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Abstract —

“Cayley-Dickson doubling,” starting from the real num-
bers, successively yields the complex numbers (dimension
2), quaternions (4), and octonions (8). Each contains all
the previous ones as subalgebras. Famous Theorems, pre-
viously thought to be the last word, state that these are
the full set of division (or normed) algebras with 1 over the
real numbers. Their properties keep degrading: the com-
plex numbers lose the ordering and self-conjugacy (x = x)
properties of the reals; at the quaternions we lose commu-
tativity; and at the octonions we lose associativity. If one
keeps Cayley-Dickson doubling to get the 16-dimensional
“sedenions,” zero-divisors appear.

We introduce a different doubling process which also pro-
duces the complexes, quaternions, and octonions, but
keeps going to yield 2

n-dimensional normed algebraic
structures, for every n > 0. Each contains all the pre-
vious ones as subalgebras. We’ll see how these evade the
Famous Impossibility Theorems. They also lead to a ra-
tional “vector product” operation in 2

k
− 1 dimensions for

each k ≥ 2; this operation is impossible in other dimen-
sions.

But properties continue to degrade. The 16-ons lose
distributivity, right-cancellation yx · x−1

= y, flexibility
a · ba = ab · a, and antiautomorphism ab = ba. The 32-
ons lose the properties that the solutions of generic divi-
sion problems necessarily exist and are unique, and they
lose the “Trotter product limit formula.” We introduce
an important new notion to topology we call “generalized
smoothness.” The 2

n-ons are generalized smooth for n ≤ 4.

All the 2
n-ons have 1 and obey numerous identities in-

cluding weakenings of the distributive, associative, and
antiautomorphism laws. In the case of 16-ons these weak-
ened distributivity laws characterize them, i.e. our 16-ons
are, in a sense, unique and best-possible. Our 2

n-ons are
also unique, albeit in a much weaker sense. The 2

n-ons
with n ≤ 4 support a version of the fundamental theo-
rem of algebra. Normed algebras (rational but not nec.
distributive) over the reals are impossible in dimensions
other than powers of 2.
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of algebra, division, loops, non-distributive algebras, topology, gen-

eralized smoothness, Brouwer degree, vector fields on spheres, vec-

tor product, weak-linearity, left-alternative, Moufang and Bol laws,

Schwartz-Zippel lemma, automatic verification of polynomial identi-

ties, Trotter product limit formula.
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1 Convenient table of properties of the 2n-ons
1-ons=Reals.
2-ons=Complex numbers. Lose: z = z (the overline denotes conjugating, i.e. changing the sign of imaginary components);
the ordering properties that both {z > 0, −z > 0, or z = 0} and {w > 0, z > 0 implies w + z > 0, wz > 0}.
4-ons=Quaternions. Lose: commutativity ab = ba; the algebraic closedness property that every univariate polynomial
equation has a root.
8-ons=Octonions. Lose: associativity ab · c = a · bc.
16-ons. Lose: right-alternativity x · yy = xy · y; right-cancellation x = xy · y−1; flexibility x · yx = xy · x; left-linearity
(b + c)a = ba + ca; anti-automorphism ab = ba, (ab)−1 = b−1a−1; left-linearity (b + c)a = ba + ca; continuity of the map
x→ xy; Moufang and Bol identities (see EQs 10 & 11); diassociativity (see §5).
32-ons. Lose: generalized-smoothness of the map x→ xy; right-division properties that xa = b has (generically) a solution x,
and the uniqueness of such an x; the “fundamental theorem of algebra”that every polynomial having a unique“asymptotically
dominant monomial” must have a root; Trotter’s formula limn→∞[ex/ney/n]n = ex+y.
...
2n-ons. Retain forever: Unique 2-sided multiplicative & additive identity elements 1 & 0; norm-multiplicativity |xy|2 =
|x|2|y|2; norm-subadditivity |a + b| ≤ |a| + |b|; 2-sided inverse a−1 = a/|a|2 (a 6= 0); a = a; x± y = x ± y; (a−1)−1 = a;
(a)−1 = a−1; |a|2 = |a|2 = aa; left-alternativity yy ·x = y ·yx; left-cancellation x = y−1 ·yx; right-linearity a(b+ c) = ab+ac;
power-associativity aka` = ak+`; scaling s · ab = sa · b = as · b = a · sb = a · bs = ab · s (s real); power-distributivity
(rak + sa`)b = rakb + sa`b (r, s real); vector product properties of ab − re(ab) for pure-imaginary 2n-ons a,b regarded as
(2n − 1)-vectors; numerous weakened associativity, commutativity, distributivity, antiautomorphism, and Moufang and Bol
properties including 9-coordinate “niner” versions of most of those properties; contains 2n−1-ons as subalgebra.
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2 Introduction

Numbers [94] are commonly thought of as a dense infinite
set of things, including “1” and “0,” that one may add, sub-
tract, multiply, and (except for division by 0) divide. The real
numbers (and various subfields thereof, e.g. the rational, al-
gebraic, and computable reals) are the prototypical example.
It revolutionized analysis when it was understood that the re-
als are merely a 1-dimensional subfield of the 2-dimensional
complex numbers. Effects which, so far, have been rather
less revolutionary, were brought about by the discovery of the
4D quaternions and the 8D octonions – which continue the
chain of inclusions begun by the complex numbers – and, in
an entirely different direction, the surreals [66].

The purpose of this monograph is to present the 2n-
ons (pronunciation: “two-to-the-any-ons”), an infinite se-
quence of normed algebraic structures continuing the
real⊂complex⊂quaternion⊂octonion inclusion chain1.

The 2n-ons (and in particular, the 16-ons) were commonly
previously thought, incorrectly, to be impossible. The previ-
ous impossibility theorems (§13) still are presumably correct;
our 2n-ons simply evade them by disobeying their assump-
tions. Specifically: the 2n-ons are nondistributive and have
a discontinuous multiplication map. Nevertheless, the 2n-ons
obey some remarkable weakened distributivity properties, and
the 16-ons obey a remarkable new weakened-continuity prop-
erty we call “generalized smoothness” (§22).

The 2n-ons are defined recursively in terms of the 2n−1-ons
by EQ 68 and 69. (See also §16 & 32.1 for discussion of the
“simplest” versions of that definition.)

The most important properties of the 2n-ons for general n
are the following (§10): Each has 1 and obeys |ab|2 = |a|2|b|2,
|a|2 = aa, a · ab = a2b, a · a−1b = b, a2 + |a|2 = 2a rea,
aka` = ak+`, a(b + c) = ab + ac, a = a, a± b = a ± b,
(a)−1 = a−1, and, letting 〈x, y〉 denote the 2n-vector Eu-
clidean inner product, 〈xa, b〉 = 〈a, xb〉, 〈xa, xb〉 = |x|2〈a, b〉,
and 〈x, y〉 = 〈x, y〉. The following identities hold if either at
least one of {a, b} is a “niner” (last 2n − 9 coordinates= 0)
or if “=” is reinterpreted to mean “the real parts are equal:”
ab · a = a · ba, ab · a−1 = a · ba−1, ba · a = b · a2, ba−1 · a = b,
ab = ba. All the coordinates of a 2n-on are“imaginary”except
for a single “real” coordinate (the overline denotes conjuga-
tion, i.e. changing the signs of all imaginary coordinates). If
two purely imaginary (i.e., with real part 0) 2n-ons are mul-
tiplied, and the real part of the result discarded, then this is
a “vector product” for (2n − 1)-dimensional vectors ~a, ~b, i.e.

~a ×~b is perpendicular to both ~a and ~b, and its length is the
same as the area of the parallelogram spanned by ~a and ~b
(§25.2).

The 16-ons continue the chain of property-degradation by los-
ing the left-linear (b+c)a = ba+ca distributive property. The
2n-ons nevertheless obey (b + c)a = ba+ ca if either (1) b and
c are niner, (2) a is niner, or (3) at least one of {a, b, c} is
real. We’ll see in §14-16 that these and a few other weakened-
distributivity properties characterize the 16-ons.

We show in §19-20 that one can divide any 2n-on by any
nonzero 2n-on (on either side) to get an answer which, for 16-
ons, generically exists and is unique. However these existence

and uniqueness properties are irrevocably lost at the 32-ons.
The “Trotter product limit formula” limn→∞[ex/ney/n]n =
ex+y (which underlies quantum mechanics) is another prop-
erty of 16-ons x, y that is irrevocably lost at the 32-ons.

Those readers who are not pure mathematicians may ask: Of
what use are the 2n-ons? Nice division algebras are so exceed-
ingly rare that it surely is worth investigating all properties
of the few that exist (with the 16-ons being a new one) under
the presumption that some use will be found for them all.
This monograph, as the largest collection of facts and proofs
about 2n-ons, fills that need.

The quaternions played very important roles historically both
in leading Maxwell to his electromagnetic equations, leading
Gibbs to his 3-vector notation (cross-product, dot-product,
etc.), and in fathering the entire discipline of abstract alge-
bra – even if those roles were later largely forgotten after all
of these things were redone without reference to quaternions.
Known uses include: As we shall explain, the quaternions are
a superior way to represent 3D and 4D rotations and Lorentz
transformations. (Hence they have been used in special rela-
tivity, Newtonian mechanics, gyroscopes, aerospace engineer-
ing, computer graphics, etc.) Both the quaternions and octo-
nions play fundamental roles in the theory of sphere packings
in up to 9 dimensions [67], and hence have been used in the
design of protocols for fast modems. The quaternions and
octonions also play fundamental roles in the theories of Lie
[144] and Jordan algebras [143], in the theory of loops [47],
and in topology [2][37]. The quaternions also have been used
in the best known explicit constructions [202] of fundamen-
tal combinatorial objects called “expanders” which underlie
various parallel algorithms – e.g. all known asymptotically
optimal parallel sorting algorithms [7] – and telephonic rout-
ing networks [30]. It also is possible that 2n-ons will become
important in theoretical physics, see open problem 4 in §30.

Along the way we’ll

1. Prove new versions of the Fundamental Theorem of Al-
gebra (§17 and 23),

2. Present new facts about quaternions and octonions,
3. Introduce a new notion called “generalized smoothness”

into topology (now allowing topology to be used even
for discontinuous maps),

4. Extend the “Schwartz-Zippel lemma” about computer
verification of identities into the noncommutative and
differential operator worlds (§11),

5. Present a useful “taxonomy of loop theory” (§26.2)
6. Show that some fundamental notions from Complex

Analysis such as Cauchy Integral Formula and contour
integrals have 2n-onic analogues (§21.3),

and provide the answer to the trivia question “what mathe-
matician was a 3000+-ton ship named for?”

3 Notation

Nnac, nnacd: We shall employ the highly useful abbrevi-
ation nnac to mean (that some ring-multiplication is) “not

1The 2n-ons may of course be either surrealized, or restricted to rational, algebraic, or computable subfields. Those are totally independent
issues.

20 Jan 2004 3 3. 0. 0



Smith typeset 11:37 14 Feb 2004 16-ons

necessarily associative nor commutative.” Indeed we some-
times even shall allow multiplication to be non-distributive,
in which case we use “nnacd.”

Abstract algebra: For basic definitions such as loop, group,
ring, field, see elementary algebra books [145] and our §26.

“Algebras:” An n-dimensional nnacd-algebra A over a field
F is the set of the n-tuples of elements of F , together with
componentwise addition, subtraction, and scalar multiplica-
tion operations x + y, x − y, and xs = sx for s ∈ F and
x, y ∈ F n; and the key feature of A is that it has a vector-
vector nnacd-multiplication operation, denoted by either xy
or x · y. Juxtaposition means the same as, but has higher
precedence2 than, dot: yz · t = (yz)t. We shall mainly be
interested in the real field F = R; less frequently in the com-
plex field F = C, and still less frequently in finite fields such
as F = GF2. (Actually, it is possible to start even from cer-
tain non-fields. See §26.5.) Our algebras also will usually
have a “conjugation”operation denoted x, obeying x = x and
x± y = x± y, and an identity element 1. In that case 1 = 1
and we often slightly abuse notation by writing merely s in-
stead of s1.

Vectors: We denote the Euclidean inner product of two N -
vectors over F by 〈x, y〉 =

∑N−1
j=0 xjyj , and |x|2 =

∑N−1
j=0 x2

j .

Thus |x|2 = 〈x, x〉 and 〈x, y〉 = 〈y, x〉 and |a + b| ≤ |a|+ |b|.
“Iff,” “wlog,”“generic:” The following shorthands are of-
ten useful: “iff”means“if and only if.” “Wlog”means“without
loss of generality.” A set of real numbers is “generic” if they
obey no multivariate polynomial equation with integer coeffi-
cients (besides equations satisfied by every set of reals), i.e.,
are algebraically unrelated. More generally we may use “full
measure” to mean “except perhaps for a set of measure zero.”

re, im: We write re x = 〈x, 1〉 and im x = x − rex. When
F = R, we shall always only be concerned with this conjuga-
tion operation: x = 2 rex− x.

Matrices: M−1, MT , and MH denote, respectively, the in-
verse, transpose, and complex-conjugate transpose (Hermi-
tian adjoint) of a matrix M , and I denotes the identity ma-
trix. A real matrix M is orthogonal if MT M = MMT = I ,
i.e. if it has orthonormal rows (and orthonormal columns).
A complex matrix M is unitary if MHM = MMH = I . A
matrix M is s-scaled orthogonal if M is s times an orthogonal
matrix, so that MT M = s2I .

Spheres: Sn−1 denotes the (n − 1)-dimensional manifold
|~x| = 1 for ~x ∈ Rn.

Stereographic projection is the following rational bijective
map between the unit sphere |~x|2 + z2 = 1 in Rn × R (i.e.,
Sn) and the hyperplane Rn ∪∞:

(~x, z) → ~x

1− z
, (~0, 1) → ∞ (1)

whose inverse is

~x → (
2~x

1 + |~x|2 ,
|~x|2 − 1

1 + |~x|2 ). (2)

Coordinates: When discussing elements of N -vectors, we
shall number the coordinates from 0 to N − 1. Starting at
0 has the advantages that (i) it is more compatible with the
binary representation of integers when N = 2n, and (ii) the
index 0 automatically assumes a special status – useful since
we shall make the 0th coordinate be the“real part”of a 2n-on.

Mixing: We shall often mix notations commonly associated
with n-vectors with notations commonly associated with n-
dimensional algebra elements. E.g. x5 means the 5th coor-
dinate of ~x. The special symbol ek denotes the vector (or
algebra element) whose kth coordinate is 1 and all of whose
other coordinates are 0. We shall be constructing 2n-ons in
such a way that coordinates 0, . . . , 2k − 1 form a 2k-on sub-
algebra, for3 each k with 0 ≤ k < n. 2n-ons which are 0 in
all coordinates except for the first 2k, will thus be reals, com-
plexes, quaternions, octonions, and 16-ons for k = 0, 1, 2, 3, 4
respectively. (Thus, for another example of notation-mixing,
e0 = 1.) It is also useful to call a 2n-on which is zero in all
but its first 9 coordinates (indices 0-8) a “niner.”

Dimension: The “dimension” of a subset S of a d-
dimensional manifold means its Haussdorf dimension, i.e., let
Sr denote the locus of points distance≤ r from S = S0; then

dim(S)
def
= inf

k, 0≤k≤d
{k | lim

r→0+
measure(Sr)r

k−d <∞}. (3)

4 Hamilton and the Quaternions

W.R. Hamilton discovered the quaternions on 16 October
1843, and described them in a letter he wrote to John T.
Graves the next day.

The4 complex numbers a + ib are obtained from the reals by
adjoining an additional special symbol i obeying i2 = −1.

Hamilton instead adjoined three special symbols i, j, k, obey-
ing i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i,
ki = −ik = j, to the real numbers to get the quaternions
a + ib + jc + kd. These have associative and distributive,
but noncommutative, multiplication. The conjugate of the
quaternion q = a + ib + jc + kd is q = a− ib− jc− kd, and
its norm is |q|2 = qq = qq = a2 + b2 + c2 + d2. Norms are
multiplicative: |ab|2 = |a|2|b|2. The reciprocal (both the left
and right inverse are the same) is q−1 = q/|q|2.
Hamilton and his followers, knowing the tremendous impor-
tance of complex numbers, naturally thought the quaternions
would be even richer and more important. However, history
has disappointed those hopes. One important reason is the
1850 theorem [166] of J.Liouville (1809-1882) that the only

2Some authors continue by defining a : b and a
...b to mean the same thing as a · b, but with successively lower precedence.

3 Warning. In §5 we give a “nice” construction of the octonions and in §8 of Cayley and Dickson’s “sedenions,” which do not have the property
that the first 4 (respectively 8) coordinates form a quaternion (respectively octonion) subalgebra. Instead, the quaternion subalgebra (1, i, j, k)
of the octonions of §5 is in the coordinates corresponding to (1, i1, i2, i4); the octonion subalgebra of the sedenions of §8 is in the 8 coordinates
(1, s+

1
, s+

2
, . . . , s+

7
). We have departed from our usual coordinate-numbering convention in these sections only, purely because we want to show the

most beautiful and symmetric possible constructions of the octonions anf Cayley-Dickson sedenions. You are also warned that the “sedenions” of
Cayley and Dickson, described in §8, are entirely different from our “16-ons,” described in §9.

4The theorem mentioned in §1 about the impossibility of “ordering” C is proven on page 68 of [94].
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conformal mappings in dimensions ≥ 3 are spherical inver-
sions; thus the exceedingly rich theory of “analytic” (which
means the same thing as“complex-differentiable”and as“con-
formal”) complex functions has no analogue in higher dimen-
sions. Nevertheless, quaternions are far from useless. Special
relativity, Lorentz transformations, and Maxwell’s equations
of electromagnetism may be reformulated quaternionically (or
biquaternionically). The latter was done by Maxwell himself
(see §21.3), but nowadays this is rare since it does not seem
to bring any advantage. The quaternions inspired, and make
useful, Gibbs’s very used 3-vector “cross product” ~a × ~b no-
tation and its relatives ~∇ × ~F (~x), etc. since the quaternion
multiplication law (with quaternions now regarded as R×R

3)
may be written

(a, ~x)(b, ~y) = (ab− ~x · ~y, a~y + b~x + ~x× ~y). (4)

They also were the source from which the great edifice of ab-
stract algebra has sprung. (E.g., Hamilton was apparently
the first to consider the “associative law” of multiplication.)

Rotations. One reason quaternions are useful is that they
may be used to represent rotations [70]. Hamilton had been
inspired by the fact that multiplication by a unit-norm com-
plex number effects a two-dimensional rotation. Fact: any
3 × 3 rotation matrix may be represented as a unit-norm
quaternion q (and exactly two such quaternions q and −q
work), with the rotation acting on a 3-vector ~x (regarded as a
pure-imaginary quaternion x) via x → q−1xq = qxq. Indeed
(formula due to Olinde Rodrigues5 in 1840), the q causing a
rotation of angle θ counterclockwise about the axis ~a (with
|~a| = 1) is given by the following beautiful formula

±q = (cos
θ

2
,~a sin

θ

2
) = exp

aθ

2
(5)

where the rightmost expression denotes the quaternion-valued
exponential (EQ 150) of the pure-imaginary unit-norm 3-
component quaternion a. Note this is far nicer than employ-
ing a 3 × 3 rotation matrix since the axis and angle of the
rotation are simply related to the transformation, and also
because, e.g. the average of two rotation matrices is not a ro-
tation matrix, whereas the average of two quaternions is still
a quaternion.

Fact6: any 4 × 4 rotation matrix may be represented as a
pair (a, b) of unit-norm quaternions (and exactly two such
work; the negated pair is the other), acting on a 4-vector
(regarded as a quaternion x) via x→ axb. Further, any unit-
norm quaternion is the exponential (defined in EQ 150) of a

pure-imaginary quaternion, so this 4D rotation instead may
be written

x → exp(a)x exp(b) (6)

where a and b are pure-imaginary quaternions.

Although both of these facts are well known [71], we have not
previously seen the fact that five-dimensional rotations may
also be represented with quaternions.

To do that, we garner the extra dimension in a manner anal-
ogous to the way that complex numbers may be used to
represent 3D rotations. To recall that: we stereographically
project the surface of the unit sphere in R3 down to the plane
C, then perform a Möbius transformation z → az−b

bz+a
where

|a|2 + |b|2 = 1, then stereographically inverse-project back up
onto the sphere.

Now, to perform rotations similarly in R5, we stereographi-
cally project the surface of a sphere in R5 into R4, regarded
as the quaternions. Then we perform a quaternionic Moebius
transformation q → (cq + d)−1(aq + b) where |a|2 + |b|2 =
|c|2 + |d|2 = 1, and ab + cd = 0. Finally, we stereographically
inverse-project back up onto the sphere. The 10 real degrees
of freedom in a 5D rotation are thus made to correspond with
the 10 = 16− 2 − 4 real degrees of freedom in 4 quaternions
subject to 2 norm constraints and 1 quaternionic constraint.

It is also possible to represent “Lorentz transformations” via
complex numbers, quaternions, and octonions ([21] page 147;
[169] p.3761, and see our §8.4).

5 Graves, Cayley, Moufang, and the
Octonions

Graves then discovered the octonions, also in 1843, and de-
scribed them in a letter back to Hamilton on 26 December.
Arthur Cayley soon rediscovered them and published them
as an appendix to other work [55]7, and thus, unfortunately,
they are often called the “Cayley numbers.”8

They are obtained by adjoining seven special symbols
i0, i1, i2, i3, i4, i5, i6 to the reals9. The octonions are then
x = x∞ + x0i0 + x1i1 + · · · + x6i6. The multiplication law
for (im+1, im+2, im+4) (indices m taken mod 7) is the same
as for Hamilton’s quaternions (i, j, k). For example, since
−kj = i, we find by taking m = 5 that −i1i6 = i5. Again
we define the conjugate x of an octonion x by negating all
the im, and we define the norm |x|2 = xx = xx to be the
sum of the squares of the xm for m ∈ {0, 1, 2, 3, 4, 5, 6,∞}.

5See §31.1 for information about Rodrigues.
6A.Cayley: Philos. Magaz. 7 (1854) and J.f. reine & angew. Math. 50 (1855).
7This was bizarre. Cayley’s main thrust was to refute a certain Reverend Bronwin, who had pointed out errors in previous Cayley work on

elliptic functions. However, Bronwin was right and Cayley wrong and hence this entire paper ultimately was omitted from Cayley’s collected papers,
except for the (completely unrelated) appendix Cayley had tacked on about his discovery of octonions!

8See footnote 3. Also, the sum-of-squares formula expressing the multiplicativity of the octonion norm had been found earlier by C.F.Degen in
1818.

9This very nice 7-cyclically symmetric presentation of the octonions dates back at least to E.Cartan & J.A.Shouten [53] in 1926.
10 Also, the nice geometrical properties (correspondence to rotations) of quaternion multiplication are now lost, or at least diluted: Octonion

multiplications x → ax and x → xa, |a|2 = 1, are 8D rotations, but certainly not the most general ones; and x → axa−1 are 7D rotations, since
they preserve the subspace rex = 0, but again these certainly are not the most general ones. Because a 7D rotation is described by 21 real degrees
of freedom, one might hope that x → a(b(cxc−1)b−1)a−1 (which for |a|2 = |b|2 = |c|2 = 1 also has 21 degrees of freedom) describes a general 7D
rotation (rex = 0). But that hope is not true. Similarly because a general 8D rotation is described by 28 real degrees of freedom, one might hope
that 4 successive multiplications by unit-norm octonions might describe a general 8D rotation, but that hope too is in vain. (Indeed theorem 8 of
section 8.4 of [68] states that a general octonion left-multiplication may be expressed as 7 consecutive octonion right-multiplications, but no fewer.)
See our §28 for genuine (albeit comparatively messy) octonionic parameterizations of 7D and 8D rotations without any wasted degrees of freedom.
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Again norms are multiplicative: |ab|2 = |a|2|b|2. Multiplica-
tion is now neither commutative nor, unfortunately10, asso-
ciative (e.g. i1i2 · i3 = i4i3 = −i6 6= i6 = i1i5 = i1 · i2i3).
Fortunately octonion multiplication obeys11 a weakened as-
sociativity property, the left and right “alternative” laws

xx · y = x · xy, xy · y = x · yy. (7)

Thanks to distributivity and x−1 = x|x|−2, these imply and
are implied by the (usually more useful) left and right “can-
cellation” laws

y = x−1x · y = x−1 · xy, yx · x−1 = y · xx−1 = y. (8)

Because of these laws, the octonions again form a division
ring with c−1 = c/|c|2. (That is, the cancellation laws allow
us to divide, i.e. solve ax = b for x, by left-multiplying both
sides by a−1; similarly we may solve xa = b.)

For other interesting representations of the octonions, see
[73][99].

In any Moufang loop (“Moufang’s theorem” [181][114]) or in
any alternative nnac-ring (“generalized Artin’s theorem”– see
the first corollary in the appendix of [49]) it is known12 that:

1. The multiplication is13: “flexible”

xy · x = x · yx; (9)

2. The left and right “Bol laws” [36][160][217]14 hold

(x · yx)z = x(y · xz) (left), (10)

z(xy · x) = (zx · y)x (right);

3. The left, middle, and right “Moufang laws” hold15, i.e.,
respectively:

(xy · x)z = x(y · xz) (left), (11)

x(yz · x) = xy · zx = (x · yz)x (middle), (12)

(xy · z)y = x(y · zy) (right); (13)

4. Reciprocals (whenever they exist) are automatically two
sided16: x−1x = xx−1 = 1.

5. Multiplication is “power associative,” i.e. xn has an un-
ambiguous meaning (no matter how one parenthesizes)
for every integer n ≥ 0, and indeed for every integer n
of either sign if x−1 exists, i.e. the subloop (subring)
generated by any one element is associative;

6. More generally, alternativity implies (and is implied by)
“diassociativity:” the subring (or subloop) generated by
any two elements a and b, is associative; and any a, b, c
that associate in some order generate an associative sub-
ring or subloop. In the octonions, this subalgebra is iso-
morphic to the quaternions (or, in degenerate cases, to
a subalgebra of the quaternions).

The question of just which properties follow from which Mo-
ufang or alternative (or other) axioms in loops or nnac-rings
is discussed in greater detail in §26.

The octonions also obey unambiguity of similitude

x−1y · x = x−1 · yx, (14)

and anti-automorphism

ab = ba (15)

and consequently obey a−1b−1 = (ba)−1.

6 Moufang-like laws for octonions

Theorem 1 (Moufang-like laws). If a, x, y are octonions
(and a 6= 0 if necessary, i.e. in the equations containing a−1),
then they obey the following 17 equations (some including mul-
tiple equalities). However, in general, no two of these 17 func-
tions are equal.

(x · ya)a−1 = xa · a−1y = a(a−1x · y) (16)

(x · a−1ya)a−1 = a(a−1x · a−1y) (17)

a−1(xa · y) = a−1x · ay (18)

a(a−1xa · y) = (xa · ya)a−1 (19)

(a−1xa · ya−1)a = a−1(xa · y) = (a−1x · ay) (20)

(ax · ya)a−1 = a · xy (21)

xa · a−1ya = a(a−1x · ya) (22)

a(xa−1 · ya−1) = (axa−1 · y)a−1 (23)

a−1(ax · ay) = (x · aya−1)a (24)

a(x · aya−1) = (ax · ay)a−1 (25)

xy · a = a−1(ax · ya) (26)

xa · ya−1 = a(a−1x · aya−1) = (x · ay)a−1 (27)

11Octonion alternativity was conjectured by E.Artin and first shown by Max Zorn [262]. Adem ([5] appendix) gave a slick proof, resembling his
other one we mention in footnote 24 of the theorem (originally due to Albert [9]) that the Cayley-Dickson double (see §8.1) of a linear algebra A
is alternative if and only if A is associative.

12K.Kunen [159] showed that in a loop ring in which 1 + 1 6= 0 (and hence in its underlying loop) left and right alternativity imply each other.
But this is not true in general rings, nor in loops whose loop rings have characteristic 2. Kunen in another paper [160] showed that any quasigroup
satisfying any Moufang identity, must be a Moufang loop, i.e. must have a 2-sided identity. Both of Kunen’s proofs were discovered with aid from
proof-finding computer programs.

13Actually, in the presence of the distributive law, any two of the three laws {left-alternativity, right-alternativity, flexibility} implies the third.
But this is untrue in a loop.

14It was shown by Robinson [217] that loops obeying either the left Bol (or the right Bol) identity, are power-associative. Left Bol loops are
left-alternative, see figure 26.3.

15Any one among Moufang’s four = signs suffice ([47] p.115-120, [181]), in a ring or loop, to imply the three others and hence left and right
alternativity and cancellation, flexibility, and left and right Bol. Also, a loop is Moufang iff both the left and right Bol laws hold. In a Moufang
loop a−1b−1 = (ba)−1 . Different authors disagree on what the precise statements of the “Bol” and “Moufang” identities are. We are following
Kunen [160]. Under Kunen’s convention, the left and right Bol identities do not imply each other in a loop, although they do in a ring. Of course
if multiplication is flexible, as it is in the octonions, the distinction between the Bol and Moufang identities vanishes.

16 To draw this conclusion, left- and right-cancellation alone suffice; flexibility and distributivity are not needed.
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(xa · ya−1)a = x · ay (28)

(ax · a−1y)a = axa−1 · ya (29)

(ax · ya−1)a = axa−1 · ay (30)

(axa−1 · a−1ya)a−1 = a(xa−1 · a−1y) (31)

a(xa−1 · aya−1) = (axa−1 · ay)a−1 = ax · ya−1 (32)
Proof: These were established by computer, see §11. Q.E.D.

6.1 Miscellaneous facts about octonions
Theorem 2 (Reflections). Let refl[~x] denote the map

refl[~x](~t)
def
= ~t− 2〈~x,~t〉

|~x|2 ~x (33)

mapping an 8-vector ~t to its reflection in the hyperplane nor-
mal to ~x and containing the origin. Let a be a unit-norm oc-
tonion. Then (viewing octonions as 8-vectors), −refl[a](y) =
a · ya, while −refl[a](y) = ay · a = a · ya.
Proof: 17 In the octonions this may be proven by computer as
in §11. More generally: in Cayley-Dickson algebras (defined
next section) we have

2〈a, b〉 = ab + ba = ab + ba (34)

(by EQ 49 with x = a + b) so that

2a〈a, b〉 = a · ab + a · ba. (35)

Hence the reflection law

a · ba = 2a〈a, b〉 − b = −refl[a](b) (36)

has precisely the same validity in the Cayley-Dickson algebras
as does the left-cancellation property a ·ab = |a|2b. Since left-
cancellation holds in the octonions, the second identity in our
theorem is proven in the octonions – and the first identity is
the same except y is used instead of y. (See also the general-
ization of this in theorem 34.) Q.E.D.

Remark. Here are 5 important special cases of theorem 2 (in
all cases |t| = 1):

refl[t](0) = 0, refl[t](t) = −t, refl[1](y) = −y, (37)

refl[t](1) = −t2, refl[t](t) = −t3. (38)

Theorem 3 (Companions). Let T (z) be an SO(8) trans-
formation of the octonion (regarded as an 8-vector) z. Then
there exist unique (up to an overall sign change) unit-norm
octonions a, b such that T (xy) = T (x)a · bT (y).
Proof: This is shown in sections 8.1 and 8.7 of [68]. Conway
and D.Smith call a and b the “companions” of T . Q.E.D.

