a solid regular dodecahedron in a curved space S3 of constant
curvature (it may be regarded as one of the 120 dodecahedral faces of the “120-cell” regular 4-polytope [46]) where opposite pentagon faces are
identified by a right-helix turn of π/5 radians; see [162][167]. A different description by Montesinos ([117] p.IX-X) is that it is the space of possible
positions of a regular dodecahedron (or icosahedron) inscribed in a sphere; equivalently, as a topological group it is SO(3)/A5. But this manifold,
and in fact every rational homology sphere with a 1-curvature homogeneous metric besides S3 itself, features “twist” and hence presumably is
forbidden as a cosmology. See §7. and §6.

8These are the manifolds xp + yq + zr = 0, |x|2 + |y|2 + |z|2 = 1 in C3 where p, q, r are coprime positive integers.
9Here “generic” means “a generic real-linear combination of trapped magnetic fields going around each possible kind of uncontractible cycle.” A

different kind of “generic” magentic field would be got by choosing one particular kind of uncontractible cycle (which always will consist of integer
number of traversals around the basic cycles, i.e. the previous case except that “real-linear” is replaced by “integer-linear”) and then choosing a
magnetic field which goes around it (which then may be scaled by a single generic real). With this latter kind of “generic” magnetic field, every
kind of orientable compact 3-manifold except for rational homology spheres will yield charge quantization with a unique charge quantum. But with
the former kind, if there are two or more different types of uncontractible cycle we will simultaneously get two different, generically incompatible,
charge quantization conditions.

10Also, the universe could have zero such surfaces with charge quantization then being explained by some non-cosmic mechanism such as
monopoles. That would permit S3 and the Poincaré dodecahedral space.

11I.e., “C0” manifolds, obeying the fewest possible smoothness demands. For precise definitions of most such concepts, see [118].
12The combination of Perelman’s putative proof of Thurston’s geometrization conjecture (which involves a canonization procedure called “Ricci

flow with surgery” which somewhat resembles an algorithm), the Hauptvermutung, and the fact that equivalence-testing procedures are known for
Haken manifolds [82][76][159][105] (and hence knots and links [66]) and for the 3-sphere [142][160][104], all are grounds for optimism. For example,
if only some upper bound, no matter how large a function of N (provided it were algorithmically computable), were known for the finite number of
“moves” required to interconvert two triangulated 3-manifolds with N tetrahedra total, then a decision procedure would exist. It seems extremely
likely that such a bound exists.
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is not parallelizable. To show this, employ the “product for-
mula” for Stiefel-Whitney classes on page 54 of [112], and see
also pages 47 and 133 of that book. We have (in the no-
tation of [112]) w(S2) = 1 and w(RP 5) = w(RP 5 × S2) =
1 + a2 + a4 6= 1, therefore w(RP 5 × S2) is not paralleliz-
able. However since S2 and RP 2k+1 both are compact and
orientable (although RP 2k are non-orientable, cf. p.52-53 of
[112]), so is RP 5 × S2. Q.E.D.

This would seem to grant favor to space-dimension 3, al-
though not completely forcing it since many parallelizable
n-manifolds still exist with n 6= 3.

In §4 we consider the postulate (which perhaps would be re-
quired in a future theory of quantum mechanics in curved
spacetimes) that there must be n commuting spacelike vec-
tor fields in the universe. This would actually eliminate all
compact orientable candidate topologies not diffeomorphic to
the flat n-torus T n. (And, more strongly, a flat T n actu-
ally has n mutually everywhere-orthogonal commuting vector
fields – a condition that also might be required in a future the-
ory of curved space QM.) Indeed, if n = 3, merely requiring
two commuting vector fields is enough to force the 3-manifold
(if compact and orientable) to be diffeomorphic to a torus bun-
dle over S1. Among these, there are only a few 3-manifolds
diffeomorphable to constant curvature (and all happen to be
flat) and only one satisfies the no-twist postulate, namely T 3.

Now suppose (§5.2) we only allow n-manifolds with an or-
thogonal curvilinear coordinate system (OCCS). (This
is equivalent to demanding the existence of n smooth mutu-
ally everywhere-orthogonal and commuting vector fields.) If
we only demand that an OCCS exist locally in the neighbor-
hood of any point on the manifold, then every (sufficiently
smooth) n-manifold, n ≤ 3, does the job, but n ≥ 4 is (for
generic points on generic smooth manifolds) forbidden. This
again could be regarded as a “reason the universe must be 3-
dimensional.” If we demand a globally valid OCCS, then only
T 2 and T 3 are permitted.

3 New argument for the spatial

finiteness of the universe

The generalization of the Schwarzschild metric (representing
the gravitational field in vacuum exterior to a spherically sym-
metric mass M) to allow also a charge Q and a cosmical con-
stant Λ is

ds2 = −Ndt2 +
dr2

N
+ r2(dθ2 + sin2 θdφ2) (1)

where

N(r)
def
= 1 − 2M

r
+

Q2

r2
− Λ

3
r2. (2)

This is an exact spherically symmetric solution of the
Einstein-Maxwell equations with Λ-term. The r coordinate

is here defined “circumferentially,” i.e. so that spheres r = k
have surface area 4πk2.

Assume Q = 0 (uncharged) for simplicity. Then this line
element is asymptotic to the usual Schwarzschild black hole
element when r → 0+, and to the usual de Sitter expanding-
universe element when r → ∞. If M > 0 and Λ > 0 and
9M2Λ < 1 then it has two13 “horizons” located at the posi-
tive roots of N(r). (Anyone falling inside the inner horizon
can never re-emerge and is doomed to continue to fall into
the central singularity at r = 0, since within this horizon
r-decrease becomes the future-timelike direction. Anybody
outside the outer horizon will never be able to enter it, due
to the expansion of the universe being too rapid.)

However, if the mass M is increased to Mc
def
= 3Λ−1/2 then

the two horizons merge into one (located at r = 3Mc), and
if it is increased further then both horizons disappear and we
get a solution of drastically different character, representing
a contracting universe in which every point is doomed even-
tually to hit the r = 0 singularity. (This metric may also
be interpreted as an expanding universe containing a naked
singularity at r = 0 visible from every point. Which of these
two interpretations is preferred depends on which direction of
time is regarded as the “future” direction.)

Now let us use this knowledge to give a (new) argument for
the finite nature of the universe. Consider the usual picture of
a homogenous isotropic spatially-infinite eternally-expanding
universe with positive (repulsive14) Λ, which ultimately will
tend toward the de Sitter vacuum metric. This is presently
the most popular and most believed model of the universe.
Now consider a sphere of surface area 36πM2

c . Because the
universe is spatially-infinite, and assuming the “creation” of
the universe and the matter within it was statistical in na-
ture, we would expect with probability 1 that some such
sphere must exist somewhere containing mass exceeding any
specified bound, in particular exceeding Mc. If so, then the
character of the universe will differ completely from the usual
picture, since contraction to a point will be foreordained or
else there will be a naked everywhere-visible singularity, and
(either way) homogeneity is impossible.

In a nutshell, the problem is that in an infinite universe, there
presumably must be arbitrarily large local fluctuations, but
a sufficently large local fluctuation is capable of changing the
global character of the universe – thereby contradicting and
destroying the original assumption of homogeneity. This ar-
gument is new15.

Summary: This seems to us to constitute a proof-by-
contradiction that a Λ > 0 homogeneous eternally-expanding
universe must have bounded fluctuations of mass-in-fixed-
size-balls, and (hence, under suitable statistical assumptions
about the high tail of the mass density distribution) must

13If M = 0 then we just have de Sitter space which has just one horizon, at r =
p

3/Λ. If Λ = 0 we just have the Schwarzschild black hole with
just one horizon at r = 2M .

14Recent evidence from type-Ia supernovae “standard candles,” and even more recently from observations by the Chandra satellite of of Xrays
from hot gas in galactic clusters, both suggest that the expansion of the universe is actually starting to accelerate, presumably indicating that
Λ > 0.

15Instead of regarding our argument as forcing the universe, if eternally expanding, to be finite-volume, another possibility would be that we
really do live in an infinite universe with Λ > 0, but it is not eternal and not homogeneous, as will someday be revealed when the existence of a
giant black hole with mass > Mc becomes apparent. But since (at least in the universe represented by EQ 1) such a black hole cannot be behind
a horizon, if it existed then it ought to be apparent now, and it isn’t.

Feb 2004 5 3. 0. 0



Smith typeset 20:16 13 Aug 2004 uni2

have finite 3-volume. However, this is not a “proof” as
mathematicians understand the word, although it is probably
satisfactory to many cosmologists. That is because the facts
we have used about the specific metric EQ 1 might not be true
in more general metrics corresponding to universes containing
inhomogenous matter instead of just vacuum16.

We had prevously argued that the observed charge-neutrality
of the universe would have been forced if the universe were
spatially compact; that is an independent reason to believe in
compactness.

Finally, the reader is warned that this fluctuation-based argu-
ment does not rule out infinite-diameter but simultaneously
finite-3-volume 3-manifolds such as hyperbolic manifolds with
“cusps.” That kind of “cuspy universe” is strongly disfavored
by the charge-based argument, since charge-neutrality could
perfectly well be violated in the interior of such a universe –
see Lovelock [100] for an exact Einstein-Maxwell model uni-
verse solution exhibiting a “charged cusp.”17

4 Milnor Rank and commuting vec-

tor fields

This section defines and explains commuting and orthogonal
vector fields on manifolds. Both this and the following sec-
tion explore the idea that physics may require the universe to
admit 3 commuting and/or orthogonal vector fields, either lo-
cally or globally, and try to understand what restrictive effects
would follow from such requirements.

There are a great number of different ways to look at com-
muting vector fields; we shall expalin them this section. They
are also related to curvilinear coordinate systems, another
tremendous area which we survey in §5. We later shall
also require an understanding of “gauge freedom,” an oft-
misunderstood area we review in §5.1. We hope our surveys
of these areas are useful, but the reader should avoid getting
lost in their details. That avoidance is possible because our
main results are both stated as “theorems” and summarized
at the end of both this and the next section.

The Milnor rank of a compact differentiable manifold M is
the maximum number of C2-smooth tangent vector fields, all
linearly independent at each point of M , and mutually pair-
wise commuting everywhere.

Lemma 2 (Invariant Milnor-Rank). Milnor rank is in-
variant under diffeomorphisms of the manifold.
Before we can prove the foundational lemma 2, we first need
to explain what it means for two vector fields to “commute.”
There are several ways to understand this: in terms of tensor
notation, in terms of partial differential operators, geometri-
cally, and algebraically. In all cases we define the notion of
the “commutator” C = [A, B] of two vector fields A, B, and
say that A, B commute if their commutator is the zero vector
field.

Tensors: In terms of the usual index and Einstein-summed
tensor notation [101][130] with xτ being the coordinate sys-

tem, we may define the commutator of two vector fields Aµ

and Bν to be the vector field Cκ

Cκ = [Aµ, Bν ]
def
= Aµ ∂

∂xµ
Bκ − Bν ∂

∂xν
Aκ. (3)

There are several important things to note about this expres-
sion. First of all, it does not depend at all on the metric of
the manifold. Second, by rewriting EQ 3 in terms of covariant
deriviatives (indicated by semicolons)

Cκ = AµBκ
;µ − AµΓκ

µαBα − BνAκ
;ν + BνΓκ

νγAγ (4)

we note that due to the symmetry Γη
αβ = Γη

βα of the Christof-
fel symbols, they cancel, so that

Cκ = [Aµ, Bν ] = AµBκ
;µ − BνAκ

;ν . (5)

Thus the commutator of two tensorial vector fields is a tensor.
Hence if we change to a different coordinate system yφ that
would just multiply all the vectors, including the commutator,
by the Jacobian of the transformation, so that the “commut-
ing fields” statement that Cκ ≡ 0κ is invariant under changes
of coordinates. Those two observations prove lemma 2. Fi-
nally, observe that if Aµ is multiplied by some scalar-valued
factor S, then EQ 3 changes to

Cκ = [SAµ, Bν ] = SAµBκ
;µ − SBνAκ

;ν − BνAκS;ν (6)

which in view of the last term is generally not the same as
SCκ

old, unless S;νBν ≡ 0, as happens (for example) if S is iden-
tically constant. The fact that generic positionally-dependent
scaling is forbidden for commuting vector fields prevents
us from orthonormalizing them by a positionally-dependent
QR matrix factorization [65], i.e. by taking positionally-
dependent linear combiantions of our vector fields, since tak-
ing linear combinations of the vectors is forbidden. Since lin-
ear combinations with constant coefficients are OK, though,
we can cause our commuting linearly independent vector fields
to be orthonormal at any one particular point. (Further, if
they happen already to be mutually orthogonal everywhere,
then we may, by taking an appropriate constant linear combi-
nation, cause our fields still to be mutually orthogonal every-
where, but rotated arbitrarily away from their original direc-
tions.) This contrasts with the common situation where one
has n everywhere linearly independent smooth vector fields
on a manifold (without anything being said about commuta-
tion). In that case, by doing a smoothly positionally depen-
dent QR matrix factorization, we may convert those fields to
being everywhere mutally orthonormal. Thus the words “lin-
early independent” and “orthonormal” are often interchange-
able in discussions of smooth vector fields on manifolds, with
the latter being preferred because it is a more useful state-
ment. However, those words are not interchangeable if we
demand commutation.

Differential operators: If a vector field Aµ is regarded as

corresponding to the partial derivative operator ∂A
def
= Aµ ∂

∂xµ ,
then the partial differential operator corresponding to Cκ is

∂C = ∂A∂B − ∂B∂A. (7)

16Indeed there would seem to be no hope of getting full rigor at least until longstanding fundamental problems about solution existence in general
relativity are resolved. This whole issue deserves more thought.

17Admittedly, if the “charges of the cusps” were included in the reckoning then any such universe would have to be neutral overall; but the cusps
are at ∞, i.e. not on the manifold. We should also mention that hyperbolic 3-manifolds with finite volume but cusps at ∞ are disfavored by the
extension by Adams et al. (mentioned in our §7.4) of our theorem 17.
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This again is a first order partial differential operator because
the second order derivative terms cancel out. Our two vector
fields on M commute precisely if their differential operators
commute at each point of M .

In view of EQ 5 we could instead define these operators to be
AµDµ where D is the covariant (rather than partial) deriva-
tive operator.

Geometric picture: The geometric meaning of the commu-
tator of two vector fields is, in the limit ǫ → 0, the vector field
that “closes the quadrilateral” in figure 4.1.

B(0)

A(2)

B(1)
1

20 ε

ε

ε

ε[A,B]

εA(0)

Figure 4.1. In the limit ǫ → 0, the dashed “missing link”
closing the quadrilateral is [A, B]. For nonzero ǫ, the quadri-
lateral does not exactly close, but the error term is O(ǫ3).

Algebraically: Vector fields under commutation form a Lie
algebra, meaning that the commutator obeys the Jacobi iden-
tity

[A[B, C]] + [B[C, A]] + [C, [A, B]] = 0 (8)

linearity
[mD + kA, B] = k[A, B] + m[D, B] (9)

if k and m are constant scalars, and antisymmetry

[A, B] + [B, A] = 0. (10)

Orthonormality for vector fields is completely logically
unrelated to the demand that they commute. This fact may
be confirmed algebraically via EQ 3 by considering the follow-
ing two everywhere-orthonormal vector fields in the Cartesian
xy plane

A = (− sin x, cosx), B = (cosx, sin x) (11)

whose commutator is

C = (1, 0) 6= (0, 0), (12)

and by considering the fact that any two nonparallel constant
vector fields in Rn commute. Also, we remark that the Hopf
fibration (3 everywhere-orthonormal tangent vector fields on
S3 arising quaternionically from ix, jx, and kx where |x| = 1,
see [151]) vector fields do not commute.

A famous physics example of commutation is the three
“angular momentum operators” (which could, if one wished
to be eccentric, be regarded as vector fields in xyz-space R3):

L1 = y
∂

∂z
− z

∂

∂y
, L2 = z

∂

∂x
− x

∂

∂z
, L3 = x

∂

∂y
− y

∂

∂x
.

(13)
Then L3 = [L2, L1] and the corresponding identities got by
cyclically permuting the indices, also hold. Hence the algebra
of operators x1L1 + x2L2 + x3L3 under commutations is the

same as the usual algebra of 3-vectors under the cross product
~z = ~y × ~x:

[x1L1+x2L2+x3L3, y1L1+y2L2+y3L3] = z1L1+z2L2+z3L3.
(14)

Why might physicists care about commuting vector fields?
In ordinary flat space nonrelativistic quantum mechanics, it
is commonplace to employ three “momentum operators”

px =
∂

∂x
, py =

∂

∂y
, pz =

∂

∂z
(15)

(we have left out irrelevant constant factors of i and ~) which
commute. Should physicists trying to generalize quantum me-
chanics to work in curved spaces deem it desirable for three
such mutually commuting operators to exist everywhere –
even in a curved universe – then we must demand that the
universe have Milnor-rank 3.

