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Abstract — We exhibit a sequence cn such that the convergence of
∑

n≥1
cnz

n for |z| < 1 is equivalent to

the Riemann Hypothesis. We argue that this particular RH-equivalent problem is “better” than most, or

perhaps every, other RH-equivalent problem devised so far, in the sense that (we prove) there is a tremendous

gap in behaviors of the cn if the RH is true versus if the RH is false.

Keywords — Riemann zeta function, analyticity, Tauberian theorems, Hejhal, Selberg.

1 A simple attack on the Riemann Hypothesis

The Riemann zeta function is defined by

ζ(s) =
∑

n≥1

1

ns
(1)

if re(s) > 1, and by analytic continuation for other complex s. ζ(s) has a simple pole at s = 1, but is analytic
everywhere else in the complex s plane. The “critical line” is re(s) = 1/2. The “Riemann Hypothesis,” which is one
of the most important open problems in mathematics, is the conjecture that all of the zeros of ζ(s) in the region
re(s) ≥ 1/2 lie on the critical line. A tremendous amount of information about ζ(s) and about various statements
implied by, implying, or equivalent to the Riemann Hypothesis, or about the known evidence and partial results on
it, may be found in the references.

A very simple attack on the Riemann Hypothesis occurred to me. Observe that the conformal map z = 1−1/s,
s = 1/(1 − z) makes the region re(s) > 1/2 correspond to the unit disc |z| < 1. So consider the function1

F (z) = ln

[

z

1 − z
ζ(

1

1 − z
)

]

. (2)

This function has been intentionally designed so that the Riemann Hypothesis is equivalent to the statement that
F (z) is analytic in the unit disc |z| < 1. And this in turn is equivalent to the statement that the Maclaurin series

F (z) =
∑

n≥1

cnzn (3)

converges when |z| < 1. (It is easy to see that the cn are real and that c0 = 0.)
Lo and behold (table 2), c1, ... c25 are positive and strictly decreasing! Obviously, if these two facts were to

continue forever, that would immediately imply the Riemann Hypothesis. And furthermore, notice that if you pick
25 random real numbers (e.g. from any probability density symmetric about zero) then the probability that by luck
they are going to be positive and decreasing is 2−25/25! ≈ 1.9×10−33. This is smaller than the probability of picking
a given air molecule from all the ones in the room. So, as any physicist could tell you (?), it must be the case.

But, in fact, it is not the case, as I discovered when I wrote a program to compute the first 150 cn. The first
increase is c28 ≈ 0.022801390 < c29 ≈ 0.022937613. Although this is a small increase, it is genuine.

∗NECI, 4 Independence way, Princeton NJ 08544
1The real-valued branch of ln is to be used when z is real with 0 < z < 1; and when z is complex, use the branch arising from

continuous variation along the line segment joining 0 and z. This is not always the same as what is got by simply employing the standard
version of ln (with a slit along the negative real axis), but it is the same for over 99% of the z in the unit circle, according to my
experiments.
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But, examining these 150 coefficients, I noticed that although not all of them are decreasing, still, all of them
are positive. And the conjecture that all the cn are positive alone is enough to imply the Riemann Hypothesis.
The proof is simple. Assume the RH is false, so some point of nonanalyticity of F (z) exists within the unit circle
|z| < 1. In that case, since the cn > 0, it would be the case that there must be a singularity of F (z) actually on
the real interval (0, 1). But, no such singularity exists (obvious from the definition of ζ(s) for real s > 1). QED.
Now furthermore, if you pick 150 random numbers, the probability that they, by luck, are all going to be positive,
is 2−150 ≈ 7.0 × 10−46. OK, maybe 1.9 × 10−33 was not small enough, but now, surely, we have enough confidence.
This conjecture must be true, right? Visions of sugarplums danced in my head as I imagined ways to try to prove
the cn are all positive. For example, one can write down various closed forms for the cn, and then try to prove them
positive.

But in fact, this conjecture is also false. I found this out by computing the first 2048 cn; the first negative one
is c156 ≈ −0.000139116. The cn then monotonically get more negative until reaching a min at c172 ≈ −0.005993512,
and then monotonically increase until reaching a max at c217 ≈ +0.017704939 and then monotonically decrease
until reaching the most negative coefficient that I know of (indeed, it quite probably is the unique most negative
coefficient... a conjecture which also would imply the Riemann Hypothesis!2), c266 ≈ −0.008839076.

Numerical values, rounded to 5 decimal places, for c1,..., c299 are in table 2. These were computed by evaluating
F (z) at 2048 points uniformly spaced around a circle of radius 128/129, and then estimating cn by means of the
Cauchy residue theorem with the integrals being evaluated numerically by means of the trapezoidal rule, i.e. a “fast
fourier transform.” I cannot claim to have a proof that every decimal in the table is correct, but I consider it highly
likely because the results were checked by similar computations with different numbers of points and different radii
of the circle and while carrying different numbers of decimal places (in the present computation I carried 60 decimal
places); and also the first 25 coefficients were computed by an entirely different algorithm (transformation of a known
series for ζ(s)) and used as a check. I also used two different languages, MAPLE and MATHEMATICA. The latter seems
to have a far superior (both in speed and accuracy) arbitrary precision implementation of ζ(s).

Plots of cn versus n look like a continuous curve which oscillates in a random-looking manner with a rough period
(between “maxes”) of about 100 and with an apparently gradually decreasing amplitude.

By transforming well known facts about ζ(s) one may show3 that

F (z) =
K

1 − z
− ln 2 − ln Γ

(

1 +
1/2

1 − z

)

+
∑

κ

ln
κ − z

1 − z
(4)

where
K = ln(2π) − 1 − γ

2
+

∑

κ

(1 − κ) = γ + ln
√

π ≈ 1.14958 (5)

and κ are the locations of the non-real singularities of F (z). Also, F (z) obeys the functional equation4

F (z) = F (
1

z
) + ln(

−z

π
) +

ln(2π)

1 − z
+ ln sin

π

2(1 − z)
+ ln Γ(

−z

1 − z
). (6)

To conclude:
(1) These quantities (the cn) deserve more study, since any at most subexponentially increasing bound on them –
even a one-sided bound – would imply the Riemann Hypothesis.
(2) It’s remarkable how the Riemann zeta function seems to be trying intentionally to deceive us!

2 Update: 2005

The preceding part of this paper was written in 1995, titled “Cruel and unusual behavior of the Riemann zeta
function,” and has been available electronically from my web site ever since. I then forgot about the subject for the
next 10 years. And indeed there seemed to be both psychological and mathematical reasons not to have too high
an opinion of it.5

2Because if all coefficients obeyed cn > −c, then F (z) + c/(1 − z) would have only positive Maclaurin series coefficients, and then a
similar proof to the one above, would imply analyticity for |z| < 1.