7 Famous Impossibility theorems

Over the 100-year period 1880-1980, a great number of theo-
rems were shown, all demonstrating in some way the unique-
ness of the reals, complexes, quaternions, and octonions. Im-
portant contributors to this battle include Frobenius, Hur-
witz, Radon, Bruck, Albert, Kaplansky, Kleinfeld, Zorn,
Wright, and Skornyakov (algebraicists) and Hopf, Adams,
Bott, Kervaire, and Milnor (topologists). Here is a list
(surveys=[94][147][225][259]):

Theorem 4 (6 Famous Impossibility theorems). The
following 6 theorems hold.

1. There are exactly 4 nnac-algebras with unit element
1 over the real numbers which have a multiplicative,
non-negative-real valued, norm, namely: the reals, com-
plexes, quaternions and octonions [94][134][147].

• The demand that there be a unit element 1 may be re-
placed [101] by demanding power-associativity for pow-
ers ≤ 4.

• Even if the demand for a unit element is dropped,
then dimensions 1,2,4,8 are still the only possibilities,
but [10][94] certain other algebras (which are related by
orthogonal transformations to the quaternions and oc-
tonions) become available in dimensions 4 and 8. Some
of these [14] have only a left-identity and some do not
even have a 1-sided identity (nor do they have 2-sided
inverses)18.

2. These are also the only finite dimensional alternative
(EQ 7) nnac division algebras over the reals [49][263].

• This is still true if the word“alternative”is replaced by
the weaker word “right-alternative,” and also [12] even
if the word “division” is replaced by the word “semisim-
ple19.”

• E.K.Loginov [168] claims to have shown that any sim-
ply connected analytic Moufang loop must be embedded
in the invertible elements of an alternative algebra over
R. If this is accepted then the only such loop (besides
groups) with spherical topology is the unit-norm octo-
nions.

• The flexible division algebras over the reals have been
classified [28] and have dimensions 1, 2, 4, 8 only.

17This theorem was mentioned in §6.6 of [68], however their theorem statement was incorrect – their two reflections were performed in the wrong
order and they forgot to negate.

18 I. Kaplansky [148] analyses arbitrary dimensional (including infinite dimensional) algebras A, over arbitrary fields F , such that A has a
quadratic, multiplicative norm. He claims (theorem page 957) that if the norm is “nonsingular,” then:

(a) A is alternative.
(b) A has dimension∈ {1, 2, 4, 8}, or charF = 2 and A is a “purely inseparable field over F .”
(c) A is simple, or A is F ⊕ F (direct sum).
(d) The norm is xx where x is an involution.

Unfortunately, over GF2 the Euclidean norm is “singular,” since |x + y|2 − |x|2 − |y|2 ≡ 0 mod 2, so that Kaplansky’s results are not of interest to
us. If we insist on using the Euclidean norm over GF2, counterexamples to Kaplansky’s theorem result: Let F = GF2 and let A be n-dimensional
(for any n). Define the multiplication as follows: The product of the binary n-bit word with a 1 in position j, times the binary n-bit word with a 1
in position k, is wjk, where the wjk are any binary words, with odd parity, we please. (We can cause 1 to exist by making w0k = wk0 = ek.) This
algebra has multiplicative Euclidean norm (which is just the parity of the number of 1-bits). However, it is in general not a field, not alternative,
not simple, and not GF2 ⊕ GF2, and there is not any suitable involution x. Also, see the theorem in §31.2, where we construct unital algebras
A over any field F with charF = 2, of any dimension n = dimA with n mod 6 ∈ {2, 4}. These A are much more to Kaplansky’s liking since
they are alternative and commutative. However, they still violate his theorem since they are not fields, since the multiplication is, in general,
non-associative. We conclude that n-dimensional composition algebras over GF2 exist for every dimension n.

19“Simple” means: has no nontrivial ideals. “Semisimple” means has no nilpotent ideals besides {0}.
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3. Any nnac division algebra over the reals, or indeed,
any continuous map from Sn−1 × Sn−1 → Sn−1 with
a 2-sided identity, is 1, 2, 4 or 8 dimensional [1][2].
(Warning [81][191][28]: other 8-dimensional division al-
gebras over the reals exist besides the octonions; and
division algebras over fields F with F 6= R exist with
dimension6∈ {1, 2, 4, 8}.)

4. Definition [98]: a vector “cross product”~a×~b ∈ Rn for

~a,~b ∈ Rn obeys
orthogonality:

〈~a×~b, a〉 = 〈~a×~b, b〉 = 0 (39)

and length=area relation:

|~a×~b|2 = |~a|2|~b|2 − 〈~a,~b〉2 = det

(
〈~a,~a〉 〈~a,~b〉
〈~b,~a〉 〈~b,~b〉

)
(40)

Then: A bilinear vector product exists in Rn iff n = 3
or n = 7.

• The word “bilinear” may be replaced by “continuous”
in this theorem [97][98]. See also [179].

5. There are exactly four“real homogeneous algebras”over
R (i.e. algebras with an automorphism group transitive
on 1D subspaces, i.e. that allows mapping any nonzero
vector to any other up to a proportionality) namely [84]:

(a) R itself,
(b) the pure imaginary quaternions with truncated (or

equivalently Lie) multiplication (i.e. 3-vectors un-
der cross product),

(c) pure imaginary octonions with truncated (or equiv-
alently Lie) multiplication (the 7D vector cross
product), and

(d) C3 under 3-vector cross product of the complex-
conjugated 3-vectors, i.e. the pure-imaginary bi-
quaternions20 under Lie (or equivalently trun-
cated) multiplication.

6. Any sum-of-squares identity (over any field F with
charF 6= 2)

(

n∑

j=1

x2
j )(

n∑

k=1

y2
k) = (

n∑

`=1

z2
` ), (41)

where the z` are given bilinear functions of the xj

and yk, must have n ∈ {1, 2, 4, 8} and must be
the same (up to orthogonal linear transformations) as
the norm-multiplicativity identity for the reals, com-
plexes, quaternions, and octonions (A.Hurwitz’s theo-
rem [147][134]; see also claim 10 in our proof of our
theorem 60). If EQ 41 holds over F , and −1 is not a

sum of n squares in F , and if the z` are rational func-
tions of the xj and yk over F , then n must21 be a power
of 2.

• An immediate corollary is: If the z` are rational func-
tions of the xj and yk such that EQ 41 is valid over R,
then n is a power of 2.

• The analogous power-of-2-only theorem is not true
over the complex numbers (nor in any field in which a
sum of nonzero squares can be zero), because one may
always add k more squares whose sum is 0 (e.g. the kth
roots of unity) on to every sum, for any k ≥ 2.

Remark (Polynomials impossible). Unless n ∈
{1, 2, 4, 8}, sum of squares identities (EQ 41) are impossible
with the z` defined by polynomial maps Sn−1×Sn−1 → Sn−1;
if the maps feature a 2-sided identity element“1.” (Proof: Use
Adams’ results about smooth maps mentioned in part 3 of im-
possibility theorem 4. Second proof: if the z` are polynomial
functions of the xj and yk, then they must in fact be bilin-
ear functions, as may be seen by considering fully expanding
both sides into monomials and matching the coefficients of
the terms of highest degree.) Thus this monograph’s decision
to resort to rational maps in §9 was necessary.

• Hurwitz’s problem [134] asks: What is the least integer
n = n(r, s) so that a sum of squares identity

(x2
1 + · · ·+ x2

r)(y
2
1 + · · ·+ y2

s) = (z2
1 + · · ·+ z2

n) (42)

exists where the zk are polynomial (and hence bilinear)
functions of the xi and yj? It is known that n(r, s) is
always finite: indeed Hurwitz [135] and Radon [210] in
their original papers had independently shown that the
largest r such that n(n, r) = n = u24α+β with 0 ≤ α,
0 ≤ β ≤ 3, u odd, is

r = 8α + 2β . (43)

Many later authors (cited in [234]) showed how to
achieve the Hurwitz-Radon bound (EQ 43) with all-
integer constructions in which all the coefficients in the
bilinear forms are elements of {−1, 0, +1}. Many of
these constructions arise from modifications and/or di-
mensional restrictions of the Cayley-Dickson multiplica-
tion formula we shall discuss in §8.1. If the polynomials
zk(~x, ~y) are required to have real coefficients, then [163]
if min{r, s} ≤ 9 the answer is defined recursively by

n(1, s) = s, n(r, s) = n(s, r), (44)

n(r, s) = 2t if 2t−1 < r, s ≤ 2t (45)

and

n(r, s) = 2t + n(r, s− 2t) if r ≤ 2t < s. (46)

20See the discussion of “bions” in §8; our new 2n-ons also have “bi” versions, discussed in §9.
21The theory behind this is primarily due to A.Pfister [199][211]. D.B.Shapiro remarks: “This statement immediately follows from the Cassels-

Pfister Subform Theorem, as stated in Corollary A.2 on page 167 of my book [231]. The hypothesis of the theorem becomes statement (3) in that
Corollary, where ϕ is the ‘sum of n squares’ quadratic form. That Corollary implies that ϕ is a Pfister form, which in this case is equivalent to
saying that n is a 2-power.

The proof of the Subform Theorem and Corollary are not included in my book. They can be extracted from the earlier literature... I believe
T.Y. Lam was the first to observe the Corollary in this form, and it was first stated in this nice way in my survey [232].” Q.E.D.

I also remark that there is an extremely simple proof by A.M.Legendre and B.L.van der Waerden that satisfying EQ 41 in the rationals is
impossible when n = 3 (with the z` rational functions of the xj ’s and yk’s), based on the fact that 3 = 1 + 1 + 1 and 21 = 42 + 22 + 1 are the sums
of three squares, but 63 = 3 · 21 is not.
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If the polynomials are required to have integer coef-
ficients, then it is known [234] that the n(r, s) given
by the recurrence in EQ 44-46 yields a lower bound on
the true n(r, s) for all r, s (but it is only known to be
tight when min{r, s} ≤ 9), and table 7.1 gives the an-
swer when 10 ≤ r, s ≤ 16. Lam and Yiu conjectured
that restricting to integer coefficients has no effect – i.e.
the same n(r, s) always result as in the case of real co-
efficients. That conjecture is known to be true when
min{r, s} ≤ 9, and all known upper bound records have
been achieved via all-integer constructions.

r\s 10 11 12 13 14 15 16
10 16 26 26 27 27 28 28
11 26 26 26 28 28 30 30
12 26 26 26 28 30 32 32
13 27 28 28 28 32 32 32
14 27 28 30 32 32 32 32
15 28 30 32 32 32 32 32
16 28 30 32 32 32 32 32

Figure 7.1. [163] The least possible number n(r, s) of squares
on right hand side of sum of squares identity EQ 42 where the
zk are polynomials in the xi and yj ’s with integer coefficients.
[Additional upper bound constructions are given in [5][234],
including n(32, 32) ≤ 116.]

These impossibility theorems had widely been thought to
“close the book” on our subject. However, we shall see that
the book has at least one more chapter. Here is what happens
to these 6 impossibility theorems:

1. We get nnacd-algebras of dimension 2n (for all n ≥ 0)
with 1 and with multiplicative euclidean norm; and only
dimensions 2n are possible (for algebra definitions built
of rational functions).

2. When n ≥ 4 these are no longer alternative nor flexible.
Indeed alternativity is impossible (for algebra definitions
built of rational functions).

3. There are several possible definitions of “division”
nnacd-algebras; under the weakest definition (no zero-
divisors) all of ours are division algebras, but under the
strongest (unique existence of solutions to any division
problem), only the ones with n ≤ 4 are (and in the case
n = 4, only under genericity assumptions).

4. We get a vector product in every dimension 2n − 1,
n ≥ 1. It is rational and (hence) discontinuous. Dimen-
sions not of the form 2n − 1 are impossible (for vector
products built of rational functions).

5. None of our new constructions are “homogeneous.”
6. Our norm-multiplicativity identities are of the form EQ

41 for each n = 2m for each m ≥ 0, with the z` being
rational functions of the xj ’s and yk’s.

8 Cayley, Dickson, sedenions, and
bi“ons”

8.1 Cayley-Dickson doubling
The complexes, quaternions, and octonions may be con-
structed successively, starting from the reals, by a process
called “Cayley-Dickson doubling” [81][80][79][227][147].

We start from some ring R which already has, predefined, a
commutative and associative addition, a two sided identity
“1,” a nnac multiplication, and a self-inverse (i.e. x = x)
R-linear (x± y = x ± y) anti-automorphic (ab = ba) opera-
tion, called “conjugation,” denoted by overlining: x → x. We
now make a new ring, whose elements are 2-tuples from the
old ring, by defining tuple-addition as the usual elementwise
addition, conjugation as

(a, b) = (a,−b), (47)

and tuple-multiplication as

(a, b) (c, d) = (ac− db, ad + cb). (48)

This is the Cayley-Dickson doubling formula. In the
usual case, the initial ring is the real numbers with simply
x = x, and then we get, successively, the complexes, quater-
nions22, and octonions. After the tth doubling, we get an
algebra of dimension 2t over R. We call these the Cayley-
Dickson algebras. They keep going forever. It is tempting,
but, we shall argue, wrong, to believe that the Cayley-Dickson
doubling process is the “natural” one which keeps generating
the “best possible” 2t-dimensional algebras. In fact, we shall
propose (EQ 68) a different and better doubling process.

8.2 The Sedenions
But for those who succumb to temptation, the next (16 di-
mensional) Cayley-Dickson algebra is called the sedenions.
(Mnemonic: “CDions,” for Cayley and D ickson.) Unfortu-
nately, the sedenions (and all their successors) both have zero-
divisors and hence do not have a multiplicative norm (see EQ
56), and have non-alternative and non-commutative multipli-
cation. Sedenion multiplication still has the saving grace that
it is power associative. (Proof: the powers of a sedenion are
generated by two octonions, which, by Artin’s theorem [cf.
§5], necessarily generate a diassociative subalgebra. For other
proofs see [226] and theorems 19 and 20.) The non-invertible
sedenions are a measure-0 subset of the sedenions.

8.3 Properties of Cayley-Dickson algebras
All Cayley-Dickson algebras are “quadratic,” i.e. obey

x2 − 2re(x)x + |x|2 = 0 (49)

([225] page 50) and “central simple,” indeed

22 Warning: Although representing 2n-ons as ordered pairs (a, b) of 2n−1-ons has the virtue of not introducing a ceaseless stream of new special√
−1 symbols, it unfortunately risks creating the wrong impression that a + ib = a + bi, where i is the new

√
−1 symbol. (This is false for the

octonions and their successors.) This monograph sticks to the “eyes left” convention (a, b) = a + ib. To convert between the two conventions
for octonions, use ix = xi, or more generally see (EQ 98). We also warn the reader that Cayley-Dickson doubling produces a different basis for
the octonions than the “pretty” basis we gave in §5. The two are readily interconverted by merely reordering the basis elements: in the “pretty”
basis the basic quaternions (i, j, k) are (i1, i2, i4) and i0in = i3n where n ∈ {1, 2, 4} and indices are mod 7. In the Cayley-Dickson basis (i, j, k) is
(i1, i2, i3) and i4in = in+4 where n ∈ {1, 2, 3}.
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Theorem 5 (Centers of Cayley-Dickson algebras).
Commutative center: rx = xr for all quaternions x, iff
r is real. This is also true in every Cayley-Dickson 2n-on lin-
ear algebra for each n ≥ 2. (But for n ≤ 1, the whole algebra
is commutative.)
Associative center: If x · ry = xr · y for all octonions x, y,
then r is real. This is also true in every Cayley-Dickson 2n-
on linear algebra for each n ≥ 3. (But for n ≤ 2, the whole
algebra is associative.)

Proof: 23 Claim 1 is a consequence of Schafer’s theorem ([225]
page 50) that the Cayley-Dickson algebras are central simple.
Claim 2, in the octonions, is theorem 1 in section 8.1 of [68],
and a proof of it for n > 3, by induction on n, is lemma 1.1
of [92]. Q.E.D.

Corollary 6 (Centers of 2n-ons). The same is true with
our 2n-ons instead of the Cayley-Dickson algebras.

Proof: We have not yet defined the 2n-ons, but all that is
needed for the present purpose are the facts that xr = rx and
and x · ry = xr · y for real r if x, y are 2n-ons, and the fact
that the 2n-ons contain the quaternions (if n ≥ 2) and the
octonions (if n ≥ 3) as subalgebras. Q.E.D.

The Cayley-Dicksons all obey both the flexible identity xy·x =
x · yx [226]24and the “Jordan identity” xy · x2 = x · yx2, i.e.,
the noncommutative ones are “non-commutative Jordan al-
gebras” in the terminology of Schafer ([225] page 141); see
[9][45][226]. Therefore all the Cayley-Dickson algebras are
strictly power-associative, since all non-commutative Jordan
algebras are ([227] page 141). In fact every multilinear iden-
tity of degree≤ 5 which is obeyed in the sedenions [41][125]
also is obeyed in every flexible quadratic algebra, in partic-
ular in every higher Cayley-Dickson algebra. Thus in this
sense, the Cayley-Dickson algebras “stop getting worse” once
we reach the sedenions.

Although the Cayley-Dickson algebras no longer have a mul-
tiplicative norm when n ≥ 4, and no longer are commutative
when n ≥ 2, they nevertheless obey

Lemma 7 (Weakened norm-multiplicativity/ commu-
tativity property). If x and y are elements of a Cayley-
Dickson algebra, then

|xy| = |yx|. (50)

Proof: This is the third equation of lemma 1.4.2 of [149].
Q.E.D.

We have not seen previously, so we prove it ourselves:

Theorem 8 (Cayley-Dickson antiautomorphism). All
the Cayley-Dickson 2n-dimensional algebras enjoy the anti-
automorphism identity ty = yt.
Proof by induction on n: Obviously it is true when n = 0.
Doubling via EQ 48 yields

(a, b) (c, d) = (a,−b)(c,−d) = (ac− db, −ad− cb) (51)

whereas by the inductive hypothesis and EQ 47

(c, d)(a, b) = (ca− bd, cb + ad) = (ac− db, −ad− cb). (52)

Q.E.D.

8.4 The “bi-ons”

If, instead of starting our successive doublings from the real
field, we begin it from the complex field (but now regarding
the Cayley-Dickson conjugate z of a complex number as z
itself ), then we get, successively, the “bi-complex numbers,”
the “biquaternions,” the “bioctonions,” the “bisedenions,” and
so on.

Notation: It is useful to introduce the new symbol I =
√
−1 6=

i, j, k to be the
√
−1 from the underlying complex field, which

is different from the
√
−1 symbols arising in Cayley-Dickson

doubling. Also, the operation of negating I (complex con-
jugation) is best denoted x → x∗ to distinguish it from the
usual Cayley-Dickson conjugation x→ x. These two kinds of
conjugation commute.

The bi-ons are slightly less attractive than their non-bi
cousins. They have the same commutativity and associativ-
ity properties as their non-bi cousins (e.g., the bioctonions are
noncommutative, alternative, and nonassociative; the bisede-
nions are power-associative, all of the bi’s are flexible, etc.)
and obey the same polynomial identities. And in the 2, 4,
and 8 complex-dimensional cases we still have a multiplica-
tive norm |q|2, which now, however, is a complex rather than
real number. But none of the bi-ons are division algebras, be-
cause an inverse q−1 = q/|q|2 might not exist, even if q 6= 0,
because the norm |q|2, which now is the sum of squares of 2k

complex numbers, k ≥ 1, can be zero even if those numbers
are nonzero, e.g. 12 + I2 = 0. Nevertheless, the set of q with
|q|2 = 0 always has measure zero in complex 2k-space, so that
inversion usually remains possible.

As was arguably realized by C.F.Gauss before Hamilton’s dis-
covery of the quaternions, the biquaternions are isomorphic
to the 2× 2 complex matrices C2×2 and their norm is simply
the determinant; the isomorphism is

a + ib + jc + kd ≈
(

a + ib −c− id

c− id a− ib

)
. (53)

Price [208] gives much of the credit for the invention and
early development of the bicomplex numbers to Corrado Segre
(1860-1924). Segre ([230]; [208] p.vi) noted

Theorem 9 (Segre). The bicomplex numbers are alge-
braically isomorphic to C⊕ C.

23These are also proven as lemmas 1.4.3 and 1.4.4 of [149].
24 A sketch of a different, and simpler, proof of flexibility: 〈ab · a − a · ba, 1〉 = 〈ab, a〉 − 〈ba, a〉 = 〈b, a2〉 − 〈b, a2〉 = 0 so ab · a − a · ba must be

pure-imaginary. But, with the aid of our theorem 8, its conjugate may easily be seen to be equal to it, so it must be 0. Q.E.D. Yet another simple
proof (by induction on n) is lemma 4.3.3 of [149]. Still another slick proof, due to Adem ([5] appendix) proves that the Cayley-Dickson-double of

a linear algebra A is flexible if and only if A is itself flexible. The “only if” direction is trivial (since A is a subalgebra). The “if” part relies on the
facts that (using the associator notation of EQ 197) (1) in any flexible algebra (x, y, z)+(z, y, x) = 0 ([225] p.28), and (2) within the Cayley-Dickson
double of an algebra A, the identity (x, y, x) = ((a, b, a) − (a, β, α) − (α, β, a) + (b, α, α) + (α, α, b); 0) holds where x = (a; α) and y = (b; β) and
where we have written elements of the doubled algebra as 2-tuples (p; q) from A. From these Adem concludes that (x, y, x) = 0, proving flexibility
of the doubled algebra.
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Proof: A bicomplex number x1 + i1x2 + i2x3 + i1i2x4 (for
two commuting

√
−1 symbols i1 and i2) may be written in

the form Aj +Bk where j = (1+ i1i2)/2 and k = (1− i1i2)/2
obey j2 = j, k2 = k, and jk = kj = 0, where A,B are
complex numbers that are real-linear combinations of 1 and
i1: A = x1 − x4 + (x2 + x3)i1, B = x1 + x4 + (x2 − x3)i1.
Thus re-expressing the bicomplex numbers in Segre’s basis
makes it obvious they really are just C ⊕ C, i.e. they are
2-tuples of complex numbers added and multiplied compo-
nentwise. Q.E.D.

As we have described in EQs 5-6, quaternions are very use-
ful for representing 3D and 4D rotations. The biquaternionic
analogue is the representation of (3 + 1)-dimensional Lorentz
transformations via

q → LqL∗, L = exp(I
b

2
) exp(

r

2
). (54)

Here q is a special relativity25 4-vector q = t + ix + jy + kz,
and the Lorentz transformation is the product of a boost
b = bxi+byj+bzk with a speed of tanh |~b|, times a 3D rotation
(as in EQ 5) through angle θ = |~r| radians with axis in the
same direction as r = rxi+ryj+rzk. Lorentz transformations
applied to ordinary quaternions q (i.e. ones not involving I)
preserve the absence of I and preserve the quaternionic norm
|q|.

8.5 Nicest sedenion representation, and the
zero-divisors

The nicest representation of26 the sedenions probably is as
follows. (This seems to be new, although similar-appearing
representations have been exhibited before.)

Consider the following 35 triples from the 15-element set
{∞, 0+, 1+, 2+, . . . , 6+, 0−, 1−, 2−, . . . , 6−}:

(∞, 0+, 0−), (1+, 2+, 4+), (55)

(5+, 6−, 1−), (3+, 5−, 2−), (6+, 3−, 4−)

where all numbers are taken mod 7, so that each triple here
really leads to 7 such triples, so these “5” triples are really
35. For example, the first triple shown leads to (∞, 1+, 1−),
and the last triple shown leads to (0+, 4−, 5−), if we add 1
mod 7 to every number in them27. Amazing properties: if
every number in every triple is doubled mod 7, the result is
still the same design (with some triples cyclically shifted, but
never order-reversed). Also note that 1, 2, 4 are the nonzero
squares, and 3, 5, 6 are the nonsquares, mod 7.

Let the 15 special
√
−1 symbols, adjoined to the reals to cre-

ate the sedenions, be called s∞, s±0 , s±1 , . . . , s±6 . Now if (a, b, c)
is one of our 35 magic triples, then regard the multiplication
laws for (sa, sb, sc) as the same as for the quaternions (i, j, k).
Example: since ji = −k we have from the triple (5+, 1−, 6−)
that s−1 s+

5 = −s−6 .

Note that the triple (1+, 2+, 4+) (in its 7 incarnations)
alone suffices to generate the octonions (see §5) with basis
(1, s+

0 , s+
1 , . . . , s+

6 ). On the other hand, (∞, 0+, 0−) merely

yields 7 different quaternion subalgebras and does not alone
yield any octonions. Each of the other 3 basic triples, e.g.
(5+, 6−, 1−), acting alone yields nothing.

An example of zero-division in these sedenions is

(s+
0 + s−1 )(s+

1 + s−0 ) = 0. (56)

Indeed, Khalil & Yiu ([149] prop. 3.2.1, following [93]) showed

Lemma 10 (The zero divisions in the sedenions).
Octonion-pairs (a, b) regarded as sedenions (now not in our
nice symmetric basis but rather in the usual Cayley-Dickson
basis where the first 8 coordinates form an octonion sub-
algebra) are zero-divisors iff a and b obey |a| = |b| and
rea = re b = 〈a, b〉 = 0.

9 The new doubling process

The core idea behind our new construction is extremely sim-
ple. It is based on the observation that multiplying a real
orthogonal matrix times a real vector preserves its Euclidean
norm. Our plan to multiply 2n-tuples w and x to get z = wx
is: Generate a |w|-scaled orthogonal matrix M(w), then take
z = M(w)x.

Consider28 the following block matrix, made of four n × n
blocks:

M =

(
A −KBK

KBT K KBT KAT KB−T K

)
. (57)

Here K
def
= diag(1,−1,−1, . . . ,−1,−1) is an n × n matrix

obeying KT = K−1 = KH = K. If B is non-invertible, then
we agree to use

M =

(
A −KBK

KBT K AT

)
(58)

instead of EQ 57.

Lemma 11 (Orthogonality). If A is |a| times an orthog-
onal matrix with determinant +1, and B is |b| times an or-
thogonal matrix with determinant +1, then M in EQ 57 is√
|a|2 + |b|2 times an orthogonal matrix with determinant +1.

Proof: Simply multiply out MMT =

[
A −KBK

KBT K KBT KAT KB−T K

] [
AT KBK

−KBT K KB−1KAKBK

]

=

(
(|a|2 + |b|2)I 0

0 (|a|2 + |b|2)I

)
. (59)

The top-left diagonal block is AAT + BBT = (|a|2 + |b|2)I ,
and so is the bottom-left block. The top-right block is
AKBK − KBKKB−1KAKBK = AKBK − AKBK = 0.

25We employ units with lightspeed= 1.
26See footnote 3.
27The triples in EQ 55 form a solution to the famous “Kirkman schoolgirl problem.” See §31.2 for information about Kirkman.
28There are 4 obvious variants of this Construction, which are shown in §27 to be inequivalent. Our choice (EQ 57) seems nicest.
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So it works. In the particular case of non-invertible B, which
happens iff b = 0, we have

M =

(
A 0

0 AT

)
(60)

and MT M = |a|2I is even more trivial. The scaled-
orthogonality claim is now proven, and we need only to prove
the claim about positivity of the determinant.

The determinant of a real orthogonal matrix is necessarily±1.
We reduce M to 2×2 block diagonal form via row operations:

det(M) = det
(
AAT + AKBT KA−1KBK

)

= det
(
|a|2I + |b|2A[KBK]−1A−1[KBK]

)
(61)

Now note that the eigenvalues λ of the matrix in this latter-
most determinant, all are of the form λ = |a|2 + |b|2r where
r is a complex root of unity, and where each r is necessarily
either real or a member of a complex-conjugate pair (both of
whose members are represented). This makes it evident that
if |a|2 > 2|b|2 then the product of all these eigenvalues must
be a positive real, since all the terms in the product (once we
agglomerate complex conjugate pairs) are. Hence it must (if
M is scaled by (|a|2 + |b|2)−1 to make it be orthogonal) be
+1. (This of course is especially obvious in the case |a| = 1
and |b| = 0 when we just have detI = 1.) Now note that the
determinant of a matrix is a continuous function of its en-
tries. Hence there is no way for it to jump from +1 to −1 as
we smoothly move (|a|2, |b|2) from (1, 0) to whatever we want
their final values to be. The positivity of the determinant is
now proven. Q.E.D.

Doubling in action. We may begin with 1×1 real matrices
M(a) = a to get the algebra of real numbers. After doubling
via EQ 57, we get the complex numbers (as 2-tuples of reals)
via

M(a + ib) =

(
a b

−b a

)
. (62)

These 2 × 2 real matrices are, in fact, a faithful represen-
tation of the complex numbers, i.e. M(x)M(y) = M(xy),
M(x±y) = M(x)±M(y), etc. Also note that M(z) = M(z)T ,
M(z−1) = M(z)−1, and detM(z) = |z|2 ≥ 0.

A second doubling yields the quaternions as 4-tuples of real
numbers. In this particular case (because K commutes with
our matrices M when both are 2×2), we could, alternatively,
begin with 1 × 1 complex matrices M(a) = a to get the al-
gebra of complex numbers. After doubling, we would get the
quaternions (as 2-tuples of complex numbers) via

Mc(a + jb) =

(
a −b

b a

)
. (63)

These 2 × 2 complex matrices are, in fact, a faithful repre-
sentation of the quaternions, i.e. Mc(x)Mc(y) = Mc(xy),
Mc(x ± y) = Mc(x) ±Mc(y), etc. Also note that Mc(q) =

Mc(q)
H , Mc(q

−1) = Mc(q)
−1, and detMc(q) = |q|2. If we

instead adopt our usual procedure, we instead get 4 × 4
real matrices, which also faithfully represent the quaternions,
and which obey M(q) = M(q)T , M(q−1) = M(q)−1, and
detM(q) = |q|4.
After another doubling, we get29 the octonions (as 2-tuples
of quaternions, which we view as 8-tuples of real numbers) via

M(a, b) =

(
A −KBK

KBT K KBT KAT KB−T K

)
(64)

where A and B are respectively the 4 × 4 real matrices rep-
resenting quaternions a and b. These matrices are the left-
representation of the octonions. For much information about
the 4× 4 matrices representing the quaternions and the 8× 8
left and right matrix representations of the octonions, see Tian
[244]30.

These are not faithful, i.e. M(x)M(y) 6= M(xy) in general,
and could not have been, since matrix multiplication is as-
sociative while octonion multiplication isn’t. These matrices
obey

M(z)z = (|z|2, 0, 0, . . . , 0)T , M(z) = M(z)T ,

M(z−1) = M(z)−1 = |z|−2M(z)T , Kz = z, (65)

M(a)x = ax, M(s + ta) = sI + tM(a)

if s and t are scalar. Indeed

Theorem 12 (M properties). The properties in EQ 65
continue to hold forever as we continue doubling to reach the
“2n-ons,” for all n ≥ 0.

Proof: Easy, by induction with the aid of (a, b) = (a,−b),
the properties XT Y T = (Y X)T and X−1Y −1 = (Y X)−1 of
matrices, the fact that MT = M−1 if M is an orthogonal
matrix, and the fact that EQ 65 all are trivially verifiable for
the 2n-ons when n ≤ 3.

