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Abstract — This paper simultaneously makes new con-
tributions to political science, probability and statistics,
and linear algebra.

We describe a new method, “Sinkhorn ratings,” for
pairwise-comparison based ranking of chessplayers, web
pages, or football teams; it also may be used to rank the
candidates in an election in which each vote is a partial
ordering of the candidates.

We also describe the first “strongly polynomial time” al-

gorithm for finding the Perron-Frobenius eigenvector of a

matrix with non-negative entries, and the second strongly

polynomial time algorithm (and the first practical one) for

Sinkhorn balancing a matrix with non-negative entries.

The former also may be regarded as the first strongly

polynomial algorithm for finding the stationary distribu-

tion of an N-state Markov chain with known transition

matrix. Along the way we also present a new formula-

tion of the Perron-Frobenius eigenvector and Markov sta-

tionary distribution problems as concave-∪ minimization

problems, and present a powerful new technique for prov-

ing monotonicity statements e.g. about Markov chains.

Keywords — Voting paradoxes, rating systems, Sinkhorn matrix bal-

ancing, Perron-Frobenius eigenvectors, Markov chains, strongly poly-

nomial algorithms, linear algebra, minimum-entropy statistical estima-

tors, concavity, monotonicity.

1 The voting and ranking problems

Suppose there are N chessplayers and we know the results
of all the games they have played between themselves so far.
These could be written in a table, e.g. Uab could denote the
number of victories of player a over player b (with each drawn
game counting as half a victory and half a defeat).

If instead of “chessplayers,” we have “football teams,” a sim-
ilar matrix U could be written, but this time Uab could sum
some monotonic function of the score by which a defeated b.

In a political science setting in which each voter provides a
rank-ordering of all N candidates (or perhaps only some sub-
set of the candidates), we could have Uab be the number of
voters who have expressed preference for candidate a over b.

In any of these scenarios, regard the N ×N matrix U as the
“input data.” Our problem is to determine, as output data,
a real number “rating” for each chessplayer, football team, or
candidate, with the “best” ones receiving the highest ratings
and the worst ones the lowest.

It is not clear what to do. Many ideas have been suggested,
but we shall only discuss one (by J.P.Keener [26]) besides our
own, because it is highly analogous to it. Both methods have
a high degree of mathematical “elegance.”

2 The Keener-eigenvector and

Sinkhorn solutions

Keener’s proposal is to find the Perron-Frobenius eigenvector
~x – that is, the unique eigenvector with positive real entries –
of the matrix U . Then the rating of candidate (or chessplayer)
c is xc.

Our new “Sinkhorn rating” proposal is to find the unique di-
agonal matrices R and C of positive reals such that S = RUC
is doubly-stochastic, i.e. S has non-negative entries and all
row-sums and column-sums of S are 1. Then the rating of
chessplayer p is Cpp/Rpp.

As we shall see, both Keener and Sinkhorn ratings are obtain-
able via remarkably simple iterative processes. But Sinkhorn
ratings enjoy some advantages that Keener ratings do not:
They exhibit “reversal symmetry,” they are interpretable as
minimum entropy statistical estimators, and they are directly
connected to gambling odds for the next chess game.

3 Deeper look at the mathemat-

ical underpinnings of Keener-

eigenvector

Keener’s idea [26] actually yields a family1 of methods, not
just one. It also was re-invented later and without mentioning
Keener by Dwork et al. [16] for the purpose of rating “web
pages.”

It employs the Perron-Frobenius theorem [32].

∗21 Shore Oaks Drive, Stony Brook NY 11790.
1Both Keener and Dwork et al also considered several other natural Markov chains and/or matrices and explained how they too could be used

for voting and ranking.
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We now state a fairly strong form of that theorem, compiled
from the beginning of [46], theorem 3.1 of section 2.3 of [35],
and [22] chapter 8. Skip to theorem 2 for a simpler version.

Theorem 1 (Perron-Frobenius theorem (1907-1912)).
Let U be an N × N matrix all of whose entries are nonneg-
ative. Suppose for some k with k ≥ (N − 1)2 + 1 that Uk

has all entries positive. (Wielandt showed that if this is true
for any such k, it is true for all of them.) (Equivalently: the
directed graph whose adjacency structure is represented by the
nonzero entries of U , is “strongly connected” and each of its
vertices is in a directed ℓ-cycle for all sufficiently large integer
sizes ℓ, i.e. the digraph is “aperiodic.”) Then U has a unique
(non-multiple) positive real eigenvalue r, such that r > |λ|
for all eigenvalues λ of U with λ 6= r. Indeed r ≥ |λ| for
all eigenvalues λ of B where B is any N × N matrix with
0 ≤ Bij ≤ Uij, with equality only occurring if B = D−1AD
for some diagonal matrix D; and |B~y| ≤ r|~y| for all ~y. And
indeed for each k ≥ 1

|λ|
r
≤
(

1− µ

1 + µ

)1/k

where µ =
minij(U

k)ij

maxst(Uk)st
. (1)

A simple bound on r is

min
j

∑

h

Ujh
yh

yj
≤ r ≤ max

s

∑

t

Ust
yt

ys
; (2)

for any given vector ~y of positive reals; many stronger bounds
are available in [22][35]. This Perron eigenvalue r corre-
sponds to a unique (up to scaling) eigenvector ~x of U (obeying
U~x = r~x). This ~x is the unique eigenvector of U that consists
of N positive real numbers. And indeed ~x obeys

maxj

∑

h Ujh

mins

∑

t Ust
≤ maxk xk

minh xh
≤ max

j

maxs6=j Usj

mint6=j Utj
(3)

so that minh xh is not only positive, it furthermore cannot be
too small.

The above theorem is complicated to state mainly because
we have been unable to refrain from giving a strong form of
it. The following simpler version suffices for most of our pur-
poses!

Theorem 2 (Perron 1907). Let U be a square matrix with
all entries positive. Then U has a unique (i.e. non-multiple)
positive real eigenvalue r, such that r > |λ| for all eigenvalues
λ of U with λ 6= r. This eigenvalue corresponds to the unique
eigenvector of U with all entries positive real.

Keener proposed finding the Perron eigenvector ~x of U and
then using it as the ratings, i.e. x5 would be the rating of
chessplayer #5. (To make ~x unique we recommend agreeing
to rescale it so that

∑

k xk = 1.) Actually, this is not necessar-
ily going to work because, e.g, there might not be any k > 0

with Uk consisting entirely of positive numbers. Therefore,
instead of Uab counting the number of victories of a over b, or
voter preferences for a over b – which might be zero – it is bet-
ter to define Uab to be the number of victories plus one. That
way all entries of U are positive so the simpler Perron theo-
rem may be applied. This “add one” idea also would be the
recommendation of “Laplace’s rule” from Bayesian statistics
(§5).

We shall discuss Keener’s scheme more later. For now let us
point out an obvious reason to question it. If the results
of all chess or football games were reversed, or if all voter
preference orderings were reversed, or equivalently if the in-
put matrix U were replaced by its transpose, we would hope
that the ordering of the output ratings would reverse. (Even
more powerfully, we might want the rating vector ~x to get
replaced by −~x, or some other involution.) Keener’s system
disobeys this kind of reversal symmetry. For example, the
Perron eigenvector (with eigenvalue r = 10.4773) of

U =






1 9 5

1 1 7

5 3 1




 (4)

is2 (0.4204, 0.2717, 0.3078). Meanwhile for UT it is
(0.2462, 0.3588, 0.3949) which seems unrelated and does not
order the three candidates in reverse order; indeed the first
set of ratings ranks the 2nd candidate bottom, but the second
set of ratings ranks him in the middle.

4 Deeper look at the mathematical

underpinnings of Sinkhorning

Our new rating system, Sinkhorn voting, overcomes that crit-
icism. Instead of the Perron-Frobenius theorem, it depends
on the following, extracted from [6] [15] [48] [41] [47] [50] [1]
[3] [31] [33] [19] [23][24] [40] [42] [7]. Again, we have been un-
able to refrain from stating a very strong form of the theorem,
summarizing a large number of papers in the literature,3 and
which applies to nonnegative matrices; please skip to theorem
4 for a simpler version about matrices with all entries posi-
tive. (A list of definitions of terms in the theorem statement
appears immediately after it.)

Theorem 3 (Sinkhorn balancing). Let U be an N × N
matrix all of whose entries are nonnegative.

I. If U is fully indecomposable then there exist diagonal ma-
trices R and C with positive entries so that S = RUC is
doubly-stochastic, i.e. U ’s rows and columns may be scaled so
that they each simultaneously have sum=1; and further, these
scalings are unique (i.e. R, C, and S are unique) except for
renormalizations of the form R→ κR, C → C/κ.

2Both eigenvectors have been normalized so that the sum of their entries is 1 and rounded to 4 decimal places.
3Nevertheless, our statement does not summarize all that is known. Sinkhorn balancing has been generalized to allow specifiying the row and

column sums, to allow rectangular matrices, and to allow multidimensional arrays instead of 2-dimensional ones. We also mention that Igor Rivin
and I jointly proved that transition probabilities may be assigned to the arcs of a given directed graph, to cause it to turn into a Markov chain that
stationarizes the uniform distribution, if and only if that directed graph is cycle coverable. However, we later realized that result is almost trivial
after one knows the following. Perfect & Mirsky [41] showed that nonzero transition probabilities may be assigned to the arcs of a given directed
graph (i.e. to the nonzero entries of a matrix) to cause it to turn into a Markov chain that stationarizes the uniform distribution (i.e. to turn it
into a doubly stochastic matrix) if and only if that directed graph is fully cycle coverable.

4Parlett & Landis ([40] p.65) mentioned that Kahan had proved that for matrices whose nonzero patterns were not cycle coverable, the Sinkhorn
iteration would ultimately cycle without converging.
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II. If the directed graph associated with U ’s nonzero pattern
is cycle coverable4 (equivalently if per U > 0), then for each
ǫ > 0 there exist diagonal matrices R and C with positive en-
tries so that S = RUC is ǫ-nearly doubly-stochastic. Further-
more, the Sinkhorn iteration on U will converge to a doubly-
stochastic limit matrix S (although limit R and C can fail
to exist). The limit matrix S is the unique doubly-stochastic
matrix which minimizes KLdist(S, U).

III. The following 7 statements all are equivalent:

1. The directed graph arising from U ’s nonzero pattern is
fully cycle coverable

2. There exists a doubly-stochastic matrix with the same
pattern of zeros

3. U ’s rows and columns may be permuted to cause U to
be a direct sum of fully indecomposable matrices

4. Positive diagonal matrices R and C exist so S = RUC
is doubly stochastic (but these R and C can be non-
unique; they are unique exactly in case I)

5. Convergence of S, R, and C all occur in the Sinkhorn
iteration starting from U (and suitable R,C, and S are
produced to satisfy the preceding claim)

6. The convergence of S ultimately is geometric in nature
7. The zero pattern of the Sinkhorn limit matrix S is the

same as that of U .