Known results on Milnor-rank: Early work (mentioned
in our previous paper [151]) showed that every 3-manifold
has Milnor-rank at least 1; the 3-torus is the only com-
pact 3-manifold with Milnor-rank 3; and that the Milnor-
rank of S3 (the 3-sphere) [99], and of S2 × S1 [138] both are
1. S.P.Novikov later extended the lattermost result to show
MRank(S2 × T n−2) = n− 2. Rosenberg, Roussarie, and Weil
[141] then classified all compact boundaryless connected ori-
entable 3-manifolds of Milnor-rank≥ 2, showing they were
precisely the torus bundles over S1, with the only one of
Milnor-rank 3 being the 3-torus itself, and they indeed in-
cluded a proof on their first page that the n-torus T n is the
only compact boundaryless connected n-manifold with Milnor-
rank n. Finally, Arraut [9], building on work of Chatelet,
Rosenberg, and Weil [38] extended this classification to allow
replacing some of the vector fields by foliations.

Theorem 3 (The 3 constant curvature orientable
3-universes with rank≥ 2). Let M be a compact orientable
3-manifold with Milnor-rank≥ 2. Assume further that it has
constant curvature. Then that curvature is zero and M is
parallelipiped with opposite faces identified, but with one pair
of faces perhaps identified via a 90◦ or 180◦ (or no) twist.

Proof: We know [141] that the theorem’s first sentence forces
M to be a torus bundle over a circle. From corrol. 4.6 p.449
of [145] we know that no such bundle can have a hyperbolic
structure. Therefore we may restrict attention to compact 3-
manifolds of positive and zero constant curvature. But these
are completely classified [174]. Going through the classifica-
tions [174] we find that the only allowed compact 3-manifolds
are flat ones which consist of parallelipipeds with opposite
faces identified, but with one pair of faces perhaps identified
via a 90◦ or 180◦ twist. All of these have zero curvature.
Q.E.D.

Summary: If our universe is a compact 3-manifold contain-
ing 3 commuting vector fields (as might be required in future
quantum gravity theories), then it must be T 3; even merely
requiring it to contain 2 commuting vector fields and be ori-
entable forces it to be one of only 3 particular flat 3-manifolds,
of which only T 3 is twist-free.
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5 Gauge freedom, n-tuply orthogo-
nal foliations and commuting vec-

tor fields

In ordinary flat space quantum mechanics, in addition to the
three momentum partial differential operators px, py, pz, there
are also three nondifferential operators x, y, z. Among the 21
unordered pairs among these 6 operators, all commute except
for [x, px], [y, py], and [z, pz]. The [y, px] commutation rela-
tions (and their ilk) force px, py, pz to correspond to mutually
orthogonal vector fields. For example, in the flat xy plane,
the differential operator a ∂

∂x + b ∂
∂y commutes with multipli-

cation by x if and only if a = 0. Similarly but more generally,
in curved 3-space, we must have py and pz (but not px) or-
thogonal to ∂

∂x , px and pz (but not py) orthogonal to ∂
∂y , and

px and py (but not pz) orthogonal to ∂
∂z . This forces px to

be proportional to ∂
∂x (and similarly for py, pz). If we then

demand that {px, py, pz} be defined locally in the neighbor-
hood of any particular point on a 3-manifold in a way not
depending on the coordinate system (i.e. tensorially using
the covariant derivative), we must make them arise from 3
orthogonal commuting vector fields.

Perhaps it is desirable that all these properties still hold even
in curved spaces. (However, the notion of a “position opera-
tor”no longer holds the same attraction in curved space quan-
tum mechanics since it would seem to be useable only locally.
If so, we perhaps only should require the local existence of 3
orthogonal commuting vector fields on our 3-manifold.) That
leads to the question: On which 3-manifolds do there exist 3
everywhere-orthogonal and nonzero commuting tangent vector
fields? There are two versions of this question, namely where
the existence is inteneded to be global or merely local.

There turn out to be an astonishing number of equivalent
questions. A 3-manifold has 3 orthogonal and commuting
vector fields (locally or globally) if and only if it has an or-
thogonal curvilinear coordinate system (locally or globally),
i.e a coordinate system in which the metric tensor gαβ is ev-
erywhere diagonal. This happens if and only if it has a triply
orthogonal surface system, which happens if and only if it has
3 everywhere-orthogonal foliations into 2-manifolds (respec-
tively locally or globally, in both cases).

To explain why these equivalences hold: Any pair among 3
commuting vector fields may be thought of as defining a fam-
ily of 2-surfaces, i.e. a foliation, and these 3 kinds of surfaces
must be orthogonal everywhere if the fields are. More gener-
ally in an n-manifold if there were n commuting vector fields
we would get

(
n
2

)
orthogonal foliations into 2-manifolds. Re-

garding the leaves in the kth among the 3 foliations as the
surfaces uk = constant where each uk is some function of po-
sition, we may employ u1, u2, u3 as a new coordinate system
on our 3-manifold. In this coordinate system the metric ten-
sor must be diagonal due to orthogonality, and the gradient
vectors of the uk give us 3 orthogonal commuting vector fields
back again.

Again, physicists might regard it as desirable for there to be
an orthogonal curvilinear coordinate system, even in a curved
universe, either locally or globally. So the question arises:
which universes have that property?

We state the following results here, and prove them in §5.3.

Theorem 4 (Cotton-Darboux). If n ≤ 3, then any n-
manifold has an orthogonal coordinate system in a local neigh-
borhood of any particular one of its points. However, if n ≥ 4,
this is false for a generic metric at a generic point.

Theorem 4 could be regarded [151] as a “reason the universe
must be 3-dimensional.”

Theorem 5 (Torus). Let n ≤ 3. Any compact n-manifold
diffeomorphic to T n whose metric tensor is close enough (in
the Sobolev 2-norm involving both the metric tensor perturba-
tion and its first derivative) to the metric tensor of flat space,
has a globally valid orthogonal coordinate system. (If n = 2
then the Sobolev norm constraint may be dropped.) However
(for any n ≥ 1), a compact orientiable n-manifold not home-
omorphic to T n cannot have a globally valid orthogonal coor-
dinate system.

Theorem 5, which goes further, could be regarded (less con-
vincingly) as a “reason the universe must be a 3-torus.” Con-
jecturally, there is a strengthened combined version of the
above theorems:

Conjecture 6. A smooth 3-manifold has a globally valid or-
thogonal curvilinear coordinate system if and only if it is topo-
logically equivalent to T 3. (I.e., the Sobolev norm constraint
may be dropped entirely from theorem 5.)

Before proving these theorems in §5.3, we first must explain
something of the history of orthogonal curvilinear coordinate
systems, an area very heavily studied during 1810-1920 but
which thereafter (unfortunately) became moribund. Also, we
must explain the important and oft-abused concept of “gauge
freedom.”

5.1 Gauge freedom in general relativity
(GR) and differential geometry

Einstein’s field equations of GR state that

Gαβ = χTαβ (16)

where Gαβ = Gβα = Rαβ − 1
2
Rgαβ is the Einstein tensor

(here expressed in terms of the Ricci curvature tensor Rαβ

and the metric tensor gαβ), Tαβ is the stress-matter-energy-
tensor, and χ is a physical constant arising from Newton’s
gravitational constant. Naively, in n-dimensional spacetime
(where conventionally n = 4) this is a statement of (n+1)n/2
equalities (i.e. conventionally 10). There are to be solved
for the 10 components of the metric tensor gαβ = gβα. But

because G;β
αβ = 0α, expressing the automatically divergence-

free nature of the Einstein tensor (which was the reason for

Einstein’s choice of “ 1
2
”) on the one hand, while T ;β

αβ = 0α

expresses the conservation of mass-energy on the other, re-
ally n equalities hold automatically. So really, there are only
(n−1)n/2 equations constraining the metric tensor, leaving n
leftover degrees of “gauge freedom.” Thus whenever there is a
solution of the Einstein equations, there in general will be an
n-parameter family of solutions, all equivalent under “gauge
transformations.” The “infinitesimal gauge transformations”
are

gαβ → gαβ + (uα;β + uβ;α)ǫ (17)

in the limit ǫ → 0, where uα is any tensorial vector field.
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In differential geometry, it is always possible to employ dif-
ferent coordinate systems to describe the same metric. Con-
sequently there are many different descriptions of the same
manifold – and it is not trivial to determine whether two
metrics are really the same! Again the group of equivalence
transformations on metrics is infinitesimally generated by EQ
17.

It is common (and in fact essential in numerical general rela-
tivity) to impose n “gauge conditions,” i.e. constraints on the
metric, so that there will be only one solution of the Einstein
equations. For example (when n = 4) one common choice
is the “temporal gauge” that g0α = gα0 = −δα0. Another
common choice is the “Harmonic gauge”

Γα ≡ gµνΓα
µν = (ln

√
g),α = gµνg;α

µν = 0α. (18)

Still another possibility would be demanding that all eigen-
values of gαβ be ±1.

A common impression gained from reading most physics
books about GR is that these (or any set of n such) gauge
demands all are imposable. The more careful physics books
tell us they are merely imposable locally in the neighborhood
of any generic point, but it might be impossible to make them
hold globally on the manifold since attempting to do so may
force coordinate singularities. Although the latter attempt to
provide caution is admirable, it does not go far enough, since
in fact, we have never seen a proof that n gauge demands need
be imposable even locally. Undoubtably this is “usually” true
for most points, most manifolds, and most reasonable-looking
sets of gauge conditions, but there might be some exceptions.
So really one always needs to justify any local existence claim
of this sort by an ad hoc argument based on some existence
theorem for PDEs.

Here are some examples. Weinberg [170] claimed on his
pp.162-163 that “it is always possible to choose a coordinate
system” in which the harmonic gauge conditions hold. That
claim was either wrong or misleading. First of all, his proof
was incomplete since he reduces the problem to solving certain
system of partial differential equations, but does not prove
that system always has a solution. Second, there is no sin-
gle harmonic coordinate system on S2, or S1, or in fact on
any compact Riemannian manifold whatever, by considering
Weinberg’s EQ 7.4.9 and the fact that the only scalar val-
ued harmonic function on a compact Riemannian manifold is
a constant. What is true, is that in any subset topologically
equivalent to an open n-ball of a Riemannian n-manifold (and
hence locally), there is a harmonic coordinate system. This is
because the Dirichlet principle (which has been justified rigor-
ously [53] by means of the “heat flow method”) proves solution
existence. Furthermore, on any Lorentzian (n + 1)-manifold
foliatable into spacelike n-manifolds (“timeslices”), in any sub-
set S of such a spacelike-submanifold topologically equivalent
to an open n-ball and its “future”(i.e. the set whose past is S)
there exists a harmonic coordinate system. That is because
Weinberg’s system of partial differential equations is linear
and hyperbolic and on each timeslice is solving an elliptic
system which by the Dirichlet principle has a solution.

’t Hooft (§9 of [80]) gave a similarly informal argument that,
in many typical general relativistic scenarios, the temporal
gauge cannot be imposed globally, but it can be imposed lo-
cally.

5.2 Orthogonal curvilinear coordinate sys-
tems (OCCS)

An orthogonal curvilinear coordinate system (OCCS) on a
manifold is a coordinate system causing the metric tensor gαβ

to be diagonal. Obviously any OCCS coordinate u may be re-
placed by a function f(u) of it.

An OCSS uα(~x) must satisfy

~∇uα · ~∇uβ = 0 if α 6= β︸ ︷︷ ︸
orthogonality

, det
∂uα

∂xk
6= 0

︸ ︷︷ ︸
nondegeneracy

, H2
α = |~∇uα|2︸ ︷︷ ︸

diagonal metric

.

(19)
To any such coordinate system in Rn there corresponds a
metric tensor gαβ which is diagonal with gαα = Hα.

The Riemann curvature tensor arising from that metric then
must obey certain conditions. First of all, when α, β, µ, ν all
are unequal Rαβµν = 0 since that happens automatically if
the metric tensor is diagonal.

If we are speaking of OCSS’s in Rn (which was what all the
19th century investigators concerned themselves with) then,
second, if α 6= β, we have Rαβαβ = 0αβ (these constitute
n(n − 1)/2 equations); and third, if α, β, µ all are unequal,
then Rαβαµ = 0αβµ (these constitute n(n− 1)(n− 3)/2 equa-
tions). These equations (called the Gauss-Lamé equations)
are an overdetermined system of second order PDEs that arise
simply because Rn is flat.

In the case n = 3, in §251 of [59] it is shown that if three
“Lamé coefficients” H1, H2, H3 exist satisfying the 6 = 3 + 3
Gauss-Lamé PDEs, then they determine a unique (up to ro-
tation and translation) triply orthogonal system of surfaces.
It would also be possible to make alternate versions of the
Gauss-Lamé equations valid in any particular curved mani-
fold. That option unfortunately (due to the historical order
of events) has largely remained unconsidered.

If the dimension n of the manifold is 1, every coordinate sys-
tem is an OCCS. If n = 2, one may choose one coordinate u
in an arbitrary (sufficiently smooth) way, then consider the
vector field of normals to its level curves. The integral curves
of this vector field (which exist, due to existence theorems for
ODEs) give the second coordinate w. This argument shows
that every 2-manifold has an OCCS locally; indeed that it
has many of them, with one arising from each smooth-enough
function u of 2 variables. A slicker argument accomplishing
nearly the same goal is to use the known theorem that any
2-manifold is conformally flat. Applying the conformal trans-
formation to an OCCS on the flat xy plane yields an OCCS
of an arbitrary 2-manifold. This in fact yields a global OCCS
for a 2-torus T 2 since any flat T 2 (parallelipiped with periodic
boundary conditions) plainly has one, namely the Cartesian
xy coordinate system. However, there is no global OCCS on
any other orientable compact 2-manifold because there is no
way to “comb the hairs” either on a sphere or g-holed torus
with g ≥ 2; and (by the Gauss-Bonnet theorem) there is no
globally flat version of any compact orientable 2-manifold be-
sides for T 2.

If n ≥ 3 the problem becomes more difficult. The area of
triply orthogonal families of surfaces in R3, was heavily stud-

Feb 2004 9 5. 2. 0



Smith typeset 20:16 13 Aug 2004 uni2

ied during the years 1810-1920 by (in roughly chronologi-
cal order) Dupin, Gauss, Lamé, Bouquet, Cayley, Salmon,
Ribaucour, Combescure, Bianchi, Bôcher, Darboux, Cartan,
Grönwall, and Cotton, who between them produced an enor-
mous amount of work. E.g. the entire 3rd volume [18] of
Bianchi’s collected works (850 pages of Italian!) was devoted
to (but hardly exhausted) this single subject. The orthogonal
curvilinear coordinate systems in R3 in which the Laplacian
is separable were completely classified by Lamé [119]; in all
of them the surface families are either confocal quadrics or
planes. Confocal quadric based systems had first been found
by Dupin and Binet in 1810; there are also some systems
based on quartic surfaces, due to Bôcher. Grönwall [69] clas-
sified systems in which one of the surface families consists of
minimal surfaces, finding (a) the 3D familes got by taking
a 2-dimensional family within a plane, and rolling that plane
over a developable surface (this includes as a limiting case the
rotationally symmetric systems; the 3rd surface family are the
planes themselves, which of course are minimal surfaces) and
(b) one additional quartic family18.

The first realization that generic surfaces in R3 are not mem-
bers of any triply orthogonal system of surfaces was appar-
ently due to Bouquet in 1862; in §253 of [59] it is shown
that in order for a surface to be a member, it is necessary
and sufficient that it satisfy a certain 3rd-order PDE. The
best attempt to summarize was Darboux’s 1910 book [48] in
French; shorter attempts (this time in English) were chapter
XI (“triply orthogonal systems of surfaces”) of Forysth’s 1920
book [59], ch. XIV of Eisenhart’s book [55], and chapter 2
of [36]. All of these sources written before 1925 were in pre-
Einstein pre-tensorial notation19 and hence in many places
are far more difficult to understand than they need to be.
After 1920, most active research in this area ceased.

The following theorem is due to Pierre Charles F. Dupin
(1784-1873) in 1813 and J.Gaston Darboux (1842-1917), and
is of interest for the purpose of understanding how OCCS’s
behave.

Theorem 7 (Dupin-Darboux). A necessary and sufficient
condition for the existence of a third system of surfaces, or-
thogonal to two given mutually orthogonal surface systems, is
that the two families intersect along their lines of curvature.
Definitions: The “lines of curvature” on a surface are the
curves everywhere tangent to its principal curvature direc-
tions. A “system” of surfaces is a 1-parameter family of sur-
faces (2-manifolds); two families are “orthogonal” if at each
point P , the surface from the first family which contains P , is
orthogonal to the surface from the second family which con-
tains P .

Proof: The “and sufficient” was added to Dupin’s theorem
by Darboux. This was stated and proven as theorems 10 and
11 in ch.4 vol.3 of Spivak’s [152] and also is in [59] and [55],
which also prove the related “Joachimsthal’s theorem” that if
two surfaces cut each other at a constant angle then if the
curve is a line of curvature of one surface, it also is a line of
curvature of the other. (One way to attack problems about
two intersecting surfaces is “Darboux’s method of the moving

trihedron.”) Although Spivak’s proof only concerns surfaces
in R3, it actually works on any smooth 3-manifold, if we read
“curvature”as“extrinsic curvature”everywhere. However, the
reader is warned that Darboux’s “and sufficient” may only
show existence on some open subset of the 3-manifold (or, for
that matter, of R3). Q.E.D.