For example, to prove M(z) = M(z)T , we have

M(a, b)T =

(
AT KBK

−KBT K KB−1KAKBK

)
(66)

by using (XY )T = Y T XT and KT = K as necessary (note
the upper-right and lower-left entries of the matrix in EQ 57
were swapped and transposed in the process of transposing it,
which happens here to have the same effect as simply negat-
ing them both). Now (since B−1 = BT by orthogonality) this
is plainly the same thing as

M(a,−b) =

(
AT KBK

−KBT K KBT KAKB−T K

)
. (67)

We have used the inductive assumption to justify replacing
the A’s in EQ 57 by AT and the B’s of course by −B. We

29Note: these octonions are is not the same basis as the nice basis in §5; see footnote 3.
30If L(x) and R(x) are the left and right real matrix representations of an octonion x, then L(x)T K = KR(x) where K =

diag(1,−1,−1,−1,−1,−1,−1,−1); detL(x) = detR(x) = |x|8; traceL(x) = 8 re x; L(x)2 = L(x2); L(x−1) = L(x)−1; L(x) = L(x)T ; L(x)R(x) =
R(x)L(x); L(x)L(y)L(x) = L(xyx); L(xy + yx) = L(x)L(y) + L(y)L(x); and L(xy) = L(x)L(y) + L(x)R(y) − R(y)L(x) = R(x)[L(x)L(y)]R(x)−1 .
The eigenvalues of L(x) are λ = (re x)±| im x|. In general L(xy) 6= L(x)L(y), R(xy) 6= R(x)R(y), and L(x) 6= R(x), exhibiting the non-associativity
and non-commutativity of the octonions.
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shall not provide proofs of all the other claims of EQ 65 since
they are similar and at least equally easy. Q.E.D.

The 2n+1-ons contain the 2n-ons as the subalgebra of elements
of the form (a, 0).

EQ 65 allows us to rewrite our doubling formula in a matrix-
free form31resembling the Cayley-Dickson doubling formula
(EQ 48). The result is Our doubling formula

(a, b) (c, d) = (ac − bd, b c + b a b−1 d) (68)

where if b = 0 then we agree to use

(a, b) (c, d) = (ac, ad) (69)

instead, and as usual conjugation is defined (also recursively)
via (a, b) = (a,−b).

Theorem 13 (Relation to Cayley-Dickson). Our dou-
bling formula EQ 68 is equivalent to the Cayley-Dickson dou-
bling formula EQ 48 when applied to the cases 2n → 2n+1 for
n ≤ 2. Thus EQ 68, starting from the reals, yields the com-
plexes, quaternions, and octonions. However, these formulae
are not equivalent in the cases 2n → 2n+1 for n ≥ 3, and
hence EQ 68 does not yield the sedenions. In the particular
case 23 → 24, EQ 68 is equivalent to EQ 70, EQ 72, and EQ
73 below.

Proof: Simplify EQ 68 by repeated use of ty = yt (valid for
the 2n-ons with n ≤ 3) to get (for 2n → 2n+1, n ≤ 3)

(a, b)(c, d) = (ac− db, cb + [a · db−1]b). (70)

Now if we use associativity (valid for the 2n-ons with n ≤ 2),
the result is EQ 48. Because in the octonions (a · db−1)b =
ab−1 ·bd is generally not equal to ad [an example, in the“nice”
octonion basis of §5, is i1i

−1
2 · i2i3 = −i4i5 = −i0 6= i0 = i1i3]

and hence, in all subsequent 2n-on algebras, since they con-
tain the octonions as a subalgebra, xy−1 · yz = xz also is a
non-identity – we have inequivalence when n ≥ 3. Q.E.D.

Remark. For more relations between our and the Cayley-
Dickson formula, see theorem 30.

The octonions obey the variant-Moufang law ([181] EQ 10a
p.421; our EQ 16)

[a · db−1]b = ab−1 · bd = b−1[ba · d], (71)

which allows us to re-express EQ 70 as (for 2n → 2n+1, n ≤ 3)

(a, b)(c, d) = (ac− db, cb + ab−1 · bd) (72)

which is the nicest 16-on definition, and also as

(a, b)(c, d) = (ac− db, cb + b−1[ba · d]) (73)

when a, b, c, d are octonions. Q.E.D.

We call the new 16-dimensional normed algebra obtained from
EQ 72 (or any of its equivalent forms), the 16-ons.

Incidentally, we could instead start from the complex num-
bers (but with z = z) to get the bi-complexes, bi-quaternions,
bi-octonions, and bi-16-ons and bi-2n-ons. Also, in EQ 57
we could have used complex matrices of half the dimensions
of our real matrices and replaced the words “orthogonal”
by “unitary” and “transpose” (AT ) by “Hermitian conjugate”
(AH) throughout, leading to a 2n−1-complex-dimensional left-
representation of the 2n-ons, as opposed to our usual 2n-real-
dimensional one.

Theorem 14 (Non-distributive). Our doubling formula
(EQ 68) produces non-distributive 2n-ons (and bi-2n-ons) iff
n ≥ 4.

Proof: Distributivity for n ≤ 3 follows from the previous the-
orem. Non-distributivity for n = 4 (and hence for all n ≥ 4
since the 24-ons are a subalgebra of the 2n-ons with n > 4)
may be verified by direct computation for almost any numeri-
cal example. Its genesis is the presence of nonlinear operations
such as matrix inversion and matrix multiplication in EQ 57
and hence in EQ 68. Q.E.D.

10 The most important properties of
2n-ons

Theorem 15 (easy properties). If a,b,x,y are 2n-ons,
n ≥ 0, and s and t are scalars (i.e. all coordinates are 0
except the real coordinate) then

unit A unique 2n-on 1 exists, with 1x = x1 = x.
zero A unique 2n-on 0 exists, with 0 + x = x + 0 = x and

0x = x0 = 0.
additive properties x+y = y+x, (x+y)+z = x+(y+z);

−x exists with x + (−x) = x− x = 0.
norm |x|2 = xx = xx.
norm-multiplicativity |x|2|y|2 = |xy|2.
scaling s · xy = sx · y = xs · y = x · sy = x · ys.
weak-linearity (x + s)y = xy + sy and x(y + s) = xy + xs.
right-linearity x(y + z) = xy + xz.
inversion If x 6= 0 then a unique x−1 exists

obeying x−1x = xx−1 = 1. It is x−1 = x|x|−2.
left-alternativity x · xy = x2y.
left-cancellation x · x−1y = y.
effect on inner products 〈xa, b〉 = 〈a, xb〉, 〈x, y〉 = 〈x, y〉,

〈xa, x−1b〉 = 〈a, b〉, and 〈xa, xb〉 = |x|2〈a, b〉.
Conjugate of inverse x−1 = (x)−1.
Near-anticommutativity of unequal basis elements

e2
k = −1 and eke` = −e`ek if k 6= `. (Note: the

case k, ` > 0 shows that unequal pure-imaginary basis
elements anticommute.)

Alternative basis elements eke` ·ek = ek ·e`ek, e`ek ·ek =
e` ·ekek, and ekek ·e` = ek ·eke`. (However, when n ≥ 4
the 2n-ons are not flexible i.e. it is not generally true
that xy · x = x · yx if x and y are 16-ons that are not
basis elements. They also are not right-alternative.)

31In the second half of the right hand side of EQ 68, note that every possible conjugation that can be performed, is performed, with the
conjugation-indicating overline always being drawn over the rightmost product of terms before using that product in a multiplication. To the naive
eye, i.e. if this simple governing pattern is unrecognized, EQ 68 seems much more complicated than it is. For naively simpler-appearing – but
isomorphic – forms of EQ 57 and EQ 68, see EQ 110 and EQ 111.
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Proof: These all follow immediately from lemma 11 and/or
EQ 65, except for the alternativity of basis elements: The unit
corresponds to the identity matrix. It is unique because the
assumption that a second identity element 1′ exists leads to a
contradiction by considering 1 · 1′. The 0 corresponds to the
zero matrix and similarly is unique by considering 0+0′. Left-
cancellation arises from the fact that M(x−1)x = 1 (proven
by induction on n, cf. theorem 12) and the associativity of
matrix multiplication; left-alternativity and left-cancellation
imply one another via scaling, inversion, and weak-linearity.
The uniqueness of x−1 is due to right-linearity and norm-
multiplicativity (if there were two, then their difference ∆
would obey x∆ = 0, impossible). The conjugate-of-inverse
identity arises from

(x)−1 =
x

|x|2 = x|x−1|2 = x−1. (74)

Finally, let us prove the alternativity of the basis elements.
They are flexible because of the flexibility of Cayley-Dickson
multiplication combined with theorem 30. They are left-
alternative because of the left-alternativity of 2n-on multipli-
cation. Finally, they are right-alternative because by theorem
30 we know that the basis elements must be left-alternative
under Cayley-Dickson multiplication, which implies (because
of the symmetry of the definition of Cayley-Dickson multipli-
cation) they also are right-alternative, and finally use theorem
30 again. The ±-signed basis elements thus form an alterna-
tive multiplicative subloop with identity 1 and unique two
sided inverses (namely e−1

k = ek) obeying a−1b−1 = (ba)−1

(by the near-anticommutativity property). Q.E.D.

Remark. The left-cancellation and inversion properties make
it easy to do 2n-on left-division problems of the form “find x
so that qx = p.” We simply multiply both sides on the left
by q−1, getting x = q−1p. However, we cannot solve right-
division problems of the form “find x so that xq = p” in this
way, because the 16-ons lack right-cancellation. Indeed, it is
not immediately apparent that such an x even exists. We’ll
discuss 16-on right-division in §19-24.

Theorem 16 (Quadratic identity). If x is a 2n-on (over
any field F with charF 6= 2), then x2 + |x|2 = 2x rex.

Proof: This is just a restatement (via weak-linearity, theo-
rem 15) of xx = |x|2, which in turn follows from the matrix
picture, cf. theorem 12. (This theorem also holds in Cayley-
Dickson algebras, cf. EQ 49.) Q.E.D.

Corollary 17 (Squares of imaginaries). If x is a 2n-on
with re x = 0 (“pure imaginary”) then x2 = −|x|2 is non-
positive pure-real.
Since as soon as one proves some 2n-on x is pure-imaginary,
it has a pure-real square, immediately a large number of con-
sequential identities follow, such as yx2 = x2y, (y + x2)z =
yz+x2z, (y+z)x2 = yx2+zx2, and x2y ·z = x2 ·yz. A typical
example, which seems remarkably mysterious if one does not
realize that (due to the realness of x2) it actually is trivial, is:

Corollary 18 (Weakened Jordan identities). If x and y
are 2n-ons, and re x = 0, then xy ·x2 = x·yx2, x2 ·yx = x2y ·x,
x2 · xy = x(x2y), yx · x2 = (yx2)x. (If rex 6= 0, then these,
and xy · x = x · yx, hold, in general, only when n ≤ 3. But
all these hold in all Cayley-Dickson algebras for all n, x, y,
regardless of whether x is pure-imaginary.)

Theorem 19 (Complex subalgebra). If x is a 2n-on –
either ours or those of Cayley and Dickson – then the algebra
generated by all rational functions (with real coefficients) of x,
is isomorphic to C. (This also is true in the Cayley-Dickson
2n-ons.)

Proof: The quadratic identity x2 + |x|2 = 2xrex (theorem 16)
implies that if x is pure-imaginary then x2 = −|x|2 is negative
pure real. Weak linearity then implies that x + s, where s is
pure-real, behaves just like the complex numbers C. Because
the Cayley-Dickson 2n-ons also obey the quadratic identity
and weak linearity (indeed: full bilinearity), they also obey
the present theorem. Q.E.D.

Power associativity and power distributivity of the 2n-ons are
immediate consequences. We also prove the former directly:

Theorem 20 (Power associativity). If x is a nonzero 2n-
on (over any field F with charF 6= 2), then (for any integer k)
xk is unambiguous, e.g. x2x = xx2 = x3, x2x2 = xx3 = x3x,
etc.

Proof: Define the reals c and s via c = rex and s = |imx|.
Then define ck and sk via ck + isk = (c+ is)k. Then we claim
xk = ck + skimx/|x|. Furthermore we claim that xAxB =
xA+B if A, B are non-negative integers. All these claims fol-
low from weak-linearity, real-scaling, and the fact (derivable
from the quadratic identity, theorem 16) that (imx)2 = −|x|2.
Q.E.D.

As a consequence of the above proof, we have

Corollary 21 (Powering preserves imx direction). im x
is not altered (aside from a scaling by some pure-real factor,
possibly 0) when x is taken to any integer power (or more
generally, if any rational function, with only-real coefficients,
of x is taken).
and

Corollary 22 (Multiplying preserves imx direction). If
two 2n-ons x, y with the same imaginary parts (up to a pro-
portionality factor): a im x = b im y, a, b ∈ R, |a| + |b| 6= 0
are multiplied, then the result xy also has the same vector
of imaginary parts im (xy) (aside from a scaling by another
pure-real factor, possibly 0).

Proof: Follows from corollary 21 by weak-linearity and real-
scaling. Q.E.D.

10.1 Niners, Powons, and Twofers (and the
reals) – nice subsets of the 2n-ons

Definition 23 (Niners). A niner is a 2n-on whose first 9
coordinates only (indices 0-8) are permitted to be nonzero
(note: these include the octonion subalgebra in coordinate
0-7 and the reals in coordinate 0).

Niners enjoy particularly nice properties. Obviously the sum
of two niners is a niner, and (due to x−1 = x/|x|2) the recip-
rocal of a niner is a niner. However, the square of a niner is
not, in general, a niner.

Some related but less important objects are “powons” and
“twofers”:

Definition 24 (Powons). A powon is a 2n-on whose nonzero
coordinates occur at indices µ such that either 0 ≤ µ ≤ 7 or
µ = 2p for integer p.
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Definition 25 (Twofers). If n ≥ 4, a twofer is a 2n-on
of the form (x, y) where x and y are twofer 2n−1-ons with
ax + by = c where a, b, c are reals with abc 6= 0. We make the
recursion in this definition stop at the octonions by defining
every 2n-on with n ≤ 3 to be a twofer.
Note that niners⊂powons⊂twofers. The sum of two powons
is a powon. The reciprocal of a powon is a powon. However,
the square of a powon is not, in general, a powon.

Theorem 26 (Twofer and powon products). (a) The
Cayley-Dickson product of two twofers is a twofer.
(b) The Cayley-Dickson and 2n-on products are the same
thing if
they are used for multiplying xy where y is powon, or
(c) if n ≤ 4 and they are used for multiplying two twofers.
(d) Any power of a twofer also is a twofer – in particular, its
reciprocal and square – indeed, any rational function with real
coefficients of a twofer also is a twofer.
(e) However, for each n ≥ 4, the sum of two twofers is in
general not a twofer.
(f) If x is a powon, then the Cayley-Dickson and 2n-on prod-
ucts xy agree in their first 17 coordinates (and the same is
true of yx due to b).

Proof: By case 4 of theorem 30, Cayley-Dickson and 2n-on
multiplication are the same for the purpose of squaring x or
computing xx.
Now (a) may be proven by induction on n using the Cayley-
Dickson doubling formula EQ 48, corollary 22 and the pre-
ceding sentence.
(c) arises from octonion diassociativity and EQ 72 – since a
16-on twofer is generated by only a single octonion, multiply-
ing two such 16-ons involves octonion products generated by
only two octonions and which therefore fully associate, caus-
ing the 16-on multiplication formula EQ 72 to reduce to the
Cayley-Dickson formula EQ 48.
(b) Is proven by induction on n using EQ 68 and weak-
linearity – since a powon 2n-on has a powon 2n−1-on as its
first half and a real as its second half.
(d) Arises from corollary 22.
(e) Because if ~x and ~y are linearly dependent (i.e. propor-
tional) and ~x′ and ~y′ are too, then that does not imply that
~x + ~x′ and ~y + ~y′ are proportional. E.g. in R2 consider
~x = (0, 1), ~y = (0, 2) ~x′ = (1, 0), ~y = (3, 0), and then
~x + ~x′ = (1, 1) while ~y + ~y′ = (3, 2).
(f) Same proof as (b), only start the induction at the 16-ons
instead of the octonions, as is permitted via (c). Q.E.D.

It was recently discovered by Eakin and Sathay that twofers
play a very important role in the sedenions. The (un-
achieved) goal of the original Eakin-Sathay paper [92] was
to prove “Yiu’s strong non-associativity conjecture” that, if
x, y, z are in a Cayley-Dickson 2n-dimensional linear algebra
over any field F with characteristic not 2, then x, y, z asso-
ciate, in that order, for all y, if and only if 1, x, and z are
linearly dependent over F . They achieved the proof in a 1989
manuscript [93] which was never published due to a recalci-
trant J.Algebra referee. Therefore, the Eakin-Sathay proof
was reworked by Khalil & Yiu as §4 of their very useful paper
[149] published in an exceedingly obscure journal. As a con-
sequence of the Eakin-Sathay theorem, Khalil & Yiu deduced

that the elements of the form (a, b) of the Cayley-Dickson
2n-ons formed an “alternative subalgebra” if 1, a, and b were
linearly dependent vectors over F and all lie in the analogous
alternative subalgebra of the Cayley-Dickson 2n−1-ons – i.e.
(to restate this somewhat more strongly and correctly)

Theorem 27 (Eakin-Sathaye-Khalil-Yiu [149]). In a 2n-
dimensional Cayley-Dickson algebra over a field F of char-
acteristic not 2, the twofers form an alternative multiplica-
tive32 subloop, (indeed Cayley-Dickson multiplication obeys
xy · x = x · yx, xz · z = x · zz, zz · x = z · zx, if z is twofer)
and this is the largest-dimensional alternative subloop, with
dimension 2n + 2 if n ≥ 3.
Remark. Since Cayley-Dickson and 16-on multiplication
are the same, the twofers form an alternative multiplicative
subloop and 10-dimensional subset of the 16-ons.

A 2n-on analogue of theorem 27 is

Theorem 28 (Powon subspace). If n ≥ 3, the powons
form a (n + 5)-dimensional subspace (but not subloop) of the
2n-ons, such that multiplication of powons is alternative.

Proof: The dimensionality n+5 is since 1 extra dimension is
added each doubling. The powons are not a subloop since the
square of a powon is generally not a powon for each n ≥ 4.
The fact that multiplication among powons is alternative fol-
lows from the fact that Cayley-Dickson doubling yields an
alternative multiplication if the original multiplication was as-
sociative, and that in turn is due to octonion diassociativity,
since the only octonion multiplications arising in a powon mul-
tiplication ultimately arise from only two octonions. Q.E.D.

We conjecture that the powons are the largest dimensional
alternative subspace. Powons also have this property:

Theorem 29 (Powon-distributivity). If x, y, z are 2n-
ons and x, y are powons, then (x + y)z = xz + yz and
z(x + y) = zx + zy.

Proof: Only the first of these (left-linearity) needs to be
proven, since the 2n-ons are right-linear. This may be done
by induction on n using EQ 68 and the fact that, in that
formula, b is real. Q.E.D.

Many otherwise-mysterious properties of our 2n-ons, espe-
cially niner-related properties and properties of basis ele-
ments, can be proved in a unified way once the following 2
theorems are known.

Theorem 30 (Conditions causing Cayley-Dickson and
2n-ons to be same). The Cayley-Dickson multiplication of
2n-vectors xy (EQ 48), and ours (EQ 68) yield the same re-
sult if either

1. x is a niner;
2. y is a niner;
3. We only examine the first 9 coordinates (xy)0,...,8 of the

product and ignore the others;
4. y (or y) is a 2n-onic rational function (with real coeffi-

cients) of x;
5. x is a basis element, i.e. x = ek for some k, 0 ≤ k < 2n.

Indeed, more generally, it will suffice if x is any 2n-on
all of whose coordinates are 0, except that nonzeros are
allowed anywhere within a block of 8 consecutive coor-
dinates of the form 8k, 8k + 1, 8k + 2, . . . , 8k + 7;

32The original cites carelessly incorrectly claimed these are a subalgebra or subspace, but those both are false, at least with our definition of
“algebra,” because the sum of two twofers is not a twofer. They merely form a subset which happens to be a manifold of dimensionality 2n + 2.
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Also, for any 2n-ons x, y, the first 9 coordinates (indices 0-8)
of the Cayley-Dickson product xy agree with the first 9 coor-
dinates of our 2n-on product xy.

Theorem 31 (Weakened antiautomorphism). If x and
y are 2n-ons and p is a niner, then x p = px, p x = xp (i.e.,
“9-antiautomorphism” holds) and

(x y)0...8 = (yx)0...8, (75)

i.e. the antiautomorphism identity holds in the first 9 coordi-
nates.

Proof sketch (of both theorems simultaneously):

First of all, theorem 31 follows from combining theorem 8
with the first 3 cases of theorem 30; its claims preceding EQ
75 arise directly, while EQ 75 requires also an induction on n.
This (essentially) reduces our task to proving theorem 30.

1. If x is a 16-on which happens to be a niner, then its

left-representation matrix M(x) is
(

A −I|b|

I|b| AT

)
and this may

be seen also to be a valid left-representation for the Cayley-
Dickson sedenions. This proves Cayley-Dickson and our mul-
tiplications are the same if x is a niner 16-on. Now if x is a
2n-on whose second half is 0 then then its left-representation
matrix M(x) is

(
A 0
0 AT

)
which again agrees with the Cayley-

Dickson formula. Together, this proves (by induction on n
with base case at the 16-ons) that the Cayley-Dickson and
our multiplications xy are the same if x is a niner 2n-on.

2. Now to prove that these two notions of xy are the same if
y is a niner 2n-on, we need to prove that the first 9 columns
of our left-representation matrix of x agree with the first 9
rows of the 2n × 2n matrix representing Cayley-Dickson left-
multiplication by x. Similarly to prove that they yield the
same first 9 coordinates of xy for any 2n-ons x, y, we need
to show instead that the first 9 rows are the same. (So these
are handled by, essentially, the same proof.) This also may be
accomplished by induction on n, using the 16-on 9-coordinate
antiautomorphism identity (ab)0,...,8 = ba0,...,8 and the sede-
nion full-strength antiautomorphism identity ab = ba (see the-
orem 31 and its proof) as the base of the induction.

3. Note that the first half of the right hand side of our 2n-
on multiplication law EQ 68 agrees with the first half of the
right hand side of the Cayley-Dickson multiplication law EQ
48, in whatever coordinate subset the antiautomorphism law
EQ 75 is valid in. But we’ve just seen that we may induc-
tively assume that coordinate subset includes {0, . . . , 8}. This
yields an inductive proof of the fact that (xy)0,...,8 is the same
for both 2n-on and Cayley-Dickson multiplication. (Further:
The weak-associativity of 2n-on multiplication – see theorem
35 – in combination with the Cayley-Dickson [EQ 48] and our
multiplication laws [EQ 68] may be used to see that the first
coordinate of the second half of xy, i.e. coordinate 2n−1, is
the same under either Cayley-Dickson or 2n-on multiplication.
For our purposes, though, we only need to prove this when
n = 4 to get a basis for our induction, and for that we only
need the weak-associativity property re (ab · c) = re (a · bc) of
the octonions, which could be proven by computer as in §11.)

4. If y is a 2n-onic rational function of x then the proof is just
a consequence of theorem 19.

5. If x has nonzeros only in one of those 8-coordinate-wide
blocks, then the two definitions of xy are clearly the same
(see EQ 72) if x and y are 16-ons or below. If they are 2n-ons
with n ≥ 5, we simply proceed by induction on n, building
the both matrix left-representations of x and noting that all
blocks except one are always 0, and for 16× 16 (or smaller)
blocks we have equality and the antiautomorphism identity
vt = tv holds in 8× 8 (or smaller) cases. Q.E.D.

Remark. If y = eµ is a basis element, then Cayley-Dickson
and our multiplications do not in general yield the same re-
sults xy if µ > 8 (although the two xy are the same in coor-
dinates 0-8 and µ). Furthermore, the 2n-on products xeµ are
in general not linear in x except when 0 ≤ µ ≤ 8 (although
they are linear if only coordinates 0-8 and µ of the product
are examined).

Remark without proof. If y is a powon and we only ex-
amine the first 17 coordinates (xy)0,...,16 of the product and
ignore the others, then Cayley-Dickson and 2n-on multiplica-
tion yield the same result.

The octonions’s antiautomorphism identity x y = yx (and
the related x−1y−1 = (yx)−1) becomes false in the 16-ons
and beyond. But fortunately, as we’ve already seen (theorem
15) it is valid when x = y, and theorem 31 and theorem 44
give weakened senses which still hold in all 2n-ons, and in the
16-ons, respectively.

Define the “bimultiplication”map (x, y)→ xy ·x and the “co-
multiplication” map (x, y)→ xy · x.

Theorem 32 (Conditions causing CD and our
bi(co)multiplication to be same). Bimultiplication xy · x
(and comultiplication xy · x) of 2n-vectors x and y yields the
same result under either the Cayley-Dickson (EQ 48) and our
(EQ 68) multiplication laws, provided either

1. x is a niner;
2. y is a niner and only the “powon coordinates” 0-7, and

coordinates 2k < 2n of the results are compared, with
the others being ignored33;

3. Only the real parts of the results are examined, with the
others being ignored.

Proof: 1. The first claim follows immediately from claims 1
and 2 of theorem 30.

2. Our second claim (in coordinates 0-8) follows from claims
2 and 3 of theorem 30. The claim remains unproven in coor-
dinates 16, 32, etc.

3. Our third claim arises because the real part of xy ·x is just
|x|2 re y in both cases. In 2n-on multiplication this is due to
the fact that, due to weak-linearity (theorem 15) and norm-
multiplicativity the norms of the real and imaginary parts of
y both get multiplied by |x|2 during comultiplication with x.
The result for bimultiplication then follows via weak linearity.
(In fact, by weak linearity it suffices to prove the claim when x
is pure imaginary, in which case both bi- and co-multiplication
are the same thing up to an overall sign.)

In Cayley-Dickson multiplication, although we have full bilin-
earity we do not have norm-multiplicativity so the preceding
argument does not work. However, by linearity it will suffice
to show that

33Actually, we shall only prove this for the “niner coordinates” 0-8.
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1. If y is real, then it works (and yes, it does, since reals
commute with everything),

2. if y is pure-imaginary then it works, i.e. rexyx = 0.

So let us now restrict attention to the as-yet-unproven sec-
ond case. Now by linearity it suffices to prove it when y is
in fact a pure-imaginary basis element (and as above we may
also assume x is pure-imaginary). If x is parallel to y it then
obviously works, so by linearity it suffices to prove it when x
is orthogonal to y. But in that case by anticommutativity of
differing imaginary basis elements (by claim it:basiscdsame of
theorem 30 and the claims about basis elements in theorem
15) we get 0. Q.E.D.

Theorem 33 (Linearity properties of bi(co)multiplication).
Let x,y and z be 2n-ons.

1. If y is a niner then x→ yx · y and x→ yx · y are linear
maps.

2. The first 9 coordinates of the output of the maps x →
yx · y and x→ yx · y are linear in x.

3. If y is niner then x→ zx · y is a linear map.

Proof: The linearity of the maps x → zx and (if y is niner)
x → xy are obvious from the definition (EQ 68-69) of 2n-on
multiplication. Claims 1 and 3 follow immediately. Now the
linearity of the map x→ (xy)0,...,8 is obvious from the linear-
ity of 2n-on multiplication if n ≤ 3 or from claim 3 of theorem
30. Q.E.D.

Remark without proof. If x,y,z are 2n-ons and y is powon
then x→ (zx · y)0,...,16 is a linear map.

Theorem 34 (Niner properties of 2n-ons). If x, y, and z
are 2n-ons, n ≥ 0, and p and q are 2n-ons whose only nonzero
coordinates are their first 9 (or fewer), i.e. p and q are niners,
then

9-flexibility xp · x = x · px, px · p = p · xp.
9-similitude unambiguity xp · x−1 = x · px−1, px · p−1 =

p · xp−1.
9-right-alternativity xp · p = x · p2, px · x = p · x2.
9-right-cancellation xp−1 · p = x, px−1 · x = p.
9-effect on inner products 〈x, yp〉 = 〈xp, y〉,

〈xp, yp〉 = |p|2〈x, y〉.
9-left-linearity (x + y)p = xp + yp, (p + q)x = px + qx.
9-Jordan-identity xp · xx = x(p · xx), py · pp = p(y · pp).
9-coordinate-distributivity

([x + y]z)0,...,8 = (xz + yz)0,...,8.
9-coordinate-Jordan-identity

[xy · xx]0,...,8 = [x(y · xx)]0,...,8.
9-anticommutativity for orthogonal imaginary 2n-ons

If 〈p, x〉 = re p = rex = 0 then px = −xp.
9-reflection If |a| = 1 and the geometric reflection op-

erator is defined in EQ 33 then − (refl[a](y))0,...,8 =

(a · ya)0,...,8, and −
(
refl[a](y)

)

0,...,8
= (ay · a)0,...,8, and

if either a or y is a niner then −refl[a](y) = a · ya and
−refl[a](y) = ay · a.

Proof: The proof of the octonion, as opposed to niner, ver-
sions of the these statements (i.e., if only the first 8 of p and
q’s coordinates are allowed to be nonzero) all are quite direct.

8-left-linearity arises from the fact it is true if n ≤ 3, and the
fact that “only the first 8 coordinates matter” in the sense
that (xp)0,...,7 = x0,...,7p, (px)0,...,7 = px0,...,7. Meanwhile
right-linearity is of course valid for 2n-ons without any 8-
restrictions. The other properties now arise from the matrix
picture, but regarding every N×N matrix as an (N/8)×(N/8)
octonion matrix and every N -tuple as an (N/8)-tuple of octo-
nions. The fact that all these properties (and distributivity)
are true for octonions, then causes them to be true here.

The niner versions are also fairly easy in the 16-ons (n ≤ 4).
When multiplying two 16-ons, at least one of which is a niner,
our multiplication formula (EQ 72) becomes equivalent to
the (linear, flexible, Jordan) Cayley-Dickson formula (EQ 48)
due to octonion diassociativity (and the fact that everything
associates with a scalar). 9-left-linearity, 9-Jordan, and 9-
flexibility follow. 9-right-alternativity then follows from lin-
earity and left-alternativity and flexibility.

The hardest case is the fully general one where we allow
2n > 16. These results all appeared extremely mysterious
until theorem 8 was discovered! To see 9-flexibility, com-
bine the flexibility property (cf. footnote 24) of the Cayley-
Dickson algebras with the first 3 cases of theorem 8 (for
the second 9-flexibility identity, only the first 2 cases of
theorem 8 are required). 9-similitude unambiguity, 9-right-
alternativity, 9-right-cancellation, then follow. The bilinear-
ity of Cayley-Dickson multiplication, combined with theorem
8, proves 9-left-linearity and 9-coordinate-distributivity. Us-
ing the fact that the first 9-effect on inner products iden-
tity holds for any p in Cayley-Dickson algebras (due to the
fact that 〈A~x, ~y〉 = 〈~x, AT ~y〉 for any matrix A) we similarly
prove the first 9-effect on inner products identity. The sec-
ond 9-effect on inner products identity is true because 2n-on
right-multiplication by a niner is a linear transformation (by
9-left-linearity) and one which by norm-multiplicativity must
be a scaled rotation – then this identity merely expresses that
fact that spatial rotations preserve angles.

The 9-anticommutativity statement arises from the statement
about near-anticommutativity of unequal basis elements in
theorem 15: hence if a and b are orthogonal and if the mul-
tiplication ab is bilinear, then a and b must anticommute –
and we’ve seen before (e.g. from 9-left-linearity and right-
linearity) that 2n-on multiplication is bilinear if at least one
of the multiplicands is niner.34

The 9-coordinate Jordan identity arises from the fact that
the Cayley-Dickson algebras are Jordan and the first 4 cases
of theorem 8, where note that x2 is the same in either Cayley-
Dickson and 2n-on multiplication due to case 4 of theorem 8.
The hardest case is the 9-Jordan identity, which requires, in
addition to the reasoning used to obtain the 9-coordinate Jor-
dan identity, also the fact (cf. corollary 21) that x2 is the same
as x, except for scaling of its real and imaginary parts by two
factors, i.e. is the same as x up to a scaling followed by adding
a real number. Hence it suffices (for the purpose of proving
the first 9-Jordan identity) if we prove it with x written in
place of x2, and then prove the identity’s validity cannot be
affected by either scaling and/or adding any real constant to
that x2. But that is obvious from the right-linearity of 2n-on
multiplication.