IV. If U consists entirely of integers, and B is the sum of the
bit-lengths of those integers (expressed in binary), then the
Sinkhorn iteration after t steps will yield5 an ǫ-nearly doubly-
stochastic matrix with ǫ = O(B/t) The individual dependen-
cies of this bound on t and B both are best possible because of
these examples:

(
1 0

α 1− α

)

,






K K 0

1 1 2K − 2

1 1 2K − 2




 ; (5)

t Sinkhorn steps applied to the first matrix yield
(

1 0
α(t) 1−α(t)

)

where α(t) = α/(1 + 2αt) for each t ≥ 0; and when K is a
large integer at least log5(2K2) Sinkhorn steps are required to
cause the second matrix to become 0.1-nearly doubly stochas-
tic.6

V. Each Sinkhorn step monotonically increases the perma-
nent per U (and also | detU |) if nonzero, and monotonically
decreases the difference between the maximum and minimum
column sums. Franklin & Lorenz [19][6][29] showed that each
Sinkhorn step was a contraction in the Hilbert projective met-
ric within either the space of row scalings, column scalings,
or matrices, and showed that the contraction constant γ,
0 < γ < 1, is a function purely of the initial matrix U (i.e.
does not change as Sinkhorn steps proceed7), and is upper
bounded by γ ≤ K2 where

K =
1− µ

1 + µ
where µ =

√

max
h,j,k,ℓ

UhkUjℓ

UjkUhℓ
≤ minhj Uhj

maxkℓ Ukℓ
. (6)

Consequently O(V | log ǫ|) Sinkhorn steps suffice to reach ǫ-
near double stochasticity if all the matrix entries are in [1, V ].
Kalantari & Khachiyan [23] further showed that O([ǫ−1 +
log N ]

√
N log V ) Sinkhorn steps suffice.

VI. If we solve8 the following (2N−2)-dimensional concave-∪
minimization problem:

min
~r,~c

N∑

j=1

N∑

k=1

Ujk exp(rj + ck) (7)

subject to
N∑

j=1

rj =

N∑

k=1

ck = 0 (8)

then the row- and column-scaling factors exp(rj) and exp(ck)
will (up to two scalar multiples) make the N × N matrix U
become doubly-stochastic. It is also possible to deduce the scal-
ing factors from the solution of the following unconstrained
N -dimensional concave-∪ minimization problem:

min
~r

N∑

k=1

ln





N∑

j=1

Ujk exp(rj)



−
N∑

j=1

rj . (9)

Associated definitions:

1. The “permanent” perU of an N × N matrix U is
the “determinant with all plus signs,” i.e. per U =
∑

π

∏N
k=1 Uk,π(k) where the sum is over all N ! permu-

tations π of the set {1, 2, . . . , N}.
2. The “bipartite double” of directed graph with N ver-

tices, is the undirected bipartite graph with N red and
N blue vertices, where red vertex i is connected to blue
vertex j if and only if there is a directed arc i → j in
the directed graph.

3. A directed graph is “cycle coverable” if a set of disjoint
directed cycles exist, which cover each vertex exactly
once. Equivalently: if its bipartite double contains a
perfect matching. Equivalently: the permanent of its
N × N adjacency matrix is nonzero. Equivalently (by
the Frobenius-Konig theorem 2.1 in section 4.2 of [35])
if its N ×N adjacency matrix, no matter what permu-
tation of its rows and columns is taken, has no s × t
block of 0s with s + t = N + 1.

4. A directed graph is “fully cycle coverable” if a set of
disjoint directed cycles exist, which not only cover each
vertex exactly once, but also contain the directed arc a,
and this statement is true (perhaps with different cycle
covers) for each arc a. Equivalently: if its bipartite dou-
ble contains a perfect matching containing edge e and
this statement is true (perhaps with different match-
ings) for each edge e. Parlett & Landis ([40] corollary
on p.64) showed that the Sinkhorn iteration on a non-
negative matrix with cycle coverable but not fully cycle
coverable nonzero pattern, would converge to a matrix
S with zero entries Sab = 0 on all arcs ab of the directed
graph that were not members of a cycle covering.

5The O(B/t) claim is taken from Linial et al [31], who attribute it to Franklin and Lorenz [19]. But in fact, Franklin and Lorenz did not
explicitly say this.

6This second example matrix is fully indecomposable.
7Observe that the formulas (6) for µ and K are unaffected by any row- and column-scaling of U .
8Each Sinkhorn step may be thought of as performing a minimization over half of the coordinates with the other coordinates held fixed. That

and the concave-∪ nature of the objective function is the simplest proof of the global convergence of the Sinkhorn iteration, and also explains why
it generically ultimately converges geometrically.
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5. A directed graph is “strongly connected” if any vertex
is reachable (via a directed path) from any other. The
“figure 8” directed graph, consisting of two directed cy-
cles sharing a common vertex, is an example of a graph
which is strongly connected but not cycle coverable.
The “◦ → ◦” directed graph, consisting of two directed
cycles linked by an arc, is an example of a graph which is
cycle coverable but neither strongly connected nor fully
cycle coverable.

6. A square matrix U is “fully indecomposable” if there
do not exist permutation matrices P and Q so that
PUQ = ( X Y

0 Z ) where X, Y, Z are blocks with X and
Y square in shape, and 0 denotes an all-zero block.
Equivalently, the bipartite N + N -vertex graph asso-
ciated with the nonzero pattern of U has a subset of s
(0 < s < N) inputs which are connected to, and only to,
a subset of s outputs. Full indecomposability implies,
but is not implied by, the requirement that the directed
graph arising from U ’s nonzero pattern be fully cycle
coverable. It also implies, but is not implied by, the
requirement that the directed graph arising from U ’s
nonzero pattern be strongly connected.

7. A square matrix S is “doubly-stochastic”if all its entries
are nonnegative and all its row sums and column sums
are 1. Birkhoff [5] (theorem 3.1 sec 5.3 of [35]; theorem
8.7.1 of [22]) showed the doubly stochastic matrices are
precisely the convex combinations of permutation ma-
trices. It is “ǫ-nearly doubly-stochastic” if all its entries
are nonnegative and all its row sums and column sums
are within ±ǫ of 1.

8. A“Sinkhorn step”consists of renormalizing the columns
of U to make them sum to 1, then renormalizing the
rows of U to make them sum to 1. The “Sinkhorn it-
eration” is to repeatedly do Sinkhorn steps.9 (See §6
for a formal algorithm statement.) If desired, the prod-
uct of all the row-renormalizing (respectively column-
renormalizing) factors can be accumulated in R and C
respectively.

9. The “Kullback-Leibler distance” between two prob-
ability distributions p and q is KLdist(q, p) =
∑

j qj log(qj/pj). This is not actually a metrical dis-
tance since KLdist(p, q) and KLdist(q, p) need not be
equal, but it does satisfy these distance-like properties:
KLdist(p, q) ≥ 0 with equality if and only if p = q,
and KLdist(p, q) is a concave-∪ function. In the The-
orem we regard S and U (after normalization to make
their N2 entries sum to 1) as probability distributions
on event-pairs.

10. The “Hilbert projective metric” among real N -vectors
with all entries positive, is

HPdist(~x, ~y) = log max
i,k

xiyk

xkyi
(10)

and this may also be regarded as a metric on N×N ma-
trices A, B with all entries positive where A and B are
equivalent under some row- and column-scaling vectors

~r and ~c:

HPdist(A, B) = HPdist(~r,~1) + HPdist(~c,~1) (11)

where ~1 = (1, 1, 1, . . . , 1). The “contraction constant”
K(A) of a matrix A with nonnegative entries in the
Hilbert projective metric is

K(A) = K(AT ) = sup
~x,~y>~0

HPdist(A~x, A~y)

HPdist(~x, ~y)
(12)

where ~x and ~y are not allowed to be proportional.10

Theorem 4 (Simpler Sinkhorn balancing). Let U be a
square matrix all of whose entries are positive. There ex-
ist diagonal matrices R and C with positive entries so that
S = RUC is doubly-stochastic, i.e. U ’s rows and columns
may be scaled so that they each simultaneously have sum=1;
and further, these scalings are unique (i.e. R, C, and S are
unique) except for renormalizations of the form R → κR,
C → C/κ; and further, the Sinkhorn iteration on U will con-
verge to R, C, and S and this convergence will ultimately
behave geometrically.

Our new suggestion is to compute the Sinkhorn row and
column scalings R and C for the vote-matrix U . Again the
“add one” definition of U is recommended, allowing us to use
the simpler Sinkhorn theorem concerning matrices with all
entries positive. Then the Sinkhorn rating of chessplayer #p
is Cpp/Rpp. See §6 for a formally-stated algorithm.

Like Keener-eigenvector ratings, Sinkhorn ratings then are
positive numbers, and only are defined only up to a common
rescaling factor but are otherwise unique. Both kinds of rat-
ings may be defined completely uniquely by agreeing on some
normalizing scheme, for example by scaling all N Sinkhorn
ratings to make their geometric mean be 1.

We shall see that there are other parallels as well, relating
to the fact that both rating schemes have interpretations in
terms of Markov chains.

In contrast to Keener-eigenvector ratings (EQ 4), Sinkhorn
ratings (obviously) obey

Lemma 5 (Sinkhorn reversal symmetry). The Sinkhorn
ratings arising from UT are the elementwise reciprocals
of those arising from the matrix U , i.e. reversing all
vote-preference orderings (or all game results) causes each
Sinkhorn rating x to become 1/x. (Or, if we prefer [54] to
use the logs of these ratings, then reversal negates them.)

5 Laplace’s rule in Bayesian statis-

tics

P.S.Laplace was once asked11: given that in N independent
coin-flipping experiments, H heads appear (0 ≤ H ≤ N) what
should we deduce about the probability p that the next coin
toss will yield a head?

9Actually, according to Bregman this iteration was used in Russia in the 1930s.
10Incidentally, the contraction behavior of the map ~x → A~x in the Hilbert projective metric with contraction constant K < 1 if minj,k Ajk > 0,

immediately proves the Perron theorem 2. The Hilbert metric thus can be used to say something useful about both the Perron and Sinkhorn
problems.

11Actually, the story was that he was asked to give odds against the sun rising tomorrow, given that it rose on N previous days. Laplace
suggested the odds N + 1:1.
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The naive estimate would be p = H/N . However, if H = 0
this yields p = 0, and since in that circumstance all the sta-
tistical experimental error (if there is any) is necessarily one-
sided, this estimate is probably biased, i.e. likely to be an
underestimate. Can we suggest an unbiased estimator?