3The sums should be done in order of increasing | lnκ|. EQ 4 arises from the Hadamard product formula for the zeta function. The
analogue of the usual 4-way symmetry that if ρ is a zeta-zero, then so are 1 − ρ, ρ, and 1 − ρ, is that if κ = 1 − 1/ρ is the location of a
point of non-analyticity of F (z), then so are 1/κ, κ, and 1/κ; this and the pairing of κ and 1/κ causes the sum in EQ 4 to converge and
in fact to cancel out to 0 when z = 0. The facts that F (0) = c1 = γ ≈ 0.5772 and Γ(3/2) =

√
π/2 force K to take the value given.

4This arises from the reflection formula for the zeta function.
5Among the psychological reasons were the fact that the same kind of attack on the RH had also been thought of at about the same

time by Li [33][5] and even earlier by Keiper [27] (although their treatments seem less simple and transparent). The mathematical reason
to be blasé was: over the years many, many problems have been proven to be equivalent to the RH. This is just another such. What is
special about it? Indeed, there are many possible variations even just for our attack, since the particular function definition in EQ 2
could easily be replaced by an infinite number of alternative possible function definitions which would also work.
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But in 2005 my interest was rekindled by communications from Mark W. Coffey (Dept. of Physics, Colorado
School of Mines). Coffey has written many published and still-unpublished papers on this, some of which regard my
1995 paper as foundational (or perhaps a better phrase is merely “a good starting point”). He remarked in email:

This has become a very active (and, I think, very exciting) area of research... Yes, there are other
functions to use, but your choice [F (z) in EQ 2] seems to nicely get at the heart of the matter, as it
reflects the subdominant behaviour of the Li/Keiper constants. I have a conjecture as to the order of
this behaviour...

This news was gratifying. But upon examining the work of Coffey, Li, and others, it seemed to me that insuf-
ficiently much theoretical and empirical information was provided about the behavior of the cn, and the virtues of
our particular RH-equivalent problem were not realized clearly enough. I now aim to fill those gaps. We shall

1. Explain why our particular function definition for F (z) is likely to be more useful than many or all alternatives.

2. Explain why this is not just another run of the mill RH-equivalent problem, but instead has some claim to be
the best one.

3. Prove some interesting theorems about the cn.

4. Report on the world’s largest numerical computation of the cn, namely for 0 ≤ n ≤ 105. (This was accomplished
apparently with no additional startling incidences of “unusual cruelty”!) We shall describe a strengthened form
of Coffey’s conjecture, explain why it is (probably) true, and see that it is entirely compatible with the numerical
data.

Why choose this F (z)? Consider all possible choices of the form

Falternative(z) = G

[

H(z)ζ(
1

1 − z
)

]

(7)

where G(z) is analytic except at z = 0 and where H(z) is analytic within |z| < 1 and suitably behaving. First, it
is necessary that H(z) behave like z for |z| small, to cancel out the singularity (a simple pole) in ζ(s) at s = 1,
i.e. z = 0. The desire to make H(z) have a pole like 1/(1 − z) at z = 1 was motivated by the desire to make
F (z) look, at z = 1, as similar as possible to the other singularities of F (z) on the circle |z| = 1. The simplest
possible form of H(z) compatible with these two desires was H(z) = z/(1− z), i.e. the one we used. The only other
equally simple contender was (1 − z)z. But that choice would have unnecessarily complicated EQs 4 and 6. Next,
our choice G(z) = ln z has many advantages. It causes products (there are many in the land of zeta functions) to
turn into sums. It is easy to differentiate. Most importantly, logarithmic singularities are the mildest common kind
of singularity. Consequently, my top numerical method of finding the cn’s, by using the Cauchy residue theorem
cn = (2πi)−1

∮

F (z)z−n−1dz (with contour a circle slightly smaller than, and contained in, the unit circle, and not
containing any residues of F (z)) and the FFT, works very well. If the singularities had been less mild, then the
integrand would have had wild behavior and would have been much more difficult to handle numerically.

So in short: the particular choice (EQ 2) of F (z) seems optimal in terms of some combination of (1) validity,
(2) simplicity, (3) makes common manipulations and identities simple, (4) makes the cn maximally amenable to
numerical computation.6

Why does this RH-equivalent problem seem superior to all others? There are many mathemati-
cal problems X that are equivalent to the Riemann Hypothesis RH, in the sense that an affirmative or negative
solution to X would imply, and would be implied by, a respectively affirmative or negative solution to the RH
[10][11][22][26][42][34][41]. So we want X to somehow be “best.”

There have been attempts to find the “best” X before, for various notions of “best.” Lagarias [29] evidently
thought “best” meant “simplest to state to somebody with the lowest possible education level” and devised a short
statement, purely about integers, with no reals, no complex numbers, no calculus, no special functions, and no
undetermined constants or “big Os” needed:

RH ⇔
∑

d|n

d ≤ Hn + exp(Hn) ln(Hn), where Hn ≡
n

∑

k=1

1

k
. (8)

However, a different definition of “best” is “easiest to work with productively to try to settle the RH” and I very
much doubt Lagarias’s formulation is optimal in that sense. Another famous formulation is that the RH is equivalent
to various statements that the Möbius function µ(n) mapping positive integers to {−1, 0, +1} “behaves like a random

6For some purposes, there may also be grounds for favoring exp[−F (z)].
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function.” In particular the RH is equivalent ([42] theorem 14.25C) to the claim that |
∑N

n=1 µ(n)| = O(N1/2+ǫ) for
each ǫ > 0. There are also many formulations whose goal seems to be to maximize “how different X appears from
anything people would normally recognize as the RH.” The idea here is to move far away from RH’s “home” realms
such as number theory and complex analysis, into strange new conceptually-faraway realms (operator analysis,
quantum physics, probability theory, dynamical flow systems, approximation theory, algebraic number fields, p-
adics...), to allow new ideas to be applied.

The definition of “best” I want to focus on here involves a combination of (1) being easy to work with productively
(which probably means we need to stay in the “home” area of complex analysis and asymptotics, which is where
the most powerful techniques are) and (2) seeming “maximally easy to solve” in the sense that there is a maximum
“difficulty gap” working in favor of the RH-prover (or RH-disprover).

Obviously (1) is quite well satisfied by our RH-formulation.
Theorem 1 (Our RH-equivalent problem). The RH is true if and only if the cn defined by EQs 2 and 3 are

subexponentially bounded (a one-sided exp o(n) bound in either direction suffices). (Proofs are in the next section.)
The sense in which our formulation “maximizes” some kind of “difficulty gap” is:
Theorem 2. (Huge difficulty gap in RH-prover’s [or disprover’s] favor). If the RH is true, then

1. Constants K1 and K2 exist (and quite likely K1 = c266 > −0.00884 and K2 = γ = c1 < 0.57722) such that
K1 ≤ cn ≤ K2 for all n ≥ 0.

2. limN→∞(N + 1)−1
∑N

n=0 cn = 0. More generally, limN→∞(N + 1)−1
∑N

n=0 |cn| = 0.

3.
∑∞

n=0 cn/(n + 1) =
∫ 1

0 F (x)dx converges to a finite limit. So does
∑∞

n=0(−1)ncn/(n + 1) =
∫ 0

−1 F (x)dx, and

more generally,
∑∞

n=0 e2πirncn/(n + 1) for any fixed real r.