34The further speculation that ab + ba = 0 if a, b are 2n-ons with re a = re b = 〈a, b〉 = 0, while (as we have just proven) true for n ≤ 3, is easily
seen by test to be generically false if n ≥ 4.
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To prove 9-reflection: We need only prove one member in each
of the two pairs of 9-reflection identities since the other then
just arises by using 9-antiautomorphism.

We showed in the proof of theorem 2 that the reflection identi-
ties in the Cayley-Dickson algebras hold to precisely the same
extent as the left-cancellation identity.

Now let a,b be 2n-ons with |a| = 1 so that a−1 = a. By
theorem 30 and right-linearity EQ 34 also is true in 2n-ons,
provided either a or b is a niner, or if we only require equal-
ity in the first 9 coordinates. Then by the left-cancellation
property of 2n-ons combined with theorem 32, we get EQ 35,
which proves our first reflection identity in the 2n-ons provided
a is niner.

But this proof method will not work to prove the Theorem’s
claims about 9-reflection for non-niner a. For that we need
some additional tricks:

1. By norm-multiplicativity, pre- and post-multiplying by
unit-norm 2n-ons leaves y’s norm unchanged.

2. By theorem 33 all the bi- and comultiplication maps we
are speaking of are linear in all the coordinates in which
the Theorem claims the reflection identity.

3. Obviously, the reflection identities work (always, in all
coordinates) in all 5 of the special cases in EQ 37-38.
E.g. the two last of these state (cf. theorem 19) that
squaring a unit-norm complex number doubles the an-
gle it makes with the real axis, while the second is an
analogous statement about cubing.

So we have a linear, norm-preserving map, such that adding
a to its input, subtracts a from its output, and such that
adding 1 to its input, subtracts a2 from its output. Such
a map must be a reflection with characteristic direction a,
except possibly composed with a rotation preserving the di-
rections a and 1. By linearity, to prove our claims (i.e. to
prove the rotation is merely the identity map) it suffices to
prove our claim when y is orthogonal to a and 1. i.e. when
〈y, a〉 = re y = 0. Further, by considering weak-linearity, we
may reduce the problem to the case where a also is pure-
imaginary wlog. But then by 9-anticommutativity followed
by left-cancellation, −a · ya = a ·ay = y is indeed the identity
map! Q.E.D.

Remark without proof. If a is a powon then these two
17-coordinate reflection identities hold:

− (refl[a](y))0,...,16 = (a · ya)0,...,16, (76)

−
(
refl[a](y)

)

0,...,16
= (ay · a)0,...,16. (77)

Theorem 35 (Real parts). If x and y are 2n-ons, then
weak-commutativity re(xy) = re(yx).
weak-flexibility re(x · yx) = re(xy · x)
weak-similitude unambiguity re(x−1 · yx) = re(x−1y · x)
weak-right-alternativity re(y · xx) = re(yx · x)
weak-right-cancellation re(yx−1 ·x) = re(y ·x−1x) = re(y)

Proof: The proof of weak-commutativity is 〈xy, 1〉 = 〈y, x〉 =
〈y, x〉 = 〈1, yx〉. The proof of weak-flexibility is 〈x · yx〉 =
〈yx, x〉 = 〈xy · x, 1〉 = 〈x, xy〉. The others are proven simi-
larly. Q.E.D.

10.2 Gains rather than losses?

Doubling causes many enjoyable algebraic properties to van-
ish, and once an identity vanishes, it never re-appears, since
each doubled algebra contains the previous one as a subalge-
bra.

But, occasionally, new good properties can appear. For exam-
ple, the quaternions q enjoy the property that we may express
q as a quaternionically-linear function of q:

q =
−1

2
(q + iqi + jqj + kqk) (78)

whereas z is not expressible as a complex-linear function of
z, for complex z, since it is a non-analytic function35. Indeed
for each n ≥ 0 except for n = 1, in the Cayley-Dickson 2n-ons
(which differ from ours when n ≥ 4) we have

x =
−1

2n − 2

2n−1∑

m=0

emxem (79)

where the em are the basis elements of the algebra (e0 = 1,
and e2

m = −1 for 1 ≤ m ≤ 2n − 1). (Note: we have taken ad-
vantage of the flexibility property EQ 9 of the Cayley-Dickson
algebras to avoid needing parentheses.) But EQ 79 is not true
in our 2n-ons if n ≥ 3, and indeed we suspect that the express-
ibility of x as a 2n-on-linear function of x is irrevocably lost
at the 16-ons:

Conjecture 36 (Conjugation as 2n-onically linear func-
tion). The conjugate x of a 2n-on x is expressible as a for-
mula consisting of multiplications by constant 2n-ons and 2n-
on additions, iff n ∈ {0, 2, 3}. In these 3 cases EQ 79 does
the job.

Another example of an evanescent property-gain is the
uniqueness of the octonion “companions” of an 8D rotation,
see theorem 3.

Another example: the complex numbers are algebraically
closed, whereas the reals are not. However, this property is
immediately re-lost at the quaternions, since (q + iqi + jqj +
kqk)q+1 has no quaternion zeroes q (since this is just |q|2+1;
admittedly, this has biquaternion zeros).

Similarly, neither the octonions, nor any of the Cayley-
Dickson algebras of dimension 2n ≥ 4, are algebraically
closed. This leads to the suspicion that none of the 2n-ons
with n ≥ 4 are algebraically closed either. True:

Theorem 37 (Algebraic closedness). The 2n-ons are al-
gebraically closed precisely when n = 1. The bi-2n-ons are
algebraically closed precisely when n ∈ {0, 1}.

Proof: For any quaternion a, Pa(x) = ax − xa + 1 has no
zeros x (since rePa(x) ≡ 1 by “weak-commutativity,” see the-
orem 35), not even biquaternionic ones. Now all this remains
true if “quaternion” is replaced by “2n-on for n ≥ 2” through-
out, so the 2n-ons and bi-2n-ons are not algebraically closed if
n ≥ 2. Since x2 + 1 has no real zeros the 20-ons are not alge-
braically closed. The bi-20-ons and the 21-ons both are just C

35Incidentally, any of the 4 coordinates inside a quaternion similarly is expressible in terms of the original quaternion via re q = (q + q)/2, and
then the coefficient of j inside q is q2 = re−jq, etc.
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and hence are algebraically closed by the usual fundamental
theorem of algebra (in C).

This leaves only the bi-complex numbers, i.e. the bi-2-ons;
and these obey a fundamental theorem of algebra for any of
three reasons: First, Price’s book [208] on bicomplex and mul-
ticomplex numbers indicates that a degree-D bicomplex poly-
nomial generically has D2 (not D) bicomplex roots. Second,
Segre’s algebra isomorphism (our theorem 9) makes the D2-
roots theorem, the fundamental theorem of algebra, and many
other claims in Price’s book (e.g. generalization of Cauchy
integral theorem, fundamental theorem of calculus) immedi-
ately obvious. Third, versions of our topological proof of the
F.T.O.A. in our theorems 65 and 90 should still work for bi-
complex numbers. Q.E.D.

But the reader will be reassured to know that there are some
properties that never go away. For example, every complex
number is the root of a quadratic equation with real coeffi-
cients (and every such quadratic equation is soluble by some
complex number). This property also holds in all the Cayley-
Dickson algebras [226], and in our 2n-ons too, see theorem
16.

11 How to make your computer
prove identities (especially 2n-on

identities for fixed n). New & old
forms of Schwartz-Zippel lemma.

It is possible to verify36 any set of 16 polynomial (or indeed,
rational) identities by computer. One may either use

1. the automatic simplifiers provided with any symbolic
algebra system, or

2. the Schwartz-Zippel lemma [229][260][261] to get a
“probabilistic proof”with arbitrarily exponentially small
probability (assuming you have access to a source of
truly random bits) of error.

11.1 The original Schwartz-Zippel method
The Schwartz-Zippel method allows one to “prove” any mul-
tivariate polynomial (or indeed rational – or indeed algebraic
[261] with a few more bells and whistles added) identity that
holds over the reals, by essentially, just trying it on random
numbers. This is a proof in the sense that if the random
numbers don’t work, the identity is false. If they do work (for
certain kinds of rational or integer random number genera-
tors, which are easily constructed – integers random uniform
in an interval of width 300DV work, where D is the degree
and V is the number of variables) this means either the iden-
tity was true, or it was false and you got unlucky, but such bad
luck can be proved to happen < 1% of the time (this is the
Schwartz-Zippel “lemma”). So by repeated experiments with
independent random numbers each time, one may shrink the
incorrectness probability to arbitrarily high powers of 0.01.

For example, to prove the identity

(x + 3)4 = x4 + 12x3 + 54x2 + 27(4x + 3), (80)

Schwartz and Zippel might try it for random integer x with
0 ≤ x ≤ 400. Because a degree-4 polynomial has at most 4
roots of this form, if this identity had been false, each such
test would have detected that falsity with probability > 99%.
Similarly, to gain 99% confidence in the correctness of

(x + y2 + 1)2 = 2(xy2 + x + y2) + x2 + y4 + 1, (81)

Schwartz and Zippel might try it for random pair (x, y) of
integers with 0 ≤ x, y ≤ 1000. In all of these examples, a full
expansion into monomials followed by a lexicographic sorting
of those monomials by degree-type would also have proven
the identity. But the brute force expansion technique can be
very laborious. For example an N × N determinant, fully
expanded, is N ! monomials. All the computer time so far
expended by humanity would not suffice for the brute force
verification of the fact that 30 × 30 determinants are multi-
plicative. However, simply trying it on 2 ·302 random integers
each of absolute value≤ 107 could be accomplished in millisec-
onds.

Indeed, there is reason to suspect37 that no nonrandom
polynomial-time algorithm for verifying general polynomial
identities exists, in which case the randomized Schwartz-
Zippel verifier reigns supreme.

11.2 The domain of applicability of
Schwartz-Zippel

The Schwartz-Zippel method, as just formulated, only ap-
plies to proving identities holding over the real (or complex)
numbers, i.e., identities which are consequences solely of the
properties of commutative fields :

Theorem 38. Any multivariate rational identity (with alge-
braic numbers as coefficients) that is unfalsifiable over R, in
fact is unfalsifiable over any commutative field.

Proof: Let us initially assume that all coefficients are re-
stricted to be integers. Any such rational identity over the
real numbers may be proven (or disproven) by carrying out
various “algebraic simplification steps” (depending for their
validity only on the associative, commutative, and distribu-
tive laws, i.e. the field properties, or the reals) to reduce both
sides of the identity to a canonical form (i.e. to ratios of
polynomials, then to polynomials whose monomial terms are
sorted into lexicographic order, then to 0 = 0, or in the case
of a disproof, to 0 = 1) at which point its validity (or lack
thereof) becomes obvious. Since these steps depend only on
field properties, we see that any rational identity (having only
integers as coefficients) valid over the reals is necessarily valid
in any field in which it is well-defined. So this kind of identity

36See the book “A = B” [194] for further information about proving identities by computer, although the identities discussed there are mainly of
a different and more sophisticated character than the ones we shall discuss here, so that our discussions are complementary.

37That is because [146] the existence of such an verifier would yield proofs of lower bounds in complexity theory. Therefore either no such
derandomization exists, or it will be very difficult to find.
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in the reals, necessarily is unfalsifiable over any commutative
field38.

Furthermore, if the coefficients are real algebraic numbers
(canonically described by their minimal polynomials) all of
this also goes through in any field in which those algebraic
numbers exist. Q.E.D.

11.3 Extension to handle not-necessarily-
commutative fields

As an important extension, we now point out that the
Schwartz-Zippel method may be extended to handle polyno-
mial identities which are consequences purely of the properties
of not-necessarily-commutative fields39.

Theorem 39 (Extension of Schwartz-Zippel to
non-commutative identities). To gain > 99% confidence
in the correctness of a polynomial identity of degree D among
V not-necessarily-commuting (but associative and distribu-
tive) variables, it suffices to try it on random N ×N integer
matrices, for any N with 2N > D, with the integers x selected
uniformly at random such that |x| ≤ 300N 2V D.

Proof: To make this go through, we need two things. First,
we need an analogue of the Schwartz-Zippel lemma about
counting zeros of polynomials. Second, we need a theorem
that N × N matrices of order N do not obey any “extrane-
ous” identities, i.e. beyond those implied by associativity and
distributivity, i.e. by the properties of any not-necessarily-
commutative field.

These two needs are satisfied: The Amitsur-Levitski theorem
[16][222] states that the minimal degree of an “extraneous”
polynomial identity satisfied by N ×N matrices is 2N . The
required analogue of the Schwartz-Zippel lemma then is triv-
ial since we can rely on the original versions of that lemma
(based on N2V real numbers – the entries of our matrices)
only. Q.E.D.

11.4 Extension to allow differential opera-
tors

As a second important extension, we now consider the prob-
lem of automatically proving identities such as

∂2

∂x∂y
(x2F + xy) = 1 + 2x

∂

∂y
F + x2 ∂2

∂y∂x
F (82)

where F = F (x, y) is an arbitrary sufficiently-differentiable
function of x, y. (By “sufficiently-differentiable” we mean,
having enough derivatives so that both sides of the identity
are defined.)

Definition 40 (Differential-polynomial). A “differential-
polynomial” is an expression involving a finite number of vari-
ables x1, x2, . . . , xv and unspecified functions F1, F2, . . . , Fv of
them, combined via +, −, ·, and partial derivatives.
Again, it is possible to accomplish this by brute force expan-
sion of both sides into monomials in partial derivatives of F .
But again, that can be exponentially laborious and there is a
far simpler and quicker randomized way.

Theorem 41 (Extension of Schwartz-Zippel to
differential-polynomial identities). Any fixed-order
differential-polynomial identity may be verified (with
confidence> 99%) by a randomized polynomial-time algo-
rithm.

Proof: Both sides of the identity are polynomials in the vari-
ables and in the partial derivatives of all the unspecified func-
tions. Then our identity is valid iff it then holds as a polyno-
mial identity. Nowadays well known techniques of “algorith-
mic differentiation” [27][118] allow one to evaluate any fixed-
order partial derivative of a function in at most constant factor
more arithmetic operations than any desired algorithm uses
to compute the function itself (and this is also true if one
counts the non-arithmetic bookkeeping operations as well).
Using those techniques we simply evaluate both sides of our
identity employing random numbers in place of the variables
x1, x2, . . . , xv , the unspecified functions F1, F2, . . . , Fv , and
their partial derivatives. The only (minor) difficulty is mak-
ing sure that the “random” numbers are compatible, i.e. that
all equalities of mixed partials such as Fxy = Fyx are obeyed.
(The point is there are fewer degrees of freedom, i.e. fewer
“variables,”than one might naively have supposed.) But since
we are assuming the maximum order of any partial-differential
is fixed, this could be assured by simply building a polynomial-
sized table of all required partial derivatives of all functions
ahead of time. Q.E.D.

11.5 Remarks on practical experience with
computer proofs

Unfortunately, the symbolic algebra system MAPLE appears to
have been implemented extremely inefficiently, and thus in
some cases exhausts all available memory (300 megabytes!)
before it can prove moderately complicated 16-on identities40.
Meanwhile the Schwartz-Zippel method is far faster and con-
sumes negligible memory. Also, despite the fact that it only
yields a “probabilistic proof,” we tend to think that proof is,
in practice, more reliable than MAPLE’s“genuine”proof, due to
the comparative simplicity of the computer program. Because
of the directness and reliability of such computer proofs we
shall not provide explicit manual proofs of many of the 2n-on
(n ≤ 6) identities in this monograph, unless said proofs are
particularly simple, logically central, or illuminating.

38Warning. Some simplification steps may involve multiplying both sides by an quantity which could, in some fields, be identically 0. E.g. 3 = 0
in GF3. These steps are irreversible and hence in such fields the final 0 = 0 would not back-imply the original identity. However, this can only
arise in cases where the original “identity” EQ 41 involved division by 0, in which case the problem would not be that EQ 41 is invalid; it would
be that it was not defined. I.e., we would still have a never-false identity.

39J.H.Conway and D.Smith ([68], sec. 7.4) conjectured that the free Moufang loop with n generators is generated by n generic octonions. If
so, one presumably could automatically prove or disprove, by similar techniques, any identity following from the defining properties of a Moufang
loop.

40It may help to start the 16-on-defining recursion EQ 72 at the complex numbers – dimension 2 – instead of the reals at dimension 1, thus
halving the number of and size of the identities MAPLE must tackle. It definitely helps to stay with the bilinear Cayley-Dickson formula (EQ 48) for
as long as possible before switching to the nonlinear formula (EQ 72), so that MAPLE needs to rediscover their initial equivalence (i.e. our theorem
13) as few times as possible.
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12 The 16-ons

In this section, we focus on the 16-ons as opposed to the 2n-
ons generally, and work from the 16-on-specific multiplication-
defining formulae EQ 70 and EQ 72. In some cases we re-prove
general 2n-on theorems in our specific case n = 4.

Theorem 42 (Block structure of 16-on multiplication).
If x is a 16-on and y is an octonion, then multiplying xy or
yx has the same effect as regarding x as a 2-tuple of octonions
and performing separate octonion multiplications to each ele-
ment of the tuple. (See the two formulae in the proof.)

Proof: The nonlinear term in the multiplication formula EQ
68 vanishes since the second half of y is 0 or since we need to
use the EQ 69 instead. Namely:

(a, b)(c, 0) = (ac, b c) (83)

which is just (ac, cb) if b, c are octonion; and

(a, 0)(c, d) = (ac, ad). (84)

Q.E.D.

Unfortunately, the 16-ons are nondistributive since their mul-
tiplication operation is given by a non-bilinear rational for-
mula. But fortunately

Theorem 43 (Weakened distributivity laws). If x, y, z
are 16-ons, then z(x + y) = zx + zy (“right-linearity”). In
general, left-linearity (x + y)z = xz + yz does not hold in the
16-ons, but it does hold (“conditional left-linearity”) in certain
circumstances:

weak linearity If either x or y (or both) are scalar 16-ons,
then (x + y)z = xz + yz and z(x + y) = zx + zy.

niner distributivity If z is a niner, or if both x and y are
niners [i.e. if x = (a, s), y = (b, t) where s and t are
real], or if x = (s, a) and y = (t, b) where s and t are
real [“reverse niners*”], then (x + y)z = xz + yz.

octonion distributivity If x and y are either

1. Both octonions, or
2. Both orthogonal to the octonion subalgebra*, or
3. One is octonion and the other is orthogonal to the

octonions*,

then (x + y)z = xz + yz.
9-coordinate distributivity The first 9 coordinates (in-

dices 0-8) of (x+y)z are equal to the first 9 coordinates
of xz + yz, i.e. ([x + y]z)0,...,8 = (xz + yz)0,...,8.

power-distributivity If x is 16-on and s, t are real, (sxk +
tx`)xm = sxk+m + tx`+m = xm(sxk + tx`); If x, y are
16-ons and s, t are real, (sxk + tx`)y = sxky + tx`y.

Also, all of the non-asterisked(*) statements above hold for
all 2n-ons, not just 16-ons.

Proof: For power-distributivity, see theorem 19 or the proof
of lemma 52. For everything else, the proof is direct from
EQ 72: Right linearity is obvious from EQ 72 and the lin-
earity of the octonion-multiplications inside it. The proofs of
conditional left-linearity depend on the fact that, under the
conditions stated, (EQ 72) becomes equivalent to the bilin-
ear equation (EQ 48). Depending on which condition, this

equivalence may be either seen directly, or is due to the dias-
sociativity of the octonions (e.g. any 3 octonions associate if
at least one of them is a scalar octonion).

Finally, the fact that the non-asterisked statements hold for
general 2n-ons, not just 16-ons, follows directly from theo-
rem 34 (to prove our theorem’s final claim, about power-
distributivity, note also corollary 21). Q.E.D.

A 16-on property failure that makes division-like problems
even more painful is the fact that the octonions’s antiautomor-
phism identity x y = yx (and the related x−1y−1 = (yx)−1)
becomes false in the 16-ons. But fortunately, as we’ve already
seen (theorem 15) these identities are valid when x = y. Also
fortunately,

Theorem 44 (Weakened antiautomorphism in 16-ons).
If t and y are 16-ons, then

(t y)0...8 = (yt)0...8, (85)

i.e. the antiautomorphism identity holds in the first 9 coordi-
nates. Also, if t = (a, b) and y = (c, d) and b associates with
a, d (in particular: if t, or y, is a niner, or if t0,...,7 = 0),
then ty = yt.
(See also theorem 31.)

Proof: As our starting point we use theorem 8, showing
ty = yt is true in the Cayley-Dickson 2n-ons. Compare EQ
48 with EQ 72 to realize that the 16-ons are the same as the
sedenions except for the replacement of ad by ab−1 · bd in the
last 8 coordinates. If b associates with a and d then (by the
Moufang-Artin diassociativity theorem for octonions) these
two terms are the same and we get full-power antiautomor-
phism for 16-ons also. Otherwise, we claim that, for octonion
a, b, d, the identity

re(ab−1 · bd) = re(ad) (86)

holds. Proof:

〈ab−1 · bd, 1〉 = |b|−2〈bd, ba〉 = 〈d, a〉 = 〈ad, 1〉. (87)

Therefore, the first of the 8 suspect coordinates is ok. Q.E.D.

Theorem 45 (Quadraticity). Any 16-on x obeys EQ 49.

Proof: Consider the fact (see the proof of the next theorem)
that the 16-on multiplication formula, when being used to
compute powers of x, is equivalent to the unmodified Cayley-
Dickson formula. Since all the Cayley-Dickson algebras are
quadratic [226], the 16-ons are also. Q.E.D.

Theorem 46 (Power associativity). The 16-ons are
power-associative, i.e. if x is a 16-on then xn is unambiguous
(doesn’t care how xxx . . . x is parenthesized) for any integer
n.

Proof: Follows from the diassociativity of the octonions. Let
x = (a, b) be a 16-on regarded as an ordered pair of octo-
nions. Then everything inside (a, b)n is a rational function of
only two octonions a and b. So diassociativity allows us to
reparenthesize every term in the final expression for (a, b)n in
any way we please, just as though the components a and b
had been quaternions instead of octonions. (This also means
that our 16-on multiplication formula in this case always acts
the same as the unmodified Cayley-Dickson formula.) Thus
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the (known) fact that the octonions (pairs of quaternions)
are power-associative is equivalent to the fact we are trying
to prove that the 16-ons (pairs of octonions) are, and to the
(also known [226]) fact that the sedenions are. Q.E.D.

Remark. For yet more proofs of power associativity for 16-
ons (besides theorem 19), see the proof of lemma 52 and claim
9 in the proof of theorem 60.

13 What about the impossibility

theorems?

Theorems showing the “impossibility” of 16-ons with a mul-
tiplicative norm, or of 16-ons that form a division algebra,
and theorems showing the uniqueness of the reals, complexes,
quaternions, and octonions, have, so far, come from two kinds
of arguments: algebraic and topological arguments.

13.1 Algebraic arguments
All previous algebraic impossibility arguments known to us
depended heavily on the distributive property of multipli-
cation, and in some cases on its associative, commuta-
tive, or alternative properties. The 16-ons, since they are
nondistributive (and non- all the others), evade all these im-
possibility theorems.

However, we’ve seen in theorems 43 and 35 that the 16-ons
obey weakened – but still quite strong – distributivity and
alternativity properties. We shall show in §15 that these al-
gebraic properties characterize the 16-ons, i.e. they are the
unique 16-real-dimensional and 2-octonion-dimensional ratio-
nal algebraic structure satisfying them. As a side effect of
this demonstration, we shall see how to extend previous al-
gebraic impossibility theorems to make them show that the
reals, complexes, quaternions, octonions, and 16-ons are the
only algebraic structures satisfying certain properties.

13.2 Topological arguments
The topological arguments have depended [124][94] on such
theorems as the following:

1. Let svf(n) be the maximum number of smooth vector
fields that can exist on, and be tangent to, the sphere
Sn−1 = {~x | ~x ∈ Rn, |~x| = 1}, such that all n of the vec-
tors are everywhere mutually orthogonal. (So obviously
svf(n) ≤ n− 1.) Adams [2] showed

svf(n) = 8α + 2β − 1 (88)

if n = u24α+β, where α, β, u are integers with 0 ≤ α,
0 ≤ β ≤ 3, u odd. (All of these are achieved by bilinear
constructions.) Thus the naive upper bound n − 1 is
tight exactly when n ∈ {1, 2, 4, 8}.

2. Hopf [130] showed that if there exists a continuous
mapping Sn−1 × Sn−1 → Sn−1 obeying f(−a, b) =
f(a,−b) = −f(a, b), then n is a power of 2; Adams
[1][4][96][98] used “secondary cohomology theory” to
show that if there exists a continuous mapping Sn−1 ×
Sn−1 → Sn−1 with a 2-sided identity e, i.e. such that
f(e, b) = b, f(a, e) = a, then n ∈ {1, 2, 4, 8}.

These topological arguments break down for the 16-ons, be-
cause the 16-on multiplication formula (EQ 72) is not an
everywhere-smooth map from R16 × R16 to R16, and (if re-
stricted to the unit-norm case) it is not an everywhere-smooth
map from S15 × S15 to S15. Instead the 16-on multiplication
(a, b)(c, d) where a, b, c, d are octonions, is discontinuous at
b = 0, yielding different results if b approaches 0 in different
directions. If, however, b 6= 0, then the 16-on multiplication
map (EQ 72) is smooth.

So there is an 8-dimensional subspace, call it R8, such that the
16-on multiplication map is smooth exactly on (R16 − R8)×
R

16 → R
16. If we restrict to the unit norm case, it is smooth

exactly on (S15 − S7)× S15 → S15.

We will now construct counterexamples to illustrate how these
topological arguments can completely lose their force in the
presence of various kinds of discontinuities41.

First, let us discuss a case in which the discontinuity is ap-
parently the mildest possible kind, namely it occurs only at a
single point, rather than a subspace.

Theorem 47 (Vector fields on sphere minus 1 point).
For each n ≥ 1, there exist n−1 mutually orthonormal smooth
vector fields on Sn−1, all tangent to Sn−1, except that these
fields have a single non-continuous point. (We can also get
n such fields by adjoining the radially-outward unit vector in
Rn; this extra field is not tangent to, but rather orthogonal to,
Sn−1.)

Proof: Consider the “square grid” yielding n − 1 mutually
orthonormal constant vector fields in Rn−1. Now apply stere-
ographic projection to map Rn−1 → Sn−1. The stereographic
projection map is a spherical inversion map in a Rn contain-
ing both the Rn−1 and the Sn−1, and hence (by Liouville’s
theorem [166]) is conformal, i.e. preserves angles. Hence,
the vector fields are mapped to mutually orthonormal vector
fields on Sn−1, except at the single “North pole” point which
corresponds to ∞ in R

n−1 (and at this point we assign an
arbitrary set of mutually orthonormal vectors). Q.E.D.

Theorem 48 (Multiplication-like maps I). If n ≥ 2,
there is a “multiplication” map a ◦ b = c, where a, b, c ∈ Sn−1,
with the two sided identity element e = (1, 0, 0, . . . , 0, 0), which
is smooth everywhere on Sn−1 × Sn−1 except at a single
point p on one of the Sn−1’s, i.e. it is smooth exactly on
(Sn−1 − p) × Sn−1. This map, if a is fixed but b is variable,
is 1-to-1.

Proof: Create n mutually orthonormal n-vector fields on
Sn−1 ⊂ Rn as in the preceding theorem. Actually, it is best
to view this as a n× n matrix -valued field M(x), x ∈ Sn−1.
Then M(x) is smooth at all x ∈ Sn−1 except for the single
point x = p, and M(x) has orthonormal rows and columns:
M(x)T M(x) = M(x)M(x)T = In×n. The first column of
M(x) is always x itself (the radially-outward-pointing unit
vector), and without loss of generality (by postmultiplication
of M(x) by some constant n×n orthogonal matrix Q, namely
Q = M(e)−1) we may assume that M(e) = In×n. Then let

41But see §22 for ways to keep topology alive even when there are (certain kinds of) discontinuities. Specifically see our notion of “generalized
smoothness.”
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the “multiplication” operation c = a ◦ b be the matrix-vector
multiplication c = M(a)b. Q.E.D.

The domain of definition of this multiplication map may, of
course, be readily extended to Rn×Rn → Rn by simply using

c = |b|( a

|a| ◦
b

|b| )|a| ; (89)

it is then smooth everywhere except when a is a non-negative
real multiple of p, and it causes the Euclidean norm to be
multiplicative. The map admittedly does not exhibit many
of the properties commonly associated with “multiplication”
– e.g. it lacks commutativity, associativity, and distributivity,
and it is non-rational – but it does retain the following: there
is a unique 0 and a unique two sided identity 1; and the map
is right-linear.

Another property that this map c(a, b) lacks is commutativity
with unary negation, i.e., it does not satisfy

c(−a, b) = c(a,−b) = −c(a, b). (90)

It is possible to redefine our counterexample so that it
does obey (EQ 90) – provided we now accept more than 1
bad point. It suffices to make our matrix-field M(x) obey
M(−x) = −M(x).

The proof is the same, except that instead of basing every-
thing on the“stereographic projection”bijective map Rn−1 ↔
Sn−1, we instead employ Mercator’s “cylindrical conformal
projection” bijective map Cr−1,s ↔ Sn−1, where r ≥ 1 and
s ≥ 1 are integers with r + s = n, and

Cr−1,s = {(~x, ~y) | ~x ∈ R
r, |~x| = 1, ~y ∈ R

s} (91)

is the surface of an infinitely long n-dimensional cylinder of
unit radius inside Rn, having r “radial” directions and s “ax-
ial” directions. To be precise, if (~z, ~̀) is on Sn−1, where

|~̀|2 + |~z|2 = 1, then

~x =
~z

|~z| and ~y = gd−1(|~̀|)
~̀

|~̀|
. (92)

Here gd is the “Gudermannian” function [254], defined by

gd(Y ) = arctan(sinh(Y )) = 2 arctan(tanh(
Y

2
)). (93)

gd−1(L) = ln(tan(L)+sec(L)) = ln tan(
π

4
+

L

2
) =

1

2
ln

1 + sin Y

1− sin Y

d

dx
gd(x) = sech(x),

d

dx
gd−1(x) = sec(x).

There is now an s-dimensional subspace of Rn, which, wher-
ever it intersects Sn−1, leads to a bad point, i.e. a point where
the vector fields are discontinuous. There is thus an Ss−1 of
bad points on our Sn−1. If r = n− 1 and s = 1 that means
there are two bad points on Sn−1, the “North pole” and the
“South pole”which correspond to the two ends of the cylinder
at t = ±∞; for general r and s the bad points correspond to
the Ss−1 of infinitely distant parts of the cylinder.

The role of the square grid, giving n − 1 orthonormal vec-
tor fields in flat space Rn−1, is now taken over by the square
grid “wrapped” around the cylinder, giving n − 1 orthonor-
mal vector fields on Cn−1, except that we agree to make the s

axially-pointing vectors discontinuously reverse their direction
when ~y = ~0. I.e. these s fields go “bad” on an r-dimensional
subspace of Rn, which, where it intersects Cr−1,s, forms an
Sr−1. In that case, the matrix-field M(x) we get on x ∈ Sn−1

indeed obeys M(−x) = −M(x), but s of its columns discon-
tinuously reverse sign on a bad Sr−1, and all n columns of
M(x) are discontinuous on a bad Ss−1 (which corresponds to
the subspace of Rn orthogonally complementary to the sub-
space containing the bad Sr−1).