If we suppose (“uniform prior”) that all p within 0 ≤ p ≤ 1
are equally likely to arise from equal-measure subsets, then
the expected value of p is

p =

∫ 1

0 pH+1(1 − p)N−Hdp
∫ 1

0
pH(1 − p)N−Hdp

=
H + 1

N + 2
. (13)

This is Laplace’s unbiased estimator.12

In the voting or gameplaying context: if there are G games
between Amy and Bob and Amy wins W of them (and loses
G − W ), then we estimate the probability of Amy winning
their next game to be (W + 1)/(G + 2). If among N random
voters H prefer candidate Amy over Bob (and T = N − H
prefer Bob) then an unbiased estimate of the Amy:Bob pref-
erence ratio is (H + 1) : (T + 1). This provides some justi-
fication (besides the fact that it makes Keener and Sinkhorn
work better) for our “add one” suggestion for each Uab.

6 Formal algorithm statements

The first step in the algorithm is to get a matrix U that sum-
marizes the votes or game results. Since there could be sev-
eral ways to do that, it is best to regard the N × N matrix
U (rather than the votes or game results themselves) as the
“input” of our algorithms. But one concrete suggestion is to
let Uab be one plus the number of wins of a over b (or number
of voters expressing the preference a > b). That is motivated
both by Laplace’s rule and by the fact that if all Uab > 0 then
the algorithms below will converge ultimately geometrically.

procedure Keener-rating
1: Start with ~x = (1, 1, 1, . . . , 1)T .
2: repeat
3: ~x← U~x;
4: y ←∑

h xh;
5: ~x← ~x/y;
6: until ~x and y have converged
7: Output x1, x2, . . . , xN .

procedure Sinkhorn-rating
1: Start with ~r = ~c = (1, 1, 1, . . . , 1) and S = U .
2: repeat
3: for k = 1, . . . , N do
4: rk ← rk/

∑

ℓ Skℓ;
5: end for
6: for k = 1, . . . , N do
7: ck ← ck/

∑

ℓ Sℓk;
8: end for
9: for k = 1, . . . , N , ℓ = 1, . . . , N do

10: Skℓ = rkUkℓcℓ;
11: end for
12: until ~r and ~c have converged
13: Output c1/r1, c2/r2, . . . , cN/rN , or some agreed normal-

ization of this N -vector (for example we could agree to
scale it so its geometric-mean entry is 1).

7 Interpretations in terms of Markov

chains, probability, entropy

Keener’s eigenvector voting system may also be thought of
in the following way. (We assume ~x is the Perron eigenvector
of U .) Consider this Markov Chain on the N candidates. You
are sitting on candidate A. You select a random voter v (or a
random chess game, assuming for simplicity we are discussing
a draw-free variant of chess) and a random candidate B. If v
prefers B to A then you jump to candidate B, otherwise you
stay with A. Keep doing this process forever. You tend to
sit on better candidates for a larger fraction of the time than
poor ones. The fraction of the time you will be at candidate
n is xn.

But, this interpretation really only is true assuming

1. We have not adopted the “add one suggestion,”
2. All voters provide full preference orders as their votes

(or, with chessplayers, every player plays each other
player an equal number of times according to a “round
robin” tournament).

3. We agree to make Uaa be whatever value is required
to make all columns of U have equal sum E, namely
Uaa = E −∑b6=a Uba.

But, in various ways, it would be possible to enforce these
rules about the structure of U even if we do not have a
round-robin tournament or not all voters provide full prefer-
ence rankings. All that is necessary is to have some suitable
agreed-on procedure for constructing the matrix U . That is
one reason why we said that Keener’s idea leads to a “family”
of methods, not just one – there is considerable freedom of
choice here. For example if a plays 20 chess games versus b
but c plays only 3 games versus d, we could agree to multiply
all the c-d game results by 20/3 and thus “simulate”a true 20-
round-robin tournament. This would allow the Markov chain
interpretation but would not necessarily be desirable because
it would overemphasize the importance of the cd games, “dis-
torting the data.”

One of the joys of Sinkhorn voting is that no such unpleasant
choice is forced upon us – there is a nice Markov Chain inter-
pretation even with undistorted data, and there is no need to
do anything peculiar with the diagonal entries of U .

Here is that interpretation: Rpp and Cpp are “amplification
factors” associated with chessplayer (or political candidate)
#p. Namely, Rpp is the factor by which we need to “am-
plify” p’s win-count (row p of U), while Cpp is the factor by
which we need to amplify p’s loss-count (column p of U) in or-
der to make U become the transition matrix of Markov chain
with uniform stationary distribution. Thanks to the Sinkhorn
theorem, p’s Sinkhorn rating Cpp/Rpp exists and is unique
(except for an arbitrary normalization factor that is indepen-
dent of p). For the weakest chessplayers p, we expect that
Cpp/Rpp will be small since we would expect 0≪ Rpp < 1 and
0 < Cpp ≪ 1, i.e. large amplification of their win-counts and
deamplification of their loss-counts would be required to make
weak players look the same as strong ones. For the strongest

12The integrals are of “Euler beta function” type, which is why they can be done in closed form. Thus 1/
R

1

0
pH(1 − p)N−Hdp = (N + 1)

`

N

H

´

.
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chessplayers p, the situation is the opposite: we expect that
Cpp/Rpp will be large since we would expect 0 < Rpp ≪ 1
and 0≪ Cpp < 1.

Furthermore, if two players a and b with Sinkhorn ratings
sa, sb (normalized so that sa + sb = 1) were to play a G-game
chess match, we would expect (in the absence of other infor-
mation about a and b) that the a : b win-ratio probably would
be approximately

(G + 2)sa − 1 : (G + 2)sb − 1 (14)

i.e, in the G→∞ limit (which seems the most relevant if we
want to estimate win probabilities from ratings – the Laplace
rule presumably already was applied when those sa were com-
puted and it is senseless to use it a second time) just

sa : sb. (15)

EQ 14 arises because Sinkhornizing the matrix

(
1 A + 1

B + 1 1

)

(16)

(corresponding to a G = A + B-game match with A wins for
a and B wins for b) leads to Raa =

√
B + 1, Rbb =

√
A + 1,

Caa = (A + 1)
√

B + 1/K, Cbb = (B + 1)
√

A + 1/K, where
K = (B + 1)(A + 1)[1 +

√

(B + 1)(A + 1)], i.e. to Sinkhorn
ratings

sa =
A + 1

G + 2
, sb =

B + 1

G + 2
(17)

precisely corresponding to the Laplace-rule estimates of win-
probabilities.

Thus Sinkhorn ratings are not just meaningless numbers –
EQ 15 allows them to be used by gamblers to determine
the odds for their next bet.

The Kullback-Leibler distance result in theorem 3 II also al-
lows us to interpret Sinkhorn ratings as minimum entropy
statistical estimators. Specifically, KLdist(p, q) is the “rel-
ative entropy”[12] of p with respect to q. KL distance can also
be interpreted as the needed extra message-length per datum
for sending messages distributed as p, if the messages are en-
coded using a code optimal for distribution q. Equivalently,
choosing p to minimize KLdistance causes p to represent that
“theory” of the world that is “simplest” thus capturing “Oc-
cam’s razor.” I.e. p is the “theory” describable (for those
whose already know the “data” q) with the fewest bits – and
hence which seems“maximally likely” (assuming #bits is pro-
portional to negated log likelihood).

Therefore, the Sinkhorned matrix S may be regarded as the
Markov chain which has uniform stationary distribution and
whose transition matrix is the closest in KLdistance to the
original matrix U , i.e. which has the smallest relative entropy
with respect to U , i.e. which is the “theory of the world”13

which is the “simplest” given that we already know the “data”
U .

8 Voting system properties of

Keener-eigenvector and Sinkhorn

We shall now examine “voting paradoxes” in both voting sys-
tems.

An example of “favorite betrayal” in both systems: In
the following 19-voter election

#voters their vote
8 B > C > A
6 C > A > B
5 A > B > C

both Sinkhorn voting and Keener eigenvector voting (and
most other voting systems) exhibit “favorite betrayal.” In
other words, these (and most) voting systems are flawed in
the sense that “dishonest exaggeration pays.”

There is a Condorcet cycle, and the winner is B under either
Keener-eigenvector or Sinkhorn voting or most other voting
systems, such as Plurality, Borda, and Condorcet Least Re-
versal.

But if the 6 C > A > B voters insincerely switch to
A > C > B (“betraying their favorite”C) then A becomes the
winner under all these voting systems (and is the Condorcet-
winner), which from their point of view is a better outcome.

My favorite voting system,14 “range voting,” does not exhibit
favorite betrayal in 3-candidate elections, in the sense that
each voter’s strategically best vote orders the 3 candidates
(via the ≥ relation) in a manner that is not incompatible with
that voter’s honest ordering. However, range voting seems not
useable for the purpose of rating chessplayers based on tour-
nament results.

Let us now confirm the above statements. In the situation
above, the U -matrix (without using the “add one” option) is
the left-hand matrix below:






0 11 5

8 0 13

14 6 0











0 11 11

8 0 13

8 6 0




 (18)

and alteration of the 6 C > A > B votes to A > C > B
changes it to the right-hand matrix (in which A is a Con-
dorcet winner). The eigenvectors are respectively

(0.301, 0.361
︸ ︷︷ ︸

B wins

, 0.338) and (0.372
︸ ︷︷ ︸

A wins

, 0.353, 0.275) (19)

with respective eigenvalues 18.841 and 18.551.

The Sinkhorn ratings are

(0.789, 1.164
︸ ︷︷ ︸

B wins

, 1.089) and (1.237
︸ ︷︷ ︸

A wins

, 1.164, 0.695). (20)

Dark-horse+3 pathology: A different and perhaps even
more damaging kind of strategic voting pathology, which both
Keener, Sinkhorn, and a great number of other ranked voting
systems exhibit, is the “dark horse 3” pathology. There are
4 candidates, A, B, C, D and all voters agree that the “dark

13Where “permissible theories” are Markov chains with uniform stationary distribution.
14Your vote in an N-candidate range election is an N-vector of numbers each in the range [0, 1]. The vectors are averaged and the candidate

with the highest mean wins.
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horse” D is inferior to A, B, and C. However, the voters
disagree about the best choice among {A, B, C}. Therefore,
to maximize the impact of their vote, each ranks his favorite
candidate top, D artificially second, and the other two can-
didates artificially last (in random order). Assuming the A-,
B-, and C-fans are roughly equinumerous, the result will be
a U matrix proportional to









0 3 3 2

3 0 3 2

3 3 0 2

4 4 4 0









. (21)

Then the Perron eigenvector is (0.229, 0.229, 0.229, 0.314) and
the Sinkhorn ratings are (0.841, 0.841, 0.8411.682) so that, in
either system, the “sure loser” dark horse D wins.