In §252 of [59] the theorem is proven that a triply orthogonal
system exists containing any 3 assigned curves in the xy plane
(no two cutting orthogonally) respectively inside each of its 3
kinds of surfaces. Hence “the utmost degree of generality that
can be expected” for a triply orthogonal surface system is 3
arbitrary 2-variate functions. In fact, this level of generality
is achieved [64].

Zakharov [178] has recently reexamined the OCSS area by
making a connection to (his own version of) the theory of
the “inverse scattering transform” concerning solitons. Za-
kharov’s results seem interesting, although it is difficult to be
sure exactly what they are since they are not stated as theo-
rems. Zakharov also claimed that Bianchi [18] and Cartan [36]
showed that for any (n− 1)n/2 arbitrary 2-variate functions,
there is an OCSS on Rn, generalizing the above-mentioned
results for n = 2, 3 to general n. But I have been unable to
find this result in [18][36].

5.3 Proofs

Proof of theorem 4: The question is whether, for each
point P on a n-manifold, under some change of coordinates,
the metric tensor gαβ can be made diagonal in a neighborhood
of P . The requirements that gαβ = 0 if α > β are (n− 1)n/2
equations, but there are only n available degrees of gauge free-
dom to satisfy them with. Since the former quantity is greater
than the latter if n ≥ 4, it is evidently impossible to diagonal-
ize gαβ, even locally, if n ≥ 4. Another way to see this is to
note that if gαβ is diagonal, then all the (n−3)(n−2)(n−1)n
entries of the Riemann curvature tensor Rαβµν having all four
indices unequal, must be zero. If n ≤ 3 this has no constrain-
ing effect at all because it is impossible for all four indices to
be unequal. But if n ≥ 4 it rules out generic points on generic
manifolds. (For example with n = 4 consider Rαβµν having
all 256 entries 0 except for R1234 = 1 and its index-permuted
consequences.)

To prevent misunderstanding we remark that for any n, it al-
ways is possible to diagonalize gαβ at any single point P by a
coordinate change based on the orthonormal eigendirections
of gαβ(P ) regarded as a symmetric n×n matrix. The problem
is the impossibility of stitching such single point coordinate
changes together compatibly over a nonzero-measure region.

If n ≤ 3 then (n−1)n/2 = n so that there are enough degrees
of gauge freedom available to do the job, at least generically.
But that is, while suggestive, not a complete proof. (To see
why we say that, consider the analogous but simpler example
of the statement that“k equations in k unknowns always have
a solution” with the counterexample x2 = −1 with k = 1. In
contrast it is legitimate to say that “k+1 equations in k vari-
ables generically do not have a solution.”) The fact that a

18Grönwall also showed that there is a rotationally symmetric system containing two families of minimal surfaces, namely the planes containing
the axis of symmetry, and catenoids.

19The Riemann curvature tensor, and indeed the word “tensor,” are nowhere to be found in [59], making it probably the last major differential
geometry book with that property.
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diagonalizing change of variables is always possible through-
out a neighborhood of any point P need to be proved by
using local existence theorems for solutions of PDEs. Fortu-
nately this already was done (when n = 3, provided we are
on an analytically-smooth manifold) in 1899, and is called
the“Cotton-Darboux theorem”[44]. Chandrasekhar redid the
proof in §12 of his [37], employing a 2+1 dimensional splitting
and the Cauchy-Kovalevskaya PDE local-existence theorem in
his argument. Finally, the n = 1 case is a triviality, and the
n = 2 case is also much easier – the discussion in §5.2 suffices.
Q.E.D.

Proof of theorem 5: If n = 1 the result is trivial and if
n = 2 it is also quite easy; the discussion in §5.2 suffices. Fi-
nally, the fact that any manifold that is not a T n cannot have
n commuting vector fields (and hence cannot have a globally
valid orthogonal coordinate system) was already known (see
theorem 3). So assume n = 3 from here on.

Schoen [144][57] showed, and it later was redone more ele-
gantly and simply by Rugang Ye [177], that any n-manifold
with n ≤ 3 may be distorted by a flow on conformal trans-
formations to a form with constant scalar curvature. (The
corresponding statement in ≥ 4 dimensions is false because
of an insufficiency of degrees of freedom.) Thus in particular
any T 3 is conformally distortible to have scalar curvature ev-
erywhere zero. Obviously, a conformal transformation of an
n-manifold preserves the existence (or nonexistence) of a n-
tuply orthogonal surface system. So restrict attention to such
scalar-flat T 3s from here on.

Let us also observe an important and especially simple special
case. Consider the usual flat n-torus arising from some paral-
lelipiped P with periodic boundary conditions, and consider
any n linearly independent constant vector fields on it. Then
the linear transformation whose inverse Jacobian matrix has
columns corresponding to our vector fields will map that torus
to a different flat torus, defined by a different parallelipiped
P ′, in which the vector fields are now still constant, but now
orthonormal. Because this transformation is merely a linear
change of coordinates, it certainly is a gauge transformation.

Since any T 3 is diffeomorphic to the standard flat T 3, which
we shall for convenience regard as [0, 2π)3, we may work in
the x, y, z coordinate system in that standard flat T 3. Let the
metric tensor be gαβ , which is some triply 2π-periodic (3×3)-
matrix-valued function of x, y, z. Now obviously these three
vector fields ∂x, ∂y, ∂z commute, but they in general are not
orthogonal, i.e. gαβ in general is not diagonal.

For each αβ we may consider the average (triple integrate
dxdydz each from 0 to 2π then divide by (2π)3) value of gαβ,
call it g̃αβ. We may then perform the orthonormalizing linear
eigen-change of coordinates appropriate to cause g̃αβ to be-
come the identity matrix δαβ. Due to the linearity of both the
transformation (which is just a pre- and post-multiplication
by a constant orthogonal matrix and its transpose) and the
averaging operator, in the new coordinates gαβ will be such
that its average is δαβ. Call this operation “orthogonalizing
the average.” Note that it leaves the Frobenius norm (sum of
th4 squares of the enetries of a matrix) of gαβ invariant.

We shall (next paragraph) find a vector field uα such that the

infinitesimal gauge transformation (EQ 17) it induces always
reduces the magnitude of the variation in each off-diagonal
term of gαβ by a factor 1 − ǫ while preserving scalar-flatness.
By repeatedly applying these transformations, interspersed
with orthogonalizations of the average, then, we ultimately
converge (in a limit ǫ → 0+ and an infinite number of transfor-
mations) to a metric such that the three off-diagonal terms of
gαβ are constants, which in fact must be zero. Consequently,
we have shown there is a gauge transformation that diagonal-
izes gαβ, proving the theorem.

To find uα, expand u1, u2, u3, g12, g13, and g23 into triple
Fourier series of the form

∑

j,k,ℓ≥0

Cjkℓ
sin

cos
(jx)

sin

cos
(ky)

sin

cos
(ℓz). (20)

Note our abbreviated notation: for each integer triple (j, k, ℓ)
there are 8 terms in the Fourier series arising from the possible
choices of sin’s or cos’s, each having its own coefficient Cjkℓ.
Our goal is to choose u1, u2, and u3 (by specifying all their
Fourier coefficients) so that uα;β+uβ;α is proportional to −gαβ

for each α 6= β. But this task, for each (j, k, ℓ) 6= (0, 0, 0), is20

simply a matter of solving a 24× 24 linear system (24 = 3 · 8;
there are 3 kinds of uα and 8 Fourier coefficients for each)
to find the 24 unknown Cjkℓ Fourier coefficients for u1, u2,
and u3 in terms of the 24 known Cjkℓ Fourier coefficients
for g12, g13, and g23. Unfortunately, due to the Christoffel-
symbol terms inherent in the covariant derivatives, the 24×24
systems actually are not independently soluble, so really, we
must solve an ∞×∞ system. But if the metric tensor gαβ is
a small perturbation of the metric tensor ηαβ of flat space:

gαβ = ηαβ + ǫhαβ (21)

then the Christoffel symbol is

Γµ
αβ =

ǫ

2
ηµν(hαµ,β + hβν,α − hαβ,ν) + O(ǫ2) (22)

so that in the flat space limit ǫ → 0 the ∞×∞ linear system
splits into independently soluble 24×24 systems. Each of the
24× 24 determinants may be seen, with the aid of a symbolic
manipulation system, to be the nonzero integer

256(k−ℓ)4(k+ℓ)4(j−ℓ)4(j+ℓ)4(j−k)4(j+k)4+O(ǫ2). (23)

The only problem is that the determinant in EQ 23 is zero if
(ond only if) two or more among {j, k, ℓ} are equal. There is
an easy way to understand why: any such symmetrical Fourier
term cannot yield an unsymmetrical metric perturbation, e.g.
if j = k then we get equal gxz and gyz perturbations of jkℓ
Fourier type, so that postulating unequal ones would yield no
solution of the linear system.

There are thus essentially two kinds of potentially “bad” per-
turbations of the metric away from that of flat space, in the
limit ǫ → 0+, namely those with all three Fourier indices
equal:

ds2 = dx2+dy2+dz2+ǫ(Adxdy+Bdydz+Cdxdz) sinx sin y sin z
(24)

20We do not care about (j, k, ℓ) = (0, 0, 0), since our goal is to reduce the variation in the off-diagonal gαβ ; we do not care about what happens
to the constant terms C000 in their Fourier series.
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or just one pair:

ds2 = dx2 +dy2+dz2+ǫ(Adxdy+Bdydz+Cdxdz) sin x sin y
(25)

where x, y, z each are 2π-periodic coordinates and A, B, C are
constants. More precisely, there are more than these two: we
can change the frequencies by e.g. using sin 3x instead of
sin x (which has no effect on our argument, so we choose fre-
quencies 1 and 0 to maximize simplicity), and we can change
phases by using cosines instead of sines, e.g. consider

ds2 = dx2 + dy2 + dz2 (26)

+ǫ(A cosxdxdyB sin xdydz + C cosxdxdz) sin y

instead of EQ 25. There are less than 24 different kinds of
such variations – a reduction in work arises by noting one of
the cosines may always be chosen to be a sine by virtue of
an overall phase shift (which has no logical effect on validity).
The important thing is that each of our two prototypical bad
kinds of metrics is forbidden because they (respectively) have
sc alar curvatures

R = 4ǫ[A cosx cos y sin z+B sin x cos y cos z+C cosx sin y cos z]

+O(ǫ2) and R = ǫA cosx cos y + O(ǫ2) (27)

which (contrary to our initial assumption) are nonzero. Con-
centrating on the latter (and its variants which lead to sines in
place of some of the cosines), observe that it is not possible to
choose any nonzero linear combination of them which is zero
everywhere. Of course, the scalar curvature is a linear opera-
tor (if ±O(ǫ2) terms are ignored) of the metric perturbation.
Further, no combination of other (unsymmetrical or other-
frequency) Fourier terms can null out a symmetric Fourier
term.

We conclude from these facts (after more, but similar, anal-
ysis of the different cases; such case analysis is simplified by
realizing that only one among {A, B, C} need be regarded as
nonzero at any time, and then that changing sin’s to cos’s
is merely a phase shift that makes no qualitative difference)
that any such“bad”metric perturbation must cause the scalar
curvature to be nonzero somewhere, contrary to our initial
assumption. So they cannot happen (or anyway the cases
when they do are ignorable); only the “good” perturbations,
whose off-diagonal elements are reducible in Sobolev norm by
a gauge transformation, are permitted. Q.E.D.

This preceding proof depended in at least two ways on the
assumption that the perturbation of the T 3 metric away from
flatness was small, e.g. that ǫ was sufficiently small. Conse-
quently we do not get a proof of conjecture 6, whose point
was to avoid any such near-flatness assumption21.

5.4 Foliations
At the beginning of this section we mentioned a connection to
the existence of foliations of our 3-manifold into 2-manifolds.
That makes the following theorem [163] relevant:

Theorem 8 (Thurston’s foliation theorem). A smooth
n-manifold has a C∞ foliation into (n − 1)-dimensional sub-
manifolds if and only if its Euler characteristic is zero. (This

is a global statement. Consequently every smooth n-manifold
has such a C∞ foliation locally.)

Summary: If the universe has an orthogonal curvilinear co-
ordinate system, even locally, and if this is still true even
after an arbitrary small perturbation, then it must be (≤ 3)-
dimensional. If an orientable compact 3-manifold universe has
a global orthogonal curvilinear coordinate system, or equiva-
lently n commuting orthogonal vector fields, or equivalently 3
orthogonal foliations into 2-surfaces (all globally valid) then
it must be T 3. Requiring only one such global foliation (and
demanding it be C∞) is equivalent to demanding that the
Euler characteristic be 0.

6 TGC, curvature-homogeneity, &
Seifert fiber spaces

The Thurston geometrization conjecture (TGC)
[5][24][111][164][145][73][168] asserts that every smooth com-
pact orientable 3-manifold22 can be split in a canonical way
by disjoint 2-spheres and 2-tori into pieces which may be dif-
feomorphed to have one of 8 particular geometric structures
listed in Thurston’s 8 geometries theorem below.

Here is the plan of this section. In §6.1-6.4 we shall describe
the TGC more precisely after first doing some preparatory
work about Lie groups and decompositions. §6.2 introduces
the notion of “k-curvature homogeneity” and points out that
Thurston’s 8 geometries theorem may instead be regarded as
being about 1-curvature homogeneous 3-manifolds. Seifert
fiber spaces are important in the Thurston classification; §6.5
describes them.

This all will not only serve as a review of the TGC but also
presents some new views and some warnings preventing the
reader from falling into some mental traps.

6.1 Thurston’s 8 geometries

A “geometric structure” on a manifold is a complete locally
homogeneous Riemannian metric.

Theorem 9 (Thurston’s 8 geometries). There are exactly
8 maximal, simply connected, 3-dimensional geometric struc-
tures which have transitive automorphism groups with com-
pact point-stabilizers. An annotated list of them is below.

1. The three spaces H3, E3, and S3 of constant (negative,
zero, and positive) curvature.

2. The homogeneous but non-isotropic product geometries
S2 × E and H2 × E;

3. The universal cover S̃L2R of SL2R (i.e. the multiplica-
tive group of 2 × 2 real matrices with determinant 1). This
can be equipped with the following metric invariant under
left-multiplications. Let

C =

(
cosα sin α

− sinα cosα

)(
λ 0

0 λ−1

)(
cosβ sin β

− sinβ cosβ

)
(28)

21Perhaps the methods used to prove theorem 8 would enable progress.
22We shall assume orientability throughout this section; the non-orientable case is treated in [24].
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be the singular value decomposition [65] of C = A−1B. Then
the distance between matrices A and B is23 (where |α + β| is
computed modulo 2π in such a way that the results are ≤ π,
and where λ ≥ 1)

dist = |α + β| + | lnλ|. (29)

It is also possible to combine the two terms by taking the
square root of sum of squares instead of adding; numerous
other combinations also are possible. This highlights the fact
that invariant metrics of nonconstant curvature can be very
nonunique. The distinction between SL2R and its universal
cover is clarified by considering allowing the angle α + β to
be an arbitrary real rather than modulo 2π.

Yet another way to look at SL2R is to regard SL2R/ ± I
(via a group isomorphism) as the group SO(2, 1) of rigid
motions (orientation-preserving isometries) of the hyperbolic
plane H2. Then each element of SL2R may be regarded [24]
as an element of the tangent bundle (location×direction ar-
row) of H2 – for which a left-invariant metric is readily con-

structed. The universal cover S̃L2R then arises by not taking
the direction-arrow angle modulo 2π.

Finally, here is an explicit 2-parameter family of left-invariant
Riemannian metrics:

ds2 =
dt2

|a + b| + |a + b|e−2tdx2 + (dy +
√

2be−tdx)2 (30)

where a and b are constants with b > 0 and a + b < 0.

4. “Nil-geometry,” the multiplicative group (often called the
“Heisenberg group,”because of its connection to the quantum-
physically important “Heisenberg algebra” generated by 1, q
and p = ∂

∂q ) of matrices




1 x y

0 1 z

0 0 1


 (31)

under multiplication. A different representation is that the
Heisenberg group is the 2-tuples (z, t) where z is complex and
t is real, with group operation

(z1, t1) ◦ (z2, t2) = (z1 + z2, t1 + t2 + im(z1z2)) ; (32)

here the identity element is e = (0, 0). If we define the “com-
mutator” [a, b] = aba−1b−1, then [a, b] is generally nonidentity
in the Heisenberg group, i.e. it is a non-abelian group. How-
ever, [[a, b], c] = e, i.e. double commutators vanish. Thus this
group is “nilpotent,” hence the name “nil.”

Cygan’s metric [47]

dist ((z1, t1), (z2, t2)) = (33)
(
|z1 − z2|4 + [t1 − t2 + im(z1z2)]

2
)1/4

plainly is invariant under operations applied on the left from
this latter group (and indeed, if the exponents 4, 2, 1/4 were
arbitrarily altered, the resulting formula still would be left-
invariant).24 But Cygan’s metric is nonRiemannian.