We conclude:

Theorem 49 (Multiplication-like maps II). Let r ≥ 1
and s ≥ 1 be integers with r+s = n. Then there is a “multipli-
cation” map a ◦ b = c, where a, b, c ∈ Sn−1, with the two sided
identity element e = (1, 0, 0, . . . , 0, 0), which is smooth every-
where on Sn−1×Sn−1 except when a lies on an Sr−1 or on the
orthogonally-complementary (and hence disjoint) Ss−1, i.e. it
is smooth exactly on (Sn−1 − [Sr−1 ∪ Ss−1])× Sn−1, where

Sr−1 ∪ Ss−1 = {(~x, ~y) | ~x ∈ R
r, ~y ∈ R

s, such that

|~x|2 + |~y|2 = 1 and |~x| = 1 or |~y| = 1}. (94)

The first r (of the n total) coordinates of c, however, are
smooth except when a lies on the Ss−1. This map, if a is
fixed but b is variable, is 1-to-1. It obeys (−a)◦ b = a◦ (−b) =
−(a ◦ b).
Summary: Although it may be possible in the future to
get topology-based impossibility statements about “multipli-
cation” in Rn where the multiplication map is allowed to
have certain kinds of discontinuities, the topological theorems
available today seem not powerful enough to do that. Theo-
rems 48 and 49 suggest investigating the limits on any such
result, which all would be a future line of topological investi-
gation; see open problem #3 in §30.

For comparison, here are the relevant topological properties
of the 16-ons. (A goal for future topologists should be to try
to prove these properties best possible, and prove the impos-
sibility of dimensions6= 2n.)

Theorem 50 (Topological properties of 16-ons). Let x
be a unit-norm 16-on, also regarded as a unit-vector in R16,
i.e. as a point on S15. Let e1, e2,..., e15 denote the (mutu-
ally orthonormal) imaginary unit 16-ons. Then the 15 vec-
tor fields xe1, xe2,..., xe15 are mutually orthonormal for all
|x| = 1, and all are tangent to the S15, i.e. orthogonal to x
itself. The first 8 of these fields are smooth for all x ∈ S15.
The last 7 are smooth for all x = (a, b) where a and b are
octonions with b 6= 0, i.e. smooth for x ∈ S15 − S7. Also,
the first 9 coordinates (among the 16 total) of all 15 of these
vector fields, are smooth for all x ∈ S15. All of these fields
vk(x) obey vk(−x) = −vk(x).

Proof: Right-linearity and norm-multiplicativity cause the
orthonormality of 1, e1, e2,..., e15 to remain unaffected by
left-multiplication by x. (Also, this follows from the orthog-
onal nature of the M(x) matrix in EQ 57.) If x = (a, b), the
term ab−1 · bd in the 16-on-multiplication formula (EQ 72)
leads to the discontinuities when b = 0, but these discontinu-
ities can only affect the last 8 coordinates of our output vector
fields – indeed only the last 7 due to EQ 86 – and if k ≤ 7
then d = 0 and if k = 8 then d = 1, in either case causing
ab−1 · bd = ad (by octonion diassociativity), which is smooth.
Q.E.D.
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14 Impossibility of “better” 16-ons

In this section we shall exhibit various ways in which attempts
to make “better”16-ons are doomed to failure. We need some
ground rules about what “16-ons”are, so throughout this sec-
tion we adopt the following

Assumptions: Let “16-ons” mean an arbitrary 16 dimen-
sional nnacd-algebra over R,

1. having a conjugation operation x → x that is lin-
ear (a + b = a + b), self-inverse (x = x), and norm-
preserving (|x|2 = |x|2), such that xx = xx is pure-real,
and such that s = s if s is real;

2. whose multiplication operation both is right-linear
[x(y + z) = xy + xz], and causes the Euclidean norm to
be multiplicative (|a|2|b|2 = |ab|2), and obeys hs = sh
if h is a 16-on and s is a real.

Let us first discuss these assumptions, their immediate con-
sequences, and possible replacement assumption-sets.

Lemma 51 (16-on norm). In 16-ons satisfying the above
assumptions, xx = |x|2.
Proof: By realness, xx = ±|x|2 and since ss = s2 > 0 if
s is real, the sign must be +, and cannot ever change to −,
because x → x, being linear, is a smooth function, and so is
x→ |x|2, since it is the Euclidean norm, and both are nonzero
everywhere where x 6= 0. Q.E.D.

Hence there is automatically a 2-sided inverse x−1 = x(xx)−1

and a 2-sided identity 1. In the other direction, the existence
of a 2-sided inverse (combined with norm-multiplicativity and
real-commutation) implies the existence of a self-inverse con-
jugation operation x = x−1|x|2, albeit perhaps not a linear
one.

Lemma 52 (Weak linearity). In the above assumption list,
we can drop the first set of assumptions, about the existence
and properties of a conjugation operation x → x, and in-
stead merely assume our 16-ons have an identity 1 and obey
weak-linearity, and that if i is a pure-imaginary 16-on (i.e.
〈i, 1〉 = 0) then i2 is some real-linear combination of 1 and i.

Proof: Define the real part of a 16-on via rex = 〈x, 1〉,
then define x = 2 re(x) − x, and im x = x − rex, and
then |x|2 = |x|2, a + b = a + b, s = s for s real, x = x,
rex = rex, and |x|2 = (re x)2 + | im x|2 follow. Then
xx = (rex)2 − (im x)2 = xx follows from weak-linearity and
real-commutativity. Then the realness of xx would be im-
plied by the realness of squares i2 of pure-imaginary 16-ons
i. But the 2-dimensional nnacd-algebra of quantities a + bi,
where a and b are real, is necessarily distributive (implied
by 2-dimensionality, weak-linearity, and real-commutativity),
with identity, and norm-multiplicative, and hence by Hur-
witz’s theorem [134][135][147][227][94], is necessarily isomor-
phic to the complex numbers C. Therefore i2 is indeed real
(and non-positive), and, furthermore, weak-linear 16-ons are
necessarily power-associative and power-distributive. Q.E.D.

Lemma 53 (Another assumption set). If in a nnacd-
algebra

1. xx = xx = 〈x, x〉 (norm)
2. 〈yx, z〉 = 〈x, yz〉 (right-linearity)
3. y · yx = yy · x (left-cancellation)

4. sh = hs if s is real (real-commutativity)

then the norm-multiplicativity law 〈x, x〉〈y, y〉 = 〈xy, xy〉
holds.

Proof: This lemma is proposition 1 page 8 of the book [189]
by S.Okubo. Let z = yx. Then 〈yx, yx〉 = 〈yx, z〉 = 〈x, yz〉
by #2. And yz = y · yx = 〈y, y〉x by #3. So 〈yx, yx〉 =
〈x, 〈y, y〉x〉 = 〈y, y〉〈x, x〉. Q.E.D.

Second, let us discuss impossibility results about 16-ons sat-
isfying the above assumptions.

Theorem 54 (Distributivity impossible). Distributive
16-ons are impossible.

Proof: Hurwitz’s theorem [134] of 1898 says that a distribu-
tive algebra with identity and causing the Euclidean norm to
be multiplicative, must be the reals, complexes, quaternions,
or octonions. (Proofs of Hurwitz’s theorem may be found in
[227], chapter 17 of [147], [94], and see claim 10 in our proof
of theorem 60.) Even without any assumption that an iden-
tity 1 exists, Hurwitz showed the dimension must be 1, 2, 4, 8.
Q.E.D.

Theorem 55 (Antiautomorphism impossible). 16-ons
obeying the antiautomorphism identity ab = ba are impossi-
ble. Equivalently, unit-norm 16-ons cannot satisfy a−1b−1 =
(ba)−1.

Proof: By right-linearity and linearity of the x → x opera-
tion, ab is linear in b. Similarly ba is linear in a. Therefore
antiautomorphism would imply that ab is linear in both a and
b, i.e. that multiplication is distributive. But this contradicts
the previous theorem. Q.E.D.

Theorem 56 (LR-alternativity impossible). 16-ons can
exist obeying either the left-alternative x ·xy = xx ·y or right-
alternative yx · x = y · xx law, but in 16-ons whose generic
multiplicative structure is that of a loop (in the sense of the
remark after theorem 71) it is impossible to satisfy both.

Proof: Obviously, having 1-sided alternativity and a 1-sided
cancellation law both are possible, since the 16-ons we’ve al-
ready constructed do the job. The only difficulty is to show
that both alternativity laws cannot hold simultaneously.

Any two of the laws x · xy = xx · y, yx · x = y · xx and
x−1y−1 = (yx)−1 implies the third in a loop. Here is the
proof of that (supplied by Orin Chein): Left alternativity
and (xy)−1 = y−1x−1 imply [xx · y]−1 = [x · xy]−1, so
y−1[x−1x−1] = [y−1x−1]x−1. Putting w = x−1 and z = y−1,
we get z ·ww = zw ·w (right alternativity). Similarly we can
go in the other direction. Finally, it is well known ([47], ch.
VII) that left and right alternativity imply full-alternativity,
i.e. that we have a Moufang loop, and that in Moufang loops
we have x−1y−1 = (yx)−1. (End of Chein’s proof.)

But x−1y−1 = (yx)−1 contradicts the previous theorem.
Q.E.D.

Theorem 57 (Cancellation impossible). 16-ons can ex-
ist obeying either the left-cancellation x · x−1y = xx−1 · y = y
or right-cancellation yx · x−1 = y · xx−1 = y law, but it is
impossible to satisfy both.
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Proof: They exist, since our 16-ons do the job. The only
difficulty is to show that both cancellation laws cannot hold
simultaneously.

As Moufang ([181] p.418; also see our footnote 16) pointed
out in her original paper about alternativity, the left and
right cancellation laws taken together (plus the assumption
that every nonzero element has a 2-sided inverse) imply that
ab−1 and ba−1 are inverses. But that contradicts theorem 55.
Q.E.D.

Remark. If we also assume weak-linearity and that x − x
is pure-real, the left-alternative law and left-cancellation law
imply each other, and the right-alternative law and right-
cancellation law imply each other.

In that case, theorems 56 and 57 show that fully-alternative
16-ons are impossible – but now without any assumption of
loop-ness, but instead as a consequence of weak-linearity.

Theorem 58 (Moufang-ness). It is impossible for 16-ons
whose generic multiplicative structure is that of a loop (in the
sense of the remark after theorem 72) to obey any Moufang
identity (EQ 11).

Proof: Any Moufang identity is known ([47], ch. VII; [177])
to imply all the others in a loop. These in turn (by taking
one of the variables to be 1) imply antiautomorphism, which,
theorem 55 showed, is impossible. Q.E.D.

Theorem 59 (Few coordinates). 16-ons which are ordered
pairs of octonions, and whose multiplication operation is ex-
pressed in terms of octonionic rational operations and conju-
gation, cannot obey the distributive identity, the antiautomor-
phism identity, both the left and right alternativity identities,
or a Moufang identity in more than 1 octonionic and 1 real
coordinate (9 coordinates total). Indeed, none of these identi-
ties can even be obeyed in coordinates 0, 8, a, and b alone (4
coordinates total) for any fixed a, b with 1 ≤ a < 8 < b ≤ 15.

Proof: The G2 automorphism group of the octonions (see
§28) causes all 7 imaginary coordinates of an octonion to be
equivalent. Thus by applying an appropriate automorphism
of the octonions we would see that validity of an identity in
coordinate 0 and a would imply validity in coordinates 0 and
a′ for any a′ with 1 ≤ a′ ≤ 7. So just obeying any one of
these identities in the 4 coordinates mentioned would imply
it must be obeyed in all 16 coordinates, which according to
the previous theorems is impossible. Q.E.D.

15 Characterization of 16-ons as
uniquely optimally distributive

Assumptions. Throughout this section, “16-on” means a
16-dimensional nnacd-algebra over the reals which is

1. weak-linear [a(b + c) = ab + ac and (b + c)a = ba + ca if
at least one of a, b, or c is pure-real],

2. real-commutative [hr = rh if r is pure-real],
3. right-linear [a(b + c) = ab + ac]
4. with unit (1),
5. whose multiplication has left-cancellation (a · a−1b = b)
6. and causes the Euclidean norm to be multiplicative

(|ab|2 = |a|2|b|2).

We’ve already seen in §14 that such 16-ons cannot have right-
cancellation, be antiautomorphic, or be left-linear – even in
coordinates 1, 8, a, b only. But we would like for them to be
as nearly linear as possible.

In the below, we shall number 16-on coordinates from 0 to
15, with the octonion subalgebra being in coordinates 0-7.
We now exhibit a precise sense in which our 16-ons are the
uniquely “most linear possible” 16-ons.

Theorem 60 (Uniqueness and optimality of our
16-ons). Let H be a nnacd 16-on algebra (obeying the As-
sumptions above) such that H contains the octonions as an
8-dimensional subalgebra, and H’s multiplication operation is
(regarding each 16-on as an ordered pair of octonions) express-
ible as two octonionic rational functions of the 4 involved octo-
nions and their conjugates. Let H obey the following partial-
distributivity properties:

niner distributivity If z is a niner, or if both x and y are
niners, then (x + y)z = xz + yz

octonion distributivity If x and y are either

1. Both octonions, or
2. Both orthogonal to the octonion subalgebra, or
3. One is octonion and the other is orthogonal to the

octonions,

then (x + y)z = xz + yz.
9-coordinate distributivity The first 9 coordinates (in-

dices 0-8) of (x+y)z are equal to the first 9 coordinates
of xz + yz.

Then: There is, up to isomorphism, a unique 16-on algebra,
namely ours (i.e. whose multiplication is given by EQ 72).

Remark. Our assumption that H contains an octonion sub-
algebra in its first 8 coordinates could be replaced by, e.g., the
weaker assumption that those coordinates contain some sub-
algebra. This algebra necessarily must be fully distributive
and left-alternative, and it is known [259][12] that any such
algebra which is simple (in particular, which is a division al-
gebra or normed algebra) must be the octonions.

Corollary 61 (Extension to arbitrary fields of char-
acteristic not 2). Theorem 60 actually holds not only for
16-on nnacd-algebras over the reals, but in fact, over any field
F with charF 6= 2.

Proof (of the theorem and corollary). The proof will
consist of a numbered sequence of 16 claims, each a conse-
quence of our assumptions and of previous claims. The reader
can first verify that it works over R, and then go over it again
checking that all steps work over any field F with charF 6= 2.
We have put the special mark ♣ in certain places to indicate
“here is an occasion where characteristic6= 2 matters.”

1. Let 〈x, y〉 = 〈y, x〉 denote the (Euclidean 16D) inner prod-
uct of x and y; this could be defined in terms of the Euclidean
norm |x|2 = 〈x, x〉 by 2〈x, y〉 = |x + y|2 − |x|2 − |y|2. There
is then a notion of the “real part” of a 16-on: rex = 〈x, 1〉
and its “conjugate” x = 2 rex − x ♣. Two 16-ons x, y are
“orthogonal” if 〈x, y〉 = 0.

2. Norm-multiplicativity implies 〈ab, ab〉 = 〈a, a〉〈b, b〉 and
then right-linearity (consider b→ b + d) implies

〈ab, ad〉 = 〈a, a〉〈b, d〉 = |a|2〈b, d〉. (95)
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If the 16-ons were fully-distributive, then we could also sim-
ilarly left-linearize to deduce

〈ab, cd〉+ 〈ad, cb〉 = 2〈a, c〉〈b, d〉. ♣ (96)

It is still legitimate to deduce EQ 96 (thanks to our weakened
distributivity assumptions) if either (i) either a or c (or both)
are pure-real; (ii) both a and c are niners; (iii) both b and d
are niners.

3. xx = xx = |x|2 =non-negative pure-real is forced by weak-
linearity and real-commutativity, see lemmas 51 and 52.

Hence x−1 = x|x|−2; also the quadratic identity EQ 49 follows
automatically as in theorem 16.

[Side remark: Left-cancellation would follow automatically,
without need to assume it, if we had full distributivity. Proof
([147], [227] p.74) involves use of left-linearity (b+c)a = ba+ca
to assume wlog that b is pure-imaginary, use of (x + y)2 =
xx + yy + 2xy if x is pure-real (from weak-linearity), use of
bilinearity of inner product, and definition of |b|2 = 〈b, b〉 and
use of EQ 96.]

4. From 3, left-cancellation, and weak-linearity we deduce
left-alternativity: a · ab = a2b. Left-cancellation also gives us
(by scaling by |b|2) b · ba = |b|2a. [Side remark: if H were
fully distributive we could by a mirror argument to the above
deduce right-cancellation and right-alternativity, and hence
full-alternativity.]

5. The 16-on identity

y · xa + x · ya = 2〈x, y〉a = y · xa + y · xa ♣ (97)

must hold if at least one of {x, y} is pure real, or if both x
and y are niners, or if x is octonion and y is orthogonal to
the octonions, or if both x and y are orthogonal to the octo-
nions. This follows from (and implies) b · ba = b · ba = |b|2a
(left-alternativity) by linearizing b (take b = x + y) using our
weakened linearity and distributivity assumptions.

6. Let e be a niner, orthogonal to 1, with |e|2 = 1. Then
e = −e follows from orthogonality to 1, hence by claim 3 we
have e2 = −1. Now let U be a subalgebra of dimension≤ 8
and let e be orthogonal to every element in U (“orthogonal to
U” for short). [We shall most commonly have in mind that
U is the 8D octonion subalgebra in coordinates 0-7, in which
case e has a 1 in coordinate 8 and a 0 in every other coor-
dinate.] Then: Ue and U are orthogonal (follows from EQ
95 with b octonion and d = e). Hence the representation of
any 16-on in the form u1 + u2e, u1, u2 ∈ U , is unique. Also,
eU and U are orthogonal due to legitimate (covered under
either case ii or iii) use of EQ 96 with a and b = d octonion
and c = e. Hence the representation of any 16-on in the form
u1 + eu2, u1, u2 ∈ U , also is unique.

7. The following 4 “eye-shift”42 identities must hold in our
16-ons if a, b ∈ U :

eb = be, b · ea = e · ba, eb · a = e · ab, eb · ea = −ab. (98)

These arise from claim 5 and our weakened-linearity assump-
tions. To get the first just take y = b, x = e, and a = 1 in
EQ 97 (and use the fact that 〈e, b〉 = 0 since e is orthogonal
to the octonions).

The second just comes directly from putting y = e in EQ 97,
which is legal since e is a niner. The third arises as follows. In
EQ 97 put a = 1 and y = ev = −ev; this last equality arises
from the fact that (if v is octonion) ev is perpendicular to the
octonions and hence to 1. This is legal since y is orthogonal to
the octonions and x is octonion. So we have ev ·x+x ·ev = 0.
Now use the second identity in EQ 98 to change the second
term to e · xv, and change the names of the variables.

To get the fourth, put x = e and y = −eb in EQ 97 (legal since
both are orthogonal to the octonions) to get eb ·ea−e(eb ·a) =
−2〈e, eb〉a = −2a〈1, b〉〈e, e〉 = −2a〈1, b〉. Now use −e = e and
the third identity of EQ 98 to reduce the second term on the
left to +e(eb · a) = e(e · ab) and now use left-alternativity to
reduce it to −ab. So eb · ea − ab = −2a〈1, b〉, which we may
rewrite as eb · ea = ab− 2a〈1, b〉 = a(b− 2 re b) = −ab (where
we have used right-linearity). ♣
The use of EQ 98 is that it allows re-expressing 2n-ons with
“eyes left” (cf. footnote 22).

[Side note: We shall not use this, but it should also be possible
to derive the following

ae · b = ab · e, a · be = ba · e, ae · be = −ba, (99)

which are convenient for re-expressing 2n-ons with “eyes
right.” These are definitely true if a, b are octonions, as has
been confirmed by computer proof (cf. §11). ]

8. Now assume that U + eU is also a subalgebra of H , closed
under multiplication. This is justified if either

1. U + eU is distributive.
2. dim(H) = 2dim(U) in which case U + eU = H (sum

of two disjoint vector spaces) is the whole algebra (this
holds if U is the octonions and H the 16-ons).

3. dim(U) = 1, i.e. U is isomorphic to the reals, in which
case weak-linearity is the same thing as distributivity
for U + eU and case 1 applies.

9. Side remark: 8.3 will allow us to conclude the algebra gen-
erated by 1 and any pure-imaginary 16-on must be isomorphic
to the complex numbers, so our 16-ons must automatically be
power-associative and power-distributive.

10. Side remark: If H were fully distributive (and if we drop
the demand that it be 16-dimensional) we could use case 8.1
and apply EQ 98 to all 4 terms in the full expansion, via
distributivity, of (a + be)(c + de), to conclude that the multi-
plication in U + Ue must be defined in terms of the multipli-
cation in U via the linear Cayley-Dickson doubling formula
EQ 48. This would prove H is the reals, complexes, quater-
nions, or octonions only (since doubling further yields the
sedenions which are not a normed algebra) which was, es-
sentially, Hurwitz’s theorem (and constitutes a proof of that
theorem). This also proves that fully distributive 16-ons are
impossible, motivating our present theorem’s weaker assump-
tions of “9-coordinate distributivity,” etc.

11. But we only have right-linearity, so we only get a weaker
result:

(a + eb)(c + ed) = (a + eb)c + (a + eb) · ed. (100)

42See footnote 22 for why we use this terminology.
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12. Now using our assumption of left-linearity [(x + y)z =
xz + yz] if z is niner (here z = c), and also using EQ 98, we
can simplify further to get

= ac + eb · c + (a + eb) · ed (101)

= ac + e · cb + (a + eb) · ed. (102)

Note: it would not be legal to continue by trying to shift the
e in the last term leftward by use of EQ 98, because a + eb
is not an octonion, i.e. not in U . However, if a = 0 the last
term simplifies to −db, while if b = 0 it simplifies to e · ad.
Note the agreement of all of these with the 4 terms in the
Cayley-Dickson formula EQ 48.

13. This tells us that our 16-on-multiplication formula must
agree with the Cayley-Dickson sedenion formula (EQ 48) if
either a = 0 or b = 0, and indeed (by weak-linearity and
niner-distributivity) merely if any of {a, b, d} are real.

14. So at this point, we’ve reached the following conclu-
sions. Our assumptions force us to have a rationally-modified
Cayley-Dickson formula, such that the modifications have no
effect if any of {a, b, d} are real, and such that only the 2 terms
in EQ 48 not involving c, are modified, and those modifica-
tions must not introduce any involvement of c.

But now consider 9-coordinate distributivity. This forces the
first 9 coordinates of the product 16-on to be determined by
a truly-bilinear formula, and (by considering a = 0 and em-
ploying EQ 98; cf. claim 13) that formula must be in agree-
ment with the Cayley-Dickson formula EQ 48. So, our 16-on-
multiplication formula must be

(a, b)(c, d) = (ac− db, cb + modification(ad)). (103)

The modification is permitted to involve b, but not c (due
to right-linearity), and must have no effect if any of {a, b, d}
are pure-real octonions, and it must always have the same
real-part as ad (by 9-coordinate distributivity; this is the 9th
coordinate). It must be a purely-linear function of d (by right-
linearity).

15. Now consider the requirement that the Euclidean norm
be multiplicative:

|(a, b)|2|(c, d)|2 = |(a, b)(c, d)|2. (104)

The left-hand side of this is

(|a|2 + |b|2)(|c|2 + |d|2) = |a|2|c|2 + |b|2|d|2 + |b|2|c|2 + |a|2|d|2.
(105)

The right-hand side, writing M = modification(ad), is

|ac|2 + |db|2 − 2〈ac, db〉+ |cb|2 + |M |2 + 2〈cb, M〉 (106)

which is

|a|2|c|2+|b|2|d|2+|b|2|c|2+|M |2−2〈c, a·db〉+2〈cb, M〉. (107)

(We have used the octonion properties that 〈xy, z〉 = 〈x, zy〉,
|x|2 = |x|2.) Hence, for EQ 104 to hold we need that
|a|2|d|2 = |M |2 + 2〈cb, M〉 − 2〈c, a · db〉 or equivalently that
|a|2|d|2 = |M |2 + 2〈cb, M〉 − 2〈cb, (a · db)b−1〉. The obvious
solution is to choose

M = (a · db)b−1 = (a · db−1)b = ab−1 · bd = b−1(ba · d) (108)

with |M |2 = |ad|2. (We’ve used the Moufang-like law EQ 16
here to get several equivalent formulas for M .) We now claim
that this obvious solution is the only solution. This is since
any other solution M ′ would have to be M ′ = M + f(a, b, d),
and, no matter what f 6= 0 you choose, an adversary can then
obtain a contradiction by choosing c to defeat that f , i.e. to
cause |f |2 + 2〈f, M〉+ 2〈cb, f〉 6= 0.

16. So, in conclusion, the only possible 16-on-multiplication
formula consistent with our assumptions (and it is consistent
with them, as we’ve seen in the rest of this monograph) is

(a, b)(c, d) = (ac− db, cb + ab−1 · bd). (109)

This is exactly our EQ 72. Q.E.D.

16 Uniquely optimal 2n-ons, and the

simplest formula for them

It is possible to simplify our 2n-on multiplication/doubling
formulae EQ 57 and EQ 68 by applying the algebra isomor-
phism (x, y)new = (x, y)old. Then they respectively become

(
A −KBT

BK BKAT KB−1

)
(110)

and43

(a, b)(c, d) = (ac− bd, bc + bab−1d). (111)

Again in the special case where B is non-invertible or b = 0,
then use (

A −KBT

BK KAT K

)
, (ac, ad) (112)

respectively. These appear to be the simplest possible for-
mulae for our 2n-ons. One precise quantifiaction of “sim-
plest” is this:

Lemma 62 (Simplest I). Among all 16 possible isomor-
phic versions of our 2n-on doubling formula EQ 111 gotten
by agreeing to conjugate and/or negate either (or both, or
neither) 2n−1-on half of our 2n-ons, the one with the fewest
number of conjugation bars and the fewest minus signs is EQ
111.

Proof: Exhaustive examination. Q.E.D.

But: although EQ 111 seems “simplest” in the sense that the
fewest possible conjugation-bars are involved, for other rea-
sons I have preferred the “more complicated” EQ 68 through-
out this monograph. See §32.1 for discussion.

For the purpose of defining 16-ons, as opposed to general 2n-
ons, there are many more possible equivalent (up to algebra
isomorphisms) ways to rewrite EQ 111. The 4-term product
may be rewritten in any of 3 equivalent ways by using the
Moufang identity, e.g. see EQ 108. Then one may apply the
antiautomorphism identity ty = yt (or not) to every octonion-
multiplication. Since there are 6 such multiplications in the
formula, that is 3 × 26 = 192 possible variations. Finally, as
in lemma 62, each of these 192 may be rewritten in any of 16
possible ways by agreeing to one of 16 possible algebra isomor-
phisms involving conjugating and/or negating each octonion
half of each 16-on.

43The same formula is given in §6.11 of J.H.Conway and D.Smith’s book [67] (I suggested it to them after they consulted me about the best
such formula) although they mistakenly omitted the acknowledgment of that formula to me!
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Lemma 63 (Simplest II). Among the 192×16 = 3072 def-
initions of 16-ons from octonions described above (all equiva-
lent), there is one which (i) has the fewest possible conjuga-
tion bars, (ii) has the fewest possible minus signs, (iii) bears
the greatest resemblance (in the sense it exactly agrees with
3 of the 4 terms in, and the 4th term most resembles) to the
Cayley-Dickson doubling formula EQ 48: namely, EQ 72.
Proof: Exhaustive examination. Q.E.D.

All of these 192 × 16 = 3072 formulas are equivalent for
the purpose of generating 16-ons from octonions. However,
if these formulae are reused to generate 2n-ons for n ≥ 5,
then each of the 192 isomorphism-equivalence classes among
these 3072 formulae generally will not be equivalent44 since
the Moufang and antiautomorphism laws are not valid (and
cannot be valid, see theorems 55 and 58) for 16-ons and their
successors.

Theorem 64 (Uniqueness of our 2n-ons). Of the 192
equivalence classes among the 3072 (at the 23 → 24 doubling)
possible ways, described above, to rewrite our (unique opti-
mally distributive) 16-on multiplication formula (EQ 111),
exactly one, namely the 16 isomorphs of EQ 111, continues
on to generate 2n-ons for each n ≥ 4, each having multiplica-
tive Euclidean norm. And of these 16, lemma 62 has shown
a sense in which EQ 111 is simplest.
Remark. More detail: Exactly two yield 32-ons for which
the Euclidean norm is multiplicative, namely EQ 111 and

(a, b)(c, d) = (ac− db, bc + ba · d b−1). (113)

But EQ 113 produces 32-ons which are not left-alternative
and not right-linear, and if it is re-iterated to produce 64-ons,
they do not have multiplicative Euclidean norm. Meanwhile,
EQ 111 (since it is equivalent to using EQ 110 in the matrix
picture of lemma 11) keeps on yielding 2n-ons, each having
multiplicative Euclidean norm, left-alternativity, and right-
linearity, forever.

Proof: Computer verification (see §11). This is not merely a
probabilistic45 proof, but a real one, since the computer here
is only used to find counterexamples to norm-multiplicativity
(and that is done with exact arithmetic). The only positive
statements we need to prove, namely that EQ 113 and 111
lead to 32-ons with multiplicative norm, may be established
manually. For EQ 113, after taking the norm, expanding out
both sides, and canceling equal terms, it comes down to show-
ing that

〈ac, db〉 = 〈bc, ba · d b−1〉; (114)

which may be done by repeatedly simplifying the right hand
side with the aid of theorem 15:

= 〈b · bc, a · d b−1〉 (115)

= 〈c, a · d b−1〉 |b|2 (116)

= 〈c, a · d b−1〉 |b|2 (117)

= 〈ac, a−1(a · d b−1)〉 |b|2 (118)

= 〈ac, a−1(a · d b−1)〉 |b|2 (119)

= 〈ac, d b−1〉 |b|2 (120)

= 〈ac, db〉. (121)

(This in fact shows that any number of doublings using EQ
111, followed by one use of EQ 113, yields 2n-ons with mul-
tiplicative norm.) The proof of norm-multiplicativity for EQ
111 is almost exactly parallel (and since we already know EQ
111 is valid, it is omitted). Q.E.D.

Theorem 64 must not be taken too seriously, because there are
not merely 192, but in fact ∞ ways to rewrite EQ 72 that are
equivalent at the 23 → 24 doubling but inequivalent at higher
doublings. Namely, one may use the distributive law (which
is valid for octonions but not 16-ons) to rewrite any product
xy in it as, e.g., fy + gy where f + g = x. Furthermore,
one could use the alternative law (also valid for octonions but
not 16-ons) to rewrite any xy as (xy · f)f−1. We suspect
that few or none of these will yield anything interesting that
keeps working forever – because they generally stop x = 1
from being the identity, and/or destroy niner-distributivity –
but we have not proven it, and besides, even if we did prove
it, there might be other, undreamt of, kinds of formulae and
there might be interesting 2n-ons which arise in some other
way than by merely repeating the same kind of doubling for-
mula as was used last time. So it remains possible that, for
all sufficiently large n, our prescription for generating 2n-ons
is not the uniquely best one (whatever “uniquely best” might
mean).