4. But
∑∞

n=0 cn diverges, i.e. has no finite limit. (This particular claim is true regardless of the validity of the
RH.) More generally,

∑∞
n=0 e2πirncn diverges for any fixed r with 0 ≤ r < 2π such that F (z) has a singularity

at z = e2πirn (there are an infinite set of such r).

5. A constant K3 exists such that
∑∞

n=0 |cn|2 = K3 (where a 90% confidence interval for the value of this constant
is K3 = 1.250 ± 0.031) and hence cn → 0.

The “huge difficulty gap” in a nutshell: to prove the RH, we merely need to prove a 1-sided subexponentially-
growing bound on the cn. This ought to be far easier than what is actually true (under the RH), namely, the cn

obey a 2-sided constant bound, i.e. do not grow at all, and indeed they actually shrink to 0 as n → ∞. (This huge
gap also aids those trying to disprove RH: any exponential lower bound on the |cn| suffices – and one exists if RH
is false – whereas if the RH is true, then the |cn| shrink.)

In particular, we claim our RH-equivalent problem is superior to the closely related RH-equivalent problem found
by Li [33][5]. Li showed that the RH is equivalent to the claim that all

λn =
1

(n − 1)!

dn

dsn

[

sn−1 ln ξ(s)
]

s=1
=

∑

ρ

[

1 − (1 − 1

ρ
)n

]

(9)

(where n ≥ 1 and the sum is over all non-real zeros ρ of the zeta function) are non-negative.7 Coffey [9] found the
explicit relationship between our cn and Li’s λn. Our point is this. Li’s is a non-negativity criterion. But we also
can phrase our result as a non-negativity criterion: because of our theorem 2 claim 1, our cn + K1 are non-negative
if and only if the RH holds. But we have more. For us it suffices if the cn grow at most subexponentially. In other
words, we do not need non-negativity – a far weaker condition suffices for us. That seems to me to make the present
problem clearly superior to Li’s problem.

We similarly claim superiority to the RH-equivalent problem devised by M.Riesz in 1916 ([42] §14.32): The RH
is true if and only if8

R(x) ≡ x
∑

k≥1

(−x)k

k!ζ(2k + 2)
= x

∑

n≥1

µ(n)

n2
exp(

−x

n2
) (10)

obeys |R(x)| = O(x1/4+ǫ) as x → ∞. The reason for our problem’s superiority is that |R(x)| = O(x1/2+ǫ) even if
the RH is false, so its growth exhibits a much smaller behavior-gap than do our cn.

7ξ(s) = ξ(1 − s) = (s − 1)π−s/2( s
2
)! ζ(s).

8There are also many variants of Riesz’s problem, as is clear from Titchmarsh’s wonderfully concise derivation. The closed form
ζ(2k) = 22k−1|B2k|π2k/(2k)! may be used in EQ 10 if desired, and the coefficients in R(x)’s Maclaurin series may also be simply
expressed in terms of the coefficients in the Maclaurin series of x cot x. The first formula for R(x) is the one given by Titchmarsh; the
second is got by using 1/ζ(s) =

∑

n≥1
µ(n)n−s, where µ(n) is the {0,±1}-valued Möbius function, in the first and interchanging the

order of summation.
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Also, our formulation has the advantage that it allows partial progress – researchers can compete with each other
to find better bounds on the cn. In contrast, with Li’s formulation, it seemingly is all or nothing.

Now the obvious attack on the RH is: (1) write the cn is some form particularly amenable to asymptotic analysis
(contour integrals? sums? See [7][38][35][2] for ideas). (2) Do that asymptotic analysis well enough to prove a 1-sided
subexponential growth bound. (method of stationary phase / saddlepoint method?)

I have not carried out this attack. (In fact, I have barely even scratched its surface.) Therefore I do not have a
proof of the RH and I do not have a subexponential upper bound on the cn. But it is easy to use known results to
produce exponential – but just barely exponential – upper bounds on the cn:

Theorem 3 (Unconditional upper bound on the cn). cn < K5 · Kn
6 where K5 and K6 are positive real

constants and K6 = 1 + 4.5 × 10−25. (I have not computed K5 explicitly with this K6 although it is mechanically
computible and it seems very plausible that K5 < 100. I have performed a smaller version of this computation to
find the fully explicit K5, K6 pair K5 = 4.61, K6 = 1 + 1/401.)

Coffey-Smith conjecture (the true asymptotic order of the cn): For each ǫ > 0: |cn| = O(nǫ−1/2), but
for an infinite set of n > 0, indeed a positive fraction of them, cn > n−ǫ−1/2 and (for a different infinite set of n > 0
also forming a positive fraction) cn < −n−ǫ−1/2.

Plausibility argument for the conjecture:

1. If the “peak” |cn| are not too atypical (e.g. if the cn versus n plot continues to “look like a smooth curve”),
then the |cn| must drop at least this fast to allow

∑ |cn|2 to converge (cf. the final claim of theorem 2).

2. If the cn are modeled as having random sign, then standard ideas about random walks would indicate that
|cn| cannot drop any faster and still permit

∑

cn to diverge (cf. the penultimate claim of theorem 2).

3. Our numerical evidence for 0 < n ≤ 105 supports the conjecture.

Namely: |cn| appears to decay more rapidly than n−1/2 because9 the greatest cn
√

n known is c3

√
3 ≈ 0.70477 and

the least known is cn
√

n ≈ −0.25738 when n = 1867, despite my calculations of cn for 0 ≤ n ≤ 105. On the
other hand, the extreme |cn| appear to decay less rapidly than n−1/2 ln(n + 1)−3 because the greatest and least
cn
√

n(ln |n + 1|)3 known reliably seem to keep increasing and decreasing (respectively) the further one looks, see
right half of table 5.

3 Proofs of the theorems

Proof of theorem 1. If there is a 2-sided subexponential bound |cn| < B(n) where B(n) ≥ 1 and lnB(n) = o(n),
then the RH follows because the Maclaurin series (EQ 3) converges for all |z| < 1 and hence F (z) is analytic
throughout this disk and (by the conformal map of the disk to the halfplane res > 1/2 and considering the zeta-
function reflection formula) hence the Riemann zeta function has no zeros off the critical line. If there is only
a 1-sided subexponential bound, say −cn < B(n), then the RH still follows because consider F (z) + G(z) where
G(z) =

∑

n≥0 B(n)zn. This function has all Maclaurin series coefficients non-negative and real. Therefore its closest
point z of non-analyticity to the origin must be on the positive real axis. However, it is obvious from their definitions
that F (z) and G(z) both are analytic on [0, 1). So the RH follows.

In the other direction: if the RH is true, then F (z)’s Maclaurin series must converge throughout |z| < 1. If an
infinite set of n > 0 existed with |cn| > Kn for some K > 1 (this happens if and only if no subexponential upper
bound exists) then the Maclaurin series (as well as the sub-series arising from only these n) diverges at each z with
1/K < |z| < 1 and indeed the cnzn cannot even be bounded. Q.E.D.