Example of failure to elect Condorcet-Winner: When a
Condorcet-winner (“beats-all winner”) exists, neither Keener
nor Sinkhorn necessarily elects him. In the 4-candidate elec-
tion among {A, B, C, D} with the following U -matrix,

U =









0 11 11 11

9 0 20 20

9 0 0 20

9 0 0 0









(22)

the Condorcet-Winner is A but B is the Keener winner be-
cause the Perron eigenvector is (0.309, 0.372, 0.205, 0.113) and
B’s entry 0.372 is maximum.

If we add 1 to all entries of the U matrix to get

U =









1 12 12 12

10 1 21 21

10 1 1 21

10 1 1 1









(23)

the Condorcet-Winner is A but B is the Sinkhorn winner
because the Sinkhorn ratings are (1.147, 4.276, 0.955, 0.213).
With Keener, B also still uniquely wins since the Perron eigen-
vector is (0.304, 0.357, 0.213, 0.127). For the original U matrix
without 1s added, Sinkhorning converges very slowly and no
row- and column-scalings, and hence no finite Sinkhorn rat-
ings, exist; but the Sinkhorn rating of B appears to go to ∞
faster than any other Sinkhorn rating, in that scenario. N

However, we claim

Theorem 6 (Neither Keener nor Sinkhorn can elect
Condorcet-loser). In a k-fold round-robin chess tourna-
ment, or election in which each voter provides a full rank-
ing as his vote, neither the Keener nor the Sinkhorn tourna-
ment/election winner can be a Condorcet loser, i.e. neither
can be a player with a losing record against each other player.

Proof: Keener: Let ~x be the Perron eigenvector. The jth
row-sum of U where j corresponds to a Condorcet loser, must
be below average, and indeed the jth weighted row sum with
any fixed positive weights – in particular if we use ~x as the
weights – must be below average, and hence cannot be max-
imal. But U~x is proportional to ~x! Thus the assumption

that j wins the election, i.e. that xj = maxk xk, leads to a
contradiction.

Sinkhorn: Same proof, except use the column scaling fac-
tors as the “positive weights,” and then the largest weighted
row-sum tells us the Sinkhorn winner. It cannot correspond
to a below-average weighted row-sum, such as must happen
for a Condorcet loser. �

“Add-top” and “no-show” failures? If, in an election, the
addition of some set of identical votes all ranking candidate
A top, prevents A from winning, that is an “add-top failure.”
More generally, if adding some set of identical votes causes
the election to yield a worse result (from the point of view of
those votes), that is a “no-show paradox.” (So called because
those voters would have been better off “not showing up.”)

On the left is the U -matrix (e.g. B beats A pairwise 17 votes
to 1) of a hypothetical 4-candidate election.








1 3 1 9

15 1 10 3

17 8 1 7

9 15 11 1









+









0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0









=









1 4 2 10

15 1 11 4

17 8 1 8

9 15 11 1









(24)
On the right is the U -matrix after adding one extra vote
A > B > C > D, represented by the middle ma-
trix. The Sinkhorn ratings arising from the left ma-
trix are (0.385, 1.181, 1.492, 1.473) representing the ranking
C > D > B > A, and from the right matrix are
(0.467, 1.160, 1.356, 1.361) representing the ranking D > C >
B > A. (Both vectors have been normalized to have unit ge-
ometric mean.) This situation is a Sinkhorn no-show failure
because the extra votes ranking D bottom caused D to win
the election. (However, Keener regards D > C > B > A
in both situations.) Due to our reversal-symmetry lemma 5,
in the same scenario with all votes reversed, an extra vote
ranking D top would cause the Sinkhorn election to rank D
last.

I am unaware of any add-top failure situation for Sinkhorn or
Keener. However, Keener can exhibit a milder kind of add-top
“failure.” On the left is a U -matrix (e.g. B beats A pairwise
19 votes to 1 vote):









0 19 19 17

1 0 17 2

1 3 0 2

3 18 18 0

















0 20 20 18

1 0 18 3

1 3 0 3

3 18 18 0









(25)

On the right is the U -matrix after adding one extra vote
A > B > C > D. The Perron eigenvector of the left ma-
trix is (0.494, 0.134, 0.081, 0.292) and of the right matrix is
(0.485, 0.145, 0.088, 0.282) where both vectors have been nor-
malized to have unit sum. In both cases A is the winner,
but A’s eigenvector entry has diminished in the second case,
which is somewhat “paradoxical.” Because A still wins, this is
not a failure of “add-top” for Keener eigenvector voting, but
it is a failure in the weaker sense that adding an A-top vote
actually diminishes A’s rating. In the chessplayer view, this is
very odd. It means that adding an additional round of games
in which A wins all of his games (i.e. one win versus every
other player), actually causes A’s rating to decrease.
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This kind of pathology appears to be extremely rare with
Sinkhorn ratings – but (a slightly milder form of) it still can
happen:










1 2 17 11 11

16 1 10 7 1

1 8 1 5 1

7 11 13 1 1

7 17 17 17 1





















1 3 18 12 12

16 1 11 8 2

1 8 1 6 2

7 11 13 1 2

7 17 17 17 1











(26)

On the right is the U -matrix after adding one extra vote
A > B > C > D > E. The Sinkhorn ratings (normal-
ized to have unit geometric mean) for the left matrix are
(1.6537, 0.7169, 0.2909, 0.7184, 4.0368) and of the right matrix
is (1.6382, 0.8535, 0.3356, 0.7418, 2.8725) and A’s rating has
diminished.

Here are some additional examples of no-show paradoxes.








1 9 8 2

1 1 1 4

2 9 1 6

8 6 4 1

















1 1 9 1

9 1 7 6

1 3 1 9

9 4 1 1

















1 1 2 6

9 1 1 2

8 9 1 4

4 8 6 1









(27)

In the first example, the Sinkhorn ratings are
(1.857, 0.319, 1.300, 1.298) corresponding to the ranking A >
C > D > B. After adding one additional A > B > C > D
vote, they become (2.020, 0.382, 1.136, 1.141) corresponding
to the ranking A > D > C > B. Thus an extra D-bottom
Sinkhorn vote caused D’s election result to improve from 3rd
to 2nd place.

In the second example, the Perron eigenvector is
(0.191, 0.339, 0.236, 0.235) corresponding to the ranking B >
C > D > A. After adding one additional A > B > C > D
vote, it becomes (0.215, 0.338, 0.223, 0.225) corresponding to
the ranking B > D > C > A. Thus an extra D-bottom
Keener vote caused D’s election result to improve from 3rd
to 2nd place.

In the third example, the Perron eigenvector is
(0.1899, 0.1895, 0.3190, 0.3016) corresponding to the ranking
C > D > A > B. After adding one additional A > B >
C > D vote, it becomes (0.2066, 0.2086, 0.3098, 0.2750) cor-
responding to the ranking C > D > B > A. In this case an
extra A-top Keener vote caused the election to rank A last.

Monotonicity: A rating system is “monotonic” if switching
an adjacent preference A > B to B > A in a vote (or in the
chessplaying view, reversing the result of the A-B game so
B now wins) cannot cause A’s rating to increase or B’s to
decrease.

Are Keener-eigenvector and Sinkhorn voting monotonic? A
computer search of millions of random U -matrices arising
from round-robin tournaments failed to find any example of
a monotonicity failure for either system. That suggested that
such failures are either impossible, or else so rare that they are
not worth worrying about in practice. But, frustratingly, for
a long time I was unable to prove this, until finally a break-
through allowed the proof. We shall first set the stage by
examining the difficulties.

The following theorem goes in the direction of, but seems in-
adequate to prove, the desired result.

Theorem 7 (Markov chain monotonicity). Let p(X, Y )
and q(X, Y ) be irreducible Markov chain transition matrices
on the same finite state space. Suppose there exist three dis-
tinct states A, B, C such that

p(A, B) < q(A, B), p(A, C) > q(A, C) (28)

and that p(X, Y ) = q(X, Y ) for all other entries (X, Y ).
Let πp(·) and πq(·) be the stationary distributions. Then
πq(B) > πp(B).

Proof (by David Aldous): The key realization is that
the expected time between returns to B is 1/π(B), because
if it were anything else, then by the law of large numbers,
after a very long time the number of returns would, with
probability→ 1, tend to a different number than it should,
forcing an incorrect occupancy probability π(B).

So it suffices to prove that the expected return time to B is
smaller in the q-chain. This is fairly obvious. There are two
kinds of return paths to B, those that go through A and those
that do not. The latter kind are not affected.

The former kind return faster to B after the alteration since
it takes 1 step from A to reach B directly, but ≥ 2 steps to
reach B through C, and the probability of going directly to
B increases, whereas the probability of going to C decreases
(and all else stays the same) so the net effect on expected
return time to B starting at A is

(1− c) dp for some c ≥ 2 (29)

which is negative. �

Unfortunately the power of this kind of reasoning is very lim-
ited. Consequently almost every other monotonicity question
about Markov chains still seems open!15

Here are two kinds of Markov chain nonmonotonicity:
Example #1: Let A and A′ be connected in a 2-cycle. Let
B and B′ be connected in a 2-cycle. Let there be weak cou-
plings (0.1 probability) of going between A and B in either
direction. Finally, let there be a very long directed path from
B to A (say length 104 arcs) with very small probability (say
10−7) of transitioning from B onto the path. If P (B, A) is
decreased by ǫ while P (B, path) is increased by ǫ (in the limit
ǫ → 0+) then the return time TA should increase by a small
amount, but TB will increase by a larger amount. This is
an example of a non-monotonic Markov chain in the sense
that decreasing P (B, A) while increasing P (B, C) (both by ǫ)
causes π(A)−π(B) actually to increase. This construction is
an approach suggested by Aldous, here made more concrete.

15I consulted Markov chain experts D.Aldous and L.Snell, and neither knew of any, or knew how to establish any, other Markov chain mono-
tonicity results besides theorem 7. There are none to be found in all the (many) books on Markov chains. And theorem 7 appears to be an isolated
special case; its proof technique seems incapable of proving any related results.
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Example #2:


















0 1 0.02 0 0 0

0.9 0 0 0 0.0001 0

0.1 0 0 1 0 0

0 0 0.899 0 0 0

0 0 0.081 0 0 1

0 0 0 0 0.9999 0


















(30)


















0 1 0.101 0 0 0

0.9 0 0 0 0.0001 0

0.1 0 0 1 0 0

0 0 0.899 0 0 0

0 0 0 0 0 1

0 0 0 0 0.9999 0


















(31)

In the 6-state Markov chain with the first transition ma-
trix, increasing P (C, A) from 0.02 to 0.101 while decreasing
P (C, E) from 0.081 to 0 (yielding the second matrix) actually
causes π(A)/π(C) to decrease from 1.0100041 to 1.01.