Indeed, even our 16-on-uniqueness theorem 60 must not be
taken too seriously – although it must be taken a good deal
more seriously than theorem 64. It shows our 16-ons are
uniquely best, but other people might prefer other notions
of “best” than the one (based on maximizing partial distribu-
tivity properties) we have chosen. See §27 for a comparative
survey of 16-on formulas discovered by us or by other people
(this survey is necessarily incomplete, since there undoubtably
are other, as-yet-unknown, formulas). We will say, though,
that “good” 16-on formulas seem rare. During this research
I produced over 100 kinds of formulas yielding 16-ons with
multiplicative Euclidean norm, but almost none of them have
pleasant algebraic properties.

17 Fundamental theorem of algebra
for octonions and below

The “fundamental theorem of algebra” states that every uni-
variate polynomial over C has a root. (A stronger version:
every degree-D such polynomial has exactly D roots, if we
count multiple roots multiply.)

We (§10) have already seen examples of quaternionic and oc-
tonionic polynomials without roots, so this theorem fails to
generalize. However, if we restrict the allowed class of poly-
nomials, there are valid quaternionic and octonionic funda-
mental theorems of algebra. Such a theorem was first found
by S.Eilenberg and I.Niven [100] in 1944, and our purpose in
this section is to produce a considerable strengthening of it46,

44Conceivably, by some coincidence, some of them are still equivalent.
45We do not intend by this to disparage probabilistic proofs.
46Incidentally, we’ll also strengthen the usual fundamental theorem of algebra – over the complex numbers! (See theorem 66.) It seems unlikely

that that is new, but we have not made any effort to find out.
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suitable for later use in proving that division in our 16-ons (or
with many alternate definitions of 16-ons) works.

We need to know the definition and basic proper-
ties of L.E.J. Brouwer’s “topological degree” (a no-
tion apparently tracing back to L.Kronecker in some
form). The following list has been extracted from books
[6][17][40][72][87][120][124][133][178][239] on algebraic topol-
ogy.

Topological degree: definition and simplest conse-
quences. Let f be a smooth map from Sn to Sn. More
generally degree(f) may be defined for a differentiable map
f between two smooth n-dimensional closed oriented man-
ifolds. Degree(f) is an integer. Degree is invariant under
homotopies. Degree of the constant mapping (all the mani-
fold is mapped to a single point) or homotopes of it, is 0 by
definition. If the map happens to be piecewise linear on sim-
plices, for some triangulation of the two manifolds, and maps
simplices to simplices, then, for some simplex S on the target
manifold (it does not matter which one)

degree(f) = (122)

(#simplices mapped orientation-preservingly to S)

−(#simplices mapped orientation-reversingly to S).

Also, for any generic point y on the target manifold, it does
not matter which,

degree(f) =
∑

preimages x of y

sign [JacobianDeterminant(f)x] .

(123)
Brouwer-Hopf mapping theorem: Two differentiable selfmaps
of Sn are homotopic iff their degrees agree. If f extends to a
continuous map from the ball Bn+1 to Sn, then degree(f) =
0. The identity map f(x) = x has degree(f) = 1. The
map from x to its reflection in some hyperplane through 0,
has degree= −1. For maps from S1 to S1, “degree” coin-
cides with “winding number.” Behavior under composition:
Degree(f(g())) = degree(f)degree(g). Brouwer’s fixpoint the-
orem: every continuous map Bn → Bn has a fixpoint. The-
orem on the degree of the antipodal map: For the antipodal
map f(x) = −x on Sn, n > 0, degree(f) = (−1)n+1. Theo-
rem: If degree(f) 6= (−1)n+1, then f (mapping Sn → Sn) has
a fixpoint. Antipode Theorem: If degree(f) 6= 1 (note 1 is the
degree of the identity map), then f (mapping Sn → Sn) maps
x to its antipode−x, for some x. Corollary: Any differentiable
map f from S2k to S2k either has a fixpoint or maps some
point to its antipode. Corollary (“hair combing theorem”): Sn

has a smooth tangent vector field iff n is odd. Theorem: If
f is a homotopy equivalence then degree(f) = ±1. Borsuk’s
oddity theorem: If f(−z) = −f(z) then degree(f) is odd, and
if f(−z) = f(z) then degree(f) is even.

Example applications: 1. if a,b are fixed nonzero octonions
with |ab| = 1, and |x| = 1, then the map x → ax−1 · xb is a
map from S7 to S7. It is homotopic to the map x → 1. (To
see that, consider slowly distorting (a, b) from (1, 1) to (a, b).)
Hence it has degree= 0. Hence, this map has both a fixpoint

(x→ x) and a point x that is mapped to −x. (It seems much
more difficult to prove these without help from topology.)

If in this example we were to make a, b and x be 16-ons
rather than octonins, then this argument would apparently
no longer be valid because this map is not longer smooth on
the 15-sphere |x| = 1. However, that will be rectified in §22
where we will show how to extend Brouwer-degree theory to
“generalized-smooth”maps (with a generalized notion of “ho-
motopy”). This map is generalized-smooth, so our reasoning
here really is valid even for 16-ons.
2. The octonion map x→ axb (for all x including∞) is homo-
topic to the identity map and has degree 1; hence it need not
have a fixpoint. The map x → a0xa1xa2xa3x · · ·am−1xam is
homotopic to x → xm, is an m-to-1 map, and has Brouwer-
degree m. If some of the x’s here are replaced by x or x−1,
e.g. say there are A x’s and B x’s where A + B = m, then
this map is homotopic to xA−B and has degree= A−B.

Theorem 65 (Fundamental theorem of algebra, plain
version). Let n ≤ 3. Any univariate 2n-onic polynomial
P (x) having a unique monomial of highest-degree n > 0, has
at least 1 root.

Proof sketch: This theorem was shown by Eilenberg and
Niven [100] in 1944, and we imitate their proof47. For sim-
plicity of exposition we shall take n = 3 (octonions) in this
proof but the argument works for any n ≤ 3. Our polynomial
P (x) constitutes a smooth selfmap of R8 ∪ ∞, which is S8

topologically, due to stereographic projection. Now this map
has Brouwer “topological degree” the same as the polynomial
degree. This is (1) due to writing explicit easy homotopies in
which all the coefficients of the non-dominant terms shrink to
0; and (2) They also need to see that xn has Brouwer-degree
n, for which they (a) rely on a lemma due to Niven and Brand
[186] that the equation i = xn has exactly n roots x (namely,
just the complex roots)48 in the quaternions – and this then
plainly is also true in the octonions since any 2 octonions (here
x,i) generate a quaternion subalgebra, and (b) They explic-
itly compute the Jacobian determinant of the map xn at the
roots x of xn = i, then use the definition of topological degree
as a sum of Jacobian determinant signs (here all the signs are
identical).

With the topological degree now known, it then follows im-
mediately from general theorems of topology that P (x) = y
has a solution x for any y. Q.E.D.

We now make several extensions of the Eilenberg-Niven the-
orem and proof. For some of them we shall need the notion
of the local topological degree of f(x) at x. Namely, con-
sider a small sphere (of radius r) centered at x: the local
topological degree of f at x is then the topological degree of
x + r[f(y)−x]/|f(y)−x| for y on that sphere, in the limit (if
one exists) r → 0.

Theorem 66 (Extended Fundamental theorem of al-
gebra). Let n = 1, 2, or 3.
1. Any univariate 2nonic polynomial P (x) having a unique
monomial of highest-degree n > 0, has at least n roots, if roots
are counted according to “multiplicity,” i.e. local topological

47Eilenberg and Niven actually stated and proved their theorem for quaternions, but noted at the end of their paper that their argument also
works for both octonions and complex numbers.

48Indeed [186], there are exactly r ≥ 2 quaternion solutions x to xr = q, where q is any non-real quaternion (or if r = 2 and q > 0 is real). There
are an infinite number of solutions if q 6= 0 is real (with q < 0 if r = 2). If q = 0 the unique solution is x = 0.
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degree. (For generic polynomials, all roots are of degree 1, so
generically there genuinely are ≥ n roots.)
2. Let P (x, x) be a bivariate 2n-onic polynomial with a unique
asymptotically dominant term, when |x| → ∞, containing A
x’s and B x’s. Then it has at least |A−B| roots x.
3. In 1 and 2, the uniqueness of the asymptotically dominant
monomial is not necessary – all that is really necessary is
that the summed equi-dominant monomials (call that h(x)),
is a function of x such that limr→∞ minx, |x|2=r |h(x)| = ∞.

(This ensures continuity on S2n

at ∞ in R2n

.)
4. Suppose the topological degree |A − B| of P (x, x) is odd.
Then not only must a root x of P exist, but in fact a root of
“odd local degree” must exist.

Proof: (1) The topological degree is n implies that P (x) = y
has (for generic y) at least n roots x, due to the definition
of topological degree as a sum of Jacobian determinant signs.
The contribution of generic points in the neighborhood of x to
the sign-sum is the local degree of x, and these contributions
have to add up to n.
(2) and (3) are similar but the topological degree is |A −B|.
This also, incidentally, extends the usual (i.e. for complex
numbers) fundamental theorem of algebra.
(4) Follows by consideration of the definition of topological
degree in terms of signed simplex counting or sum of signs of
Jacobian. If x is a root of locally-even degree, then the contri-
bution of x+ε, for all sufficiently small-norm generic ε, to the
sign-sum will be even. Hence, since the total sign sum (which
is equal to the topological degree) must be generically odd, it
is impossible for all the roots x to be locally-even. Q.E.D.

18 Analysis of some quaternion and
octonion equations

Theorem 67 (Quaternionic similitude). The quaternion
equation

x−1tx = b (124)

implies |t| = |b| and re t = re b. These conditions are sufficient
for a solution x to exist.

Proof: Barth Pollak [207] considered the quaternion equation
xtx = b over an arbitrary base field with characteristic6= 2.
This is merely the extremely special case of his results that
arises by taking R as the base field.

But it also follows much more simply and directly: With
the aid of the understanding of rotations in §4, we see that
t → x−1tx is the identity map on reals and maps pure-
imaginary quaternions (regarded as 3-vectors) to arbitrarily
rotated versions of themselves. The theorem then follows, and
with the additional realization that there are a 1-parameter
infinity of norm-1 solutions x if there are any. Q.E.D.

Theorem 68 (A quadratic which generically has ex-
actly 2 roots). The following kind of quadratic function
(where all letters are quaternions and ab 6= 0):

F (x) = xaxb + xc + dxb + f. (125)

has either 1, 2, or ∞ roots x such that F (x) = 0. Generically
(over the choice of a, b, c, d, f) it has exactly 2 roots.

Proof: If we are interested in the roots of F (x), then it
makes no difference to left-multiply and right-multiply F (x)
by nonzero constants. Choose 1 and b−1 as those constants
to see that wlog we may consider only F (x) of the form

F (x) = xax + xc′ + dx + f ′. (126)

We may now omit the primes (thus renaming the constants),
and from now on we shall perform such renamings of con-
stants without comment. Now we may make a linear change
of variables from x to y where x = pyq. This does not change
the number of roots if pq 6= 0. Choose p and q so qap = 1
to see that wlog (after re-simplifying by an overall right- and
left-multiplication of F (x) by p−1 and q−1) we may consider
only F (x) of the form

F (x) = xx + xb + dx + f. (127)

Now change variables via x = y − d to see that wlog we may
consider only F (y) of the form

F (y) = yy + yc + f. (128)

Finally, change variables via y = z − re(c)/2 to see (here we
use the fact that reals commute with quaternions) that wlog
we need consider only F (z) of the form

F (z) = zz + z(c− re c) + f. (129)

which is a quadratic(z) with all coefficients to the right of
their powers of z, and with the coefficient of the linear term
being pure-imaginary. Theorem 2 of [185] shows that quadrat-
ics of the form in EQ 129 have either 1,2 or ∞ roots, with
2 occurring generically – namely: ∞ roots occur iff c = 0,
and f is real, and f > 0. Otherwise: a single root occurs iff
(|c − re c|2 + 2 re f)2 − 4|f |2 = f(c − re c) − (c − re c)f = 0.
Q.E.D.

Remark. In particular, if f = 0 then EQ 129 cannot have
∞ roots, and its roots are 0 and c− re c.

By the same argument, F (x) is a 2-to-1 map, generically, al-
most everywhere, of the quaternionic space.

Corollary 69. The quadratic in EQ 129 still is a 2-to-1 map,
generically, almost everywhere, over the octonions.

Proof: The constant term is irrelevant for this kind of con-
sideration, so we may as well consider the map z → zz + kz,
and that, since it involves only 2 variables z and k, by di-
associativity is living entirely within the quaternion subalge-
bra generated by z and k, and within said subalgebra must
be, generically, 2-to-1. Q.E.D.

Remark. A fully general quaternion (or octonion) univariate
quadratic can (if there are enough terms) be a fully general
set of 4 (respectively 8) simultaneous quadratic equations over
the reals. Hence it is very hard to solve and no “fundamental
theorem of algebra” can be hoped for. The following compar-
atively nice quaternion quadratic

q2 + q(2i + 5j + 7k)− (11 + 17i + 19j + 23k) = 0 (130)

has a root q ≈ −3.61 − 2.70i − 4.54j − 7.30k, all of whose
coefficients are expressible as rational functions of the real
root Z of 4Z6 + 112Z4 − 516Z2 − 21025. This cubic in Z2
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has Galois group S3 and hence the algebraic degree 3 of this
q, is irreducible. Thus, quaternionic quadratics of the form
(EQ 130) are not soluble by any finite process involving real
rational operations and square-rootings only.

Remark. Solving the octonion linear equation b·ax+bx·a = 0
for x is discussed in lemma 3.4.2 of [149]. Some other quater-
nion and octonion equations are discussed in [68].

19 What is a “division algebra” and
are the 2n-ons one?

One (boring) definition of “division algebra” is “an algebra
in which xy = 0 implies x = 0 or y = 0.” By that definition,
all of our 2n-ons are nnacd “division algebras” simply because
of the multiplicativity of Euclidean norm.

A stronger definition of “division algebra” is “an algebra in
which, given b and given a 6= 0,

1. there exists z so that az = b, and
2. there exists q so that qa = b.”

Finally, a still stronger definition would require, not only
that the solutions z and q of these two division problems must
exist, but that, furthermore, they must be unique.

The first of these division problems, for our 2n-ons, trivially
does have a unique solution z: in the matrix picture of lemma
11 we have the 8× 8 linear system M(a)z = b, with solution
z = M(a)−1b = |a|−2M(a)T b since M(a) is scaled-orthogonal
(and hence, always invertible). An equivalent result follows
from the left-cancellation law: z = |a|−2ab = a−1b.

The second division problem, however, is not so trivial be-
cause there is no right-cancellation law in the 16-ons, and, to
get a solution q, we need to solve a nonlinear system – so it
is not even clear a solution must exist and, even if it does, it
is not clear how to find it.

20 Existence and uniqueness of solu-
tions to 16-on division problems

Theorem 70 (16-on division). There exists a unique solu-
tion x = (a, b) to any generic 16-on division problem.

Proof: We’ve already discussed the easy (linear system) case
(left division) in §19. The remaining hard (nonlinear system;
right division) 16-on division problem is this. We wish to solve

(a, b)(c, d) = (ac− db, cb + [a · db−1]b) = (X, Y ) (131)

(in which all letters are octonions) for the 16-on (a, b).

We may, and will, assume throughout that b 6= 0 and d 6= 0,
since if b = 0 or d = 0, then the 16-on-multiplication formula
becomes equivalent to the linear Cayley-Dickson formula (EQ
48) so division may be accomplished by solving a linear sys-
tem. (Indeed, the d = 0 case is just two independent octonion
division problems – trivial – see footnote 49.) Since (by norm-
multiplicativity) this linear system is orthogonal, it always has
a unique solution.

We shall also assume throughout that c 6= 0 since if c = 0
the division problem also may be solved directly (by solving

for b in terms of X and then solving for a) and plainly has a
unique solution. (And this solution exists if d 6= 0 and b 6= 0.)

We first solve the left coordinate for a (using the fact that the
octonions obey right-cancellation):

ac− db = X =⇒ a = (X + db)c−1 (132)

Next we substitute this value into the right coordinate’s equa-
tion (and use anti-automorphism EQ 15):

cb + [c−1(X + bd) · db−1]b = Y (133)

which we successively simplify by: right-multiply by b−1:

c + c−1(X + bd) · db−1 = Y b−1 (134)

right multiply by bd−1:

c · bd−1 + c−1(X + bd) = Y b−1 · bd−1 (135)

apply the Moufang-like identity ([181] EQ 10a p.420=our EQ
16) to the right side:

c · bd−1 + c−1(X + bd) = b−1(bY.d−1) (136)

left-multiply by b and use left-cancellation:

b(c · bd−1) + b · c−1(X + bd) = bY · d−1 (137)

multiply by the scalar |c|2|d|2:

|c|2b(c · bd) + |d|2b · c(X + bd) = |c|2bY · d (138)

use commutativity of addition and distributivity to rearrange
terms:

(|c|2 + |d|2)b(c · bd) = |c|2bY · d− |d|2b · cX (139)

and use commutativity of multiplication by pure-real quanti-
ties to rearrange terms:

b(c · bd)(|c|2 + |d|2) = bY · d|c|2 − b · cX|d|2 (140)

reducing the problem to solving a quadratic equation for b.
It is now tempting to just left-multiply by b−1 to “get rid of
common left-factors of b” and reduce to a linear equation –
except that due to non-associativity, getting rid of the b in
the first term on the right would be illegal! (It would be legal
if we were dealing with octonions=quaternion-pairs instead of
16-ons=octonion-pairs, in which case we would end up with a
closed form for b equivalent to the usual octonion-division for-
mula.) Nevertheless, this quadratic clearly has a root b = 0,
which for our purposes is spurious since if b = 0 we should
have started with the Cayley-Dickson multiplication formula
EQ 48 instead of ours, and anyway would already be done.
We are interested in the nonzero roots of this quadratic. We
know, by our fundamental theorem of algebra (theorem 66),
that it generically has at least one nonzero root. Therefore,
a non-spurious solution to the 16-on division problem generi-
cally exists. Q.E.D.

Theorem 71 (Uniqueness via miracle). In theorem 70,
there is a finite algorithm (there are rational closed forms) to
compute the 16 coefficients of the quotient 16-on, and (gener-
ically) that quotient is unique.
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Proof: We begin by applying the left-Moufang identity ([181]
EQ 10 p.419; our EQ 11) to the left side of EQ 140, getting

(bc · b)d(|c|2 + |d|2) = bY · d|c|2 − b · cX|d|2. (141)

We then right-multiply by (d)−1 (and use cancellation), get-
ting

(bcb)(|c|2 + |d|2) = bY |c|2 − (b · cX)d. (142)

We now left-multiply by b−1, and use the flexible law EQ 9,
the cancellation law, and the Moufang-like law EQ 16, to get

(|c|2 + |d|2)cb = Y |c|2 − (cX · db−1)b. (143)

Now right-multiplying by b−1 and using the cancellation law
(remember, cancellation works on both sides in the octonions)
yields

c =
Y |c|2b−1 − cX · db−1

|c|2 + |d|2 . (144)

But this is plainly a linear equation for b−1, which

1. may be solved by 8-dimensional Gaussian elimination,
2. generically has a unique solution.

Miraculously, our nonlinear system really was a linear one in
many layers of disguise! Q.E.D.

Theorem 72 (Exceptional cases). In nongeneric division
problems (and assuming d 6= 0 so that we do not merely
have49 two octonion division problems), uniqueness and ex-
istence could be avoided in EQ 131 only in cases where b = 0
or when EQ 144 is a singular linear system. Then these things
could happen:

1. Both a pure-octonion quotient [(a, b) with b = 0] exists,
and a non-octonion 16-on quotient exists.

2. There is a solution only in a limiting sense as b → 0
along some smooth curve, but there is no solution with
b = 0. (In this case, a solution will only “exist” if in-
finitesimal quantities are adjoined to the underlying real
numbers; in that case it will be unique.)

3. A continuum infinity of solutions (a, b) could exist.

Proof: Simply re-read the proofs of the preceding two theo-
rems, asking at each stage what nongeneric event could hap-
pen to invalidate its logical function. The possibilities listed
in the present theorem cover them.

Here are examples of these nonexistence or nonuniqueness
phenomena:
1. Let X = ac and Y = ad so that (see EQ 69) our division
problem (a, b)(c, d) = (X, Y ) has solution b = 0. Then the
equation for b−1 is (|c|2 + |d|2)c = |c|2ad · b−1 − cac · db−1,
which simplifies to

(1 + |d
c
|2)c = ad · b−1 − a · db−1. (145)

The right hand side of EQ 145 is a linear transformation of
(the octonion regarded as an 8D vector) b−1 which has a very
considerable (i.e. 4D) nullspace, namely, every b−1 in the
quaternion subalgebra generated by a and d. Nevertheless,
clearly by choosing b to be orthogonal to this subalgebra and
then letting b determine c via EQ 145, we can create exam-
ples of 16-on division problems with at least two solutions,
one with b = 0 and one with b 6= 0.

2. If we pick c and d then simply choose X and Y so that
Y |c|2b−1− cX · db−1 is a non-invertible linear function of b−1

(i.e., as before, with a nontrivial nullspace), then in general
EQ 144 is only going to have infinite “solutions” b−1, leading
to infinitesimal but nonzero b and then via EQ 132 to finite a.
On the other hand if the left hand side of EQ 144 happens to
be in the range of that non-invertible linear function, then in
general there will be a continuum infinity family of solutions
b−1.

3. Here is an explicit counterexample: (a, b)(c, d) =
(a′, b′)(c, d) = (X, Y ):

(a, b) = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) 6=
(a′, b′) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0),

(c, d) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), (146)

(X, Y ) = (0, 0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0).

Q.E.D.

Remark: Loops via dense countable subsets of R. The
nonzero 16-ons do not quite form a multiplicative loop, due
to the exceptional nongeneric cases in the preceding theorem.
However, if instead of working over R

16 we instead operate in
a countable dense subset of R16 closed under 16-on-rational
operations (including conjugation) and containing only 16-
vectors whose 15D imaginary parts are50 generic, then we
have a genuine loop, (and a genuine nnacd division algebra)
since all the nongeneric cases that could cause trouble, are
impossible.

These also automatically yield a dense set of unit-norm 16-
ons (consider expressions such as x2/xx), which also form a
genuine multiplicative (sub)loop.

Remark: true continuum loop. It is also possible to get
a true loop without resorting to any subset of R, provided we
change the 16-on multiplication law slightly (and hence this
may come at the cost of sacrificing some desirable properties,
although only on a measure-0 subset). Let (a, b) and (c, d)
be unit-norm 16-ons regarded as octonion pairs. We use the
usual 16-on multiplication formula for multiplying (a, b)(c, d)
except on the measure-0 set of (a, b), (c, d) that cause the
map on (a, b) to be (≥ 2)-to-1. On this set, we replace the
multiplication law with some other multiplication table which
is a true loop. By the usual nonconstructive arguments of
G.Cantor [74], such replacements exist. Of course, this recipe
has not been uniquely specified! It is highly unclear what the

49 EQ 131 with d = 0 is just (a, b)(c, d) = (ac, cb) = (X, Y ), with solution a = Xc−1, b = c−1Y . Except when c = d = 0, this solution exists;
and whenever it exists it is unique.

50An explicit set of 150 generic reals may be constructed with the Lindemann-Weierstrass theorem ([22] p.6, [29]) that exp(aj ) are alge-
braically independent if the aj are algebraic numbers which are linearly independent over the rationals. E.g., use exp

√
pj for j = 1, 2, . . . , 150

where pj is the jth prime. If we use these to construct 10 generic pure-imaginary 16-ons, then adjoin all 16-ons constructible from these via rational
16-on operations and 16-on conjugation, then we get a genuine nnacd division algebra (since every element is sufficiently generic; any 16-on lying
on the discontinuity would imply the existence of 8 algebraic equations, not satisfied identically by all reals, but satisfied by our 150 generic reals,
a contradiction) and, if we only look at the multiplicative structure, a genuine multiplicative loop. 1 and 0 are generated automatically from x/x
and x − x.
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“best” loopifying recipe is, from among the many possibilities
of this kind.

21 The beginnings of 2n-onic (and
bi-2n-onic) analysis; Trotter for-
mula; Newton method; division

and root-finding algorithms

21.1 Power series and Trotter formula
The fact that the 2n-ons obey weak-linearity, power-
distributivity51, and power-associativity (equivalently, that
any 2n-on x generates a subalgebra of the 2n-ons isomorphic
to the complex numbers C) means that formal power series

a0 + a1x + a2x
2 + a3x

3 + . . . , (147)

whose coefficients ak are real (or in the case of bi-2n-ons,
complex ) and formal rational operations with them, are un-
ambiguous. Thus, if for some reason one wanted to define
ln(1 + x) for 2n-ons x, one could use

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . . , |x| < 1, (148)

and similarly

√
1 + x = 1+

x

2
− 1 · x2

222!
+

1 · 3x3

233!
− 1 · 3 · 5x4

244!
+ . . . , |x| < 1,

(149)

exp(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . . (150)

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ . . . (151)

et cetera. For 2n-ons q

exp(q) = (cos | im q|+ (im q) sin | im q|) exp re q ; (152)

this is also true for bi2n-ons provided it is interpreted cor-
rectly (all quantities in it are now complex, including | im q|
and re q).

These functions then will obey all the usual 1-variable iden-
tities, e.g. exp(x)k = exp(kx), ln(xk) = k ln x, (

√
x)2 = x,

sin(x)2 + cos(x)2 = 1, et cetera. However, the quaternions
onward in general will not obey (≥ 2)-variable identities
(whose validity tends to depend on distributivity, associativ-
ity, and/or commutativity) such as (x + y)2 = x2 + 2xy + y2,
exey = ex+y, sin(x + y) = sin x cos y + sin y cosx, etc. Never-
theless,

Theorem 73 (Trotter’s product limit formula in
16-ons).

ex+y = lim
n→∞

(ex/ney/n)n = lim
n→∞

(1 +
x + y

n
)n (153)

is valid in the 16-ons.

Proof: This is because

ex/ney/n = 1 +
x + y

n
+ O(

x2

n2
) + O(

y2

n2
) + O(

xy

n2
) + O(

yx

n2
)

(154)

despite the presence of non-commutativity and non-
associativity and non-distributivity. The key is that weak-
linearity and norm-multiplicativity still are valid. These cause
the bounds represented in EQ 154 by the big-O’s; and all these
terms are too small to alter the value of the limit. Here are
the details. We have

(1 +
x

n
+

x2

2n2
+ . . . )(1 +

y

n
+

y2

2n2
+ . . . ) = (155)

= (
x

n
+

x2

2n2
+. . . )(1+

y

n
+

y2

2n2
+. . . )+(1+

y

n
+

y2

2n2
+. . . ) (156)

by weak-linearity, which is

= 1+
x

n
+

y

n
+

y2

2n2
+

x2

2n2
+(x+

x2

2n
+ . . . )

y

n2
+O(n−3) (157)

by right-linearity. If x and y are 16-ons, then (x+ x2

2n+. . . )y is,
for large n, a small, i.e. O(n−1), perturbation of xy, because
if x is on the discontinuity (i.e. in the octonion subalgebra)
then so is x2, x + x2, etc., so that everything acts continuous
since the octonions are continuous; while if x is off the dis-
continuity, immediately everything is continuous. However if
x and y are 32-ons this perturbation is not necessarily small,
because now x can be on a discontinuity but not in a subal-
gebra (consider zeroing just coordinates 24-31 [or 8-15] of x),
in which case x2 can be off the discontinuity.

So in the 16-on case we have reached agreement with EQ 154.
We now argue that the O terms in EQ 154 are too small
to affect the value of the limit in EQ 153. If x and y are
fixed, then all the derivatives of the 2k-on multiplication map
(1+x/n)(1+y/n), with respect to both x and y, are bounded,
for all sufficiently large n, by some constant divided by n. (If
x is on the discontinuity, we only speak of derivatives in di-
rections that remain on it.) Perhaps this is (depending on x
and y) a large bounding constant, but that does not matter.
As n → ∞, the n−2-factor decrease is enough (now for the
same reasons as in the standard analysis of Trotter’s formula
in the linear associative case) to overwhelm any perturbing ef-
fect caused by the O-terms and the nth powering in EQ 153.
Q.E.D.

16-on numerical example. Let x and y be the following
two 16-ons:

x = (2, 5, 5, 6, 2, 7, 2,−6, 4, 4, 9,−4, 1, 6,−2,−5) (158)

y = (2, 9, 4, 4, 8,−4,−7, 3, 2,−8, 2, 2,−6,−4,−9, 6) (159)

Then ex+y (to accuracy ±0.05, computed via the 500-term
Maclaurin series and Horner’s rule) is

(−36.2,−19.7,−12.6,−14.0,−14.0,−4.2, 7.0, 4.2,

−8.4, 5.6,−15.4, 2.8, 7.0,−2.8, 15.4,−1.4) (160)

At this accuracy, the Trotter approximation
[exp(x/16384) exp(y/16384)]16384 is exactly the same.

There are many other such reassuring 16-on examples, includ-
ing ones in which x lies on the discontinuity.

51See theorem 19 or claim 9 of the proof of theorem 60.
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However, corresponding numerical tests in the 32-ons indicate
that the Trotter product formula is false. [The limit appears
to exist, but it is not equal to exp(x + y).]

32-on numerical counterexample #1. Let x and y be
the following two 32-ons:

x = (2, 2, 5,−5, 6,−4, 1, 5, 4,−2,−2,−8, 0,−1, 1, 4,

9, 6, 0,−9, 9, 2, 9,−2, 8, 6, 5, 3, 0, 1, 5,−7) (161)

y = (2, 6,−7,−5, 8,−3, 3, 5, 0,−7, 9,−2, 2,−3, 3,−9,

−2, 5,−8,−4,−4, 1,−1, 3, 5,−3, 7,−5,−8,−8,−4, 5) (162)

Then (to accuracy ±0.05)

ex+y = (−38.6,−3.4, 0.8, . . . ,−4.8, 7.2,−1.2) (163)

(Only the first and last 3 coordinates are given.) To the same
accuracy, the Trotter approximations are given in figure 21.1.

n [exp(x/n) exp(y/n)]n

4 (24.8,−7.5,−2.5, . . . , 10.5, 5.3, 4.0)
32 (12.0, 7.9, 4.5, . . . ,−10.1,−3.8,−6.5)
256 (−13.0,−10.1, 1.7, . . . , 9.2,−0.7, 3.1)
2048 (−10.8,−10.1, 2.4, . . . , 8.9,−1.2, 2.6)
16384 (−10.7,−10.1, 2.5, . . . , 8.9,−1.3, 2.5)

Figure 21.1. Trotter approximations to ex+y, for x and y in
EQ 161 and 162, to accuracy ±0.05. (All exp’s computed via
500-term Maclaurin series and Horner’s rule.) They appear
to be converging – but not to ex+y in EQ 163!

32-on numerical counterexample #2. Let x and y be
the following two 32-ons:

x = (2, 7, 9, 7,−5,−7, 1, 0, 7, 8, 0,−7, 3, 2, 5,−7,

5, 9,−3,−9, 4,−7,−9,−6, 0, 0, 0, 0, 0, 0, 0, 0) (164)

y = (2, 7,−3,−4, 7, 1, 6, 7, 0, 8, 4,−1, 0, 1, 8,−8,

9, 5, 6, 1,−6,−4, 3, 8,−8, 2, 9, 0, 3,−4,−6,−1) (165)

Then (to accuracy ±0.05)

ex+y = (89.7,−353.1, 12.9, . . . ,−97.7,−34.9,−209.3) (166)

To the same accuracy, the Trotter approximations are given
in figure 21.2.

n [exp(x/n) exp(y/n)]n

4 (54.1,−1.6, 1.6, . . . ,−0.1, 0.5, 0.6)
32 (−41.7,−9.3, 4.1, . . . , 5.7,−0.7,−6.7)
256 (34.6, 13.3, 4.6, . . . ,−3.6,−4.8,−0.9)
2048 (32.7, 13.6, 5.7, . . . ,−3.9,−5.8,−1.0)
16384 (32.7, 13.6, 5.8, . . . ,−3.9,−5.8,−1.0)

Figure 21.2. Trotter approximations to ex+y, for x and y in
EQ 164 and 165, to accuracy ±0.05. (All exp’s computed via
500-term Maclaurin series and Horner’s rule.) They appear
to be converging – but not to ex+y in EQ 166!