Selberg’s theorem [40][31][13]: For any Lebesgue-measurable subset E (whose boundary has areal measure
0) of the xy plane

lim
T→∞

T−1meas

{

T ≤ t < 2T :
ln ζ(1/2 + it)
√

(1/2) ln lnT
∈ E

}

=
1

2π

∫ ∫

E

exp(
−x2 − y2

2
)dxdy. (11)

In other words, both the real and imaginary parts of ln ζ(1/2+it)√
(1/2) ln ln t

act asymptotically like independent standard normally

distributed random variables.
Hejhal’s theorem [18]: Under a slight extension of the RH10: in the T → ∞ limit, the proportion of zeta-zeros

9Indeed, the same sort of evidence makes it appear (less clearly) that the |cn| decay more rapidly than n−1/2 ln(n + 1)−1.
10Hejhal’s extended Riemann hypothesis “Hα”: The RH says that all zeta-zeros lie on the “critical line” (with real part 1/2). It

is known (regardless of the truth of RH) that the zero with the least positive imaginary part is 1/2 + i14.1347251417..., and that
the number of zeros with imaginary part between 0 and T is asymptotically (2π)−1T ln[T/(2πe)] + O(ln T ) when T → ∞. Hejhal’s
conjectural extension of the RH is that, among the zeros with imaginary part between T and 2T , for all sufficiently large T , the proportion
of spacings ∆ between consecutive zeros with ∆ < x/ lnT is upper bounded by Mxα for some positive constants M and α and for all x
with 0 < x < 1. (In other words, the number of extremely tiny spacings is not ridiculously large.) H1 is an immediate consequence of
the nowadays-usual “GUE hypothesis.”
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ρ with imaginary part between T and 2T which obey

a <

(

1

2
ln lnT

)−1/2

ln

∣

∣

∣

∣

2πζ′(ρ)

ln(imρ/[2π])

∣

∣

∣

∣

< b is the same as
1√
2π

∫ b

a

exp(
−x2

2
)dx, (12)

i.e. is standard normally distributed (mean=0, variance=1).
History of, and remarks about, the Selberg-Hejhal-Ghosh-Laurinchikas theorems. Atle Selberg

proved his theorem in unpublished work in 1949. It was then used by several authors, for example Hejhal [18] to
prove his theorem in 1987. This is one reason I feel quite uncomfortable reading [18]. Montgomery [36] surveyed
Selberg’s accomplishments in the zeta area. Selberg finally got around to publishing a version of his 1949 work in
Volume II of his collected works [40] in 1991 (see theorems 1 and 2 there, and take an ≡ 1 and apply the prime
number theorem). This publication still is very sketchy, and ends with a promise by Selberg that “a full version
with proofs will appear in time.” That promise apparently was never fulfilled. In the meantime, Laurinchikas [31],
who perhaps was growing impatient, proved the real part of Selberg’s theorem – even extended to hold for Dirichlet
L-functions instead of merely the Riemann zeta function – in 1987, in the form that

lim
T→∞

1

T
meas

{

ln |Lχ(1/2 + it)|
√

(1/2) ln lnT
≤ y

}

=
1√
2π

∫ y

−∞

exp(
−u2

2
)du. (13)

Selberg had proved the imaginary part of his theorem in 1944 (under the RH) and 1946 (unconditionally) in the
form11 that, in the T → ∞ limit,

∫ T

T−H

S(t)2kdt =
(2k)!

k!(2π)2k
T (ln lnT )k[1 + O(

1√
ln lnT

)] (14)

for any fixed positive integer k, where S(t) = π−1 arg ζ(1/2 + it). Selberg’s result had H = T , but this later was
re-proved and improved by Ghosh [13][16] to hold even if the integral is taken over a considerably shorter interval,
namely with any H obeying T α ≤ H ≤ T for any fixed α with 1/2 < α ≤ 1, and to allow k to be any real with
k > −1. We shall not require Ghosh’s strengthenings, but it is nice to know they are there. Although it was
not noticed immediately, by standard probability theory [28][4] results about power-moments, these results imply
(unconditionally) that S(t) is asymptotically normally distributed with mean 0 and variance 2π2 ln ln t. Laurinchikas
[31] also used the method of power-moments in his proof. The combination of these real and imaginary parts is still
not as strong as Selberg’s full 2D theorem because a proof of their statistical independence still would be lacking –
but fortunately, for the purposes of the present paper, that independence (or lack thereof) does not matter! Finally,
we should also note that just because a random variable v is asymptotically normally distributed, does not by itself
force certain integrals of it to exist: v could, with some probability that asymptotically goes to 0, behave extremely
wildly (e.g. take a value far away from anything the normal distribution would predict). However, because these
proofs all proceeded via the method of power-moments, we know that in fact, all power-moment integrals of the
normally distributed quantity (e.g., mean, variance, etc.) actually do exist and converge to the “right” values. As
Selberg himself notes, the error term (ln lnT )−1/2 decreases so slowly that it is infeasible to confirm his theorem by
numerical experiments. Nevertheless, Odlyzko ([37], table 2.5.1) studied 175 million zeta-zeros near the 1020th zero
and found tolerably good agreement with Selberg’s EQ 14 for 2k = 1, 2, . . . , 8. Finally, note that, while Hejhal’s
theorem depends upon a slight extension of the RH, Selberg’s theorem holds unconditionally.

Remarks about S(t) = π−1 arg ζ(1/2 + it): Since the value of S(t) is also of interest to us because |S(t)| > 1
basically means we need to use a nonstandard branch of the natural log in EQ 2, let us make some more remarks
about it. Von Mangoldt showed that |S(t)| = O(ln t) and under the RH [42] |S(t)| = O(ln t/ ln ln t). In the other
direction Montgomery showed (under the RH) |S(t)| > κ1

√

ln t/ ln ln t on an infinite unbounded set of t > 0 and
Selberg showed (unconditionally) |S(t)| > κ2(ln t)1/3(ln ln t)−7/3 on an infinite unbounded set of t > 0 for constants
κ1, κ2 > 0. The true sup-order is probably

√
ln t up to factors of powers of ln ln t. Under the RH, S(t) is continuous

along the critical line, except that it jumps by ±1 at each zeta-zero. If the RH is false there could be additional
jumps.