Fortunately, we now present a simple new techique of im-
mense power for proving Markov chain monotonicity results.
It s based on our new characterization (theorem 13) of Markov
stationary distributions and Perron eigenvectors as the solu-
tion of a concave-∪ minimization problem, and the following

Lemma 8 (Perturbation of concave-∪ minimization
problems). Let F (~x) be a concave-∪ function with a (nec-
essarily unique) minimum at ~x = ~m. If a perturbation
G(~x) = F (~x) + δF (~x) is made, where δF is a smooth func-
tion which is (i) bounded and (ii) has gradient ~g 6= ~0 at ~m,
and (iii) is (non-strictly) concave-∪, then the minimum ~n
of G(~x) (which due to iii is still necessarily unique) obeys
(~n− ~m) · ~g < 0.

Proof: This is actually merely a special case of the much
more general (and well-known [21]) fact that the minimum of a
strictly concave-∪ function must lie strictly within the “down-
ward” halfspace arising by creating a hyperplane through the
current position that is orthogonal to the gradient vector
there. �

Corollary 9 (Keener monotonicity). Keener eigenvector
voting is a monotonic voting system: perturbing the U matrix
by adding ǫ to Uab and subtracting ǫ from Uba (in the limit
ǫ → 0+ and assuming both Uab and Uba are positive) cannot
cause xa − xb to decrease where ~x is the Perron eigenvector
of U .

Many other monotonicity statements about Markov chains
ought to be provable in a similar fashion. The same lemma
8 instead applied to the concave-∪ minimization problem in
theorem 3(VI) leads to

Corollary 10 (Sinkhorn monotonicity). Sinkhorn voting
is a monotonic voting system: perturbing the U matrix by
adding ǫ to Uab and subtracting ǫ from Uba (for any ǫ > 0 and
assuming both Uab and Uba are positive) cannot cause sa/sb to
decrease where sp = Cpp/Rpp are the Sinkhorn ratings arising
from U .

Failure of “immunity to clones”: Neither Keener nor
Sinkhorn is “immune to clones” as the following example
demonstrates. The U -matrix on the left






0 2 1

1 0 2

2 1 0
















0 2 1 1 1

1 0 2 2 2

2 1 0 2 1

2 1 1 0 2

2 1 2 1 0











(32)

represents a Condorcet cycle situation with the three candi-
dates A, B, C tied. It changes to the matrix on the right upon
splitting C into three cloned candidates C1, C2, C3 themselves
forming a tied Condorcet cycle. The eigenvectors are

(1, 1, 1)/3 and (0.177, 0.229, 0.198, 0.198, 0.198) (33)

respectively so that the cloning of C breaks the tie16 and
causes B to become the winner. The same thing happens
under Sinkhorn; the Sinkhorn ratings are

(1, 1, 1) and (0.763, 1.311, 1.000, 1.000, 1.000) (34)

respectively.

However, somehow these clone problems do not seem very se-
rious because in 1-on-1 contests, cloning the candidates does
not seem to affect Keener or Sinkhorn.

9 Runtime bounds for these and a

smorgasbord of other algorithms

Runtimes for the procedures of §6. Assuming our “add
one” suggestion for obtaining U from the V votes is adopted
so that minj,k Ujk ≥ 1, then the Keener-rating procedure in
§6 will only need to perform O(V | log ǫ|) powering iterations
to reduce the vector L2 norm of the additive error in ~x be-
low ǫ. (This also is true in the chess-game picture with V
games.) This follows from the upper bound on |λ|/r with
λ 6= r given in theorem 1. Keener-rating’s total runtime is
therefore O(V N2| log ǫ|) at most.

The exact same argument, but now based instead on the
upper bound on the contraction constant in theorem 1(V),
proves that the same upper bound holds for Sinkhorn-rating’s
total runtime.17

These theoretical runtime bounds are best possible for any
voting algorithm, in the sense that simply computing the ma-
trix U from the V ranked ballots takes order V N2 steps,18

which is the same order as the runtime bound for the subse-
quent iteration for any fixed ǫ > 0.

16And of course, by slightly perturbing this example we can cause the original scenario to have no ties and to have anybody we want as winner.
17We have used the obvious fact that each Sinkhorn or powering step runs in O(E + V ) steps, i.e. O(N2) steps for a dense matrix.
18At least employing the naive method where each ranked-ballot is converted to an N × N matrix, which then is added on to the total matrix.
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Experimentally, the above runtime bounds are often un-
duly pessimistic. For square N × N matrices with random
elements independently sampled from the uniform distribu-
tion on [0, 1], experiments indicate that ≤ 7.5 Sinkhorns are
required (on average) to cause convergence to the point where
detC > 0.999999999. This is true regardless of N : the slow-
est convergence is with N = 2 when 7.5 Sinkhorns are needed
(on average); but when N ≥ 100 only 3 Sinkhorns are needed.

For the same kind of matrices, experiments indicate that ≤ 20
matrix-vector multiplication iterations are required (on aver-
age) to cause convergence of the Perron eigenvector ~x to the
point where |~x− ~xold|2 ≤ 10−19. Again this is true regardless
of N . Indeed ≈ 20 iterations are required (on average) when
N = 2 but for N ≥ 99 at most 7.1 are needed.

The performance in these experiments in undoubtably aided
by the fact that this way of producing random matrices tends
to cause the Perron eigenvector to be near the initial guess
(1, 1, . . . , 1) and the matrix to be about N−1/2-nearly doubly
stochastic, when N is large.

We shall now discuss pretty much all the other notions in this
paper, but now algorithmically.

The condition in theorem 1 that the N ×N matrix U have
all entries non-negative and that Uk have all entries positive
when k = (N−1)2+1, may be checked in O(N2) steps plus the
amount of time required to square U successively ⌈2 log2 N⌉
times in all.19

Deciding whether an N -vertex digraph is cycle coverable,
or equivalently whether its adjacency matrix has nonzero per-
manent, or equivalently whether its bipartite double graph
has a perfect matching, may be accomplished in O(N2.376)
arithmetic operations by replacing the nonzero entries of the
matrix by random numbers mod P (for some large random
prime P , with, say N2 < P < 2N2) and computing its deter-
minant in mod P arithmetic via the fastest known algorithm.
If the result is nonzero, then so is the permanent. If the re-
sult is 0, then either the permanent is 0, or it is nonzero and
we were unlucky, but such bad luck happens with probabil-
ity ≤ N/P by the Schwartz-Zippel lemma [45] (and the error
probability may be reduced to exponentially tiny values by re-
peatedly rerunning the algorithm with independent random
numbers each time).

The fastest known deterministic algorithm for deciding
if there is a perfect matching (and which will find a
maximum-cardinality matching) takes O(E

√
V ) steps for

a V -vertex, E-edge bipartite graph [17], i.e. O(N2.5) for us.
However, on a large class of random graphs (selection of edges
according to biased coin flips) this algorithm requires only
O(V 1.5 + E log V ) expected steps, i.e. (N2 log N) for us, es-
sentially because the augmenting paths it uses are usually
only logarithmically long [4].

To check whether this digraph is fully cycle coverable, or
equivalently whether its bipartite double graph always has
a perfect matching containing edge e, no matter what e you
choose, can be accomplished in O((V +E)E) steps, i.e. O(N4)
for us. To do that we find a perfect matching and then for each

edge e = (a, b) not yet known to be in a matching we decide
whether an “augmenting cycle” exists in the current matching
that joins a to b. This decision process may be accomplished
by actually finding that cycle (consisting of edges alternately
in and not in the current matching) by an O(V + E)-time
graph exploration reminiscent of breadth-first search. The
exploration starts at a and explores suitable non-e edges un-
til either running out of edges or arriving at b after an odd
number of edge-traversals.

To decide whether an N × N matrix U is fully indecom-
posable, we may use the following lemma of Dustin Stewart
([55] theorem 4.1). Because we may find the strongly con-
nected components of a directed graph in O(V + E) steps
[56], this leads to an O((V + E)V )-step decision-procedure,
i.e. for us O(N3) steps.

Lemma 11 (Stewart’s characterization of full inde-
composability). The adjacency matrix U of a “tourna-
ment”20 directed graph D is fully indecomposable if and only if
(1) D is strongly connected and (2) for all vertices v, DG−v
does not contain a single-vertex strong component.
Unfortunately, the Stewart characterization, and hence our
O(N3)-time test, are only applicable if UT + U + I has all
positive entries: In the chessplayer view, that means each
pair of players have played at least one game, and in the vot-
ing view that means for each pair of candidates, at least one
voter has expressed a preference for one over the other.

How can we test full indecomposability for fully general ma-
trices U? We can employ the following known21

Lemma 12 (Characterization of full indecomposabil-
ity). A matrix U is fully indecomposable if and only if (1) its
nonzero pattern is the same as the nonzero pattern of some
doubly-stochastic matrix and (2) its directed N -node graph is
strongly connected.
We can test (2) in O(E + V ) steps [56], and can test (1)
by linear programming (the conditions for double stochas-
ticity with a given nonzero pattern form a linear program).
Thus there is a polynomial-time algorithm for testing ma-
trix full-indecomposability. Unfortunately the runtime up-
per bounds for this algorithm are extremely large and in
fact the best test I presently know involves simply using
the best available Sinkhorn balancing algorithm to find an ǫ-
nearly doubly-stochastic matrix where (by bounds mentioned
in §10.2) it suffices to take ǫ = N−3N (where we assume
wlog that the original matrix is boolean) to get a clear dis-
crimination. That yields a O(N5.01)-step test by using ei-
ther the Kalantari-Khachiyan algorithm [23], the Nemirovsky-
Rothblum algorithm [37], or the present paper’s new strong
polynomial algorithm (§10.8). The fact that all three of these
(rather poor) time bounds happen to agree suggests that per-
haps the present paper’s new strong polynomial algorithm is
not easily improveable. But by using the sped up version of
Kalantari-Khachiyan that employs fast matrix multiplication
(mentioned in our §10.2) the runtime is reduced to O(N4.376)
steps.

The fastest algorithm I know of that both
19We use here the fact that if U has non-negative entries and Uk has all entries positive for some k ≥ 1, then Um has all entries positive for each

m ≥ k. E.g. see ex.3 p.522 of [22].
20A “tournament” is a directed graph that has a arc joining each pair of vertices in one or the other direction, i.e. is such that U + UT + I has

all positive entries.
21It is deducible from theorem 3.
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1. finds a perfect matching of maximum weight-sum in an
N + N -vertex bipartite graph with edge weights, and
also

2. solves the dual linear program by finding two N -vectors
~r and ~c such that (i) ra + cb = Wab if the edge ab (with
weight Wab) is in the matching and (ii) ra + cb ≥ Wab

and (iii)
∑

a ra +
∑

b cb is minimum possible,

is the Kuhn-Munkres “Hungarian method for solving the as-
signment problem” (chapter 11.2 of [39]). It runs in O(N3)
steps.