A 1-parameter family of Riemannian left-invariant metrics
[67] is

ds2 =
1

2b

(
dx2 + dz2 + (dy + xdz)2

)
(34)

where b > 0. It is known [173][110] that every Nil-invariant
Riemannian manifold has at least one positive and one nega-
tive sectional curvature everywhere, and negative scalar cur-
vature R < 0???

5. “Sol-geometry,” the following group-operation on real 3-
tuples (x, y, z):

(x, y, z) ◦ (X, Y, Z) = (x + e−zX, y + ezY, z + Z). (35)

Note (0, 0, 0) is the identity element. This is a solvable Lie
group. A 1-parameter family of left-invariant metrics is

ds2 =
2

b

(
e2zdx2 + e−2zdy2 + dz2

)
(36)

where b > 0. Sol geometry also may be thought of as the
group of rigid motions of (1 + 1)-dimensional spacetime with
metric dt2 − dx2, i.e. the 1D Lorentz transformations, also
called25 the “Poincaré group” [171]. E.Heintze [75] showed
that every nonflat Sol manifold has scalar curvature R < 0.

All of these manifolds, except for those with H3 structure,
have been completely classified (§4 of [145], [51]).

There are numerous remarks to be made about theorem 9.
It is (at least if the TGC is correct) of fundamental and
foundational importance in 3-manifold theory. But, although
this theorem often is described as “not very difficult,” it is
discomforting that I have never seen any succinct complete
self-contained proof. Proofs rely on a classification of all 3-
dimensional Lie groups, which was first performed by Bianchi
[19] in a paper written in Italian in 1898 which hardly any
modern author has ever read and which relies on extensive
case analyses and manual metrical computations26. Fortu-
nately, it recently has appeared in English translation. Then
additional case analyses, this time group theoretic, discard
those Lie groups which lead only to noncompact locally ho-
mogeneous manifolds.

The idea behind that proof approach is that any metric sym-
metric under a Lie group is necessarily “locally homogeneous”
in the strong sense that each of its points is equivalent, under
some symmetry, to each other. However, it is not immediately
apparent that it is necessary that a locally homogeneous met-
ric (i.e., a metric such that any pair of its points have isometric
neighborhoods) be symmetric under any Lie group. To make
an analogy in the combinatorial world of graphs rather than
the continuum world of manifolds: there are a tremendous
number of completely unsymmetrical graphs G, each point of
which has identical local structure out to any given constant
distance. It is for this reason that the above statement of the-
orem 9 concerns only metrics with transitive automorphism
groups. Nevertheless, as we shall see in the next two theo-
rems (and this remark is new, although the ingredients had
long been available), Lie-ness is necessary, and hence the de-
mand for a transitive automorphism group may be dropped.

23Nobody seems to have given an explicit left-invariant metric for SL2R before.
24Change the sign of the im to get a right-invariant form of the Cygan metric.
25More usually the name “Poincaré group” has denoted the isometries of (3 + 1)-dimensional Minkowski space.
26Guido Fubini (1879-1943), a former student of Bianchi’s, extended the classification to 4 dimensions in [62].
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6.2 Lie groups and curvature homogeneity
A famous 1952 theorem of A.Gleason, D.Montgomery, and
L.Zippin, which solved “Hilbert’s fifth problem,” states that
any “topological group” which is “locally connected,”“locally
compact” and “finite dimensional” in fact necessarily is iso-
morphic to a finite dimensional Lie group with analytically-
smooth group-multiplication and group-inverse laws. Mont-
gomery and Zippin’s book [118] is highly recommended and
carefully gives all fundamental definitions of terms such as
“topological space.”

Another fundamental theorem [50] whose first version was
shown (independently) by G.Birkhoff [21] and S.Kakutani [88]
in 1936, states that for any Lie group properly acting on a
manifold M , there is a left-invariant Riemannian metric on
M . Indeed in view of the Gleason-Montgomery-Zippin the-
orem, we may demand (if the group acts transitively) that
this metric be analytically smooth and Riemannian. In fact,
as we have seen there often are many such metrics for only
one group. For this reason, theorem 9 really only classifies
the groups of our metrics, not the metrics themselves. Fortu-
nately, because of the Gleason-Montgomery-Zippin theorem
and the transitivity of these groups, this seems entirely ade-
quate for the purpose of specifying their topologies.

Although every Lie group has a left-invariant metric, for many
Lie groups there is no bi-invariant metric on the group ele-
ments. In fact according to the lemma p.296-7 of [110], the
only bi-invariant metrics27 of connected Lie groups are those
isomorphic to cartesian products of a compact with a com-

mutative group. In particular, in our case Sol, Nil, and S̃L2R

have no bi-invariant metrics, whereas S3 (arising from the
compact group SO(3) = SU(2)/±I), E3 (commutative), and
E1 × S2 do.

Warning. It has often been stated in the differential ge-
ometry and general relativity literature that a Riemannian
metric is “homogeneous” if and only if all covariant deriva-
tives Rαβµν;ζ of the Riemann curvature tensor are identically
zero. However, at least with our definition of “locally homo-
geneous,” which is that any two points have isometric neigh-
borhoods, this is untrue.

One could also consider “curvature homegeneous” manifolds
[149] such that any two points A, B have (with an appropriate
choice of coordinates systems at A and B) the same Riemann
curvature tensor. More generally one could consider the

“k-curvature homogeneous” manifolds: those such that
any pair of points A, B have the same Riemann curvature
tensor and the same covariant derivatives of that tensor, up
to and including kth derivatives (where k ≥ 0 is any fixed
integer).

The relationships among these notions for 3-manifolds are
summarized in the following

Theorem 10 (3-Metrics with constant principal Ricci
curvatures). A Riemannian 3-manifold M is curvature ho-
mogeneous if and only if the 3 eigenvalues of28 the mixed Ricci
tensor Rβ

α are constant on M . It is 1-curvature homogeneous
if and only if it is locally homogeneous. Any locally homo-
geneous 3-manifold is curvature homogeneous but the reverse

implication is untrue. Finally, there exist locally homogeneous
3-manifolds with nonzero Rβ

α;ζ .

Proof: Obviously, a locally homogeneous 3-manifold, i.e.
one in which any two points have isometric neighborhoods,
necessarily has Riemann curvature tensor identical at any
two points A and B (with appropriate choices of coordi-
nate systems). This therefore also is true of the Ricci tensor
Rαβ = Rβα = Rµ

αµβ . Indeed, the Maclaurin expansion of
the metric tensor gαβ in the neighborhood of a point P is, in
Riemann normal coordinates xα centered at P ,

gαβ = I − 1

3
Rανβµxµxν − 1

6
Rανβµ;γxµxνxγ + O(|x|4). (37)

Since the metric tensor at P is merely the identity matrix I,
index lowering and raising has no effect at P . Hence Rαβ

and Rβ
α are the same thing at P , so that Rβ

α is a symmet-
ric 3 × 3 matrix at P . Hence it has 3 real eigenvalues and 3
orthonormal eigenvectors, and hence by an appropriate rota-
tion and/or reflection of the coordinate system (determined
by the eigenvector matrix) we can cause Rβ

α at any given
point P to be, in fact, a diagonal matrix in some Riemann-
normal coordinate system centered there. Hence, if all points
P have the same Riemann (and hence Ricci) curvature, it is
necessary that all points P have the same 3 Ricci eigenvalues.
Conversely, since at each point of a 3-manifold the Riemann
curvature tensor is determined by the Ricci tensor via

Rα
βµν = δα

µRβµ+gβµRα
ν −δα

µRβν −gβνRα
µ +

δα
µgβν − δα

ν gβµ

2
R

(38)
we see that the theorem’s “if and only if” holds. The fact
that 1-curvature homogeneous 3-manifolds are necessarily ∞-
curvature homogeneous and indeed locally homogeneous and
either S3, E3, H3, M2 × E1, or a simply connected com-
plete left-invariant 3-metric of a 3-dimensional Lie group, is
theorem B of [147]. Singer’s original paper [149] had already
shown that k-curvature homogeneous m-manifolds are neces-
sarily locally homogeneous if k is sufficiently large, indeed if
k ≥ (m − 1)m/2. The fact that curvature homogeneous 3-
manifolds exist, which are not locally homogeneous, was first
shown by Takagi [157]. Indeed, work of Kowalski et al. [32]
[95] has shown that there exist at least as large an infinity of
different curvature homogeneous 3-manifolds (with fixed dis-
tinct Ricci eigenvalues) as the number of pairs of univariate
analytic functions, whereas the number of locally homoge-
neous 3-manifolds is of course far smaller. Finally, the (neces-
sarily locally homogeneous) examples we have given above of

left-invariant infinitesimal length elements ds2 for S̃L2R, Nil,
and Sol have (by direct computation) the following mixed
Ricci tensors Rβ

α:




a 0 0√
2be−t(b − a) b 0

0 0 a


 ,



−b 0 0

0 b 2bx

0 0 −b


 ,




0 0 0

0 0 0

0 0 −b




(39)

27A left-invariant metric may be thought of as a symmetric geometric structure whose symmetry group is the Lie group. But if the metric is not
bi-invariant, then it is far less enjoyable to regard that structure as the Lie group.

28The 3-manifolds with constant Ricci eigenvalues have been completely classified [32] [95]. For other works on this topic see [94] [149] [157].
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(note in all cases the matrix is triangular, so that the 3 eigen-
values are merely the 3 diagonal entries, which, note, are in-
deed constants) which have the following as particular nonzero
covariant derivatives:

Rx
x;t =

(a − b)b

|a + b| , Rz
y;x = b, Rx

z;x = −b. (40)

Q.E.D.

In view of Sekigawa’s theorem B [147], we now make the new
point that one may strengthen the statement of theorem 9 to
assume nothing about either groups or neighborhoods larger
than a single point on the manifold. (Indeed, essentially all
the statements in this paper about locally homogeneous 3-
manifolds may now be strengthened to apply to 1-curvature
homogeneous 3-manifolds.)

Theorem 11 (The Thurston 8 – Stronger statement).
There are exactly 8 kinds of maximal simply connected com-
plete compactifiable29 1-curvature homogeneous Riemannian
3-metrics, all of which arise as left-invariant metrics of Lie
groups and are listed in theorem 9.

This statement is strongest possible in the sense that it would
become totally false if “0” were substituted for “1.”

6.3 Decompositions
Now that we understand the (conjectured) atomic con-
stituents of 3-manifolds, let us now describe the canonical
way to cut up the manifold into atoms.

The connected sum M#N of two n-manifolds M , N is the n-
manifold got by deleting the interiors of n-balls, one from M
and one from N , then gluing the resulting punctured man-
ifolds to each other via a homeomorphism of the Sn−1 ball
surfaces.

M

N

Figure 6.1. Connected sum M#N .

The Sphere Decomposition theorem30 [92][109][70] says
that any closed oriented 3-manifold M may be decomposed
into a finite connected sum M = M1#M2# · · ·#Mk where
each Mi is prime. The collection {Mi} is unique up to permu-
tation of the summands. (A closed 3-manifold M is “prime”
if M = A#B implies either A or B is homeomorphic to S3.
A fundamental theorem of Alexander in 1924 states that any
2-sphere in an S3, both smooth, bounds a ball on each side;

Alexander’s “horned sphere” shows this is false if the smooth-
ness requirement is dropped.) This sphere decomposition is
obtained by choosing an embedded 2-sphere in M which does
not bound a 3-ball (if one exists – otherwise the procedure ter-
minates); cutting along it; finally the spherical “holes” in the
resulting manifolds are filled in with 3-balls, and we continue
on by reducing them recursively31.Warning: although the #-
decomposition of a manifold is unique, the manifold A#B
need not be, because the spheres on A and B can be glued by
either an orientation preserving or reversing diffeomorphism.

A 3-manifold M is irreducible if every smooth 2-sphere em-
bedded in M bounds a 3-ball in M . Clearly an irreducible
3-manifold is prime. The converse is almost true (lemma 3.13
of [77]) the only prime orientable 3-manifold with a nonsepa-
rating S2 is S2 × S1.

The Jaco-Shalen-Johannson torus decomposition the-
orem [83][87] says that if M is a closed oriented irreducible
3-manifold, then there is a finite collection of disjoint incom-
pressible 2-tori T1, T2, . . . , Tk ⊂ M whose removal separates
M into a finite collection M1, M2, etc. of compact 3-manifolds
with toral boundaries, each of which is either atoroidal or
Seifert fibered (§6.5). The minimal-cardinality such collection
is unique up to isotopy. (“Isotopy”here means a homotopy of
the 2-tori in which every partly-homotoped version remains
embedded.)

To define “incompressible”: Let Q be a compact, oriented sur-
face embedded in an irreducible 3-manifold N with ∂Q ⊂ ∂N .
(The notation ∂K denotes the boundary of K.) Q is incom-
pressible if for every closed 2-disc D embedded in N with
D ∩ Q = ∂D, the curve ∂D is contractible in Q to a point.
Otherwise Q is compressible32. For example, let Q be a non-
separating toroidal surface embedded in T 3 and used to cut it
(hence we get two bounding surfaces Q1 and Q2); these Qk are
incompressible. A compact irreducible 3-manifold is Haken if
it contains a two-sided incompressible surface of genus g ≥ 1.

Warning: to get uniqueness, it is necessary to avoid split-
ting Seifert-fibered pieces (even if they contain incompressible
2-tori) and choose the torus-collection to be minimal. Fur-
thermore, although M determines j and the M1, M2, . . . , Mj

uniquely, the converse is untrue: there are an SL(2, Z) of ways
to glue back together on each Ti.

6.4 Thurston Geometrization Conjecture
Conjecture 12 (Thurston’s geometrization conjecture
(TGC)). After we split a 3-manifold into its connected
sum according via the sphere decomposition, and then take
the Jaco-Shalen-Johannson torus decompositions of the sum-
mands, the resulting components each are diffeomorphic to
3-manifolds having one of the 8 magic geometric structures
from theorem 9. This decomposition is unique up to isotopies

29A manifold is “compactificable” if it may be cut into pieces and some of these pieces may be glued together to create a compact boundaryless
manifold. For example E3 is compactifiable to T 3, but no left-invariant 3-metric of the group (which Milnor [110] calls “E(2, 1)”) of rigid motions
of the Euclidean plane E2 is compactifiable – or at least, if it is, then no new compact metrics beyond those listed in theorem 9 result. Similarly
[24] at the end of his §2.3 claims that the geometry of R3 with metric ds2 = e2azdx2 + e−2bzdy2 + dz2 with fixed a 6= b, admits no finite volume
version.

30In fact, Kneser gave an upper bound on the number of pieces required, and Jaco and Tollefsen [84] gave algorithms to find a maximal sphere
decomposition.

31The sphere decomposition theorem is also true for closed oriented 2-manifolds, and it says that a genus-g manifold is expressible as the connected
sum of g tori (except if g = 0 when we have S2).

32Two equivalent formulations: Q is incompressible in N iff ① any loop in Q that is contractible in N is contractible in Q, or ② any loop in Q
that is uncontractible in Q is uncontractible in N .
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of the 2-tori and permutations of the summands in the con-
nected sum decomposition.

Considering known partial results on the TGC33, an equiva-
lent conjecture is that any irreducible non-Seifert atoroidal
3-manifold (which we allow to have boundaries consisting of
2-tori) may be equipped with an H3 geometric structure.

Note that Thurston’s pieces are not necessarily simply-
connected, since S2 × S1 is an admissible (Seifert-fibered)
piece. Thurston proved that compact boundaryless irre-
ducible atoroidal Haken 3-manifolds always admit a hyper-
bolic structure ([120] p.51). Mostow [121] proved that 3-
manifolds admit at most one hyperbolic structure (“Mostow’s
rigidity theorem”). It is known that hyperbolic manifolds are
necessarily atoroidal, irreducible, and not Seifert-fiberable.
The TGC asserts the converse.

Recently Perelman has claimed a proof of the TGC [131], al-
though the jury is still out on it. An immediate consequence
of this would be (as was proven by Thurston) a proof of the
notorious Poincaré Conjecture (PC) which states that“Ev-
ery simply connected closed 3-manifold is homeomorphic to
S3.” The PC has been proved in every dimension n ≥ 2 other
than 3.

6.5 Seifert fiber spaces

A Seifert fiber space is a 3-manifold foliatible into circles.
Actually, this was not Seifert’s original definition, but it has
been shown [56][52] that any 3-manifold foliatable into 1-
manifolds is foliatible into circles34, is Seifert, and that the
fibering is always an S1 bundle over a 2-orbifold X .

Seifert [146] completely classified his spaces. Usually Seifert
fiber spaces have an isotopically unique fibering (e.g. if
the Euler charcteristic of X is negative) and the cases of
nonuniqueness are now totally understood [23][126][127]. It
was later also almost entirely understood which Seifert spaces
admit foliations into 2-manifolds transverse to the fibers
[54][114].