My computer attempted to find the least t > 0 with | arg ζ(1/2 + it)| > π, by following the curve of ζ(1/2 + it)
in the complex plane from t = 0 to t = 700 until it crossed the negative real axis. The first such crossing point
it found was in 282.454 < t < 282.457, with a nearby S(t) extreme at S(282.460) ≈ −1.003. Some other, more

11Confusingly, Selberg uses “am” when he means “arg.” The branch of arg arising from continuous variation along the vertical line
joining 2 and 2 + it and then along the horizontal line to 1/2 + it is to be used, where arg 2 = 0. Warning: Selberg’s is not exactly
the same branch of ln that we use in defining F (z), which would correspond in Selberg’s setting to continuous variation along the circle
passing through z = 1 and orthogonal to the critical line where it hits it. However, Selberg’s and our definitions are (1) close enough to
the same thing that Selberg’s normality theorems still hold with this alternate definition (this is easy to see since the probability-mass
that is affected is O(T ǫ−1)), and (2) if the RH is true, then they are exactly the same thing.
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dramatic, crossings are at 415.599 < t < 415.601 and 527.6957 < t < 527.6979. The least t where S(t) > 1 obeys
650.667 < t < 650.670, with a nearby S(t) extreme at S(650.78) ≈ +1.08.

|S(t)| > 2 (necessary to cause “Rosser’s rule” to fail) occurs at about t ≈ g13999525 ≈ 6820051.0 with a nearby
extreme S(t) = −2.004138, t ≈ g30783329 ≈ 14190357.8 with a nearby extreme S(t) = −2.002594, and t ≈ g30930927 ≈
14253736.6 with a nearby extreme S(t) = +2.050625. These were found by Brent [8].

For a long time no explicit t with |S(t)| ≥ 3 was known. But the “zetagrid” RH-confirming multiprocessor project
[44] found a positive extreme value S(t) = +3.0214 near t ≈ g53365784979 ≈ 16220609807.6 and a negative extreme
value S(t) = −3.2281 near t ≈ g67976501145 ≈ 20433335722.3. So far nobody has found any explicit t with |S(t)| ≥ 4.

Proof of theorem 2’s final claim. Assuming the RH, by Parseval’s equality and the fact that c0 = 0,

∑

n≥0

|cn|2 =
1

2π

∫ 2π

0

|F (eiθ)|2dθ = K3. (15)

Since the integrand in EQ 15 is everywhere non-negative, we do not have to worry about possible oscillatory
divergence of the integral; the only worry is that its value might be ∞. Why is the integral finite?

First of all, F (z) has only logarithmic singularities on the unit circle (except at z = 1, which is an essential
singularity, which, however, looks logarithmic if approached along the real axis from the left) and (under the RH)

none within it. It is important to note that logarithmic-power singularities are always integrable, i.e.
∫ +ǫ

−ǫ
| lnx|pdx

is always finite for any fixed ǫ, p > 0. (This is perhaps most easily seen by “looking at the graph sideways” to see
the equivalence to the integrability of the inverse function exp(x−1/p) on the positive-infinite real halfline, which is
obvious.) Therefore, it is obvious that the integral of EQ 15 on any closed subinterval of (0, 2π) exists and is finite.

It also is obvious that
∫ 2π

0
|F (reiθ)|2dθ exists and is finite for any particular r with 0 < r < 1. The only difficulty

arises when we take the limit as the subinterval expands to become [0, 2π) itself (or take the limit of the second
integral as r → 1−).

We now claim by Selberg’ theorem and its method of proof via power moments, that this integral is finite. This
finiteness holds unconditionally; the only part of our proof that requires the RH is the equality of the sum and the
integral. Q.E.D.

A deeper look at finiteness of the integral: There are basically two possible finiteness-preventing problems:

1. There are an infinite number of zeros of the zeta function on the critical line, i.e. an infinite number of
logarithmic singularities of F (z) on the unit circle, with a unique accumulation point at z = 1. Although
each singularity makes only a finite contribution to the integral, the summed contribution of all of them might
conceivably diverge to ∞.

2. The zeta function on the critical line might assume very large values at places far up the line, i.e. |F (z)|2 on
the unit circle might assume very large values as z → 1 even between the singularities. This could lead to an
infinite integral.

We now explain why neither problem is a problem, in a way that yields a bit more understanding than just saying
“because Selberg’s theorem says so” (although the latter approach is admittedly both more concise and stronger).

Our conformal transformation of the critical line to the unit circle is very helpful because it “crunches all the
singularities a lot narrower” near z = 1, lessening the magnitude of the problem tremendously. But it was hardly a
problem to begin with thanks to Hejhal’s theorem. Observe that as k → 0 with p ≥ 1 fixed, the value of the integral
∫ +ǫ

−ǫ
| ln(kx)|pdx is shifted additively by O(2ǫ(ln k)q) for some q with 1 ≤ q ≤ p. For us, the appropriate k to use is

a rescaled version of the derivative of the zeta function. Our worry is that the sum of all these additive shifts might
be infinitely large because there are an infinite number of zeta-zeros ρ with extremely small | ln ζ′(ρ)|. In view of
the “crunching” caused by the conformal tranformation (which tends to multiply k by large values), and in view
of the mollifying effect of the ln function, in order for there to be a problem, the | ln ζ′(ρ)| would frequently have
to be extremely small. But, according to Hejhal’s theorem, that does not happen. It is not worth going into detail
because the gap between the truth (Hejhal’s theorem) and the behavior needed to cause a problem is so enormous.

So Hejhal’s theorem has taken care of the small zeta function values, in the neighborhood of zeros. We also need
to take care of small zeta function values not in the neighborhood of zeros – since conceivably the zeta function
could get very small (have a magnitude min) even far away from any zero. That does not happen because Anderson
[1] proved, under the RH, that there exists a constant T such that starting at any zero, |ζ(1/2 + it)| increases
monotonically to a maximum then decreases monotonically down to the next zero, for all t > T .

We also need to worry that the zeta function might suddenly “level off” at a very small value after a very short
rise above zero, then stay there. Selberg’s theorem rules out that worry.

Finally, we need to handle large zeta function values. For that we recall the “Lindelöf hypothesis,” a famous
known consequence of RH which states that |ζ(1/2 + it)| = O(1 + |t|ǫ) for each ǫ > 0. Indeed under the RH ([42]
ch. 14) the right hand side may be improved to exp c ln t

ln ln t for some fixed c > 0.
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Even without assuming the RH, Hardy & Littlewood proved |ζ(1/2 + it)| = O(1 + |t|1/4+ǫ) and Weyl improved
the exponent to 1/6 + ǫ. See ch.5 of [42] for these and its notes for further improvements; apparently the latest is
Huxley’s 89/570 + ǫ [21]. In view of the mollifying effect of the ln in our F -defining formula (EQ 2) any of these
easily suffice to prevent divergence. Q.E.D.

We now attempt to evaluate the integral numerically in two ways:

1. “Monte-Carlo method” of trying random θ selected uniformly from [0, 2π), see the left half of table 1. The
result: with 90% confidence12 (1.65σ), K3 = 1.2505 to within ±0.031.

2. Evaluate 1
2π

∫ 2π

0
|F (reiθ)|2dθ by the N -point trapezoidal numerical integration rule, for a sequence of (r, N)

pairs which increase monotonically to (1,∞). The result is in the right half of table 1.

sample mean samp. std. error
1.2265 0.0359
1.3006 0.0370
1.1981 0.0324
1.2768 0.0365
1.2576 0.0182

K3 N r
0.2754236 1024 0.721680
0.5211620 2048 0.860840
0.7511443 4096 0.930420
0.9256089 8192 0.965210
1.0411692 16384 0.982605
1.1130223 32768 0.991302
1.1574937 65536 0.995651
1.1860871 131072 0.997826
1.2055086 262144 0.998913
1.2194639 524288 0.999456
1.2299480 1048576 0.999728
1.2380653 2097152 0.999864
1.2393749 4194304 0.999881

Table 1: (left) Four 10000-point Monte-Carlo estimates of K3 (top) and an independent 40000-point estimate
(bottom). The expected value of |F (z)|2 for a random point z on the unit circle |z| = 1 is ≈ 1.25 and the standard
deviation of |F (z)|2 is ≈ 3.6.
(right) Estimates arising from N -point trapezoidal rule on circles of radius r.