21.2 Newton’s method, linear approxima-
tions, and root-finding algorithms

If we broaden our permitted kinds of power series to permit
fully-general monomials, e.g.,

a + (bx + xc + d · ex + f · xg + . . . ) + . . . (167)

then all functions of 2n real variables, locally multivariate-
polynomial near 0, become possible, so that 2n-ons no longer
play any particular role.

Despite the lack of 2n-onic differentiability of general power
series, it sometimes is still possible to use derivatives in some
of their classic applications. Specifically, consider “Newton’s
method” x← x− F (x)/F ′(x) of finding real roots x of equa-
tions F (x) = 0. For simplicity let us consider only the case
where F is a polynomial (a sum of fully general monomials(x)
as in EQ 167). If we have an initial guess g for a root, we may
change variables to h where x = g + h, and rewrite the poly-
nomial as a sum of monomials in h. In the octonions and be-
low (which are distributive) this rewriting is straightforward.
In the 16-ons and beyond (nondistributive) it is not, and,
to make matters worse, the sum in general becomes infinite
(nonpolynomial power series). We may then suppose that g is
close to the desired root r, hence |h|2 is small, and hence (by
norm-multiplicativity) all quadratic and higher-degree terms
are small. So we neglect them, i.e., replace F (g + h) by its

linear approximation F̃ (g+h) at g. By then solving the linear

system F̃ (g + h) = 0 for h, we get a new guess at the root
gnew = g +h, which hopefully is better (and if g were initially
close enough to a [generic] root, it definitely will be better),
and we may continue on. Although this method is valid in the
2n-ons even when n ≥ 4, it is then most convenient to view
F as really being a rational function mapping 2n−3-tuples of
octonions to 2n−3-tuples of octonions so that we may write
F̃ (g + h) comparatively easily – we are really then doing the
(2n−3)-dimensional Newton method over the octonions.

Observe that a linear octonionic function such as F (x) =
a·xb+cx·d+e·fx+g does not have any octonionic“slope.” It
nevertheless is a linear function, and it in general has a root x,
which we can find. The “slope,” or “derivative,” or “Jacobian
matrix”of this function does exist, but only in the wider world
of 8 × 8 real matrices, and not inside the octonions proper.
However, notice that there are efficiency advantages to re-
maining inside the octonions rather than going out into this
wider matrix world. E.g., representing an 8× 8 matrix would
require 64 numbers, But the present linear function is repre-
sented via 6 octonions, requiring only 48 numbers, or actually
only 45 if we realize three of these octonions are unit-norm
wlog.

Hopefully the above concrete example clarifies the point that
Newton’s method, and local linear approximations, still exist
in the octonions even though “derivatives” do not.

It is now possible to turn our nonconstructive proofs of 2n-on
fundamental theorems of algebra (§17 and 23) into algorithms
for rootfinding. The algorithm is:

1. Take advantage of the supposition that there is an
asymptotically dominant monomial, to generate an up-
per bound on |x|2, for any root x of our polynomial.

2. We now have restricted x to lie inside a ball, i.e. a
compact set S.
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3. Repeatedly try random initial guesses within S for New-
ton’s method. We will eventually be assured of success
(i.e. an initial guess leading to obviously-quadratic con-
vergence) since these initial guesses will (with probabil-
ity 1) eventually cover S arbitrarily densely, and hence,
with probability 1, will eventually generate an initial
guess in each obvious-quadratic-convergence region52.

It is also possible to convert this into a fully deterministic al-
gorithm by either using explicitly specified coverings of S by
tiny equal balls to generate initial guesses, or by regarding the
whole problem as a set of rational nonlinear equations in real
2n-dimensional space, and using nowadays-standard results
[52][215] that solving such systems is an algorithmic task.

21.3 Fueterian 2n-onic analysis
During the years 1928-1949 Rudolf Fueter (1880-1950) and
his students developed a theory of quaternionic analysis par-
alleling (to the extent that that is possible) complex analysis.
(Actually [136][138][139] much of this had been anticipated
by C.Lanczos in his 1919 PhD thesis [164], and A.C.Dixon
[83] in 1904, but that was not realized by Fueter.) There
are excellent reviews of this in English by Deavours [75] and
Sudbery [242]. There is a difficult-to-obtain book about it by
Fueter & Bareiss [111]. A bibliography of work prior to about
1945 is in [122]. Later, extensions of Fueterian analysis to the
octonions and sedenions were made by Dentoni & Sce [78]
and the father-daughter team of K. & M. Imaeda (in papers
[136][137][138][139] which also are difficult to obtain).

We shall show that essentially all of this may be generalized
to hold in the 2n-ons for every n, and we also shall extend
previous results even for fixed n.

A goodly part of it has nothing particularly to do with the
2n-ons and works for (1 + s)-vectors for arbitrary odd s.

Fact: The discussions of Cayley-Dickson and our 2n-ons are
to a great extent the same discussion, because, e.g., by theo-
rems 30 and 19, functions of a single sedenion variable are the
same thing as the corresponding functions of a 16-on variable
(for rational functions with real coefficients, at least, or any
norm-convergent power series with real coefficients).

Continuity: For the same reason, we do not need to worry
about the discontinuity of 2n-on multiplication if n ≥ 4, be-
cause, when we are dealing with polynomial functions (with
real coefficients, or even with 2n-on coefficients, so long as
they are on the left) of a single 2n-on variable, everything is
continuous.

Liouville’s theorem on multidimensional conformal
maps [166] might seem to show that any attempt to gen-
eralize complex analysis to dimensions≥ 3 is impossible or
uninteresting. Fueter’s goal was to try to preserve desirable
analyticity-like properties as much as one can in the quater-
nions. The key idea for evading Liouville’s theorem is to
start from Morera’s theorem in complex analysis [214], which

states that a function f(z) mapping C → C is “analytic”
in a domain D iff

∫
C f(z)dz = 0 for every closed contour

C ⊂ D. Inspired by this, Fueter defined a quaternionic func-
tion F (q) of a quaternion q to be left-regular in a domain D if∫

∂σ(dQ)F (q) = 0 for every closed hypersurface ∂σ in D (dQ
is the unit outward normal to ∂σ). Similarly it is right-regular
if
∫

∂σ F (q)(dQ) = 0 (order matters!).

The differential version of this integral statement (generalized
to complexes, octonions, sedenions, etc. by letting n ≥ 1 in
the below) is

Definition 74 (Left-regularity). F (q) is left-regular at q if

DF (q)
def
=

2n−1∑

µ=0

eµ ·
∂F (q)

∂xµ
= 0 (168)

where q =
∑2n−1

µ=0 eµxµ, the xµ are reals, F (q) and its partial
derivative are regarded as 2n-vectors, the · means a 2n-onic
multiplication, and the eµ are the orthonormal basis elements.

Similarly F (q) is right-regular at q if

F (q)D
def
=

2n−1∑

µ=0

∂F (q)

∂xµ
eµ = 0. (169)

We just call F regular (or two sided-regular) if F is both
left and right regular. These conditions are analogous to the
Cauchy-Riemann equations. In fact if n = 1 they are the
Cauchy-Riemann equations, causing regularity to be the same
thing as analyticity.

The Cauchy-Riemann equations say that a function f(z) =
a(x, y) + ib(x, y) where a and b are real and z = x + iy where
x and y are real, is analytic iff

∂a

∂x
=

∂b

∂y
;

∂b

∂x
= −∂a

∂y
. (170)

These also imply

∂2a

∂x2
+

∂2a

∂y2
=

∂2b

∂x2
+

∂2b

∂y2
= 0. (171)

We also define D by

DF (q)
def
=

2n−1∑

µ=0

eµ
∂F (q)

∂xµ
; (172)

F (q)D
def
=

2n−1∑

µ=0

∂F (q)

∂xµ
eµ. (173)

Lemma 75 (Linearity). Any linear combination, with real
(or more generally niner) coefficients, of left-regular functions
also is left-regular.

52To show fully rigorously that this really is an algorithm for finding all solutions to 2n-onic polynomials with integer coefficents, we also need
explicit upper bounds on the number of such solutions, and explicit lower bounds on the distance between any two unequal solutions and the
distance between any solution and the discontinuity (if it does not lie exactly on the discontinuity), and on the radius of balls which fit inside
each obvious-quadratic-convergence region; the latter may be gotten from bounds on the norm of the Hessian of the 2n-on multiplication map
provided we are at least some nonzero distance from the discontinuity. These can be used to become sure we have found all solutions so that we
may terminate the algorithm. Such explicit bounds are available from general results [187] about algebraic numbers of bounded degree [253], and
the fact that the discriminant of a polynomial with integer coefficients is an integer (expressible as a certain determinant [252]).
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Remark. The lemma is also true with “right” or “two sided”
written in place of “left.” The coefficients are allowed to
be arbitrary constant Cayley-Dicksons if we are working in
Cayley-Dickson algebras rather than the 2n-ons. That is due,
essentially, to the full bilinearity of Cayley-Dickson algebras
combined with EQ 50.

Lemma 76 (Laplacian in terms of D).

DD = DD = ∇2 def
=

2n−1∑

µ=0

∂2

∂x2
µ

. (174)

Proof:

DD =
2n−1∑

µ=0

2n−1∑

ν=0

eµeν
∂2

∂xµxν
=

2n−1∑

µ=0

∂2

∂x2
µ

(175)

because eµeν + eνeµ = 0 if µ 6= ν (and eµeµ = eµeµ = 1)
by the anticommutativity-like property of basis elements in
theorem 15. Q.E.D.

Corollary 77 (Regular=⇒Harmonic). Each component
of a left-regular or right-regular F (q) satisfies Laplace’s equa-
tion ∇2F = 0 in R4, or more generally in R(2n) for each
n ≥ 2.

Corollary 78. Any regular 2n-onic function of bounded norm
throughout R(2n) is a constant.

Corollary 79. The only 2n-onic functions regular in both x
and x are constants.

Sad fact (Hamilton, 1860 or before): For any n > 1,
F (q) = q2 is neither left nor right regular, and its compo-
nents do not satisfy Laplace’s equation ∇2F = 0.

Definition 80. A norm-convergent quaternion (or 2n-on)
power series with 2n-on coefficients on the left only (or just
real coefficients) ∑

k≥0

ck(x− a)k (176)

is called a regular power series.

Due to Hamilton’s sad fact, regular power series are in gen-
eral not regular 2n-onic functions. Furthermore, although
such power series have formal “derivatives” and integrals, via

d

dx
xn “=” nxn−1, n 6= 0, (177)

those have a certain lack of validity or of interest in the sense
that, e.g.,

lim
h→0

h−1[(x + h)n − xn] 6= nxn−1 (178)

in general in the quaternions and beyond. Indeed, such limits
in general do not even exist (different values are approached
as h → 0 from different directions): Sudbery ([242] theorem
1) showed that limh→0 h−1[f(q + h) − f(q)] generally exists
for quaternion→quaternion functions f iff f(q) = a + qb.

Happy Fact: The saving grace is that such quaternionic
power series F do satisfy the biharmonic equation∇2∇2F = 0
in R4. More generally, in R2n

they satisfy ∇2n

F = 0. This
all has nothing to do with 2n-ons but follows merely from

Theorem 81 (k-iterated Laplacians). Let k ≥ 1 be an
integer. Let F (x + iy) be a function meromorphic at 0. The
following 2k functions of x, y1, y2, . . . , y2k−1

F0
def
= reF (x + iy), Fm

def
=

ym

y
im F (x + iy). (179)

(where m = 1, 2, . . . , 2k − 1 and y
def
=
√

y2
1 + y2

2 + . . . y2
2k−1

satisfy (∇2)kF0 = 0 and (∇2)kFm = 0.
Remark. This definition of F0,..., F2k−1 is an attempt to
generalize the notion of an “analytic function” in 2 real di-
mensions to 2k dimensions for each k ≥ 1, and the theorem
generalizes the fact that the real and imaginary parts of an
analytic function are harmonic.

Proof: For any particular integer k one may directly verify
the differential-polynomial identities (∇2)kFj = 0 (using the
fact that it works for k = 1, by the Cauchy-Riemann equa-
tions). Indeed, MAPLE’s automated simplifier does the proof
automatically. However, when k is somewhere between 10 and
20 MAPLE’s proofs start to take an unacceptably large amount
of time.

We also remark that if F (z) = zp for any particular integer p,
these are simply polynomial identities, which makes them eas-
ier to verify. The same idea for general p in the neighborhood
of z = 1 is the approach of §11.4.

So far, all attempts to extend this to arbitrarily large k by
devising some kind of inductive or combinatorial argument,
have foundered on the shoals of immense symbolic complexity.
But the following rather unconventional attack succeeded.

First, it is obvious that the theorem works if F (z) = a + bz
is either constant or linear, since then ∇2F = 0. A less
obvious, but still true, claim is that the theorem works if
F (z) = z−1: From the formula for the laplacian (where r = |~x|
in s-dimensional space)

∇2(rp~x) = (p + s)p · rp−2~x, (180)

and using the fact that z−1 = z/|z|2 we have ∇2(z−1) =
−2(s− 2) · z−1/|z|2. Continuing onward iterating the appli-
cation of the laplacian k times in all where s = 2k we get a
factor of

(−2)(s− 2) · (−4)(s− 4) · . . . (2− s)(2) · (−s)(0) = 0, (181)

proving the claim.

Now any generic reciprocated polynomial of degree m may be
written as a partial fraction expansion [214][255]

a1

z − b1
+

a2

z − b2
+ · · ·+ am

z − bm
. (182)

(By “generic” we here mean “having no repeated roots.”)
Therefore any function F (z) analytic at zero may be approx-
imated arbitrarily closely throughout any sufficiently small
fixed neighborhood of z = 0 by expressions of form EQ
182. By linearity and invariance of the laplacian under z-
translation we know our theorem works for all such partial
fraction expansions. Therefore, it works to arbitrarily good
approximation locally for generic analytic functions and hence
must be a valid identity. Q.E.D.

This allows us to convert any analytic function f(z) =
a(x, y)+ib(x, y) where a and b are real and z = x+iy where x
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and y are real, to a quaternion→quaternion, or more generally
to a 2n-on→ 2n-on function, via the formal process described
by

F (q) =

(
a(w, |~v|), ~v

|~v|b(w, |~v|)
)

(183)

where q = (w,~v) is a quaternion (or 2n-on) regarded as
having real part w = q0 and 2n − 1 imaginary parts ~v =

(q1, q2, q3, . . . , q2n−1) with |~v| =
√∑2n−1

k=1 q2
k. Note that this

process converts f(z) = zk to F (q) = qk (as may be seen from
the proof of theorem 20) and hence all regular power series
have this form.

Theorem 82 (Generalized analytic functions). Let n ≤
7. Let F be a 2n-on→ 2n-on function constructed from any
analytic function a + ib as in EQ 183; this includes all norm-
convergent regular power series EQ 176. Then (∇2)(2

n−1−1)F

is two sided regular so that every component of (∇2)2
n−1

F is
0.

Proof sketch: Essentially the same proof works as for theo-
rem 81. Q.E.D.

Remark. This generalizes theorems of previous authors to
all n: For n = 1 this is the Cauchy-Riemann equations, for
n = 2 this was Fueter’s quaternion theorem (theorem 4.1 of
[75]),..., and for n = 4 Imaeda & Imaeda ([136] p.86) claimed
left-regularity.

In appropriate units, the Maxwell equations53 of electromag-
netism are

−(
∂

∂t
+ I ~∇)( ~E + I ~B) = ~J + Iρ (184)

where I =
√
−1 6= i, j, k, and by 3-vectors such as ~E we mean

E1i+E2j +E3k, and ~E is the electric field, ~B is the magnetic
field, ρ is the charge density, and ~J is the current density.
This may be verified directly from EQ 4 by comparison with
the usual form

~∇ · ~B = 0, ~∇× ~E +
∂

∂t
~B = ~0, (185)

~∇ · ~E = ρ, ~∇× ~B − ∂

∂t
~E = ~J (186)

of Maxwell’s equations. Note that the operator ∂
∂t + I ~∇ is

a square root of the wave operator ∂2

∂t2 − ∂2

∂x2 − ∂2

∂y2 − ∂2

∂z2 so
that, in a sense, Maxwell’s vacuum equations are a square
root of the wave equation. If ρ = 0, ~J = ~0, we get the vac-
uum Maxwell equations in the form (∂t + I ~∇)F = 0 where
F = E + IB is biquaternion-valued. If we regard t as imag-
inary, e.g. It = ` with ` real, then this is (∂` + ~∇)F = 0
which is, in fact, the same as the left-regularity condition
DF = 0. This is additional evidence for the “naturalness”
of our quaternionic-analyticity concepts.

Remarks: some other regular functions

1. The 2n-on function x→ x1−2n

has harmonic gradient in
2n-dimensional space (since it is, essentially, the “elec-
tric field of a point charge”) and hence automatically its
laplacian is two sided regular.

2. Linear functions automatically are harmonic and hence
regular: this includes x→ ax + xb + c in the octonions
and below (0 ≤ n ≤ 3) and x→ ax + b for all n ≥ 0.

There is now an analogue of Cauchy’s theorem from complex
analysis [214], expressing F (a) as an integral over a hypersur-
face containing a.

Theorem 83 (Generalized Cauchy theorem). 54 Let S
be a (2n − 1)-dimensional topological sphere hypersurface in
2n-space. Let F (x) be a 2n-on→ 2n-on function express-
ible as a power-series (EQ 176) everywhere inside S. Let
#k = kπk/2/(k/2)! be the surface area of a unit sphere in Rk.
Then

−(2n − 2)!!2#2n · F (a) =

∫

S

(∇2)2
n−1−1[F (x)(x − a)−1]dx.

(187)
Here dx is the outward-pointing 2n-on infinitesimal element
of surface area and t!! denotes the product of all the numbers
from 1 to t having the same parity as t – except that the term
−(2n− 2)!!2 in EQ 187 is to be replaced with +1 when n = 1.

Proof: All the terms ck for k ≥ 1 in the power series EQ 176
lead to regular functions after taking the iterated laplacian,
and hence to zero after integration. Hence only the wanted c0

term remains alive since the function we get after laplacianiz-
ing, since it is nonregular at x = a, upon integration need not
yield 0. However it is regular within S but outside a small
sphere centered at x = a hence the integral does not change if
we alter the shape of S. So the integral must yield c0 = F (a)
up to some proportionality factor. That proportionality fac-
tor may be worked out by considering the case where S is
the unit-radius sphere. We get a factor #2n from the surface
area of the sphere. From the formula for the laplacian (where
r = |~x| in s-dimensional space)

∇2(rp~x) = (p + s)prp−2~x, (188)

and using the fact that x−1 = x/|x|2 we have ∇2(x−1) =
−2(2n−2)x−1/|x|2. Continuing onward with more laplacians
we get a factor of

(−2)(2n−2)(−4)(2n−4) . . . (2−2n)(2) = −(2n−2)!!2. (189)

There is no minus sign in the complex number case n = 1
because there are no terms in the above product; but if n ≥ 2
we get one because there are an odd number of terms in the
product, each with a minus sign. Q.E.D.

22 Topology in the presence of dis-
continuities

The insight of this section is that much of Brouwer
topological-degree theory (reviewed in §17) may be general-
ized to hold for maps from Sn to Sn having certain kinds of
discontinuities. Although this apparently is a new contribu-
tion to topology, it is surprisingly easy. Also, it is an impor-
tant contribution, because rational maps are important. Ra-
tional maps (of course) in general are discontinuous, but nev-
ertheless generalized-smoothness is fairly common for them.

53Maxwell’s equations were stated incorrectly by Deavours [75] p.1008.
54We are emulating the proof of this theorem given by Deavours [75] in the case n = 2; but Deavours’ proof contains errors, the most obvious of

which is that the minus sign in the EQ above EQ 16 on p.1004 is obviously bogus.
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In particular, for each n ≥ 4, 2n-on right-multiplication maps
for unit-norm 2n-ons are in general smooth but with discon-
tinuities. All the jumps (in any and all coordinates) in those
discontinuities are bounded, as one may see by considering
the norm-multiplicativity and subadditivity properties of the
2n−1-ons and 2n-ons. This is one way in which these discon-
tinuities are “not very severe.” But a much more interesting
way is the fact (lemma 87) that 16-on multiplication maps are
“generalized smooth.”

To maximize convenience, in the discussion below we shall
only consider and allow, maps f from Sn to Sn whose domain
and range are the whole of Sn (except perhaps for subsets of
measure 0 and dimension< n). (Our notions are readily gener-
alized to other kinds of maps with only bounded-size jumps.)
We shall only allow f(x) to be discontinuous when x ∈ D
where D ⊂ Sn, measure(D) = 0; for x 6∈ D we shall require
f(x) to be smooth.

Definition 84. We call such a map f : Sn → Sn “generalized-
smooth” if

dim(discontinuity)≤A: The dimension of the support set
D of the discontinuity is ≤ A;

#jumping coordinates≤B: At most B of the coordinates
of f(x) [regarding f(x) as being an n-vector of coordi-
nates on the image Sn] jump at the discontinuity (the
remaining ones are continuous) for some finite atlas of
local coordinate patches of the image Sn;

A,B conditions: B ≥ 2 and A + B < n.
Non-examples. The vector fields on Sn constructed in the-
orems 48 and 49 are not generalized-smooth. Also, for each
n ≥ 2 the algebra of n × n real matrices involves discon-
tinuous maps Y → XY −1 and X → X−1Y from Rn×nto
R

n×n which do not satisfy the dimension-sum conditions of
generalized-smoothness. These non-examples indicate that
nnacd-algebras featuring generalized-smoothness are not ter-
ribly easy to get.

A homotopy used to mean the process of continuously distort-
ing the smooth map f(x) to become the parameterized family
of smooth maps ft(x) for x ∈ Sn and t ∈ [0, 1], where ft(x)
was required to be smooth in both t and x, and f0(x) = f(x).
Then f0(x) and f1(x) were said to be “homotopically equiva-
lent.”

Definition 85. A generalized-homotopy shall mean the pro-
cess of distorting the generalized-smooth map f(x) = f0(x) to
become the parameterized family of generalized-smooth maps
ft(x), where, for each x ∈ Sn and t ∈ [0, 1], for all sufficiently
small |∆t| there exist ε and δ, depending continuously on ∆t
and with ε = δ = 0 when ∆t = 0, such that

ft+∆t(x) = ft(x + ε) + δ. (190)

We shall only consider homotopies ft (and maps f) with the
property that ft, for each t ∈ [0, 1], never maps a measure= 0
set to a measure> 0 set.

The topological degree of a generalized-smooth map f(x) shall
mean

degree(f) =

∫
Sn det Jacobianf(x) dx

measure of the image Sn
. (191)

For smooth maps whose range is the whole of Sn, this defi-
nition of topological degree agrees with Brouwer’s from §17.
The following is the central lemma of our theory.

Lemma 86 (Smoothing). Let Dr denote the subset of Sn

with distance ≤ r from the support-set D = D0 of the disconti-
nuities in generalized-smooth map f mapping Sn to Sn. Then
if the discontinuities in f are smoothed out by a minimum-
energy interpolation, within Dr, of the data at the boundary
of the set Dr, to get a now-continuous map f̃ , then

lim
r→0+

degree(f̃) = degree(f). (192)

Proof: Here by“energy”we mean the average Frobenius norm
of f̃ ’s Jacobian determinant, but the precise definition does
not matter much; many alternative notions could be substi-
tuted. The integral in EQ 191 will be perturbed, if f is re-
placed by f̃ , by an amount which goes to 0 as r → 0+. This is
due to dimensional analysis using the fact that D has (by as-
sumption) dimension≤ A, and the fact that (by assumption)
≤ B of the coordinates of f(x) jump at the discontinuity,
where A + B < n and B ≥ 2. The measure of Dr is thus pro-
portional to rn−A and the Jacobian determinant is at most
proportional (by Hadamard’s determinant bound, using the
fact that ≤ B rows of the Jacobian have lengths of order 1/r,
the others have lengths of order 1; note that the compactness
of Sn is used here) to r−B , and so the integral of the latter
over Dr has magnitude bounded by rn−A−B → 0. Q.E.D.

Remark. The “true meaning” of generalized smooth-
ness is perhaps best understood via measure theory: f(x) and

f̃(x) differ on a set of x’s of measure→ 0 as r → 0+, and the

image-multisets of f and of f̃ differ on a subset of the image
Sn having measure→ 0 as r → 0+. Note that in 1D, a func-
tion with a jump-discontinuity makes a jump of (i.e. “misses”)
nonzero measure. The significance of generalized smoothness
is that it is possible for high-dimensional map to have jump
discontinuities which only “miss” zero measure. Such discon-
tinuities are much milder. In fact to anybody who can only
see nonzero-measure sets, it is as though these discontinuities
did not exist.

We now claim that, for generalized-smooth maps f , the fol-
lowing usual properties of degree still hold: degree is an inte-
ger, it is invariant under (our class of) homotopies, the degree
of the identity map is 1, and for a full-measure set of points
y = f(x) on the image Sn have ≥ degree(f) preimages x.

23 Existence of solutions to generic

2n-on division problems & 2n-onic
fundamental theorem of algebra,
if n ≤ 4

The way to achieve salvation while avoiding enormous
symbolic-algebra complexity, is, as usual in this monograph,
to call upon topology. But for 2n-ons with n ≥ 4, at first it
appears that this avenue is closed to us because topology is
about continua, whereas the 2n-on right-multiplication map
is discontinuous.

This avenue in fact is closed to us, but not in the 16-on
case, because we may apply the preceding section’s theory
of Brouwer-degree of discontinuous maps.
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Lemma 87 (Generalized smoothness for n ≤ 4). 2n-on
right multiplication maps x → xy are always “generalized-
smooth” in the sense of §22 iff n ≤ 4.

Proof: For 16-ons x = (a, b) (with a, b octonion) we have
discontinuities when and only when b = 0, and we only have
discontinuities in the second half of the coordinates of the
product 2n-on (and only in the 7 imaginary coordinates in
that half; the real coordinate is continuous by EQ 86, i.e. the
first 9 coordinates of the product of two 16-ons are continuous
by claim 3 of theorem 30). For octonions and below, multi-
plication maps are smooth everywhere. All this is enough to
assure generalized smoothness.

But for 32-ons, the support set of the discontinuity is all x
such that x8,...,15 = 0 or x24,...,31 = 0. Furthermore, by work
of Adams (see our EQ 88) at most 9 mutually linearly inde-
pendent smooth tangent-vector fields can exist on S31. Fur-
thermore it is easy to see that at least 14 (of the 32) coordi-
nates jump everywhere on our discontinuity. All this is more
than enough to assure that the right multiplication map for
the 32-ons is not generalized-smooth. Q.E.D.

Theorem 88 (Degree of right-multiplication maps). If
n ≤ 4, then 2n-on right-multiplication maps x→ xy, for unit-
norm x, y, have degree= 1.

Proof: Because the identity map has degree= 1, and we
may homotope that map x → x1 to the right-multiplication
map x → xy. (Note: the map and its Jacobian matrix
both are smooth functions of y, indeed are linear in y, al-
though discontinuous in x. Thus smooth alterations of y
are homotopies in §22’s generalized sense of the word.) This
map is also “generalized-smooth” in the sense of §22 since
generalized-smoothness is preserved under our class of homo-
topies. Q.E.D.

Corollary 89 (division). If n ≤ 4, generic 2n-on division
problems have at least one solution.
More generally, we may extend our fundamental theorem of
algebra (§17) to the 2n-ons for n ≤ 4:

Theorem 90 (FTOA for 2n-ons). Let n ≤ 4. Consider a
generic 2n-onic polynomial P (x, x), where x is a 2n-on, and
where P (x, x) has (if expanded into monomials, and see the re-
mark below) a unique asymptotically dominant (as |x|2 →∞)
monomial containing A x’s and B x’s, A 6= B. Then P has
a root, i.e. x exists with P (x, x) = 0.

Proof: We can homotope (in the sense of §22) this domi-
nant monomial to xAxB while making all the subdominant
monomials vanish. (Note that by power-associativity, real-
commutativity, and weak-linearity, any 2n-onic product of x’s
and x’s with A of the former and B of the latter, is the same
thing as xAxB .) Then P has Brouwer-degree A − B. (To
see that xAxB has Brouwer-degree A−B, realize it is norm-
preserving map and it lives in a subalgebra of the 2n-ons iso-
morphic to the complex numbers, by, e.g. theorems 19 or the
proof of lemma 52.) Hence it generically has at least |A−B|
roots. Q.E.D.

Remark on “expansion into monomials”: For 16-onic
polynomials, due to non-distributivity the whole notion of a
“monomial” is of doubtful value – since the obvious “expan-
sion” of a general polynomial into monomials, is in general
not valid. Hence we are best off defining a “polynomial” of

x not as a “sum of monomials” but rather as “any function
of x obtained from x and 16-on constants by using addition
and multiplication only.” (If all the constant coefficients intro-
duced during this process are octonionic, then the distributive
law is valid, thanks to the weakened distributivity properties
of 2n-ons, and hence the obvious expansion into monomials
is valid.) Nevertheless, thanks to norm multiplicativity and
subadditivity we still can think of there as being a “dominant
monomial” as |x| → ∞ despite the inexactness of distribu-
tivity and hence of the monomial expansion. The theorem is
applicable with this interpretation of “dominant monomial,”
i.e. its domain of validity is much larger than might naively
have been thought.

Remark. The extension (theorem 66) of the octonion FTOA
also goes through for 2n-ons, n ≤ 4.

The lack of generalized-smoothness for the 2n-on multiplica-
tion maps when n ≥ 5, and the presence of miracles in some of
our proofs with n = 4, suggest that perhaps these 2n-ons do
not have solutions to generic division problems (and hence do
not obey a fundamental theorem of algebra), and that these
solutions are not generically unique. Both of these suspicions,
we shall soon see (albeit with some aid from computers), are
true.

24 Nonuniqueness and nonexistence

of solutions to generic 2n-on divi-
sion problems if n ≥ 5; and the

Jacobian of the mul map

Consider the 2n× 2n Jacobian determinant J(y) of the right-
multiplication map x→ xy for unit-norm 2n-ons x, regarded
as real 2n-vectors.

The left-multiplication map x → yx is in comparison trivial,
since it is just a linear map, i.e. a matrix-vector multipli-
cation. The matrix was given in EQ 57 (or in simpler but
isomorphic form in EQ 110). This matrix, of course, is the
Jacobian. Call it L(y). Because L(y) is always an orthogonal
matrix (when |y| = 1) with determinant +1 (lemma 11), this
map is everywhere smooth, orientation-preserving, and 1-to-1
on the sphere of unit-norm 2n-ons, for every n > 0.