7 Twist

in this section we consider the “no twist postulate” that the
universe does not contain a closed geodesic such that paral-
lel translation along it for 1 cycle induces a twist (with the
geodesic as axis) other than an integer multiple of 2π radians.
In §7.1 we’ll examine microscopic-physics reasons for believing
this postulate; but there also are reasons to doubt it (which
we shall also explain). We shall see that there are many pos-
sible different slightly-inequivalent wordings of this postulate;
this paper tentatively settles on one (denoted “NTA”) for the
purposes of concreteness.

§7.3 recounts what is known about “ergodicity” of the
“geodesic and frame flows” on manifolds. Finally §7.4 uses
that knowledge to find important consequences of the no twist
postulate. For example, we determine which 1-curvature ho-
mogeneous 3-manifolds are twist-free.

7.1 Physics and twist
Idealize photons as oriented particles, where the orientation is
the photon’s polarization and is transverse to its direction of
motion. Then the polarization of a photon traveling around a
twisted closed geodesic would twist each cycle, time-averaging
to zero, causing such a photon to cancel itself out. Now re-
ally, photons have both particle- and wave-like characteristics;
such a photon in a “momentum eigenstate” (i.e. whose mo-
mentum is exactly known) would be equidistributed all along
the geodesic and hence presumably could not be regarded as
having a polarization. Under a similar idealization, electrons
with spin also could not exist in a momentum-spin eigenstate
– unless our closed geodesic were untwisted.

But, experimentally, certainly no limit to how accurately one
can simultaneously measure the momentum (in any particu-
lar fixed direction) and the polarization (or spin) of a photon
(or electron) has even been encountered. These quantities are
normally thought of as independently specifiable, in principle
arbitrarily accurately.

Furthermore, the spin of an electron is normally regarded (for
an electron isolated from all external forces) as an unchanging
quantum number +1/2 or −1/2. But if that electron hapened
to be traveling round a twisted closed geodesic, that could not
be the case.

If it is desired that these properties of flat space quantum me-
chanics should still work in our (curved-space) universe, then
one is led toward the

(Naive) No Twist Assumption (NNTA): The universe
3-manifold does not contain closed geodesics with twist other
than an integer multiple of 2π radians.

Unfortunately, there are many possible alternative versions
of this assumption, and it is not obvious which (if any) are
the right ones. Perhaps some twisted closed geodesics should
be permitted, provided they are (in some suitable sense –
which?) vastly in the minority. Another problem is that this
picture of electrons and photons as “point particles moving
along a geodesic” is an idealization valid only in the nonquan-
tum ~ → 0 limit. Since no consensus has yet been reached
about what quantum mechanics in curved space should be,
the true picture is unclear.

Finally, even if the NNTA and its underlying reasoning is
regarded as the only possible alternative, we still must in-
vestigate its internal self consistency. What happens to the
geodesic twists if the 3-metric is perturbed? The case for the
NNTA would be most convincing if the geodesic twists (or
at least the allegedly-physically-forbidden nonzero ones) were
topological invariants. We shall investigate that in the next
subsection with the conclusion (theorem 14) that, although
geodesic twists in many ways act like a topological invariant,
in fact they are not one. This seriously undercuts any argu-
ment that physics demands the no twist assumption (at least
as worded above). But there are two reasons to suspect it
does not kill completely:

1. The counterexample theorem 14 provides of just one,
isolated, twisted closed geodesic, may have little physi-
cal relevance.

33I.e., it is proved except for the hyperbolic cases.
34Despite that, K.Kuperberg [96] showed that there are C∞ vector fields on S3 with no periodic orbit; Thurston soon afterwards realized that

① such fields may indeed be taken as real-analytic, and ② they exist not only on S3 but in fact on every smooth 3-manifold.
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2. The whole argument in favor of the NNTA, and indeed
the whole basis for wording it in terms of “geodesics”
at all, was based on an invalid idealization of “classi-
cal point particles.” Therefore the counterexample from
theorem 14 may be more a sign of the limits of validity
of this idealization, than of invalidity of the underlying
idea.

So quite likely some modified and heavily reworded (but still
very similar in spirit) variant of the NNTA is correct, whose
statement is currently unknown.

To get a concrete problem to work on, we shall concern our-
selves with this particular version:

(Topological-homogenizing) No Twist Assumption
(NTA): Any 3-manifold homeomorphic to the universe but
maximally homogeneous35 does not contain closed geodesics
with twist other than an integer multiple of 2π radians.

It has several advantages:

1. This statement is a genuine topological invariant –
sidestepping objections about “self consistency.”

2. This version seems weaker – increasing its probability
of being true. We do not exclude a universe merely be-
cause it has a twisted closed geodesic; we only exclude it
if every topologically equivalent homogeneous universe
does.

3. The motivation for inserting the words “maximally ho-
mogeneous”is partly a feeling that the maximally homo-
geneous metrics for a topology are the “most beautiful
and natural” ones, partly to make analysis easier, and
partly because (see §10) of arguments that the universe
initially was homogeneous.

4. Although the precise wording of the NTA probably is
critical for some purposes, that is not the case for the
purposes for which it is employed in this paper. Specif-
ically: the theorems we shall obtain in §7.4 are worded
so that it does not matter whether the NNTA or NTA
is employed.

7.2 Twist as a topological invariant
This subsection examines the following

Question. Let M be a smooth 3-manifold and let g be a
closed geodesic on M with twist angle θ. If M is distorted via
some smooth homotopy to become M ′, what will happen to
g and θ? In particular, will θ remain constant, so that “twists
of closed geodesics are topological invariants?” Is it required
that θ 6= 0 for it to be an invariant?

Related questions. How many closed geodesics g can ex-
ist on a 3-manifold M? How many closed geodesics g with
nonzero twist can exist?

The answers turn out to be surprising36. The twists θ
of closed geodesics (even if we restrict attention to nonzero
twists) are not topological invariants of 3-manifolds M . In-
deed, we shall describe two homotopic T 3 manifolds, one of

which has a twisted geodesic, while the other does not. But
the set of twist angles behaves very much like a topological in-
variant! For example if M and M ′ are equivalent under some
homotopy and both have (and so do all the intermediate 3-
manifolds in the homotopy) nonnegative sectional curvatures
everywhere, then the set of θ is the same for both M and
M ′. Seifert [146] argued that the twists of Seifert fibers are
invariant under isotopies of the fibration and homotopies of
the 3-manifold.

Arguments justifying the answers. Here is an argument
that θ “must” remain constant. As we shall see later, this ar-
gument is flawed, but we also shall see that the gap in it can
sometimes be patched.

Regard the closed geodesic g as a “loop of string” and parallel
translate some direction orthogonal to g along g. The result-
ing object is a “ribbon.” If the twist angle associated with g is
a rational number of degrees then the ribbon may be thought
of as closing upon itself after it makes some integer number
of cycles round g. Now suppose we smoothly distort the 3-
manifold in such a way that the consequent distortion of g
and of the ribbon also is smooth. Then clearly the ribbon
cannot change its number of twists. So we conclude that the
twist angle of g, provided it is rational, is invariant under this
class (which seems very wide) of distortions of the underlying
3-manifold. Finally, since this works for all rational twist an-
gles, by some kind of continuity it must work for all real ones.
“Q.E.D.”

The flaw in this proof was its implicit assumption that g will
continue to exist throughout the distortion process. In fact, g
can suddenly either split into several closed geodesics, or van-
ish, as is shown by the following pimple example. Let F (r)
be a monotonically decreasing real-valued function of r ≥ 0
whose graph consists of an upper semicircle, joined smoothly
to the asymptotic behavior F (r) → 0 as r → ∞. Now con-
sider the d-dimensional surface in Rd+1 that is the graph of
F (r), where r is the distance to ~0 in Rd. If d = 2 this surface
resembles a “pimple” rising above a flat plane. The equator
of the pimple is a closed geodesic g, which suddenly vanishes
under a smooth distortion “flattening” the pimple. On the
other hand, if the upper hemisphere is raised by height H
by some cylindrical joining inserted in place of the equator,
then g splits into a continuum infinity of closed geodesics go-
ing around that cylinder. Incidentally, when we say a closed
geodesic “vanishes,” of course a geodesic starting from any
point in any direction always exists; what may cease to exist
is any requirement that the geodesic close on itself.

The ellipsoid counterexample arises by considering dis-
torting the standard round sphere S2 into a generic ellip-
soid. Every geodesic on the sphere is closed and of length
2π. But although the 3 major ellipses of an ellipsoid still are
closed geodesics, generic starting points and directions yield
geodesics which do not close [93][156]37

If M everywhere has negative sectional curvatures, then nei-
ther splitting nor vanishing is possible for closed geodesics.

35Constant curvature metrics are more homogeneous than k-curvature homogeneous metrics, which are more homogeneous than j-curvature
homogeneous ones if k > j.

36I am not sure how new these questions or answers are. They are not mentioned in any of the reviews [17][77][91].
37A complete understanding of geodesics on ellipsoids was first acquired by Jacobi [85] in 1839; these references redo this in modern language.

For the Lusternik-Shnirelman theorem that every manifold diffeomorphic to S2 has at least 3 simple closed geodesics, see [13]; for the theorem
that it has an infinity of geometrically distinct closed geodesics see [14][78].
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That is because there is a unique shortest closed geodesic gc

of each possible combinatorial type c, indeed any closed loop
of the same type may be shortened to become gc. (Note also
that the total number of closed geodesics on such an M is
necessarily countably infinite, since the number of combina-
torial types is countable.) In fact, it suffices if M has negative
sectional curvatures everywhere on g, in all tangent planes to
g there (that is, sectional curvatures in other planes do not
matter), and that this property continues to hold throughout
the distortion process. In other words, for this restricted, but
still large, class of manifolds M and geodesics g, our original
flawed proof actually is valid.

The reason this is true is Synge’s formula38

.
d2ℓ

dǫ2
|ǫ=0 =

∫ b

a

(
|~y′(t)|2 − K(c′(t), ~y(t))|~y(t)|2

)
dt (41)

for the second variation of the arc length ℓ =
∫ b

a
|c′(t)|dt of

a geodesic curve segment c(t)|t=b
t=a of the geodesic when it is

perturbed by ǫ~y(t). It shows that a closed geodesic is a strict
local minimum of arc length, and hence can neither split nor
vanish, if the sectional curvature K in the 2-space generated
by the geodesic’s direction c′(t) and the perturbation direction
~y(t) is always negative at each point on the geodesic. (And,
of course, the reason a geodesic exists of each possible com-
binatorial type is by considering shortening a curve of that
type.)

We summarize the conclusion of the above argument as a the-
orem:

Theorem 13 (Twist acts like a 3-manifold invariant).
Let M be a smooth 3-manifold distorted by some smooth ho-
motopy to another: M ′. Suppose g is a closed geodesic on M .
Suppose that during the homotopy the sectional curvatures of
M , at each point on g, in each 2-plane tangent to g, remain
negative. Then g, while continuously distorting as the homo-
topy proceeds, remains a closed geodesic, and its twist angle θ
remains constant.

When we consider the fate of theorem 13 on Thurston’s 8
locally homogeneous 3-metrics listed in §6, we find:39

1. Hyperbolic 3-manifolds (i.e. based on H3) have con-
stant negative curvature, so the argument clearly works
– their geodesic twists are invariant to all perturbations
small enough to keep the sectional curvatures always
negative.

2. H2 × E has two zero and one negative sectional curva-
ture, so again the argument works: all geodesic twists
are invariant under any perturbation which leaves all
sectional curvatures nonpositive while keeping at least
one negative everywhere.

3. In the case of the locally homogeneous metric EQ 30

for S̃L2R, the Ricci eigenvalues {a, b, a} (see the first
matrix of EQ 39 for this metric’s mixed Ricci tensor)
include two negative eigenvalues a and one positive one
b, and with a+ b < 0. Since the corresponding sectional

curvatures in the 3 orthonormal eigendirections include
two positive and one negative one, our argument does
not apply. Furthermore, it follows from corrollary 4.7

of [110] that every left-invariant metric for S̃L2R has 2
positive and one negative sectional curvatures in the 3
orthonormal Ricci eigendirections (and the scalar cur-
vature R is necessarily negative [75]).

4. For the locally homogeneous metric EQ 34 for Nil, the
Ricci eigenvalues {−b, b,−b} (see the second matrix of
EQ 39) include two negative and one positive eigen-
value. The corresponding sectional curvatures in the 3
orthonormal eigendirections again include two positive
and one negative one, so again our argument does not
apply. (See also [173].)

5. For the locally homogeneous metric EQ 36, for Sol, the
Ricci eigenvalues are {0, 0,−b}; the xz and yz sectional
curvatures are everywhere negative, while the xy sec-
tional curvature is positive. Furthermore, it follows from
corrollary 4.7 of [110] that every left-invariant metric
for Sol has 2 positive and one negative sectional curva-
tures in the 3 orthonormal Ricci eigendirections. Con-
sequently, for any geodesic everywhere moving in a di-
rection close enough to the ∂z direction, our argument
applies : the twist of any such geodesic will be invariant
to all metrical pertubations having a small enough effect
on sectional curvatures.

6. S3 and S2 × E: argument fails due to positive curva-
tures.

Even if M everywhere merely has nonpositive sectional cur-
vatures, then the negative curvature argument still works, ex-
cept that gc now is only unique up to isometry and there
may be a continuum infinity of closed geodesics of each com-
binatorial type. This is exactly what happens for compact
flat manifolds [174]. But that argument does not extend to
hold if we merely require nonnegative sectional curvatures ev-
erywhere on g only, as is shown by a version of the pimple
example.

The pimple example with shrinking/expanding cylinder also
shows that a continuum infinity of closed geodesics, each with
zero twist and each having zero sectional curvature all along
them, can vanish until only one remains. The sphere-ellipsoid
example is an even worse pathology – the instantaneous dis-
appearance of an all-inclusive continuum of closed geodesics
– in the case of always positive curvatures.

Furthermore, from the complete classification [174] of flat 3-
manifolds we know that closed geodesics on flat 3-manifolds
with nonzero twist are necessarily isolated, hence under dis-
tortions of M cannot vanish and cannot split, and (therefore)
the nonzero twists of individual closed geodesics are homo-
topy invariants even on flat manifolds, provided we only allow
homotopies which keep the sectional curvatures everywhere
nonnegative along each g under consideration.

Finally, here is an example of a continuum of closed geodesics,
each with nonzero twist, on a 3-manifold of constant posi-

38The formula was found and used by J.L.Synge in the decade centered at 1930; some of its history is recounted in [132].
39Theorem 1.6 of [110] states that if a connected Lie group has a left-invariant metric with all sectional curvatures nonpositive then it is solvable.

From this it immediately follows that the most naive form of our argument, which demands all sectional curvatures nonpositive everywhere on the
manifold, could only hope to be applied for locally homogeneous manifolds arising from the following 3 geometries: H3, E3 and Sol. The text
considers the more sophisticated form of our argument, which only asks for some nonpositive sectional curvatures and only at points along the

geodesic, but reaches essentially the same conclusion.
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tive curvature. Consider the “Hopf fibration” of the standard
round S3, which is a fibration of S3 by great circles. Now do
surgery on this manifold to join one end of a segment of one of
these geodesics (call it g) to the other end, with a twist angle
specifically chosen so that nearby Hopf geodesics (which are
linked with and equidistant from g) join to themselves and
have (new) length depending only on (and smoothly on) their
distance from g. The result should be a 3-manifold chunk
topologically equivalent to a solid torus, filled with closed
geodesics each of which twists. In particular, we can in this
way get a Hopf fibration of 3D elliptic geometry by closed
geodesics, each with 180◦ twist.

These Hopf-fibration-with-surgery examples demonstrate a
considerable difference between closed geodesics in spaces of
positive and negative sectional curvatures: in the former, con-
tinua of twisting closed geodesics can exist, while in the lat-
ter, at most a countable number of closed geodesics can ex-
ist. However, they do not yield an counterexample 3-manifold
with a closed geodesic g whose twist θ is not a topological in-
variant).

Despite all this, a counterexample exists:

Theorem 14 (Twist is not a 3-manifold invariant). The
twist angles of closed geodesics on 3-manifolds are not invari-
ant under homeomorphisms.

Proof: Imagine flat-torus 3-space40 (a box with periodic
boundary conditions) as filled with a medium of varying re-
fractive index. Can we build an optical device that twists
the polarization of light shining around the torus along some
closed trajectory? (Note. We are not speaking here of “light”
that obeys Maxwell’s equations, but rather pseudo-light that
follows geodesics, with its “direction of polarization” arising
from parallel translation. Although our “optical” terminol-
ogy thus is technically incorrect, we shall employ it anyway
throughout this proof because it is more evocative.)

The answer is yes. Imagine constant refractive index regions
separated by planes. As light crosses such a plane it rotates
direction. We shall idealize this rotation of direction not as
a sharp bent corner but rather as a tiny circular arc, whose
effect is to rigidly rotate anything traveling along that arc, by
its angle.