Remarks and conjectures. If computationally effective forms of Selberg’s theorem were devised, it would then
become possible to compute rigorous arbitrarily close upper and lower bounds on K3.

Atkinson’s mean-square behavior ([42] ch.7; [22] ch.15) that T−1
∫ T

0 |ζ(1/2 + it)|2 is asymptotically proportional
to log T is very well understood (expansions are available to fairly high order [17]). For further results about the
derivative of the zeta function, see [3][34][41][20][32]. I believe that eventually it will be shown that the ln of the zeta
function, and its first k derivatives, all (when appropriately normalized) act asymptotically (far up the critical line)
like independent standard normal random deviates, i.e. yield a (2k + 2)-dimensional standard normal distribution.

Coffey [9] suggested that perhaps F (z) was univalent in the unit disk, so that the famous Bieberbach conjecture
(nowadays the de Branges theorem) [15]13 would suffice to show |cn| = O(n), proving the RH. This hope fails because
F (z) is (extremely) not univalent. Specifically, if one draws a near-circular curve z(t) that looks like the unit circle
but stays slightly inside it and approaches it closely near z = 1, then the curve F (z(t)) will wind about wildly and
intersect itself many times. (It is enjoyable to get one’s computer to draw such curves.) Every such self-intersection
is a counterexample to univalency.

Indeed in ([42] ch.11) it is shown that for fixed a 6= 0, 1/2 < α < β < 1, the number of points s = σ + it in
the rectangle α < σ < β, 0 < t < T at which ln ζ(s) = a, is greater than fT for some constant f > 0; also each
a 6= 0 is represented an infinite number of times in 1 < σ < 1 + δ, 0 < t < ∞ for each δ > 0. In other words, every
nonzero finite complex value is represented an infinite number of times by ζ(s) for s in either of these infinitely
long rectangles, and zero is also represented an infinite number of times on the line with real part 1/2. Even more
amazingly, the ζ(s) function is “universal” in the sense that for each r with 0 < r < 1/4 and for any function f(s)
analytic and zero-free inside the disc |s| ≤ r and continuous up to its boundary; for each ǫ > 0 there exists a real

12This “confidence” was got from the sample standard deviation, hence is not really right. If the Hejhal and Selberg bounds we discuss
later in the proof can be made computationally effective, then one could compute an explicit upper bound on the variance, at which
point genuine, fully rigorous, confidence intervals could be got for Monte Carlo experiments like ours. Also, one then could compute an
explicit upper bound on K3 itself. For example, K3 = 2

∫ ∞

0
ln |ζ(1/2 + it)|2(1/4 + t2)−1dt < 2

∫ ∞

0
ln(10 + t)2(1/4 + t2)−1dt < 18.9

would follow (on the RH) if the apparently extremely conservative estimate implied by the first “<” were valid.
13Bieberbach-de Branges theorem: If f(z) = z + a2z2 + a3z3 + . . . is analytic and univalent in |z| < 1, then |an| < n unless f(z) is the

Koebe function f(z) = z/(1 − βz) for some constant β with |β| = 1, in which case |an| = n.
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number T = T (ǫ) such that max|s|≤r |f(s)− ζ(s + 3/4 + iT )| < ǫ. The ln ζ(s) function is known [12] to be universal
in an even14 stronger sense: for any function f(s) analytic in |s| ≤ 0.05 and with max|s|≤0.06 |f(s)| ≤ 1, for any ǫ

with 0 < ǫ < 1/2 there exists T with 0 < T < exp
(

exp
(

10ǫ−13
))

so that max|s|≤0.0001 |f(s) − ζ(s + 3/4 + iT )| < ǫ,

and the set of such T s has positive density lower bounded by exp
(

−ǫ−13
)

.
This universal-approximation behavior of the zeta function is absolutely remarkable and nothing like it is exhibited

by any of the usual special functions determined by differential equations, such as exp(1/x), even in the neigborhood
of an essential singularity.15

The Abel-Tauber-Littlewood-Landau-Karamata theorem. Let the Maclaurin series f(z) =
∑∞

n=1 anzn

converge when |z| < 1.

1. If the series also converges at z = 1, then the value it converges to is the same as L = limz→1 f(z), and L
exists.

2. If L exists and either |nan| is bounded, or (in the case of real an) nan is bounded on at least one side by a
constant, then the series at z = 1 converges, to L.

History of the Abel-...-Karamata theorem. The first claim was proven by N.H.Abel in 1826. The second
(reverse direction) claim was proven by Alfred Tauber in 1897 under the assumption that nan → 0. G.H.Hardy then
coined the name “Tauberian theorems” for results of this second type. J.E.Littlewood in 1911 was able to weaken
Tauber’s assumption to |nan| < M . E.Landau, in his book [30], then was able to weaken Littlewood’s assumption
to a one-sided bound (e.g. nan < M) under the assumption the an are real. Also, although Littlewood’s original
proof was long and difficult, a 2-page proof was found by J.Karamata in 1930 [23].

Proof of the rest of theorem 2. First claim (the bounds K1 ≤ cn ≤ K2): This is now trivial: Because
∑

n |cn|2 converges, |cn|2 → 0 and hence cn → 0 and hence the cn are bounded on both sides. Indeed we have the
bound |cn| <

√
K3 ≈ 1.12 for all n. Further, if n > N then we may use our explicit computations of the preceding

n to get better bounds: |cn| <

√

K3 −
∑N

m=0 |cn|2. Unfortunately we do not know the exact value of K3, but our

estimates suffice to make it very plausible that |cn| < 0.3 for all n > 1000, which would prove K1 = c1 = γ ≈ 0.5772.

Second claim: the average value of the cn’s is zero: limN→∞(N + 1)−1
∑N

n=0 cn = 0. This, and more generally,

limN→∞(N + 1)−1
∑N

n=0 |cn| = 0, are trivial consequences of cn → 0.

Third claim:
∑∞

n=0 cn/(n + 1) =
∫ 1

0
F (x)dx converges to a finite limit. To see this, we consider the function

∫ z

0
F (x)dx whose Maclaurin series coefficients are cn/(n + 1). By considering the boundedness of the cn we realize

that the Littlewood-Karamata Tauberian theorem may be applied to see that
∑∞

n=0 cn/(n + 1) =
∫ 1

0 F (x)dx. It
is obvious from the definition of F (z) that this integral is finite (the singularity at z = 1 is logarithmic and hence
integrable).