10 Other algorithms for Sinkhorn

balancing and for finding the

Perron-Frobenius eigenvector

The simple Sinkhorn and powering iterations of §6 converge
ultimately geometrically if the matrix has all entries positive,
and indeed our theorems 1 and 3 have provided upper bounds
on the contraction constants. And for our applications in
voting if the “add-one” suggestion is adopted our matrix does
have all entries positive, and indeed in [1, V + 1], leading to
good upper bounds (≤ 1−1/(V +1)) on the contraction con-
stants, and hence to excellent runtime bounds.

However, for matrices with nonnegative entries, some of which
may be zero, we have not given any upper bound below 1 on
the contraction constant. Therefore, these algorithms might
run slowly.

So in this section we are going to discuss more sophisticated
algorithms, some new, designed to try to guarantee fast run-
times even for matrices with some very small or zero entries.

What do we mean by “fast”? We would like our algorithms to
run in a number of bit-operations polynomial in the bitlength
of the input matrix (assumed to consist entirely of nonnega-
tive integers) and | log ǫ|, to get a final answer with accuracy
parameter ǫ. The Sinkhorn and powering iterations of §6 fail
to meet this criterion and both can require exponential time.

Another possible criterion – “strong polynomial time”22 –
would be that our algorithms run in a number of arithmetic
operations polynomial in | log ǫ| and in the size N of the N×N
input matrix, regardless of its contents. Best of all would be
to be in the intersection of both kinds of polynomial time.

10.1 The NP-hardness of Sinkhorning gen-

eral matrices

A symmetric matrix U is singly-scalable if there exists a posi-
tive diagonal matrix X such that the row and column sums of
XUX are all ones. A matrix A is doubly-scalable if there exist
positive diagonal matrices X , Y so that the row and column
sums of XAY are all ones. (Note: here the entries of U , A,
XUX , and XAY can include negative entries.) Khachiyan
[27] showed both that testing the single-scalability of an ar-
bitrary symmetric matrix U is NP-hard, and that testing the
double-scalability of an arbitrary matrix A is NP-hard. (This
is true even if A and U are N ×N and its entries are integers

≤ N in absolute value.) Double scalability of A is equivalent
to single scalability of

(
0 A

AT 0

)
so that the single-scalabilty

NP-hardness statement is a corollary of the double-scalability
one.23

Thus the demand that our matrix’s entries be nonnegative is
essential to have any hope of fast Sinkhorning. This is not
at all surprising since it was also essential to make the mini-
mization problem in theorem 3(VI) be concave-∪, i.e. easy.

10.2 Weakly-polynomial-time Sinkhorning

algorithms from concave-∪ minimiza-

tion

Recall from theorem 3 part VI [42] that Sinkhorn balanc-
ing may be phrased as a concave-∪ minimization problem
in (2N − 2)-dimensional space. Therefore it may be solved
by general purpose optimization algorithms [57] in (weakly)
polynomial time.

Indeed Kalantari & Khachiyan [24] show by using the ellip-
soid method [21] that if the maximum row-sum of U is V
and its minimum nonzero entry is 1, then O(N4[ln N

ǫ ] lnV )
arithmetic operations suffice to find row- and column-scaling
factors that make U become ǫ-nearly doubly stochastic. If
we use Vaidya’s convex programming method [57] instead of
the ellipsoid method, that speeds their time bound up to
O(NMatmul(N)[ln N

ǫ ] lnV ) arithmetic operations. For this
purpose it suffices [24] to minimize the potential function to
within an additive height accuracy ±(ǫ/4)2.

Furthermore, all of these scaling factors will lie in a common
real interval [ℓ, u] with 0 < ℓ ≤ u and u/ℓ ≤ V 2N+1; and this
result is near-tight because they have an example matrix U
for which u/ℓ ≥ V N/4.

Nemirovsky & Rothblum [37] improved the Kalantari &
Khachiyan time bound to then O(N4 ln[N ln(NV )/ǫ]) but by
using a more complicated algorithm. This also may be sped
up with Vaidya’s method.

Further, the convergence can be made ultimately quadratic in
nature by eventually switching, e.g, to a conjugate gradient
based optimizer [18].

10.3 Weakly-Polynomial-time algorithm for

computing Perron-Frobenius eigenvec-

tors, based on matrix powering

If some power Ap of a matrix has all entries positive (even
though A itself might not) then the powering iteration will
converge ultimately geometrically. It is known (ex.3 p.522 of
[22]) that if some power Ap of a matrix A with non-negative
entries has all entries positive, then this is also the case for
Ap+1.

So if we compute some high power Ap of our matrix in O(log p)
matrix multiplications by binary powering, then the usual
powering algorithm but with Ap rather than A will converge
ultimately geometrically but now with an easily computed
bound on the contraction constant. These thoughts lead to
the following algorithm. Let Matmul(N) be the number of

22We follow historical convention by using this poor choice of name. A better name would be “polynomial time in the real-number-model.”
23Khachiyan erroneously made the opposite statement.
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arithmetic operations required to multiply two N ×N matri-
ces. It is known [11][9] that Matmul(N) = O(N2.376) because
the usual O(N3)-time matrix multiplication algorithm is not
optimal.

procedure Faster-Perron-Frobenius
1: B ← U ;
2: repeat
3: B ← B2;
4: until mins,t Bst > 0 and maxs,t Bst <

N−2Matmul(N)minjk Bjk

5: ~x← (1, 1, 1, . . . , 1)T ;
6: repeat
7: ~x← B~x;
8: y ←∑

h xh;
9: ~x← ~x/y;

10: until ~x and y have converged (maxj,k xkxold
j /(xjx

old
k ) <

1 + ǫ)
11: Output x1, x2, . . . , xN .

Assume the matrix U consists of integers in [0, V ]. Then
in total, at most O(matmul(N)[N + log(V N)] + N2| log ǫ|)
arithmetic steps are performed. In practice to prevent float-
ing point overflow we would recommend rescaling the matrix
after each squaring (and keep track of the scaling factor).

This algorithm could be improved to make it have ulti-
mately quadratic convergence (i.e. so its runtime depends
on log | log ǫ| rather than | log ǫ|) by switching to a different
kind of iteration once it starts to work better – which will hap-
pen automatically when the eigenvector’s entries have small
enough relative errors. Newton’s or Broyden’s method [14]
for solving simultaneous nonlinear equations would do.

10.4 Weakly-Polynomial-time algorithm for

computing Perron-Frobenius eigenvec-

tors, based on new minimization for-

mulation

If we change variables from ~x to ~y where xj = exp(yj) then
we automatically have xj ≥ 0.

Theorem 13 (New concave-∪ minimization formula-
tion of Perron eigenvector). Let U be an N × N matrix
with all entries non-negative and having an eigenvector with
all entries positive. Then

Fj(~y) = log
∑

k

Ujk exp(yk − yj) = (yj)
−1 log

∑

k

Ujk exp(yk)

(35)
are concave-∪ functions of the real N -vector ~y, and

F (~y) = max
j

Fj(~y) (36)

is also. F ’s minimum value is the log of the Perron eigen-
value r and its location gives the Perron eigenvector ~x via
xj = exp(yj). (Optionally, we can demand the normalization
∑

j yj = 0 throughout.)
Remark. This also may be thought of as a new concave-∪
minimization formulation of the problem of finding the sta-
tionary distribution of an N -state Markov chain with known
transition matrix.

Proof: Because its second derivative K2eKz is non-negative,
exp(Kz) is a concave-∪ function of real z for any real K.

Since any weighted sum of concave-∪ functions with positive
constant weights is concave-∪, we know

∑

k Ujk exp(yk − yj)
is concave-∪ along any line in RN , i.e, is concave-∪. More
impressively, the log of this (namely Fj) is also concave-∪,
since we indeed claim the log of any positively-weighted sum
of exponentials of z, is concave-∪:

d2

dz2
log
∑

j

cj exp(Kjz) =
d

dz

∑

j cjKj exp(Kjz)
∑

j cj exp(Kjz)
(37)

=

∑

j cjK
2
j exp(Kjz)

∑

j cj exp(Kjz)
−
(∑

j cjKj exp(Kjz)
∑

j cj exp(Kjz)

)2

≥ 0 (38)

where the final “≥ 0” is because we may multiply by
(
∑

j cj exp(Kjz)
)2

to get that it is equivalent to




∑

j

K2
j Aj








∑

j

Aj



 ≥




∑

j

KjAj





2

(39)

where Aj = cj exp(Kjz). This in turn follows from squaring

(
∑

j

AjB
2
j )1/2(

∑

j

Aj)
1/2 ≥ (

∑

j

AjBj) (40)

where Aj ≥ 0, which is just an instance of the Cauchy-

Schwartz inequality for one vector whose entries are A
1/2
j and

another vector whose entries are A
1/2
j Bj .

Because the max of a set of concave-∪ functions is concave-∪,
we have now proven that F (~y) is a concave-∪ function; and
the the optional normalization

∑

j yj = 0 is just a restriction
to a subspace (which preserves concavity).

It remains to prove that F (~y) has a unique minimum at ~y such
that xj = exp(yj) are the entries of the Perron eigenvector,
and that the minimum value log r = min F is the log of the
Perron eigenvalue.

It is immediate from F ’s definition that if ~y is such that
xj = exp(yj) are the entries of the Perron eigenvector, then
F (~y) = Fj(~y) = log r for all j.

Finally, recall that a concave-∪ function has a unique min (it
it has any min) and cannot have any maxes or saddlepoints.
But we shall now argue that the Perron eigenvector is a sta-
tionarizing point. Hence it must be the global min.

That is because the Perron eigenvalue is the spectral radius,
so the Perron eigenvector is a local max of |U~x|2/|~x|2. Con-
sidering the general inequality for positive numbers

min
j

pj

qj
≤
∑

j pj
∑

j qj
≤ max

j

pj

qj
, (41)

in the special case pj = (U~x)2j and qj = x2
j yields the

conclusion that all small perturbations of ~x, since they ap-
proximately preserve |U~x|2/|~x|2, must increase some ratio
(U~x)j/xj above r (min) or leave it the same (stationarizer).
�

It is surprising that theorem 13 has escaped previous no-
tice; it is the first characterization of the Perron eigenvec-
tor as the solution of a concave-∪ minimization problem. It
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is now a standard matter to minimize F (~y) to find the Per-
ron eigenvector and eigenvalue in weakly-polynomial time by
the ellipsoid [21] or Vaidya’s method [57]. The runtime is
O(LNMatmul(N)| log ǫ|) steps where L is the bitlength of the
(integer) input matrix.