Say light initially goes in z direction with polarization in x
direction. Use prisms to bend the beam 90◦ so the light is
propagating now in the x direction with polarization in z.
Bend 90◦ so going now in y direction with polarization still
z. Bend 90◦ so going now in z direction with polarization y.
The net resulting effect is: incoming light in the z direction
with polarization in x is converted to outgoing light still in
the z direction but with polarization in y, i.e. there is a 90◦

rotation of polarization.

By placing such optical devices in our box universe we can
alter the light-travel-time metric in such a way that there is
now a closed geodesic featuring twist, although previously all
closed geodesics had been untwisted. Both the old and the
new metric have the same T 3 topology. Q.E.D.

7.3 Ergodicity of geodesic and frame flows
We now lay out the fundamental definitions and results about
ergodicity of geodesic and frame flows. This knowledge will be
employed next subsection to help get our main results about
twist.

A bijective measure-preserving transformation T of some mea-
surable space S is ergodic [8] if all T -invariant subsets of S
necessarily have either zero or full measure.

It is mixing if the measure of T N(A)∩B tends (as the number
N of iterations tends to ∞) to meas(A)meas(B)/meas(S) for
any fixed measurable subsets A,B of S.

The Bernoulli map on the unit interval [0, 1) is the following.
Let there be a fixed partition of the unit interval into k ≥ 2
interior-disjoint subintervals of lengths p1, . . . , pk. The map
F (x) is then piecewise linear with slope 1/pj within subin-
terval j; finally everything is taken mod 1 to get a selfmap
of [0, 1). A transformation is Bernoulli if it is isomorphic to
some Bernoulli map.

All these things also may be defined for continuous-time flows
rather than for iterated transformations (discrete time).

Bernoulli implies the “K” (for Kolmogorov) property implies
mixing implies ergodicity, but [8][27][79] none of the the re-
verse implications hold: for example an irrational rotation T
of S1 is ergodic but not mixing.

Let n ≥ 2. Physically speaking, it seems almost obvious that
the geodesic flow on a compact n-manifold M of constant neg-
ative curvature is ergodic and mixing, since the n-volumes and
(n− 1)-surface areas of n-balls of radius r on any manifold of
constant negative curvature increase ultimately exponentially
with r.

The consequence that the present paper needs of ergodicity of
the geodesic flow is: that starting from almost anywhere and
traveling at unit speed in almost any direction41 will cause
one to come arbitrarily close to any desired point of M , while
simultaneously moving in a direction arbitrarily close to any
desired direction. In other words, that each generic geodesic
densely covers the position×direction space M × Sn−1.

On the other hand, since every geodesic on the standard round
Sn is a great circle of circumference 2π, ergodicity certainly
does not hold for compact manifolds of positive curvature.
Also, consideration of the standard flat torus (unit n-cube
with opposite faces identified) shows that the all-directions
condition is violated for it, so that ergodicity also does not
hold for flat compact manifolds. However, geodesic flow still
is positionally ergodic on flat compact n-manifolds, i.e. obeys
the weaker property that almost any geodesic densely covers
M .

These ideas all date back to J.Hadamard and N.I.Lobachevsky
in the late 1800s [8][71][11] and have been rigorously proven
[123] as well as extended in various ways. For example

Theorem 15 (Anosov [6]). The geodesic flow on any n-
manifold, n ≥ 2, with everywhere-negative curvature, auto-
matically is ergodic on42 M × Sn−1.

40Many other 3-manifolds could have been used instead, such as S3 S2 × S1.
41“Almost any” means, more precisely, a full-measure subset.
42Warning: More precisely, we should have said “the tangent space of M ,” which is not necessarily the same as the product M × Sn−1 if n ≥ 3.

That level of explicative precision will be irrelevant for our purposes, and indeed the two concepts are the same if we only think in terms of sets
rather than manifolds.
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Indeed, it is even Bernoulli [128][137]. The cleanest proof is
in the appendix by Misha Brin of [12].

Say a manifold has κ-nearly constant negative curvature if all
its sectional curvatures are in the interval [−1,−κ)c for some
constants κ, c > 0. It is known [34][89][133][172] that the time-
1 map of the geodesic flow on any smooth compact oriented
boundaryless connected n-manifold M with 0.981-nearly con-
stant negative curvature is “stably ergodic” and“stably K” on
M × Sn−1 if n ≥ 2, and that the flow itself is Bernoullian.
(The statements that the time-1 map is stably ergodic [or
stably K] are slightly stronger than the statements that “the
geodesic flow is ergodic [or K].”)

So far we have regarded the geodesic flow as a flow on
M × Sn−1 (position×direction space). One may also con-
sider the frame flow, which is a flow on M × SO(n− 1). This
flow is induced by unit-speed movement along geodesics on
the n-manifold M , where as we move we consider the rota-
tion, described by a matrix in SO(n − 1), of an orthogonal
local coordinate-frame as it is parallel-translated along the
geodesic. The reason this is SO(n− 1) and not SO(n) is that
one of the coordinate axes always stays pointing along the
geodesic.

Brin and Gromov [30] showed for odd n 6= 7, the frame flow on
a C3-smooth compact boundaryless connected n-manifold M
with negative sectional curvatures is ergodic, K, and Bernoul-
lian. Brin and Karcher [31] showed the same thing for even
n 6= 8 provided the manifold had 0.865-nearly negative curva-
ture. Finally, Burns & Pollicott [33] attacked the remaining
cases n ∈ {7, 8}, showing that the time-1 frame flow on a
C3 compact oriented boundaryless connected n-manifold M
with 0.981-nearly constant negative curvature, for any n ≥ 2,
is stably ergodic and stably K, and that the frame flow itself
is ergodic, K, and Bernoullian.43 The best constant κ in the
curvature-pinching condition still is unknown and by the pre-
ceding results lies somewhere in [0.25, 0.981], with the 0.981
being improvable to 0.865 in even dimensions n 6= 8, and with
no pinching condition being required at all in odd dimensions
n 6= 7.

7.4 Theorems and proofs about twist
The application of the NTA and ergodicity to winnowing cos-
mologies is this:

Theorem 16 (Compact negatively curved manifolds
have many closed geodesics that twist). Let M be a
compact 3-manifold with all sectional curvatures always nega-
tive. Then there are a countable infinity of closed geodesics τ
on M , such that parallel translation one cycle along τ suffers
a twist by some angle not an integer multiple of 360◦. Indeed,
twist angles exist that are arbitrarily close to any desired num-
ber ω.

Proof: First, we argue that a geodesic emanating from almost
any starting point P0 and starting direction ~d0 must return
arbitrarily close to itself at some point P and while simulta-
neously having orientation matching the geodesic’s direction
~d at P arbitrarily closely, and simultaneously having twist
matching any desired number ω ∈ [0, 2π) arbitrarily closely.
Indeed, no matter how small we choose ǫ, φ, α > 0, by a vol-
ume argument any geodesic after large travel length L must
return to within small distance ǫ of P and simultaneously to
within a small angular distance θ of ~d if ǫn−1θn−1L = const;
and simultaneously (if n = 3) to within α of having twist-
angle ω if ǫ2θ2αL = const.

Now we may, by taking advantage of the exponentially enor-
mous (yet isotropic) sensitivity of the final position of a long
geodesic segment to its initial direction and position, slightly
perturb that initial direction (and the segment’s length L) in
order to make our geodesic exactly return to P , although the
small bend angle θ will still, in general, be nonzero.

We now argue that, upon “shortening” this closed curve to
make it become a true closed geodesic, ω does nto change.
This is an immediate consequence of theorem 13. In a space
of constant negative curvature, there is an alternative way to
make this argument by using hyperbolic trigonometry [45].
This second way is weaker since it only works if the curvature
is constant and it only shows ω changes by at most a small
amount, rather than zero. Nevertheless we explain it to give
the reader additional insight and confidence.

An isoceles triangle with large legs L and apex angle 180− φ
degrees may be squashed flat without moving anything by
more than ≈ φ. Consult figure 7.1.

LL h

φ

BB

β

Figure 7.1. A hyperbolic space scenario to be analysed using
hyperbolic trigonometry. Regard L as large and φ as small.

By the hyperbolic law of sines

(sin β)(sinhL) = sinhB (42)

while by a Napier-Engel rule

(cosβ)(tanh L) = tanhh. (43)

Now consider L to be large and φ to be small, where β =
(π − φ)/2. Then sinβ ≈ 1 − φ2/8 and cosβ∼φ/2 and
tanhL → 1, causing h∼φ/2 and

L−B = L−arcsinh([sinhL][sinβ]) = tanh(L)
φ2

8
+O(φ4)∼φ2

8
(44)

43The only still-open question is whether the time-1 frame flow need be Bernoullian when n ∈ {7, 8}. Also, almost nothing is known about
noncompact, but nevertheless finite-volume, 3-manifolds of κ-nearly constant negative curvature. Most experts conjecture that all the compact
results mentioned should extend to this finite-volume case, but nobody has been able to prove it despite efforts dating back to the 1960s. If only
certain kinds of cusps are permitted, then the proofs should extend. Thermodynamics indicates the impossibility of having an “absorbing cusp”
that a positive-measure fraction of geodesics flow into, since that would convert a low temperature photon gas to high temperature. Despite the
major lack of knowledge about ergodicity in the noncompact finite-volume case, it is still possible [2] to obtain results about the existence of twisted
closed geodesics; see the extension of theorem 17 below. Incidentally, the difficulty of this problem is shown by constructions [30][26] of compact
smooth boundaryless negatively curved Kahler manifolds, with sectional curvatures −1 and −0.25 only, of even real dimension ≥ 4 (gotten by
quotienting complex-hyperbolic spaces, quaternion-hyperbolic spaces, or the octonion projective plane by cocompact lattices) having nonergodic
frame flows.

Feb 2004 20 7. 4. 0



Smith typeset 20:16 13 Aug 2004 uni2

both to be small.

This indicates that, if L is large enough and φ and ǫ are small
enough, we may now shorten our curve to get a genuine closed
geodesic with no bend angle φ, and with nothing moving far
enough to destroy validity (for that, something would have to
move a distance of order 1).

Finally, due to the small motion and the constant curvature,
the twist incurred by our geodesic will necessarily only be al-
tered by ±O(φ) and hence will remain nonzero and close to
ω. (In fact this twist angle will not change at all.) Q.E.D.

Note that both versions of this argument relied on negative
sectional curvatures. The shortening sub-argument based on
EQ 41 actually would still work in flat manifolds, but in Eu-
clidean or spherical spaces we would not have had ergodic-
ity44.

Theorem 17 (The C.C.C.O. 3-universes without twist-
ing closed geodesics). The only constant curvature compact
orientable 3-manifolds in which parallel translation along 1
cycle of any closed geodesic never incurs twist other than an
integer multiple of 2π radians, are: T 3 and S3.

Proof: The previous theorem showed there are no compact
hyperbolic manifolds satisfying the NTA. Now go through the
classification of positively curved and flat 3-manifolds of con-
stant curvature in Wolf’s book [174]. You will find that the
only examples satisfying the no-twist property for all closed
geodesics are T 3

∞ and S3. The easiest way to see this is to con-
sider the abstract group, defined by generators and relations
given by Wolf [174] defining each manifold; the key observa-
tion, in each case, is the existence of some generator A such
that Ak = 1 for some minimal integer k > 1. The point is
that k 6= 1, and hence that there is a twist of 2π/k radians
(or an orientation reversal) associated with A.

Alternate argument: (Much of the above proof may be re-
placed with the following.) Montesinos ([117] ch. 3; see also
ch. 4.5-4.6) also discusses many (but not all) of these mani-
folds from a more intuitive point of view, in a way that makes
it very clear they have twist. A different, and full, discussion
of the spherical 3-manifolds is in sections 3 and 4 of [63], and
it also makes it clear that they all (except S3) have twist.
Conway recently redid the classification (using quaternions)
in chapter 4 of his book [42]; the history of previous classifica-
tions – which had included some omissions and overcountings!
– is described in their §4.5. Q.E.D.

Extension: In the preceding proof, we may replace the role
of theorem 17 by a result of Adams et al. [2] that every ori-
entable hyperbolic 3-manifold M either

1. Has a simple twisted closed geodesic, or

2. Arises from a “Fuchsian group” of an orientable hyper-
bolic 2-manifold. In this case, the volume of M is nec-
essarily infinite, and they still construct a simple closed
geodesic, albeit an untwisted one, except in the follow-
ing cases where M has no simple closed geodesic: when
the Fuchsian group is either Z, Z×Z, or arises from the
hyperbolic thrice-punctured 2-sphere S2

−3.

In other words, theorem 17’s assumption that M is compact
may be replaced by the assumption that it is finite volume and
hyperbolic. Also, without assuming M is in any way finite,
nor even that it has a finitely generated fundamental group,
theorem 17 still holds, albeit at the cost of adjoining T 3

∞, H3

and the Z, Z × Z, and H3/S2
−3 cuspmanifolds to the list of

permitted 3-manifolds.45

If we now replace theorem 17’s assumption of constant curva-
ture with the weaker assumption of local homogeneity, then
more manifolds become permissible:

Theorem 18 (The C.O. 3-geometries with twist-free
closed geodesics). Any compact orientable 3-geometry46 in
which parallel translation along 1 cycle of any closed geodesic
never incurs twist other than an integer multiple of 2π radi-
ans, must have one of the following topological types:

1. T 3,
2. S3,
3. S2 × S1,
4. M2 × S1 where M2 is a compact hyperbolic 2-manifold

(g-holed torus with g > 1),
5. a torus (T 2) bundle over S1 where the torus at one end

of the S1 is regarded as the unit square 0 ≤ x, y ≤ 1
with periodic boundary conditions, while the other end
that square is regarded as having been distorted into a
rhombus (still with periodic boundary conditions) via the
linear map with matrix ( p r

r q ) which is mapped into the
unit square by taking the coordinates modulo 1, where
p, q, r are integers with |p+q| > 2 and pq = r2 +1. This
last metric can be given a Sol geometric structure (see
theorem 9).

Proof: All compact orientable locally homogeneous 3-
manifolds (except for the compact hyperbolic manifolds,
which were among those handled in a previous theorem) have
been completely classified [145][51]. All are either Seifert
fiber spaces (i.e. 3-manifolds foliatable into circles S1) or
Sol-manifolds. The underlying geometry is one of the 8 pos-
sibilities in theorem 9 in our §6.

Working through the classifications: Page 457 of [145] shows
the only compact orientable 3-manifold whose geometry is the
same as that of S2 × R and which avoids twist is S2 × S1.

44But according to M.Berger [17], recent revolutionary work of Joachim Lohkamp has shown that every Riemannian n-metric, n ≥ 2, may be
perturbed by an arbitrarily small amount in such a way that its geodesic flow becomes ergodic. I.e. presumably “generic” or “bumpy” manifolds
have ergodic geodesic flow. If true, this may have some profound implications concerning the validity (or lack thereof) of twist-based arguments in
cosmology. But there are 4 caveats: First, this Lohkamp work remains unpublished and incompletely written up. Second, a small perturbation of
the metric does not necessarily correspond to a small perturbation of the curvature tensor; indeed Lohkamp requires perturbations of the round
sphere severe enough to yield negative curvatures. Unless that deficiency can be overcome, these results will remain irrelevant to physics. Third,
it is presently unknown even whether there is any smooth positively curved 2-manifold with ergodic geodesic flow. In particular, the geodesic flow
on the surface of an ellipsoid is known always to be non-ergodic and indeed features a conserved quantity [93][157]. Indeed, once those references
are understood, it becomes easy to see that if an ellipsoid is cut into two hemi-ellipsoids along any one of its 3 major ellipses, which then are glued
to the two ends of an appropriate right elliptic cylinder, the resulting convex surface always has non-ergodic geodesic flow, no matter what values
are chosen for its 4 defining parameters. Fourth, I do not know if Lohkamp’s ideas apply to the frame flow.

45Adams et al. [2] also note that S2

−3
is the only orientable finite-area hyperbolic 2-manifold with no simple closed geodesic. It is noncompact.

46Equivalently, by theorem 11, the word “3-geometry” could be replaced by “1-curvature homogeneous 3-manifold.”
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Theorem 5.3i of [145] seems to show that every compact Sol-
geometry has a twisted fiber. If so, that would rule them
all out since that fiber could be “shrunk” to get a twisted
closed geodesic. However, that impression was incorrect. In
fact Dunbar [51] (and the same theorem is mentioned in cite-
Bonahon despite the fact that he misleadingly refers to Sol
as a “twisted geometry”) finds that the compact orientable
Sol-geometries are precisely the T 2 bundles over S1 with glu-
ing map ( p r

s q ) where p, q, r, s are integers with |p + q| > 2
and pq − rs = 1. This map avoids twist (i.e. is a pure area-
preserving dilation) if and only if it is a symmetric matrix,
i.e. r = s. For example: ( 2 3

3 5 ) and
(
−17 4
4 −1

)
.