More generally:
∑∞

n=0(−1)ncn/(n + 1) =
∫ 0

−1 F (x)dx and
∑∞

n=0 e2πirncn/(n + 1) for any fixed real r are proven

in the same manner, but the integral now is along the line segment from 0 to e2πir. These integrals all are finite
under the RH since the singularities at their endpoints (if any) are logarithmic.

Fourth claim: But
∑∞

n=0 cn diverges, i.e. has no finite limit, regardless of the validity of the RH.
If the RH is false, then from theorem 1 we know that an infinite subsequence of the |cn| increase unboundedly and

exponentially, assuring divergence. If the RH is true, then
∑∞

n=0 cn cannot converge to any finite value V , because
then by Abel’s theorem, we would have V = limz→1 F (z), but in fact this limit is divergent. More generally, the
same reasoning shows that

∑∞
n=0 e2πirncn diverges, for any fixed r with 0 ≤ r < 2π such that F (z) has a singularity

at z = e2πirn (there are an infinite set of such r). Q.E.D.
Proof of theorem 3. The key lemma we shall use is: If a function f(z) is analytic throughout a circular disk

containing z = 0 and the maximum value of |f(z)| on the circle’s boundary is M , and the minimum value of |z| on
the circle’s boundary is r, then f ’s Maclaurin series coefficients obey |cn| ≤ M/rn. This is an immediate consequence
of the Cauchy residue theorem.

A non-rigorous (but still quite convincing) maximization of |F (z)| on the circle |z| = 0.9998808 finds K5 = M <
9.1 and K6 = 1/r < 1.00012.

Suppose we know that the zeta function has no zeros in the critical strip (aside from those on the critical line)
with imaginary parts between 0 and H . Then the circle that passes through the 3 points 1 + iH , 1 − iH , and 1/2
is zero-free. Upon applying our conformal transformation, this circle is mapped to a different circle C, namely the
one with center −1/(4H2 + 2) and tangent to the unit circle from inside it. The theorem immediately follows with
K5 = M where M is the maximum value of |F (z)| on C, r = 1 − 2/(4H2 + 2), and K6 = 1/r = 1 + 1/(4H2 + 1).

By using H = 10 and a rigorous 1D global maximizer,16 I found K5 = 4.61, K6 = 1 + 1/401.

14And consequently our F (z) function is also universal in |z| < 1 in an appropriate sense.
15Because: all derivatives of the usual transformations of the the usual functions at any point are determined by the first few of them

at that point, preventing universality.
16Henrici’s complex “disk arithmetic” may be employed for this purpose [19].
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Brent et al. [8] verified the RH for the first 200000001 zeros. The same sort of approach was used by the
“zetagrid” distributed computing project of S.Wedeniwski [44] to reach about the 1012th zero in about 700 years of
computer time.

A far superior algorithm, asymptotically, is based on Odlyzko and Schönhage’s wonderful method [38] for simul-
taneous approximate evaluation of the zeta function at many points on the critical line. This was implemented by
Xavier Gourdon and Patrick Demichel [14] who reached the 1013th zero in only about 1.5 computer-years (then did
it again, using the second run, with slightly different parameters, as a check on the first). This proves the RH with
H = 2.38 × 1012. Consequently we may take K6 = 4.5 × 10−25.

My numerical experiments suggest that the maximum M always occurs on the positive real axis. If so, there is
no need to search for the maximum, one can just go right to it, and M = F (1−2/(4H2 +2)) ≈ ln(2H2). This would
lead to K5 < 58. QED.

4 Numerical calculation of the cn for 0 ≤ n ≤ 105

My original calculations of the cn in 1995 employed MAPLE. I thank Henry Cejtin for translating my MAPLE
program into MATHEMATICA, which (at least at that time) had a far faster and more accurate arbitrary-precision
zeta-function routine.

When I revisited the problem in 2005, I translated the program into C and added some improvements. The
resulting program is far faster. It is available electronically from my web page
(http://math.temple.edu/∼wds/homepage/works.html #33).
It works as follows. First, we choose a radius value r with 0 < r < 1 and a positive number p. Second, we
compute F (reiθ) for 2p+1πθ = 0, 1, 2, . . . , 2p−1. This computation is performed with the aid of Borwein’s algorithm
[6] for evaluating the zeta function. Third, by using a complex→real FFT [39], we compute approximations to all

cn = r−n
∫ 2π

0
F (reiθ)e−inθdθ for all n = 0, 1, 2, . . . , 2p − 1 simultaneously in O(p2p) steps by using the trapezoidal

rule for numerical integration. Fourth, only cn for n = 0, 1, 2, . . . , 0.07 · 2p or so are kept and the rest are discarded
as having too large numerical integration errors.

It is necessary both to choose p and r, and to code Borwein’s algorithm, with some care to try to make sure
that IEEE 64-bit real arithmetic is not overly stressed. Also, when computing the natural log, it is necessary to be
careful to get the right branch. This was accomplished in my program by adding the integer multiple of 2πi to the
log which caused it to be closest to the previously computed log (as we go around the circle of integration). This
admittedly could conceivably return the wrong answer.17 However, whenever 2k ≤ 222 integration points were used
(which was as far as I went) with the circle radii I selected, it was found that no branch adjustments whatever were
performed (much to my surprise), i.e. the standard unadjusted log would have worked just as well since its slit was
never crossed.