This constitutes a new and well behaved, weakly polynomial
method of finding Perron eigenvectors to arbitrary relative ac-
curacy. Its runtime bound is worse than the powering-based
method. However, what is more important is that we shall
be able to employ theorem 13 as an ingredient in a strongly
polynomial time algorithm.

10.5 Strongly polynomial-time algorithm for

Perron-Frobenius eigenvectors

This section presents the first strongly polynomial time al-
gorithm for finding the Perron-Frobenius eigenvector of an
N ×N matrix U with non-negative entries. It consists of four
stages:

1. Verify [56] that the nonzero pattern of U represents
a strongly connected directed graph, and more gener-
ally verify the condition in theorem 1 as in §9. (If not,
then refuse to continue – Perron-Frobenius eigenvector
is non-unique, contains non-positive entries, or does not
exist.)

2. Schneider-Preprocessing prescales U ’s rows and columns
(scaling the jth row by a factor reciprocal to the factor
employed for scaling the jth column) in such a way that
U ’s maximum entry in the kth row is the same as U ’s
maximum entry in the kth column, for each k.

3. We then apply a standard concave-∪ minimizer (as
in theorem 13) to find the Perron eigenvector of the
rescaled U , to relative error ≪ 1/N .

4. A quadratically convergent process is employed to de-
crease the relative error further, to ǫ, and finally the
Perron eigenvector ~x of the original matrix is got from
the Perron eigenvector of our rescaled matrix by apply-
ing the rescaling.

Let us now discuss the three steps in more detail.

1. Runs in O(V + E) steps, i.e. O(N2) for us [56];
the more general verification, as we showed in §9, takes
O(N2 + Matmul(N) log N) steps..

2. Schneider and Schneider [43] called a directed graph with
real arc-weights“max-balanced”if for any nontrivial subset W
of the vertices, the maximum weight of an arc entering W is
the same as the maximum weight of an arc leaving W . Equiv-
alently, a N × N matrix with real entries is max-balanced if
any nontrivial subset W of {1, 2, . . . , N}, the maximum value
of an entry in the rows with indices in W is the same as the
maximum entry in the columns with indices in W . (But note:
the locations of these two equal entries need not be the same.)

They showed that there exists a unique “potential function”
Pv so that adding Pa −Pb to the weight of arc a→ b yields a
max-balanced directed graph. If U is an N ×N matrix with
non-negative entries, and we regard log Uab as the weight of
arc b→ a, then the row and column rescaling exp(Pb−Pa)Uab

of Uab will uniquely cause U to become a max-balanced ma-
trix.

The following algorithm finds this scaling. Use Karp’s dy-
namic programming algorithm [25] to find the directed-cycle
with maximum mean arc weight in the directed graph. Now
choose Pv for v on the cycle, to equilibrate all the weights
of the arcs of that cycle (and to make all other, off-cycle,
weights be smaller). Now shrink the cycle to a point (making
the new arc weights be the maximum of the old arc weights on
any set of parallel arcs that results) and do it again. Because
Karp’s method runs in O(V E) steps if the digraph is strongly-
connected, and the shrink reduces the number of vertices of
the graph, the Schneider-Schneider rescaling procedure may
be carried out in O(V 2E) steps, i.e. O(N4) steps for an N×N
matrix.24

3. After step 2 rescaling U , automatically expF (~y) at ~y = ~0
is at most a factor of N greater than its minimum value,
i.e. F (~0) is at most an additive amount log N greater than
min~y F (~y). That is because we know that (i) the maximum
row sum of U is an upper bound on the Perron eigenvalue,
(ii) the maximum row sum of U exceeds the maximum en-
try of U by at most a factor of N , (iii) the maximum entry
M = maxkℓ Ukℓ of U is a lower bound on U ’s Perron eigen-
value r, because just consider the entries xj of the Perron
eigenvector ~x which happen to lie on the maximum-mean cy-
cle, all of whose arcs ab have equal matrix entries Uab = M .
In view of Ukℓ ≥ 0, at least one of these xj must get multi-
plied by at least M when we replace ~x by U~x. (iv) The Perron
eigenvalue is the minimum value of eF .

So we know that in terms of the value of F we are already
fairly close to minimal, just by starting from ~y = ~0 without
even doing any minimization. It is also possible to see that
~y = ~0 is also fairly close to the location of the min. View ~x (af-
ter normalization) as the occupation probability in a Markov
chain. Because of the max-balanced nature of the transition
matrix, maxk xk ≤ N2N minj xj because no vertex-subset can
have more than a factor of N more probability than its com-
plement subset (and consider a chain of at most 2N subset
inclusions).

Hence we know automatically that the minimizing ~y must lie
in a ball of radius log(1 + N2N ) = O(N log N) centered at ~0.
It therefore follows immediately that by using Vaidya’s min-
imization algorithm, in O(N3 log N

δ + NMatmul(N) log N
δ )

steps we can reduce the error in ~y below δ. We suggest choos-
ing δ to be some negative power of N , e.g. N−9.

4. Once the absolute error in the yj, and hence the relative
error in the xj = exp(yj), have been reduced sufficiently –
and certainly δ = O(N−9) suffices – we than may switch to
a quadratically convergent algorithm for finding the Perron
eigenvector ~x. That is because small relative changes in the
xj will lead to small relative changes in the M−1(U~x)j , and in
its normalized version with sum 1; the effects of these changes
are roughly linear and the quadratic and higher terms are
neglectible. (Note that it is important here that U be max-
balanced and with non-negative entries.) That means that
we are well within the local quadratic convergence regime of
standard numerical procedures intended to solve N -variable
systems of nonlinear equations. Newton’s method is the sim-
plest to consider. Each Newton step takes O(Matmul(N))
steps and will roughly square the error.

24I do not know if this time bound is improveable.
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Finally, once we have found the Perron eigenvector ~x of the
rescaled U , the Perron eigenvector of the original U may be
recovered by dividing xj by exp(Pj) for j = 0, 1, . . . , N . (The
eigenvalue is unchanged, since the Schneider-Schneider rescal-
ing was a similarity transformation of U .) We conclude:

Theorem 14 (Strongly polynomial algorithm for Per-
ron eigenvector). Our algorithm will find the Perron eigen-
vector (and eigenvalue) of an N ×N matrix U with Ukℓ ≥ 0
such that the nonzero pattern of U represents a strongly-
connected directed graph, with all N + 1 outputs accurate to
relative error ǫ for arbitrary 0 < ǫ < N−N and N ≥ 2.
The runtime is O(N4 +Matmul(N) log | log ǫ|) steps, each an
arithmetic operation or exp or log evaluation on real numbers.
This also may be thought of as a strongly polynomial algorithm
for finding the stationary distribution of an N -state Markov
chain with known transition matrix. The memory requirement
is O(N2) real numbers.
This runtime is of the the same order as the runtime of the
best known weakly polynomial algorithm (in our §10.3), pro-
vided that conventional N3-time matrix multiplication is used
there. This suggests that the algorithm of theorem 14 cannot
easily be improved.

10.6 Are there other strong polynomial al-

gorithms in eigen-related linear alge-

bra?

Inspired by these successes, one might now ask whether there
is a strongly polynomial algorithm for the topmost eigenvec-
tor of a general N ×N symmetric matrix (provided a unique
topmost eigenvector exists) or for finding the topmost singu-
lar vector of a general N×N real matrix. Or, one might ask if
these problems may be formulated as concave-∪minimization
problems. I suspect the answers all are “no.”25

If so, then the Perron-Frobenius eigenvector and Sinkhorn
problems are atypically nice cases, perhaps nearly unique in
all of linear algebra, where strongly polynomial algorithms
exist. Such books as [20] are somewhat misleading about
this; they leave the careless reader with the impression that
strongly polynomial algorithms exist for these problems, but
in fact do not even prove their algorithms are weakly poly-
nomial. Nevertheless, weakly polynomial algorithms do ex-
ist for the general-matrix eigenproblem for matrices with ra-
tional number entries. That fact may be seen by combin-
ing known bounds ([34] section 4.6.1, e.g. his theorem 4.6)
on root-separation for polynomials with rational coefficients,
with known strongly polynomial algorithms for polynomial
rootfinding [38], and finish off with the “inverse iteration” [20]
to deduce good approximate eigenvectors from well-isolated
good approximate eigenvalues.

10.7 Some experiments

To appreciate the importance of the distinction between a
polynomial and superpolynomial number of arithmetic oper-
ations, consider the following experimental results.

Experiment #1: We have already described the excellent
typical behavior of the simple Keener-rating powering iter-
ation on N × N matrices filled with i.i.d. uniform random
numbers in [0, 1]: it converges in a small constant number of
~x←M~x iterations, not depending on N and only depending
on the precision ǫ requirement for the output.

Experiment #2: But now suppose that instead, our matrix
entries are exp(Kr) where r is a standard normal random
deviate (i.i.d. deviates, one per matrix entry) and K is a
constant. The experimental results with K = 5 and K = 9
are in table 10.1. They are quite different from experiment
#1! First of all, the expected runtimes are far larger now
– sometimes over 100,000 times larger – and they evidently
grow exponentially with K. Second, these runtimes also have
enormous variances.

N #iterations
2 31745 1047 572 13752
3 90 81296 1085 1477
4 1319 4346 2023 1917
5 6770 40700 6007 366
6 68473 3839 851 119
2 14251 32719 2613000 52
3 222840 497090 3877 13667000
4 1086100 2640300 514683 21463
5 185250 4631000 511570 2089800

Figure 10.1. Experimental numbers of ~x ← M~x iterations
needed to get convergence to the point where |~x−~xold| < 10−5.
Upper portion of table: with K = 5. Lower portion: K = 9.
Each number is the average number of iterations employed
during 25 independent runs, so each line of the table summa-
rizes 100 runs. N

I have also conducted some experiments with some more so-
phisticated algorithms that attempted to get strongly polyno-
mial time. These algorithms will not be described here since
I abandoned them when I discovered the strongly polynomial
algorithm above. Suffice it to say that, on the same matri-
ces as in table 10.1, the new algorithms experimentally require
on the order of 1000 times fewer matrix-vector multiplications
when K = 9, and on the order of 10 times fewer when K = 5.

10.8 Strongly polynomial time algorithm for

matrix Sinkhorn balancing

The first strongly polynomial time algorithm for Sinkhorning
was found by Linial et al [31]. We shall present a much better
one here. It consists of three stages:

1. Hungarian-Preprocessing prescales U ’s rows and
columns to maximize | detU | and per U subject to the
constraints Ujk ≤ 1. This takes O(N3) steps.

2. Repeated Sinkhorn steps are done26 until the matrix is
N−1.01-nearly doubly stochastic. Thanks to the pre-
processing, at most O(N2.02 lnN) Sinkhorn steps are
required, each one taking O(N2) steps.