Theorems in [145] (e.g. theorem 4.16 handling Nil, where
note the proof’s remark about how “one cannot have n = 0,”

and theorem 5.3ii handling S̃L2R) show that S̃L2R and Nil
(the “twisted geometries”; this time this moniker is justified!)
always yield twisted bundles over S1 and hence also have
twisted closed geodesics and hence are forbidden. The reader
may be worried at this point due to having acquired a certain
skepticism about [145]; if so it is reassuring that there is an

Alternate argument: (Much of the above proof may be
replaced with the following.) Instead of relying on classifica-
tions of compact orientable 3-geometries, it is also possible to
proceed by using Seifert’s original (earlier) classification [146]
of the orientable Seifert-fiber spaces. As we remarked before
[145][24], the latter classification is included in the former
since every compact orientable 3-geometry is a Seifert fiber
space – except perhaps for Sol-manifolds and compact hyper-
bolic manifolds, both of which we have already convincingly
handled. Seifert showed his spaces are in 1-to-1 correspon-
dence with certain tuples

(O, o; P |b; α1, β1; α2, β2; · · · ; ; αr, βr). (45)

(The reader will need to read [146] to understand EQ 45’s no-
tation. Seifert would also permit other tuples containing the
letters “N” or “n” instead of “O” and “o,” but these are non-
orientable or contain a non-orientable 2-surface and hence a
twisted geodesic, either way being forbidden. Seifert mani-
folds are also discussed in [24] and [126] and from a different
point of view in [117] ch. 4.5 and 4.6.) Here the integer
P ≥ 0 is the genus of the 2-dimensional orbifold of the fibers.
If there are no “exceptional fibers” (all of which would lead,
upon shrinking, to twisted geodesics) then r = 0 so that there
are no α and β terms. Finally only b = 0 is permitted if there
is no twist. Consequently we conclude that the only compact
orientable Seifert fiber spaces obeying the no-twist postulate
are M2 ×S1 where M2 is an orientable 2-manifold, which we
may (without loss of generality if we are only interested in
topological equivalence) take to be of constant curvature of
the same sign as 1 − P .

It is important to note, throughout the above argument, that
Seifert fibers always are uncontractible loops (this follows
from the structure [56][52] of Seifert spaces as circle bundles
over a 2D orbifold), so that shrinking them always yields a
closed geodesic. Q.E.D.

For conciseness, let us refer to the Sol manifolds in theorem
18(5) as the “symmetric T 2|S1 bundles.”

Summary: Either version of the No-Twist Assumption for
closed geodesics implies that our universe must, if it is a com-

pact orientable 3-manifold of constant curvature, be either T 3

or S3. If we weaken the assumption of constant curvature to
1-curvature homogeneity, then the only additional permitted
topologies are M2 × S1, where M2 is any compact orientable
2-manifold of constant curvature, e.g. either M2 is S2 or a
g-holed torus with g > 1 and constant negative curvature,
and the symmetric T 2|S1 bundles.

It is presently physically unclear how valid it is to argue that
the universe must be twist-free, and if it is valid, it remains
unclear which among numerous possible inequivalent phras-
ings of the No-Twist Assumption should be favored.

8 Implications of charge quantiza-

tion

The previous paper [151] introduced the idea that charge
quantization could be explained by postulating the universe
contains a “topologically trapped” primordial magnetic field.
Essentially, the idea was that an electron traveling around
certain kinds of closed trajectories would “enclose” all of the
trapped magnetic flux. If the electron’s charge were not an
integer multiple of a certain specific charge (corresponding to
the requirement that the trapped flux be an integer number
of “flux quanta”) then slight perturbations of the trajectory
would lead to discontinuous physical effects. Assuming such
discontinuities are unnacceptable logically forces charge quan-
tization.

As was described in [151] and sketched in the present paper’s
introduction, a universe with two or more kinds of mutually
non-isotopic nonseparating surfaces, would, if it initially con-
tained a generic magnetic field, lead to two different, and
generically incommensurable, charge quanta, thus ruling out
all charges and contradicting reality. This suggests that the
universe contains at most one isotopy class of nonseparat-
ing surface. Furthermore, if the value of the charge quan-
tum is not explained by [151]’s cosnmic mechanism but in-
stead purely by microscopic physics, then a universe contain-
ing even one isotopy class of nonseparating surfaces, would, if
it initially contained a generic magnetic field, lead to a differ-
ent and incommensurable charge quantum, again ruling out
charge and contradicting reality. In that case the universe
presumably could not contain a nonseparating surface at all.

It would be very good for some future author to go though
the TGC’s alleged classification of all compact orientable 3-
manifold topologies and determine exactly which ones satisfy
these conditions. We shall content ourselves by doing this for
the (non-conjectural!) classification of the compact orientable
1-curvature homogeneous 3-metrics in theorem 11.

Theorem 19 (1-curvature homogeneous manifolds
generically yielding at most one charge quantum).
Let M be a compact 1-curvature homogeneous orientable 3-
manifold containing at most 1 isotopy class of nonseparating
complete surfaces. Then M is either S2 × S1 or has an S3

geometric structure.
Proof: We consider the 8 cases in theorem 9 (and 11). If M
has S2 × E1 geometric structure, then ([24] p.457-458) it is
one of 7 possibilities, of which only S2 × S1 and RP3#RP3

are orientable. The former has only 1 kind of nonseparat-
ing surface, but the latter has two (one being an “equator”
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on each RP3). It could also be permissible for M to have
S3 geometric structure, since S3 itself has no nonseparating
surface, nor does the Poincaré dodecahedral space (since it
is a homology sphere). We have not tried to decide exactly
which S3-based manifold topologies are admissible. Not all of
them are, since the “lens spaces”have isotopically non-unique
Seifert fibrations [126] and hence non-unique isotopy classes of
(transverse) nonseparating surfaces, and hence are forbidden.

If M has S̃L2R or Nil structure, then it is a Seifert fiber space
([24], in particular see theorems 4.15ii and 4.16ii for the com-

pact S̃L2R and Nil cases, respectively) over a 2D orbifold X .
In the case of Nil, X has Euler characteristic χ = 0 (so X is

flat) while for S̃L2R, X has Euler characteristic χ < 0 (so X
is multihandled) and hence either way X has a nonseparat-
ing curve so that M has at least two nonseparating surfaces.
Essentially the same argument would rule out M2 × E1, but
these also may be ruled out in a more elementary manner:
M2 has at least two handles and hence at least 2 nonsep-
arating curves. We may rule out M being a flat compact
orientable manifold (E3-based) by a case by case examina-
tion of the classification [174]. But this also may be ruled out
effortlessly by using the fact that M must be a Seifert fiber
space over a 2-orbifold X with the fibers in an E1 direction
in the E2 × E1 covering space. This immediately leads to
more than one kind of nonseparating X . If M is compact and
has Sol structure then ([24] theorem 4.17) it has the structure
of a 2D bundle over a 1D orbifold S1, where every possibil-
ity for a 2-foliatation leaf necessarily has at least 1 kind of
nonseparating curve. That rules out Sol.

If M is hyperbolic (H3-based) or Euclidean (E3-based) and
compact, then it necessarily has many kinds of uncontractible
min-length closed geodesics (cf. theorem 16). For each such
closed geodesic G, we may construct a tranverse nonseparat-
ing surface as follows. Start with the totally geodesic (but
self-intersecting and usually infinite) “plane” surface consist-
ing of all geodesics making a right (or other fixed nonzero)
angle to g at a particular point P ∈ g. Color an expanding
disc in S centered at P red; whenever a point on S is hit by
the expanding red wavefront coming from two different di-
rections simultaneously the wave “freezes” there. Eventually
the entire wavefront has frozen and the red portion of S is a
polyhedral surface (which may be regarded as a C0 boundary-
less compact 2-manifold) transverse to g at P . This surface
is topologically a 2-disc D except that each point x ∈ ∂D on
the boundary of that disc is everywhere glued to itself accord-
ing to some self-inverse map x → f(x) ∈ ∂D. If desired, we
may now shrink this surface’s area to minimum possible to
get a smooth, necessarily not self-intersecting, isotopic sur-
face necessarily crossing g an odd number of times and hence
necessarily nonseparating. (It can be easier to envision the 1-
less-dimensionful analogue of this construction on a compact
orientable hyperbolic 2-manifold, i.e. a multihandled torus.
Such a torus has 4 kinds of uncontractible simple closed curves
which come in 2 pairs of mutually transverse kinds, yielding
at least 4 kinds of nonseparating curve.) Next, we do the same
thing but with a different geodesic g′, and different transverse
surface S′, but now picking S′ to contain g. We then adopt
a similar “red sea” expansion strategy, but this time starting
the expansion from the entirety of g and from the shortest

segment joining P ′ ∈ g′ ∩ S′ to g. The final polyhedral sur-
face will be topologically an annulus A except that again each
point x ∈ ∂A is glued to some other via a self-inverse map. We
can also do the analogous construction with the roles of g and
g′ exchanged. In this way we can obtain two nonseparating
surfaces which are manifestly non-isotopic (since they each
contain closed geodesics of different isotopy types). Q.E.D.

9 Some exact Einstein-Maxwell so-

lutions

One of the deficiencies of the previous [151] as well as the
present paper, is our policy (for the most part) of regard-
ing the universe as a Riemannian 3-manifold rather than a
Lorentzian (3 + 1)-manifold in which time is inextricably en-
tangled with space via Einstein’s equations of general relativ-
ity.

There were two reasons for these decisions to ignore time.
First, because at present the foundations of general relativity
are not mathematically rigorous (e.g., no general solution ex-
istence theorem is known) we had no real choice if we wished
to obtain mathematical rigor. Second, a far larger amount is
known about the topology of 3-manifolds than about (3 + 1)-
manifolds.

But it is not necessary to give up the fight completely. As
[151] pointed out, it seems highly plausible that the charge
quantization argument there still works even in the presence
of general relativity because (1) it is a topological invariant,
(2) arguments were made that in a slowly-changing model
universe, charge quantization would still work, (3) nonrigor-
ous arguments were made that the presence of small black
holes should not affect validity. It was also argued that much
of what was said in [150] should still hold in (3 + 1)D be-
cause we were there only dealing with homogeneous isotropic
universe models.

This section now makes the case completely solid that the
charge-quantization mechanism of [151] can work, exactly,
under the full (3+1)-dimensional Einstein-Maxwell equations.
To do so, we shall present several exact solutions of those
equations representing suitable model universes with a topo-
logically trapped sourceless magnetic field.

9.1 Some simple electrovac universes
The uniform-field electrovacuums (metrics that are exact so-
lutions of the Einstein-Maxwell equations of classical gravity
and electromagnetism with cosmical constant Λ) are precisely
the following:

ds2 =
−dt2 + dx2

(1 + Jx2 − Jt2)2
+

dy2 + dz2

(1 + Ky2 + Kz2)2
. (46)

where J, K are constants such that Λ = 2(K + J). These
(3+1)D metrics may also be regarded as the Cartesian prod-
uct of 2D and a (1 + 1)D metrics of constant curvature.

Proof: The fact that these are exact solutions corresponding
to a uniform magnetic field in the x-direction may be veri-
fied by direct substitution. (The mixed Einstein tensor Gβ

α

is diagonal with entries Gt
t = Gx

x = K, Gy
y = Gz

z = J .) For
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the fact that these constitute all (3 + 1)D electrovac met-
rics with constant non-null electromagnetic field tensor (and
indeed contain all (3 + 1)-metrics supporting any constant
non-null 2-form) see [49]. There is also a general theorem of
G.S.Hall [72] stating that such a direct product is the only way
that a (3 + 1)D Lorentzian manifold can have any constant
symmetric 0

2
tensor. Q.E.D.

There are 9 = 3× 3 different cases of EQ 46, namely those
where the 2-metric and the (1 + 1)-metric have constant cur-
vatures +1, −1, or 0. We divide these into 3 families; in each
family we may choose the constant curvature Riemannian 2-
metric, arising from varying y and z while holding x and t
fixed, to be either S2, or any compact hyperbolic metric (e.g.
the g-holed torus got by suitable identifications of the sides of
a suitably-sized regular 4g-gon in the hyperbolic plane, where
g is any integer with g ≥ 2), or T 2.

If J = 0 then this universe is time-independent (i.e., the grav-
itational effect of the constant magnetic field is exactly com-
pensated by the cosmical constant) and we may choose the x-
coordinate to“wrap around”ala S1. Then the generic result is
a homogeneous but anisotropic unchanging spatially-compact
universe filled with a uniform magnetic field, in which charge
is necessarily quantized. (One exception: in the Λ = K = 0
flat isotropic case, there is no charge quantization since the
magnetic field is zero.)

If J = 1 then we have the cartesian product of our usual
Riemannian 2-space of constant curvature (got by varying
y and z while holding t, x fixed) with the “de Sitter line.”
The latter is a Lorentzian (1 + 1)-space of constant curva-
ture which is isometric to the 2-surface a2 + b2 = 1 + w2 in
Lorentzian flat 3-space of with infinitesimal metrical line ele-
ment ds2 = da2 +db2−dw2. Observe that this surface is spa-
tially compact, i.e., the constant-w curves are circles. So the
net result is a homogeneous but anisotropic spatially-compact
universe which initially contracts from infinite to some min-
imum size during the time interval −∞ < t < 0, then re-
expands during 0 < t < ∞ to infinite size; it is filled with
a spatially uniform (but time-varying) magnetic field. Note:
the x-direction in this universe (parallel to the magnetic field,
and which is topologically circular) is the one that is expo-
nentially expanding and contracting; in the y and z directions
the metric is time-independent. Hence the magnetic field and
flux both remain constant. (The energy to supply the mag-
netic field in the expanded volume in the later universe is
supplied by the cosmical constant Λ.) Again, charge in this
universe is necessarily quantized, as one may argue by consid-
ering (bounded distance) “trips around the universe”taken by
an electron moving at sublight speeds47 with x = constant;
the argument is similar to the one in [151] and note that an
unboundedly large number of such trips are possible during
the infinite life of this universe. Also note that it is possible
to choose Λ = 0 in this kind of model universe.

In all of the above cases the spatial topology of our model uni-
verse has been S1 × M2 where M2 is a compact Riemannian
2-manifold of constant curvature.

The final family of uniform-field metrics arises if J = −1; the

Lorentzian (1 + 1)-metric is the “anti de Sitter line,” which
has periodic time but is noncompact in x. This is just like
our previous description of the de Sitter plane, as a 2-surface
a2 + b2 = 1 + w2 in Lorentzian flat 3-space, except that its
3-metric is now ds2 = dw2 − da2 − db2 so that the angular
coordinate in ab planes is now timelike and the w-coordinate
spacelike. It is possible to make the time-coordinate noncom-
pact and not periodic by“winding around the circle an infinite
number of times” (i.e. using the covering space of the anti de
Sitter line), but apparently there is no way to compactify the
spatial direction while retaining homogeneity. If so, then there
is no way to regard this final family of metrics as homogeneous
spatially-compact universes, although we may still regard the
magnetic field as being trapped – it is just that that trapping
is no longer caused by closed field lines wrapping around an
S1, but rather by them extending to ±∞ in the x-direction.
Charge quantization then would still work, even though this
universe is spatially noncompact.

To provide some contrast, let us discuss one more noncompact
vacuum-filled model universe in which the charge quantization
arguments of [151] do not quite work.

Melvin’s magnetic universe [106][107][25][161]

ds2 = (1 + Kr2)2(−dt2 + dz2 + dr2) +
r2 dθ2

(1 + Kr2)2
(47)

features a nonuniform magnetic field of strength proportional
to

√
K/(1+Kr2), in the z-direction. (This field is source-free

and holds together via its own gravity.) We now may (option-
ally) regard the z-coordinate as being circularly “wrapped,”
i.e. periodic with any desired period length. This universe is
noncompact (infinite volume) and time-invariant, but if it has
finite period length in the z-direction then the magnetic field
is topologically trapped. Because the magnetic flux through
this universe is infinite, the charge quantum would actually be
zero and hence the arguments of [151] presumably still would
allow continuously variable charge.

9.2 Toward greater realism
None of the above model universes are intended to be realis-
tic pictures of our own universe. Our own universe contains
matter and radiation at densities far huger than the energy
density of any trapped magnetic field; but those model uni-
verses contained vacuum and magnetic field only, and hence
were highly anisotropic. They were merely presented to make
the case completely solid that the charge quantization mech-
anism of [151] can work even if we demand exact solution of
the full Einstein-Maxwell equations in a curved Lorentzian
(3 + 1)-space, whether time-varying or not, and having Λ = 0
or not.

We now seek more realism. We enquire whether there are
exact Einstein-Maxwell solution model universes containing
both a uniform magnetic field, and some sort of homoge-
neous isotropic matter (and perhaps a cosmical constant Λ),
in arbitrarily variable relative proportions. The answer is yes
[86][122].

47For example, if we are using as our Riemannian 2-metric, the 2-holed torus got by appropriately gluing the sides of a suitably-sized hyperbolic-
plane regular octagon O, then we could consider the electron moving on a regular-octagon trajectory just like O but a tiny bit smaller. By
considerations of continuity as in [151] we would conclude that the magnetic flux enclosed by this trajectory had to be an integer number of flux
quanta, so that charge had to be quantized.
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The impossibility of a static such universe is shown by Hall’s
theorem [72] (since it would necessarily have constant Ricci
and Einstein symmetric 0

2
tensors) and indeed the impossibil-

ity of one merely containing a time-invariant magnetic field
is shown by [49]. However, these theorems still permit the
possibility of an expanding such model universe containing a
uniform magnetic field decreasing with time.48

Collins and Hawking [41] claimed that the only Bianchi types
[19] of expanding homogenous cosmologies that were capa-
ble, in the large time limit, of being asymptotically FRW (i.e.
isotropic) were I, V, VIIo, VIIh, and IX. But to my knowl-
edge nobody has examined magnetism in any Bianchi-type
cosmology besides I and V.