One may compute the first 105 coefficients cn in a few minutes, but going much beyond that seems impossible
unless the program is redone to employ reals wider than 64 bits. If that were done, then 108 coefficients ought
to be obtainable on a machine with enough memory (or if an out-of-core FFT routine were used). Sanity checks
include: comparisons with other calculations arising from different r and p, different zeta-evaluation algorithms, and
comparisons with known exact values of the cn with small n (see table 3).18 In principle by use of “disk arithmetic”
[19] in combination with its real analogue “interval arithmetic” it would be possible to get rigorous bounds on every
cn, but I have not implemented that idea.
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a\b 0 1 2 3 4 5 6 7 8 9
0 .57722 .48344 .40690 .34390 .29165 .24805 .21146 .18061 .15451
1 .13238 .11359 .09762 .08406 .07256 .06284 .05465 .04779 .04208 .03737
2 .03353 .03045 .02802 .02615 .02477 .02380 .02318 .02287 .02280 .02294
3 .02324 .02367 .02419 .02479 .02543 .02609 .02675 .02739 .02801 .02858
4 .02910 .02956 .02994 .03024 .03047 .03060 .03065 .03061 .03048 .03026
5 .02996 .02957 .02909 .02854 .02792 .02722 .02646 .02564 .02477 .02385
6 .02289 .02189 .02087 .01982 .01876 .01770 .01662 .01556 .01450 .01346
7 .01244 .01144 .01048 .00956 .00868 .00784 .00706 .00632 .00565 .00503
8 .00447 .00398 .00355 .00318 .00289 .00266 .00249 .00240 .00236 .00240
9 .00249 .00264 .00286 .00312 .00345 .00382 .00423 .00469 .00519 .00572
10 .00629 .00688 .00749 .00812 .00877 .00942 .01008 .01073 .01139 .01203
11 .01266 .01327 .01387 .01443 .01497 .01547 .01594 .01637 .01676 .01710
12 .01740 .01765 .01785 .01799 .01808 .01812 .01811 .01803 .01791 .01772
13 .01749 .01720 .01686 .01647 .01602 .01554 .01500 .01443 .01381 .01316
14 .01247 .01176 .01101 .01025 .00946 .00866 .00784 .00702 .00619 .00536
15 .00453 .00371 .00290 .00211 .00134 .00059 −.00014 −.00084 −.00150 −.00213
16 −.00271 −.00326 −.00376 −.00422 −.00463 −.00498 −.00529 −.00554 −.00574 −.00588
17 −.00596 −.00599 −.00597 −.00588 −.00574 −.00555 −.00530 −.00500 −.00464 −.00424
18 −.00379 −.00329 −.00275 −.00217 −.00156 −.00090 −.00022 .00049 .00123 .00199
19 .00277 .00356 .00436 .00517 .00598 .00679 .00760 .00840 .00918 .00995
20 .01070 .01143 .01213 .01280 .01344 .01405 .01461 .01514 .01562 .01605
21 .01644 .01678 .01707 .01730 .01749 .01761 .01769 .01770 .01767 .01757
22 .01743 .01722 .01697 .01666 .01630 .01589 .01544 .01494 .01439 .01381
23 .01318 .01252 .01183 .01110 .01035 .00957 .00878 .00796 .00714 .00630
24 .00545 .00461 .00376 .00291 .00208 .00125 .00043 −.00036 −.00114 −.00189
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n cn min n cn max
28 0.02280139009458 46 0.03065351260530
88 0.00236364969117 125 0.01812255037514

171 –0.00599351249263 217 0.01770493871324
266 –0.00883907608469 315 0.01253988255037
363 –0.00131379139182 399 0.00352098769716
437 –0.00155950380580 484 0.00792412206467
532 –0.00265011369606 576 0.00586407479860
625 –0.00453989662342 683 0.00608780194195
792 –0.00876015366627 855 0.00985797074639
964 –0.00336332519566 1019 0.00389688597804

1066 –0.00153818488646 1115 0.00440021905772
1164 0.00005467880305 1196 0.00128589755472
1242 –0.00163007107445 1287 0.00135512473644
1325 –0.00066526335624 1376 0.00426339234538
1428 –0.00136942894120 1476 0.00186609695671
1517 0.00064404768880 1535 0.00079246932437
1590 –0.00292177900204 1647 0.00389781719388
1698 –0.00069767736858 1796 0.00309995685116
1867 –0.00595669821220 1995 0.00546016404804
2121 –0.00319014471526 2181 0.00199295480007
2226 –0.00027911074669 2271 0.00160331956098
2314 0.00032723408933 2350 0.00102857036774
2387 0.00020014426637 2436 0.00267830060041
2497 –0.00296619173065 2599 0.00215990443289
2663 –0.00229393735603 2722 0.00194668557918
2760 0.00107257403797 2792 0.00159322788876
2847 –0.00068292293008 2893 0.00053831453272
2921 0.00020096863083 2967 0.00168515230893
3030 –0.00273106705503 3171 0.00341167577060
3190 0.00334465535764 3218 0.00359528973024
3298 –0.00410033760978 3412 0.00101623511632
3457 –0.00022053626542 3510 0.00215512601679
3563 –0.00020649212183 3608 0.00078867711178
3635 0.00058636420848 3681 0.00158013130285
3742 –0.00057707494222 3763 –0.00044296616850
3815 –0.00209543484163 3879 0.00110068098692
3916 0.00051058601068 3953 0.00091930447108
3987 0.00057340355542 4033 0.00161809380293
4089 –0.00096464225022 4143 0.00112397812430
4252 –0.00063700407451 4303 0.00099555682437
4360 –0.00167782325585 4480 0.00206540380103
4545 –0.00024450788597 4566 –0.00015192611164
4611 –0.00095757190767 4670 0.00142737029257
4721 0.00010479910528 4765 0.00057183361261
4779 0.00055284027929 4827 0.00127042815273
4895 –0.00201872728232 4938 –0.00118356283676
4970 –0.00155649823678 5094 0.00357052272782
5166 –0.00064943875440 5220 0.00050367702005
5238 0.00046722765447 5266 0.00059542307428
5345 –0.00239302084422 5382 –0.00213200822984

Table 4: Mins and maxes of cn for n ≤ 5390. (We say cn is a “min” if cn < cn+1 and cn < cn−1, and a “max” if
cn > cn+1 and cn > cn−1.) There are 50 maxes here for an average spacing (“approximate period”) of 5381/50 ≈ 108
between maxes. This period-length appears at first glance to stay roughly constant forever, but a more precise look
(see left half of table 5) up to n = 105 suggests slow growth of the average max-spacing among c1, . . . , cn, e.g.
perhaps period-length≈ 55 + 6.6 lnn, although it is difficult to be certain of that law because of the slowness of the
growth and the presence of considerable “noise.” Coefficients thought accurate to unit last place, but that is not
proven.
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#maxes n period fit
11 1115 101.27 101.31
20 2181 109.00 105.74
39 4143 106.21 109.97
74 8307 112.24 114.56

138 16461 119.28 119.08
265 33015 124.58 123.67
505 65609 129.92 128.20
764 100093 131.01 130.99

max# type n cn

0 max 1 +0.5772156649015329

min 28 +0.0228013900945776

1 max 46 +0.0306535126052961

min 88 +0.0023636496911747

2 max 125 +0.018122550375142

min 171 -0.005993512492634

3 max 217 +0.017704938713244

min 266 -0.008839076084687

4 max 315 +0.012539882550375

min 625 -0.004539896623417

8 max 683 +0.006087801941950

min 792 -0.008760153666268

9 max 855 +0.00985797074639

min 1867 -0.00595669821220

19 max 1995 +0.00546016404804

30 max 3218 +0.00359528973024

min 3298 -0.00410033760978

47 max 5094 +0.00357052272782

min 9947 -0.00194200879367

min 14924 -0.00140007340125

135 max 15788 +0.00146729839833

171 max 20663 +0.00119506685908

min 20888 -0.00139689995959

228 max 28209 +0.0009962980283

241 max 30077 +0.0009560499787

279 max 35484 +0.0008416255356

min 47010 -0.0007627145359

463 max 60105 +0.0006034754003

min 78889 -0.0005415718701

610 max 79302 +0.0005948229714

min 87180 -0.0005343783046

Table 5: (left) The number m of “maxes” among c1, . . . , cn, where cn is the last max, and where we do not count c1

as a max. The approximate “period” is (n − 1)/m. The “fit” is 55 + 6.6 lnn.
(right) All spectacular cn maxes and mins for 0 ≤ n ≤ 105. A max or min cn is “spectacular” if that n yields a new
record high (or low) of cnn1/2 log(n+1)3. Coefficients are thought accurate to unit last place but that is not proven.
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