25Because the topmost and second-to-top eigenvalues could be arbitrarily close to one another. It would therefore seem that no strong-polynomial
algorithm could isolate the top eigenvalue from the others well enough to prevent too-severe contamination of the top eigenvector by the second-
to-top eigenvector (which is orthogonal to it).

26 It is instead possible to design the algorithm around a minimizer for the concave-∪ minimization problem in theorem 3(VI). Conjecturally
that might allow reducing the “5.01” in theorem 15 to 4.01 or 4.38.
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3. A new quadratically-convergent iterative process is used
to push this further down to ǫ-near double stochastic-
ity. At most log | log ǫ| iterations are required, each one
taking O(Matmul(N)) steps.

Let us now discuss the three steps in more detail.

1. A preprocessing method one may apply to a matrix U is
the following.27

procedure Hungarian-Preprocessing
1: Apply the Kuhn-Munkres Hungarian method (mentioned

at the end of §9) with weights Wab = log Uab to find a
maximum-sum-weight matching and suitable ~r and ~c.

2: for k = 1, 2, . . . , N do
3: Scale the kth row of U by exp(−rk);
4: end for
5: for k = 1, 2, . . . , N do
6: Scale the kth column of U by exp(−ck);
7: end for

This takes O(N3) steps and reduces U to a form in which the
N entries of Uab corresponding to the Hungarian matching
are 1s, while the remaining entries obey 0 ≤ Uab ≤ 1. This
new U has 1 ≤ per U ≤ N !.

2. One may now apply Sinkhorn iterations until the product
of the column sums of U becomes ≥ e−κ. (This product is
always ≤ 1 due to the arithmetic-geometric mean inequality,
and equality is achieved if and only if U is doubly-stochastic.)
The point is that this will take at most O(κ−1N lnN)
Sinkhorn steps because (as we shall argue next paragraph)
each one increases the permanent by at least a factor of eκ

and a total increase factor of at most ln(N !) is possible. The
total runtime (assuming each arithmetic operation takes one
“step”) is then

O(N3 + κ−1N3 lnN). (42)

Let us analyse this in detail. We shall employ the follow-
ing refinement ([8] p.98) of the arithmetic-geometric mean

inequality:28 if
∑N

j=1 Xj = N , N ≥ 2, and Xj ≥ 0, then

1

2
+

1

4

(
max

min
+

min

max

)

≤ 1

P
(43)

where

P =

N∏

j=1

Xj , max = max
j

Xj , min = min
k

Xk. (44)

(The unrefined arithmetic-geometric mean inequality merely
states that P ≤ 1 with equality if and only if all the Xj are
equal.)

Before each Sinkhorn step, the column sums cj have aver-
age value 1. Therefore, by the arithmetic-geometric mean in-
equality, their product P obeys P < 1. After these sums are
used to renormalize the columns (increasing the |determinant|
and permanent by a factor of 1/P ), the row sums have av-
erage value 1. After they are used to renormalize the rows,
the |determinant| and permanent increase further. Therefore,
each Sinkhorn step increases both the |determinant| and per-
manent by a factor of at least eκ.

Now by our refined A-G inequality, once the increase factor
1/P goes below eκ, we have

max
j

cj − 1, 1−min
k

ck ≤ O
(√

eκ − 1
)

(45)

for all sufficiently small κ. That proves κ = O(N−2) suffices
to force all the row and column sums to be within ±N−1 of
1.

3. We now apply some quadratically convergent iteration.
Most simply, we could apply a conjugate-gradient minimizer
[18] to the objective function in theorem 3(VI). This has the
advantage of being very easy to program, and since that objec-
tive function is concave-∪, global convergence is guaranteed.
Each CG step, which involves computation of both the ob-
jective function and its gradient, runs in O(N2) arithmetic
operations. A total of O(N) CG steps are required to com-
plete a “phase.” Asymptotically (in arithmetic free of round-
off error), each phase roughly squares the error (“quadratic
convergence”). The total runtime of a CG phase is O(N3)
steps.29

A theoretically faster globally quadratically-convergent iter-
ative algorithm would involve computing the function value,
gradient, and Hessian matrix, all in O(N2) steps, and then
performing a safeguarded Newton iteration (i.e. perform
a line-minimization along the line segment to the Newton-
approximation to the min). This could be done in only
O(Matmul(N)) steps.

We can in fact perform the new iteration in parallel with the
old kind from stage 2 and use whichever decreases the error
the most. That would enable a seamless transition between
stages 2 and 3.

The key question is: how small must e−κ be in order to as-
sure us that the quadratic convergence behavior will happen
starting immediately? For that we need that the function be-
haves “locally quadratically,” i.e. we need the cubic terms to
be neglectible.

For that it plainly suffices (considering the Hungarian-
Preprocessing – we perform the scaling-factor minimization
using that preprocessed U and starting from the initial guess
that came from the Sinkhornings in stage 2) if the present
relative error on each scaling factor is ≪ N−1, which as we
have seen is assured if κ≪ N−2.

Theorem 15 (Strongly polynomial algorithm for
Sinkhorn balancing). The total runtime of the 3-stage al-
gorithm is at most

O
(
N3 + N5.01 + Matmul(N) log | log ǫ|

)
(46)

steps to get the Sinkhorn row and column scaling factors all
equal to within relative error ǫ.

In practice I suspect it will often run faster because fewer
Sinkhorns will be required in stage 2 than our worst case
bound O(N3.01). Even as is, though, our runtime bound is
superior to the only previously known runtime bound for a
strongly-polynomial time Sinkhorn balancing procedures [31]

27This is a substantial improvement of the first algorithmic idea in [31].
28Other refinements, less useful for our purposes, are by Kober [28] and Cartwright & Field [10].
29Each “step” is an arithmetic operation or exp(x) evaluation.
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and is comparable to the known weak-polynomial algorithms
[24][37] for30 the case of a boolean N ×N matrix if ǫ ≈ N−N .

And our algorithm simultaneously is much simpler to program
than all those previous procedures.

11 Conclusion

Sinkhorn ratings seem to have convincing (if small) theoretical
and experimental advantages over rating systems like Keener’s
based on Perron-Frobenius eigenvectors:

1. Sinkhorn ratings have an interpretation as a minimum
entropy statistical estimator; Keener ratings do not.

2. Sinkhorn ratings obey “reversal symmetry”; Keener rat-
ings do not.

3. Both Sinkhorn and Keener ratings have an interpreta-
tion in terms of Markov chains but far less strain is
necessary to make that interpretation in the Sinkhorn
case.

4. Sinkhorn ratings can be simply used by gamblers to gen-
erate odds for betting on the next chess game; not true
for Keener ratings.

5. Experimentally, it seems extremely rare that adding an
extra round robin tournament in which A wins every
one of his games, can lower A’s Sinkhorn rating. But
it seems much more common that this can lower A’s
Keener rating.

Both Sinkhorn and Keener ratings may be interpreted as aris-
ing from the unique solution of a concave-∪ minimization
problem, both obey and disobey similar voting system prop-
erties, and both are computable with simple algorithms (§6)
as well as strongly polynomial algorithms.

In my opinion Sinkhorn ratings are a good way to rate chess-
players and football teams. But I prefer range voting [51]
(for single-winner elections) or reweighted range voting [52]
or asset voting [53] (for multiwinner elections) as voting sys-
tems, because they seem to behave better in the presence of
strategic (i.e. dishonest) voters. For rating chess players, I
recommend also reading my [54], whose discussion is beauti-
fully complementary to the present paper, and whose ratings
correspond to the logs of our Sinkhorn ratings.
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[36] Hervé Moulin: Condorcet’s Principle Implies the No Show Para-
dox, J. Economic Theory 45 (1988) 53-64.

[37] Arkadi Nemirovski & Uriel Rothblum: On complexity of matrix
scaling, Linear Algebra Appl. 302/303 (1999) 435-460.

[38] Victor Y. Pan: Solving a polynomial equation: some history and
recent progress, SIAM Review, 39,2 (1997) 187-220.

[39] C.H.Papadimitriou & K.Steiglitz: Combinatorial optimization:
Algorithms and Complexity, Prentice-Hall, Englewood Clifffs NJ
1982.

[40] B.N. Parlett & T.L. Landis: Methods for Scaling to Double
Stochastic Form, LAA 48 (1982) 53-79.

[41] Hazel Perfect & Leon Mirsky: The distribution of positive ele-
ments in doubly stochastic matrices, J. London. Math’l. Soc. 40
(1965) 689-698.

[42] Michael H. Schneider; Matrix scaling, entropy minimization, and
conjugate duality (II): The dual problem, Math’l. Programming
B 48,1 (1990) 103-124

[43] Hans Schneider & Michael H. Schneider: Max-balancing weighted
directed graphs and matrix scaling, Math’cs of Operations Re-
search 16,1 (1991) 208-222.

[44] M.H. Schneider & S.A. Zenios: A comparative study of algorithms
for matrix balancing, Operations Research 38,3 (1990) 439-455.

[45] J.T.Schwartz: Fast probabilistic algorithms for verification of
polynomial identities, J. ACM 27 (1980) 701-717.

[46] E.Seneta: Nonnegative matrices and Markov chains, 2nd ed
Springer 1981.

[47] R. Sinkhorn & P. Knopp: Concerning nonnegative matrices and
doubly stochastic matrices, Pacific J. Math. 21 (1967) 343-348.

[48] Richard Sinkhorn: A relationship between arbitrary positive ma-
trices and doubly stochastic matrices, Ann. Math’l. Statist. 35
(1964) 876-879.

[49] R. Sinkhorn: Diagonal equivalence to matrices with prescribed
row and column sums, Amer. Math. Monthly 74 (1967) 402-405.

[50] G. W. Soules: The rate of convergence of Sinkhorn balancing,
LAA 150 (1991) 3-40.

[51] Warren D. Smith: Range voting, #56 at
http://math.temple.edu/∼wds/homepage/works.html.

[52] Warren D. Smith: Reweighted range vot-
ing – new multiwinner voting method, #78 at
http://math.temple.edu/∼wds/homepage/works.html.

[53] Warren D. Smith:“Asset voting” scheme for multiwinner elections
#77 at http://math.temple.edu/∼wds/homepage/works.html.

[54] Warren D. Smith: Rating Systems for Gameplayers, and Learn-
ing, http://math.temple.edu/∼wds/homepage/works.html #20.

[55] Dustin J. Stewart: Domination and matrix properties in tour-
naments and generalized tournaments, PhD thesis, University of
Colorado at Denver, Applied math 2005.

[56] R.E. Tarjan: Depth first search and linear graph algorithms,
SIAM J. Computing 1 (1972) 146-160.

[57] Pravin M. Vaidya: A new algorithm for minimizing convex func-
tions over convex sets, Math’l. Programming 73A,3 (1996) 291-
341.

June 2005 17 11. 0. 0