Jacobs [86] considered cosmologies of “Bianchi type I,” i.e.
having a metrical line element of form

ds2 = dt2 − A(t)2dx2 − B(t)2dy2 − C(t)2dz2, (48)

containing both a uniform magnetic field in the z direction
and a perfect fluid obeying the equation of state P = γρ,
where P is pressure, ρ is density, and γ is a constant. He
found 4 classes of solutions, including 2 classes of axisym-
metric solutions (i.e. with A = B). One of his axisymmetric
universes originates from a point singularity (A = B ≈ C → 0
as t → 0), and the other from a “pancake” singularity (A =
B ≈ 1+αt1−γ , W ≈ t as t → 0). Note that these metrics can
be instantiated in a torus T 3 × R, i.e. a 3-box with periodic
boundary conditions.

Nayak and Bhuyan [122] considered “Bianchi type V,” i.e.
having a metrical line element of form

ds2 = dt2 − A(t)2dx2 − e−2x(B(t)2dy2 + C(t)2dz2), (49)

filled with a perfect fluid of unspecified equation of state and a
uniform magnetic field. They found that there is exactly one
exact solution, which, however, involves two arbitrary real-
valued functions of one real variable. This kind of line element
seems less interesting because it apparently is uncompactifi-
able, i.e. cannot represent a spatially compact universe.

Jacobs [86] in 1969 noted that the present-day magnetic field
of the universe is < 10−7gauss. But it is now known [166] to
be < 3 × 10−15Tesla= 3 × 10−19gauss. Consequently, consid-
ering the approximately known mass-density of the universe,
one may estimate, following Jacobs but updating his num-
bers, that this magnetic field would have only resulted in an
anisotropy in the CMB of order 1 part in 1028 and that the ini-
tial anisotropy of the universe would have decayed to a small
level after 10−41 second. In other words, if we live in Jacobs’
sort of universe, then its anisotropy would be experimentally
undetectable.

In fact, as was discussed in [151], there does appear to be
some statistically significant anisotropy in the CMB, of or-
der 1 part in 105; there is a low-power bidirection pointing

roughly towards and away from Virgo. A new possible inter-
pretation of this is that our universe indeed is anisotropic. If
so, then our universe cannot be of Jacobs’ T 3 kind. However,
Jacobs’ universe is somewhat atypical because since T 3 is a
“naturally” locally isotropic manifold, all his anisotropy arises
from the magnetic field – which we know from astronomical
observations is (and always was, and always will be) tiny in
comparison to matter and radiation densities. In contrast, in
a universe of form S2 × S1 or M2 × S1 (as in EQ 50 below),
the metric is “naturally anisotropic,” and hence the 10−5-size
anisotropy of the CMB would in no way be forbidden.

Both the Jacobs and Nayak-Bhuyan cosmologies may be re-
garded as permitting cosmical constant Λ because the effect
of Λ may be incorporated into the equation of state of the
perfect fluid.

We now incorporate perfect fluid into our simple M2 × S1

cosmologies, to get more general (and new) exact solutions of
form

ds2 =
−dt2 + A(t)2dx2

(1 + Jx2 − Jt2)2
+ B(t)2

dy2 + dz2

(1 + Ky2 + Kz2)2
. (50)

Demand J = 0 (because otherwise all expressions become
much more complicated). Then computing the mixed Ein-
stein tensor Gβ

α, we find that it is diagonal with nonzero terms

−B2AGt
t = 2BB′A′ + 4KA + B′2A, (51)

−B2Gx
x = 2BB′′ + 4K + B′2 (52)

−BAGy
y = −BAGz

z = B′′A + A′′B + A′B′. (53)

Regard x as a periodic coordinate. Then EQ 50 represents
a fixed-shape universe of topology M2 × S1, where M2 has
constant curvature K ∈ {0,±1}. The functions A(t) and B(t)
are size parameters.

We can enforce both magnetic flux conservation and fluid
isotropy by choosing A(t) and B(t) so that (Gx

x − Gy
y)B(t)2

is time-invariant. Gy
y = Gz

z then is satisfied automatically, so
we still have one function worth of freedom left over to use to
try to make the fluid’s equation of state behave in any desired
way. This universe is filled with both an isotropic fluid, and
a magnetic field in the x direction.

Summary: We have found exact solutions of the full
Einstein-Maxwell (3 + 1)D equations representing universes
with trapped magnetic fields in which charge quantization
would be forced; in the S1 × S2 model generically uniquely.
All of these model universes are anisotropic.

More realistic magnetic T 3 and M2 × S1 universes, also in-
corporating perfect fluid, were respectively found by Jacobs
[86] and by ourselves.

48Incidentally, an instructive “paradox” is the following. Any M2 × S1 universe with sourcless magnetic field along the S1s cannot have ex-
panding M2s because that plus flux conservation would imply decreasing magnetic field, leading any observer equipped with a fixed-size wire loop
perpendicular to the S1 fibers, to detect an induced voltage around that loop. Thus there would have to be an induced electric field in the M2,
which by homogeneity would necessarily be uniform – but since it is impossible to “comb the hair” on a surface of genus g 6= 1 no such field could
exist. “Q.E.D.” The resolution of this paradox is that there really is no induced electric field, and if our observer’s “wire loop” were in fact made
of particles of the (rareifying) perfect fluid it would be expanding just quickly enough to pass constant flux, and hence would have no voltage
induced in it. (Voltage would arise upon artificially shrinking the loop back down to fixed size but that is irrelevant – electric field is defined by
the acceleration of charged gas particles.) Hence the M2s really can expand contrary to the above “proof.”
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10 Conclusions

Regard the universe U as a smooth connected boundaryless
Riemannian n-manifold. This paper has introduced and anal-
ysed three new possible assumptions about the universe, listed
in the abstract. A fourth assumption – that the Earth both
lies on a closed geodesic (suggested by one possible interpre-
tation of an anomaly in WMAP satellite CMB data) and is
not special – was considered in [150].

Which of these assumptions are correct? We do not
know, but with more debate and analysis the community
should acquire more confidence. We do not wish to leave
the reader with the idea that they all are equally likely. My
present conjectural beliefs are summarized quantitatively in
table 10.1.

A assumption A PA

1 orientable 99%
2 compact 90%
3 constant curvature 20%
4 1-curvature homogeneous 70%
5 0-curvature homogeneous 80%
6 no twisted closed geodesics (NTA) 70%
7 nonzero countable # of closed

geodesics through generic point 10%
8 ≤ 1 isotopy class nonseparating surfaces 95%
9 global OCSS 5%
10 local OCSS 100%

Figure 10.1. Place your bets. Important possible assump-
tions A about our universe regarded as connected boundary-
less 3-manifold, and my present personal assessment of prob-
ability PA that “the universe’s topology is compatible with A
being true.” Some assumptions subsume others, for example
P3 ≤ P4 ≤ P5 since the topologies compatible with assump-
tion 3 are a strict subset of those compatible with assumption
4, in turn subsumed by 5.

We now provide short justifications for these numbers. The
fact that the universe seems charge neutral by itself only gives
me perhaps 70% confidence the universe is compact, since

1. the universe still might be slightly charged and
2. despite the fact that both approximate and exact neu-

trality are naively surprising a priori, the former might
be less surprising to a more sophisticated viewer.

But the new compactness argument in §3 then reduces my
dubiousness by a factor of 3, corresponding to a 70→90%
confidence increase.

Why the high confidence the universe has a topology compat-
ible with curvature homogeneity? Postulate that whatever
process created the universe would not have favored any par-
ticular part of it over any other, so that we would expect
some sort of homogeneity. Now in presently accepted phys-
ical theories (general relativity) only the Riemann curvature
tensor49 (and not its derivatives) enter, suggesting that the
most we should expect is 0-curvature homogeneity. It seems
90% likely that quantizing gravity will also bring in curvature
first derivatives, in which case we should expect 1-curvature

homogeneity. But requiring constant curvature seems a lot
more restrictive and therefore less likely a priori.

I am optimistic that the “no twist” postulate, or something
very much like it, is correct, despite theorem 14. In particu-
lar, the previous paragraph’s picture of an initial curvature-
homogeneous metric suggests that something like §7.1’s word-
ing of the NTA may be the right one, although relying solely
on that argument would seem to force P6 < P5.

The basis for my high confidence that there is at most one
isotopy class of nonseparating surface in the universe, is that
[151] showed that without this assumption and in the presence
of an initially generic magnetic field, charges would be forbid-
den. (I less vigorously support the stronger postulate that
there is exactly one; this would arise if the cosmic-topological
explanation [151] for charge quantization is accepted. On the
other hand if charge quantization has some entirely micro-
scopic explanation, then there presumably could be no non-
separating surfaces.)

Assumption 7 was prompted by an anomaly in CMB satel-
lite data [158] but even the discoverers of that anomaly are
now disfavoring that interpretation of their data [125] which
is why I assigned it only 10% probability.

I suspect that postulating the global existence of ≥ 2 commut-
ing vector fields (which in combination with compactness and
orientability, would force a torus bundle over S1, and an addi-
tional commuting field would force T 3) would be too strong;
that property of flat space quantum mechanics probably will
not carry over to curved space because position operators will
have no global physical meaning. (See §4-5.) Nevertheless,
position operators probably still will have local importance,
so that it may still be legitimate to demand the local existence
of n mutually commuting and orthogonal vector fields.

The most important winnowing effects:

The NTA in combination with the assumptions of n = 3, ori-
entability, compactness, and 1-curvature homegeneity would
reduce the candidate topologies to: T 3, S3, S2×S1, M2×S1

with M2 orientable and hyperbolic, and the symmetric T 2|S1

bundles defined at the end of §7.

Assumption 8 very powerfully winnows topology candidates.
For example, the only 1-curvature homogeneous compact ori-
entable candidate 3-metrics meeting the “≤ 1 nonseparating
surface” condition are S2 × S1 and some undetermined sub-
set of those with S3 geometric structure. Thus of the six50

no-twist candidates just mentioned, only two would remain:
S2 × S1 and S3, with the latter forbidden by the “exactly 1”
version of our postulate.

Assumption 10 yields no candidate-reducing effect whatever
(because every 3-manifold has an OCSS locally by theorem
4 – hence the “100% confidence” figure for P10!) except for
forcing n ≤ 3.

We now summarize the known assumptions and implications
as a chart.

17 possible assumptions:

3: U is 3-dimensional
A: Every point of U lies on at least one, and at most a count-

able infinity of, closed geodesics.

49Actually, the Ricci tensor, but in 3D the Riemann and Ricci curvatures determine each other.
50Actually, infinity, since the last two among these 6 types each are infinite families.
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C: U has an uncontractible loop and hence has at least one
closed geodesic.

B: Universe is compact
E: Electrons exist
F: Universe is spatially flat
G: U has a generic metric with its topology and contains a

generic magnetic field
K: U has a constant-curvature metric ([150] argues experi-

mentally observed sky-uniformity implies metric is har-
monic, which for 3-metrics is the same as constant-
curvature)

H: U is 1-curvature homogeneous, i.e. any two points have
the same Riemann curvature tensor and first covariant
derivative of that tensor (if appropriate coordinate sys-
tems are chosen)

Ik: There are k isotopy classes of nonseparating surface in U
Mk: Milnor-rank k, i.e. k smooth everywhere pairwise com-

muting linearly independent vector fields exist on U
O: U is orientable (seems to follow from unidirectionality of

time, chirality of weak force)
P: n smooth everywhere-orthonormal vector fields exist on U

(i.e. U is parallelizable)
R: U is not a rational homology sphere, i.e. U contains a

complete nonseparating surface.
S: Have orthogonal curvilinear coordinate system

(Sℓ=locally, Sg=globally).
T: Assume Thurston’s geometrization conjecture.
W: Closed geodesics are twist-free.

Summary of important known implications
(∧=and, ∨=or):

1. Sky uniformity =⇒ harmonic manifold [150].
2. Harmonic 3-manifold =⇒ Einstein 3-manif. =⇒ K.
3. Isotropic =⇒ K (F.Schur’s theorem [68]).
4. P =⇒ O.
5. B ∧ Maxwell equations hold and have solution =⇒ Uni-

verse is charge-neutral.
6. F ∧ solution of Einstein’s equations for universe filled

with homogenous isotropic matter and radiation with
positive density exists =⇒ density is exactly critical.

7. B ∧ O ∧ W ∧ 3 ∧ H =⇒ U ∈ {T 3, S3, S2×S1, M2×S1}
∪ the “symmetric T 2|S1 bundles” defined immediately
before §7.2.

8. F ∧ O ∧ W ∧ 3 =⇒ U = T 3
∞ [150].

9. G ∧ P =⇒ O ∧ (3 ∨ the choice of U is restricted) [151].
10. R ∧ G ∧ 3 =⇒ charge quantization [151].
11. R ∧ G ∧ 3 ∧ E =⇒ I≤1 (and exactly I1 if we accept

Smith’s explanation of charge quantization [151]).
12. M≥2 ∧ 3 ∧ O ∧ B =⇒ U is Torus-Bundle over S1 [141].
13. U is Torus-Bundle over S1 ∧ K =⇒ F ∧ Exactly 3 pos-

sibilities for U , namely T 3 and 2 twisted variants.
14. M≥n ∧ O =⇒ U = T n [141].
15. W ∧ K ∧ B =⇒ U ∈ {T 3, S3}.
16. A ∧ O ∧ W =⇒ U = T 3

∞.
17. B ∧ U is foliated by planes (homeomorphic to R2) =⇒

U = T 3 [140].
18. Sℓ ∧ generic metric =⇒ n ≤ 3.
19. Sg =⇒ T n.

20. O ∧ B ∧ H ∧ 3 ∧ I≤1 =⇒ U is either S2 ×S1 or has S3

geometric structure.
21. W =⇒ U is not a finite-volume hyperbolic 3-manifold.
22. U has a C∞ foliation into (n− 1)-manifolds ⇐⇒ U has

Euler characteristic 0 [163].

11 Open problems

1. Although the 0-curvature homogeneous 3-metrics are a
vastly infinitely larger class than the 1-curvature homoge-
neous ones classified in §6, it may be that the class of topolo-
gies admitting a 0-curvature homogeneous compact bound-
aryless 3-metric is small enough for complete classification.
Do it.

2. Decide which among the compact orientable 3-manifold
topologies permitted by the TGC (§6) have ≤ 1 isotopy class
of nonseparating surface. (In §8 we did this for the “atomic
constituents” permitted by the TGC, i.e., the compact ori-
entable 1-curvature homogeneous 3-metrics. The behavior of
isotopy classes of nonseparating surfaces under connected sum
seems easy to understand but its behavior under the Jaco-
Shalen-Johannson torus decomposition is more mysterious.)

3. Which formulation, if any, of §7’s No Twist Assumption,
is right?

4. Prove or disprove: every smooth 3-torus (T 3) has a glob-
ally valid orthogonal curvilinear coordinate system.
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Moskov. Mat. Obšč. 14 (1965) 248-278.

[125] A. de Oliveira-Costa, M. Tegmark, M. Zaldarriaga, A. Hamilton:
The significance of the largest scale CMB fluctuations in WMAP,
Phys.Rev. D69 (2004) 063516.

[126] P.Orlik: Seifert manifolds, Springer (Lecture Notes in Math
#291) 1972.

[127] P.Orlik, E.Vogt, H.Zieschang: Zur Topologie gefaseter dreidimen-
sionaler Mannigfaltigkeiten, Topology 6 (1967) 49-64.

[128] Donald S. Ornstein & Benjamin Weiss: Geodesic flows are
Bernoullian, Israel J. Math. 14 (1973) 184-198.

[129] Gabriel P. Paternain: Geodesic flows, Birkhauser Boston 1999
(Progress in Math. #180).

[130] W.Pauli: Theory of Relativity, Dover reprint 1981.

[131] Grigory Perelman: The Entropy Formula for
the Ricci Flow and Its Geometric Application,
http://arXiv.org/abs/math.DG/0211159, 11 Nov 2002. Ricci
Flow with Surgery on Three-Manifolds, math.DG/0303109, 10
Mar 2003. Finite extinction time for solutions of the Ricci flow on
certain 3-manifolds, math.DG/0307245, 17 July 2003. Perelman
promises a fourth manuscript.

[132] Peter Petersen: Aspects of global Riemannian geometry, Bull.
Amer. Math. Soc. 36,3 (1999) 297-344.

[133] C. Pugh & M. Shub: Stable ergodicity and julienne quasiconfor-
mality, J. Europ. Math. Soc. 2,1 (2000) 1-52.

[134] Michael O. Rabin: Recursive unsolvability of group theoretic
problems, Annals of Mathematics 67 (1958) 172-194.
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