But the right-multiplication map is nonlinear when n ≥ 4 and
hence is not so easily treated. Letting x = (a, b) and y = (c, d)
be 2n-ons regarded as ordered pairs of 2n−1-ons, we see from
EQ 68 that its Jacobian may be recursively constructed from
the L and J matrices of a, b, c, d and the conjugation-inducing
matrix K = diag(+1,−1,−1, . . . ,−1): J(y) =




J(c) −KJ(d)

KL(b)KJ(b−1 d)K KJ(c)K+KJ(a b−1 d)K

+KL(b−1)KL(a)KJ(d)



 . (193)

Table 24.1 gives the results of a Monte-Carlo empirical study
of the behavior of D = detJ when performing 20000 multipli-
cations of random unit-norm 2n-ons.
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2n D avg(D) avg(|D|) %negative
1 always ±1 0 1 50

2,4,8 always 1 1 1 0
16 ∈ [2× 10−5, 154] ≈ 1.02 ≈ 1.02 0
32 ∈ [−348, 714] ≈ 0.50 ≈ 0.65 25.3
64 ∈ [−2340, 1839] ≈ −0.17 ≈ 4.46 48.1

Figure 24.1. Experimental study of the determinant D of
the 2n × 2n Jacobian matrix J of the right-multiplication
map when multiplying unit-norm 2n-ons. For each n ∈
{0, 1, 2, 3, 4, 5, 6} we tried 20000 random pairs of unit-norm
2n-ons. The numerical ranges given are delineated by the min-
imum and maximum determinant value (among the 20000)
ever seen. All the bounds on the ranges whose absolute val-
ues are greater than 10, would increase unboundedly if an
infinite number of samples had been taken, since it is easy to
see that as b→ 0 with x = (a, b), we have |detJ(y)| → ∞.

This data is consistent with the hypothesis that 24-on mul-
tiplication (from either the left or the right) is a 1-to-1
orientation-preserving mapping on the unit-norm 24-ons (ex-
cept perhaps on subsets of measure 0 where the map is dis-
continuous) and that 24-on division problems generically have
a unique solution. Also, it is compatible with the hypothe-
sis that the average value of detJ is 1, for random unit-norm
24-ons.

And indeed results earlier in this monograph prove all these
hypotheses about 16-ons. Also, all the patterns in the em-
pirical data about 2n-ons for n ≤ 3 has also been proven
(comparatively trivially).

For 2n-ons with n ≥ 5, though, matters are different. For
32-ons, the average value of detJ is apparently about 1/2,
and, apparently, about 1/4 of the product 32-ons arising when
multiplying random unit-norm 32-ons, have detJ < 0 (with
average≈ −0.34), and about 3/4 of them have detJ > 0 (with
average≈ +0.74). I.e., 32-on multiplication is sometimes a
many-to-1 map and sometimes (about 1/4 of the time) is
orientation-reversing.

Theorem 91 (Non-uniqueness for 32-on division).
Generic 32-on division problems do not have unique solutions;
indeed a nonzero constant fraction of the 32-on division prob-
lems corresponding to products of random unit-norm 32-ons,
have nonunique answers.

Proof: This is a fully rigorous conclusion of the computer
study in table 24.1 since all we need to establish it is the
presence of some nonzero-measure neighborhood of one of our
generic sample points, throughout which detJ < 0. Q.E.D.

(This of course also proves that the fundamental theorem of
algebra fails at the 32-ons.)

Conjecture 92 (Non-uniqueness for 2n-on division).
The above non-uniqueness statement also holds for the 2n-
ons, for each n ≥ 5.

Non-proofs: The Monte-Carlo computer experiments in ta-
ble 24.1 are convincing evidence, but not a proof, of this for
the 64-ons.

Because the 2n-ons for each n ≥ 5 include the 32-ons as a sub-
algebra, it might seem that by considering some sufficiently
tiny, but nonzero-measure, neighborhood of one of our 32-on

sample points at which there is nonuniqueness – our conclu-
sion about 2n-ons would immediately follow. However, that
argument so far has been defeated by the obstacle that the
32-on subalgebra is the locus of the discontinuity in the 64-on
multiplication map. Thus any argument about the many-to-1
character of a 32-on multiplication map might not necessarily
carry over to generic 64-ons.

Theorem 93 (Finiteness of the nonuniqueness). The
cardinality of the non-uniqueness of solutions to generic 2n-
on division problems is finite. Also, for any 2n-on division
problem (or more general problem involving solving any fixed
system of rational equations), if it has a finite number of so-
lutions, that number is bounded by some explicitly writable
function of n only.

Proof: Consequence of general results [253] about systems of
polynomial equations. Q.E.D.

Claim 94 (Nonexistence for division). There do not al-
ways exist solutions to generic 32-on division problems.

Computer demonstration: This is not a proof and could
could conceivably (though it is unlikely) be incorrect. The
key observation from the computer Monte-Carlo study in ta-
ble 24.1 is that the average Jacobian determinant (and in-
deed, also the average absolute value of that determinant)
is less than 1. This is not a rigorous demonstration, since
it depends on a Monte Carlo numerical integration, i.e. de-
pends on statistics and also on assumptions about the random
number generator – but it nevertheless is highly convincing.
Consequently it is impossible for the entirety of S31 to be
covered by products xy if y is any fixed 32-on such that the
averaged-over-x value of |J(y)| is at or below the average-
over-y. Hence there must be a nonzero-measure set of 32-on
division problems with no solution.

Presumably generic 64-on, 128-on, etc. division problems also
do not necessarily have solutions.

Remarks re rigor. It is in principle possible (although we
have not done it) to make our nonrigorous computer demon-
stration of the lack of generic existence of solutions to division
problems in the 32-ons rigorous – in several ways. (But all of
these ways would depend on even heavier use of computers.)
One could replace the Monte Carlo numerical integration with
another numerical integration having rigorous error bounds.
Alternatively, one could resort to (known) algorithms [52][215]
(or our own suggestions in §21.2) for deciding whether solu-
tions of any finite system of real polynomial equations exist.
Such an algorithm could be applied to some appropriately cho-
sen 32-on division problem, and would, by running to comple-
tion, prove nonexistence. (Unfortunately, present algorithms
and computer hardware seem insufficiently powerful to do this
in any reasonable amount of time.)

Despite theorems 91-94, J(y) still obeys some nice proper-
ties in the 2n-ons. It is actually somewhat more conve-
nient to work with J̃ = ( K 0

0 K ) J ( K 0
0 K ), where as usual

K = diag(+1,−1,−1, . . . ,−1), which of course has the same
determinant (and spectrum) as J . By the block triangular-
ization identity

det ( A B
C D ) = det

(
A B
0 D−CA−1B

)
= det(A)det(D − CA−1B)

(194)
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we have

detJ(y) = detJ̃ =

det




KJ(c)K −J(d)K

L(b)KJ(b−1 d) J(a b−1 d)+

L(b−1)KL(a)KJ(d)K




= detJ(c) det[J(c) + J(a b−1 d) (195)

+L(b−1)KL(a)KJ(d)K +

L(b)KJ(b−1 d)KJ(c)−1KJ(d)K]

Theorem 95 (Nice properties of right-mul map Jaco-
bian). Let J(y) be the Jacobian matrix of the map x → xy
wher x and y are 2k-ons. Then

1. J(ys) = sJ(y) for real s,
2. detJ(y) = detJ(−y) if n > 0 so that 2n is even.
3. detJ(y) = detJ(y) if n ≥ 0.

Proof: J(ys) = sJ(y) for real s is immediate from the scal-
ing property in theorem 15. Using s = −1 leads to the next
claim. The final claim now follows from the preceding claims
combined with the identity EQ 195. Q.E.D.

25 Survey of identities satisfied and

unsatisfied by 2n-ons

We have already covered a large number of the most impor-
tant 2k-on identities in §6, 10, 15, 21.1, and 12. We shall
not repeat them here, and shall instead concentrate on new
ones55.

Since we shall be stating a very large number of identities, we
first shall define some abbreviated notation and conventions:
The Jordan and Lie products are, respectively,

x ◦ y
def
=

xy + yx

2
, [x, y]

def
= xy − yx (196)

and the “associator” is

(x, y, z)
def
= xy · z − x · yz. (197)

25.1 Miscellaneous identities
The identity

a ◦ b + 〈a, b〉 = b rea + a re b, (198)

and equivalently EQ 34 , holds in all Cayley-Dickson algebras
(it is an immediate consequence of considering x = a + b in
the quadratic identity of theorem 16). But in our 2n-ons it
holds only in coordinates 0-8 or if either a or b is a niner (as
an immediate consequence of theorem 30).

The reader may enjoy the exercise of proving from EQ 49 and
theorem 8 that

re (ab) = 〈a, b〉 = 〈a, b〉 (199)

holds in Cayley-Dickson algebras. The same law also holds in
the 2n-ons as a consequence of the analogous starting points.

Adem’s identity [5] states that

x(y, z, w) + (x, y, z)w + (x, yz, w) = (xy, z, w) + (x, y, zw)
(200)

holds in all Cayley-Dickson algebras. However, in our 2n-ons
it holds only in the first 9 coordinates (indices 0-8).

Lemma 1.4.5 of [149] states that in the Cayley-Dickson 2n-
ons with n ≥ 4, left-alternativity (u, u, w) = 0 holds for all u
iff w = (a, b) with a, b ∈ R. [Of course, the same statement
is true about right-alternativity (w, u, u) = 0.] In contrast,
in our 2n-ons, left-alternativity is always true and we know
from theorem 34 that right-alternativity (w, u, u) = 0 holds
whenever either u or w is a niner, i.e. for a far larger set of
w.

These 3 identities (invented in a different context by
Razmyslov [213] and Hentzel and Peresi [126] and [125] re-
spectively)

[a, [a, b]2] = 0 (201)

and

[c2, (b, a, c)] = [c, (b, a, c2)] (202)

(a2, a, b) = (a, a2, b) (203)

hold for all 2k-ons a, b, c for all k ≥ 0, but (b, a2, a) = (b, a, a2)
only holds in the first min{9, 2k} coordinates, with the others
ignored, i.e.

(b, a2, a)0,...,8 = (b, a, a2)0,...,8. (204)

The following are true for 2k-ons x, y – but in the first
min{2k, 9} coordinates only – for all k ≥ 1:

a · ba = a · ba, (205)

(a, b, c) + (a, b, c) = 0. (206)

The following is true for 2k-ons with k ≤ 3, and in the real co-
ordinate alone (with the other coordinates ignored) it is true
for all k ≥ 4:

y(x · yx) = (y · xy)x. (207)

The middle Moufang identity (xy ·z)x = x(yz ·x), the left Bol
identity (x·yx)z = x(y ·xz) and its variant (x·yx)z = x(y ·xz)
all hold for 2k-ons x, y, z if k ≤ 3; but if k ≥ 4 they each only
hold in the real coordinate alone, with the others ignored.
(Consequently, certain squares, e.g. [(xy ·a)x−x(ya ·x)]2, are
always pure-real for 2k-ons x, y, a for all k ≥ 0; cf. corollary
17.)

The Jordan identities

xx · yx = (xx · y)x, xy · xx = x(y · xx) (208)

hold for 2k-ons x, y with k ≤ 3, and, in the real coordinate
alone (with the other coordinates ignored) they are true for
all k ≥ 4. (They are also, trivially, true for all k if x is pure-
imaginary, see corollary 18.)

55Also: There are an enormous number of identities valid in the quaternions or octonions, but not in any higher 2k-ons. To conserve space, we
have avoided trying to list all of these. See [136] appendix, [5] [12] [16] [21] [41] [42] [47] [49] [64] [68] [89] [94] [109] [110] [125] [126] [143] [169] [184]
[209] [220] [222] [213] [233] [257] [259] [258] for ideas.
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The triple product identity

y · xy + yx · y = 4〈x, y〉y − 2|y|2x (209)

holds for 2k-ons x, y for each k ≤ 3, and is true in the real
coordinate only with the other coordinates ignored, for each
k ≥ 4. Thus

(
y · xy + yx · y − 4〈x, y〉y + 2|y|2x

)2
(210)

is pure-real in the 2k-ons for all k ≥ 0 by corollary 17.

The Amitsur-Levitzki identity ([16] theorems 1 and 3; [222])

∑

σ∈Sm

(−1)σxσ(1)(xσ(2)(xσ(3)(. . . xσ(m)) . . . ))) = 0 (211)

(the left hand side is “an m×m determinant with m identical
rows;” the sum has m! terms) holds in the 2n-ons, n ≥ 1, if
m = 2n.

Proof: EQ 211 holds in the (m/2)×(m/2) matrices [16][222],
and the parenthesizations are such that, due to the left-
representations of the 2n-ons as 2n−1×2n−1 complex matrices
(see remarks before theorem 14), it must hold in the 2n-ons.
Q.E.D.

EQ 211 with m = 4 and EQ 201 together were proved [89] to
generate every polynomial identity obeyed by the quaternions
(and biquaternions, i.e. 2× 2 matrices over C).

[a, b] ◦ [c, d] is pure real for octonion a,b,c,d, and hence

[[a, b] ◦ [c, d], e] = 0 (212)

for octonion a,b,c,d,e. Racine [209] proved that EQ 212 and
the “big Racine identity”

P (a, b, c, x2) = P (a, b, c, x) ◦ x (213)

where

P (a, b, c, x)
def
= (214)

x ◦ (a ◦ (b ◦ c)) + x ◦ (b ◦ (c ◦ a)) + x ◦ (c ◦ (a ◦ b))

−x ◦ (c ◦ (b ◦ a))− x ◦ (a ◦ (c ◦ b))− x ◦ (b ◦ (a ◦ c))(215)

together with the alternative laws generate every polynomial
identity of degree≤ 5 obeyed by the octonions. However, all
of these fail in the 16-ons (but work [126] in every Cayley-
Dickson 2n-dimensional algebra for all n).

There are many identities that hold in every left-alternative
ring, but which fail in the 16-ons. Among these are Mikheev’s
(w, x, x)4 = 0 and the various possibilities offered by Chu-
vakov [64]. Similarly there are many identities that hold in
every quadratic algebra, but fail in the 16-ons. Among these
are Hentzel and Peresi’s [(a, b, a), a] = 0 [126] and the big
Racine identity (EQ 213). (Of course the 16-ons are not a
ring and not a [linear] algebra, since nondistributive, explain-
ing how these conflicts are possible.) Hentzel and Peresi’s
([126], eq. 11)

a(a, b, b)+b(b, a, a)+a◦(b, a, b)+b◦(a, b, a) = (a, b, ab)+(b, a, ba)
(216)

is obeyed in the octonions, but in the 2k-ons with k ≥ 4, is
obeyed in the real coordinate only.

25.2 Generalizations of “vector product”

Definition 96. (Eckmann [95][97][98]): A “vector product”
of r vectors in R

n is a function, mapping (Rn)r → R
n, obey-

ing the following two properties56:
orthogonality:

〈vp(~x1, ~x2, ~x3, . . . , ~xr), ~xj〉 = 0 for each j = 1, 2, 3, . . . , r
(217)

length=area relation:

|vp(~x1, ~x2, . . . , ~xr)|2 = det




〈~x1, ~x1〉 〈~x1, ~x2〉 . . . 〈~x1, ~xr〉
〈~x2, ~x1〉 〈~x2, ~x2〉 . . . 〈~x2, ~xr〉

...
...

. . .
...

〈~xr , ~x1〉 〈~xr, ~x2〉 . . . 〈~xr, ~xr〉




(218)

Eckmann proved that r-multilinear vector products exist pre-
cisely for the following (r, n): (1, 2k) with k ≥ 1, (n − 1, n)
with n ≥ 3, (2, 7), and (3, 8). Then, by using topological re-
sults of Adams, he proved that this is still the full list even
if we relax the requirement of multilinearity to now merely
requiring continuity.

Examples of multilinear vector product functions that accom-
plish this are as follows [46][265].
r = 1, n = 2k: replace every pair of consecutive coordinates
(x, y) by (−y, x). [One could also use (y,−x), so there are
two choices per pair; also the pairs need not be consecutive
elements. Taking these possibilities into account, we conclude
that there are at least (2k)!/k! different answers to this ques-
tion.]
r = n− 1: Make an n × n matrix out of our n − 1 vectors
(each n-dimensional) plus one extra row. Use the cofactors
(arising when expanding the determinant of the matrix) of
the elements of the extra row, as the n coordinates of the vec-
tor product. Note: when r = 2, n = 3 this is the usual 3D
vector cross product, which also arises by regarding the two
3-vectors as pure-imaginary quaternions, multiplying them,
and discarding the real part of the result.
r = 2, n = 7: Regard the two 7-vectors as pure-imaginary
octonions, multiply them, and discard the real coordinate of
the result.
r = 3, n = 8: Regard the three 8-vectors as octonions a, b, c.
There are two inequivalent such vector products:

vp1(a, b, c) = −a · bc + 〈a, b〉c + 〈b, c〉a− 〈c, a〉b, (219)

vp2(a, b, c) = −ab · c + 〈a, b〉c + 〈b, c〉a− 〈c, a〉b (220)

which differ by (a, b, c).

We now point out that if the demand of multilinearity is
dropped and replaced by merely demanding that the vector
product function be rational, then we can get additional vec-
tor product functions at (r, n) previously deemed impossible:

56This generalizes the definition for r = 2 given in theorem 4 item 4.
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Theorem 97 (Vector product). Let a and b be (2k − 1)-
vectors, regarded as 2k-ons with real coordinate 0, i.e. pure-
imaginary 2k-ons. Then the following function:

a× b
def
= ab− re(ab) (221)

(i.e. ab with the real part discarded) is a vector product (with
r = 2 and n = 2k−1) for every k ≥ 2. But rational (2, n) vec-
tor products are impossible unless n is of the form n = 2k−1,
so our construction achieves every achievable n.

Proof: The first orthogonality statement 〈a × b, a〉 = 0 (for
pure-imaginary a, b) arises from, e.g. 〈ab + s, a〉 = 〈ab, a〉 =
〈b, aa〉 = 〈b, |a|2〉 = 0 where s is any real. The second or-
thogonality statement 〈a × b, b〉 = 0 arises from 〈ab + s, b〉 =
〈b, ab〉 = 〈1, b ·ab〉 = 〈1, b ·ab〉 (if s is any real and a,b are pure-
imaginary) and now use weak-flexibility (theorem 35) to see
that the real part of b ·ab is the same as the real part of ba · b.
But 〈ba · b, 1〉 = 〈ba, b〉 = −〈ba, b〉 = −〈a, bb〉 = −〈a, |b|2〉 = 0.
Finally, the fact that |a × b|2 = |a|2|b|2 − 〈a, b〉2 for pure-
imaginary a, b is just a restatement of |ab|2 = |a|2|b|2 with
the aid of weak-linearity.

Finally, we must prove the impossibility statement for n 6=
2k−1. Realize that by using EQ 4“backwards”we may use the
n-dimensional vector product to define an (n+1)-dimensional
product. It can be directly seen that this product causes the
Euclidean norm to be multiplicative, if the length=area and
orthogonality properties of the vector product hold. But since
rational algebra multiplications causing the Euclidean norm
to be multiplicative happen only in power-of-2 dimensions
(Pfister; see our theorem 4 item 6) a rational vector product
can exist only in 2k − 1 dimensions. Q.E.D.

The (r = 2, n = 15) vector product is a rational and
generalized-smooth function (or more precisely it is 15 dif-
ferent rational functions), but it is not linear and not contin-
uous. The (2, 31), (2, 63), (2, 127), etc., vector products are
rational, but are not “generalized smooth” (defined in §22).

Is there a (3, 2k) vector product, generalizing the known cases
k = 2 and k = 3? Apparently not. If one tries to use EQ 219
and EQ 220 for 16-on a, b, c, then indeed

〈vp1(a, b, c), a〉 = 0 and 〈vp2(a, b, c), c〉 = 0 (222)

hold (as may be proven by computer; and in fact these con-
tinue to hold in the 2k-ons for all k ≥ 2), but

〈vp1(a, b, c), b〉, 〈vp1(a, b, c), c〉,
〈vp2(a, b, c), a〉, 〈vp2(a, b, c), b〉 (223)

are, in general, nonzero. Also, EQ 218 then holds only when
k ∈ {2, 3}.

25.3 Vector products as Lie (Malcev, etc.)
algebras

A Lie algebra is a linear algebra with an anticommutative
multiplication (xy + yx = 0), obeying the 3rd degree Jacobi
identity

xy · z + zx · y + yz · x = 0. (224)

One natural way in which Lie algebras A− arise is by using

the “Lie product” [x, y]
def
= xy− yx, instead of the usual prod-

uct, in an associative algebra A. This is obvious once one

realizes that the left hand side of the Jacobi identity based on
Lie products may be rewritten as a sum of associators:

[[x, y], z] + [[z, x], y] + [[y, z], x] = (225)

(x, y, z) + (z, x, y) + (y, z, x)

−(x, z, y)− (z, y, x)− (y, x, z).

In particular, if we use the pure-imaginary quaternions as A
we get as A− the 3-dimensional Lie algebra of vector cross
products in this way. (Also, if we multiply two pure-imaginary
quaternions using the usual quaternion product, and zero the
real part of the result, this is the same thing, except for an
overall factor of 2, which does not affect the validity of EQ
224.)

The octonions, however, are non-associative. The algebra of
“7-dimensional vector cross products,” i.e. of pure-imaginary
octonions under the Lie-octonion multiplication, is not Lie,
i.e. does not obey the Jacobi identity. However, if A is an
alternative algebra, then A− is (although not Lie unless A
is associative) still a Malcev algebra [182], i.e. it has an an-
ticommutative multiplication obeying the 4th degree Malcev
identity

xy · xz = (xy · z)x + (yz · x)x + (zx · x)y. (226)

(Every Lie algebra is Malcev, but the reverse is not the case.)
Thus the pure-imaginary octonions under Lie multiplication
(or under ordinary octonion multiplication with zeroing of the
real part of the result, which is the same thing except for an
overall factor of 2) form a 7D Malcev algebra. This, in fact,
is known to be the only simple Malcev algebra that is not a
Lie algebra [182].

In a linear algebra, equivalent forms of the Malcev identity
include the more-symmetrical looking 4 -variable Sagle’s iden-
tity [223][224]

(xy·z)t+(tx·y)z+(zt·x)y+(yz·t)x = xz·yt = zx·ty = yt·zx = ty·xz,
(227)

its mirror

t(z · yx) + x(t · zy) + y(x · tz) + z(y · xt) = ty · zx, (228)

and

J(x, y, xz) = J(x, y, z)x, J(zx, y, x) = xJ(z, y, x) (229)

where J(x, y, z) is the left hand side of EQ 224.

It is unknown what the 16-on generalization of the Malcev
identity should be (if there is one).

25.4 Vector products – other properties
Everyone knows that the usual 3D vector products obey lots
of identities – but how many of them are satisfied by our new,
higher-dimensional vector products? For brevity, let us write
a × b for the vector product of (2k − 1)-vectors a and b, in-
stead of writing ab− re(ab) where a and b are pure-imaginary
2k-ons.

Vasilovskii [245] pointed out that all polynomial identities of
the 3D vector product × follow from this single 4-variable
master identity:

((y × z)× (t× x))× x + ((y × x)× (z × x)) × t = 0. (230)
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But EQ 230 fails in ≥ 7 dimensions.

Anticommutativity

a× b + b× a = 0 (231)

holds in the pure-imaginary 2k-ons for k ≤ 3, but in general
fails if k ≥ 4. (When k = 4, EQ 231 holds in the first 8 imag-
inary coordinates, but fails in the last 7.) The discarding of
the real part destroys associativity, even for the 3D vector
product:

i× (j × j) = i× 0 = 0 6= −i = k × j = (i× j)× j. (232)

Of course, right-linearity

a× (b + c) = a× b + a× c (233)

holds eternally, but left-linearity

(b + c)× a = b× a + c× a, (234)

while valid if k ≤ 3, in general fails if k ≥ 4. (When k = 4, EQ
234 holds in the first 8 imaginary coordinates, but fails in the
last 7. This partial success is a consequence of 9-coordinate
distributivity, see theorem 34.) For scalar s,

(sa)× b = s(a× b) = a× (bs) = a× (sb) = (a× b)s. (235)

Also
a× a = 0 (236)

holds for pure-imaginary 2k-ons a, for each k ≥ 2 (as a con-
sequence, essentially, of the fact that a2 is pure-real if a is
pure-imaginary, which follows in turn from corollary 17). Al-
though

a× (a× b) = 〈a, b〉a− |a|2b (237)

holds in the pure-imaginary 2k-ons for each k ≥ 2,

(b× a)× a = 〈a, b〉a− |a|2b (238)

holds, in general, when k ∈ {2, 3} only.

The cyclic interchange rule for inner products

〈c, a× b〉 = 〈a, b× c〉 = 〈b, c× a〉 (239)

holds in the pure-imaginary 2k-ons for k ≤ 3 but in general
fails if k ≥ 4. Both Lagrange’s identity

〈a× b, c× d〉 = 〈a, c〉〈b, d〉 − 〈a, d〉〈b, c〉 (240)

and Grassman’s identities

a× (b× c) = 〈a, c〉b− 〈a, b〉c, (241)

(a× b)× c = 〈c, a〉b− 〈c, b〉a (242)

hold in the quaternions but (in general) fail in the 2k-ons for
each k ≥ 3.

The following special cases of Grassman’s identities

a× (b× a) = |a|2b− 〈a, b〉a, (243)

(a× b)× a = |a|2b− 〈a, b〉a (244)

hold in the pure-imaginary 2k-ons for k ≤ 3 only. However,
EQ 244 holds for all k, if we only pay attention to the first
min{2k, 9} coordinates on both sides.

26 Relevant results from elementary
abstract algebra

This section will begin by reviewing the (mostly standard)
definitions of loops, groups, nnac-rings, etc. Then we con-
struct, for the first time, a large taxonomy of known loop
types. For us, this taxonomy serves the useful role of provid-
ing a classification and road map to a large number of 2n-on
identities and non-identities, allowing us to see how the 2n-ons
fit in to the larger picture of all loops and all abstract alge-
braic systems. But the loops taxonomy should be of more
general interest.

Then we discuss, albeit in much less detail, what the analo-
gous taxonomy would be for quasigroups and nnac-rings, and
we conclude by introducing a new abstract algebraic entity
we call “abstract 2n-ons.”

26.1 Quick review of elementary algebra def-
initions

A magma is a set S of elements together with a binary opera-
tion (usually called “multiplication” and denoted by juxtapo-
sition and/or ·) on those elements, such that a, b ∈ S implies
ab ∈ S.

A quasigroup is a magma such that a, b ∈ S implies the exis-
tence of unique x, y so that ax = b, ya = b, i.e. in which left-
and right-division are possible.

A loop is a quasigroup containing an identity element 1 such
that x ∈ S implies 1x = x1 = x. (Note. If the operation is
called + instead of ·, i.e. we are speaking of an additive loop,
then the identity element is called 0 instead of 1.)

A group is a loop obeying the associative law that x, y, z ∈ S
implies xy · z = x · yz. The easiest theorem in group theory is

Theorem 98 (Inverses in groups). Each element x of a
group has a unique 2-sided inverse x−1 such that x−1x =
xx−1 = 1. Indeed, in an associative magma with a left-
identity 1 with 1x = x we have that x−1x = 1 implies
xx−1 = 1.

Proof: By associativity (x−1)−1 ·x−1y = y. Write xy in place
of y to see (x−1)−1(x−1 · xy) = xy. Hence (x−1)−1(x−1x ·
y) = (x−1)−1y = xy. Write x−1 in place of y to see
1 = (x−1)−1x−1 = xx−1. Q.E.D.

(Note. In additive groups the inverse of x is denoted −x
rather than x−1. McCune [177] pointed out that a minimal
set of group axioms is 1x = x, x−1x = 1, and xy · z = x · yz.)

A semigroup is an associative magma.

An abelian group is a group obeying the commutative law that
x, y ∈ S implies xy = yx.

A nnac-ring is a multiplicative magma equipped with a sec-
ond binary operation + with respect to which it simultane-
ously is an additive abelian group, and such that these op-
erations obey the distributive laws (a + b)c = ac + bc and
c(a + b) = ca + cb.

A ring is a nnac-ring with an associative multiplication.
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Rings and nnac-rings are unital if they have a multiplicative
identity 1 so that 1x = x1 = x.

A nnac-ring S has characteristic 2 if x + x = 0 holds for all
x ∈ S. Otherwise it has characteristic not 2. (More generally
if k is the least positive integer so that multiplying a ring-
element by k always yields 0, then the ring has “characteristic
k.”)

A nnc-field is a ring whose nonzero elements form a multi-
plicative group.

A field is a nnc-field with commutative multiplication.

26.2 A taxonomy of loops
There are at least 50 species of finite loops interesting enough
to have been christened and to have had theorems proven
about them. These species and results have gradually ac-
cumulated scattered throughout the literature, resulting in a
confusing mare’s nest of relationships among them. The pur-
pose of this section is to notice that a vast number of loop
definitions can be summarized in a table (figure 26.1), and
then an even vaster number of results about finite loops can
be summarized in a single diagram (figure 26.3). Although
the task of completely elucidating this diagram remains in-
complete, it nevertheless is very useful.

Most of the attention of loop theorists has focused on the ques-
tion of what properties we can require loops to obey, which
make them “closer to being a group.” The question then how
many theorems from group theory will then hold (perhaps in
some altered form) in that kind of loop. For example, since
the Moufang law is a weakening of the associative law, so we
might expect Moufang loops to have some group-like proper-
ties.

Building diagram 26.3 felt rather like Linnaeus classifying life-
forms into phylla and species. Although at first I felt that

drawing the diagram was merely a mechanical task of sum-
marizing known results, and therefore could not possibly lead
to anything new, that impression was incorrect, for two rea-
sons:

1. Because the mare’s nest is so complex, at least one im-
portant mistake had escaped previous notice57.

2. The taxonomy-diagram enables one rapidly to get a
sense of where a species of loops fits into the whole pic-
ture. That in turn focuses attention on the right ques-
tions needed to fill in the “missing links” in the diagram
– and then some of those questions may be answered
easily.

We begin with figure 26.1, tabulating the definitions of over
40 different kinds of loops got by adjoining an extra require-
ment (tabulated) to the defining axioms of a loop. To read it,
one needs a little more loop notation:

Left-division: a\b is the unique solution to ax = b. Similarly
for right-division: b/a is the unique solution to xa = b. These
have precedence the same as · but lower than juxtaposition,

e.g. a\bc = a\(bc). Left-inverse: xL def
= x\1; right-inverse:

xR def
= 1/x; we agree that when the superscript is an R or L

it does not connote exponentiation.

The multiplication group of a loop L is the group generated
by all the permutations of L’s elements of the form x → xy
and x→ yx for y ∈ L. The inner mappings are the subgroup
of the multiplication group which preserve 1.

Two loops with the same set of elements are isotopes of each
other if multiplication in one loop, denotes ∗, is defined by
x ∗ y = x/b · a\y for some fixed loop elements a, b. Two loops
are isomorphic if there is some bijective function f mapping
elements of the first loop to elements of the second such that
f(x) · f(y) = f(x · y).

57According to Math’l Reviews 96k:20153, Solarin & Chibova [238] proved that C-loops are conjugacy-closed. We give a 10-element counterex-
ample in figure 26.2.2d.
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# L Q 2n-ons type of loop defining identity
1 • • n ≤ 2, 8R Group (assoc.) x · yz = xy · z
2 • • n ≤ 3, R, iif k even Pflugfelder Mk-loop [201] xy · zxk = (x · yz)xk for fixed integer k ≥ 1
3 no n tag-loop [90] Transitive automorphism group
4 • ? Bruck-loop [19] R-Bol ∧ AI
5 • • 8i, 8R Fenyves “Extra loop” [104][105] x(y · zx) = (xy · z)x
6 • • n = 0 Alternative A-loop [151] diassociative ∧ A-loop
7 • • 8i, 8R PA-CC Power-assoc ∧ conju.closed
8 • ? n ≤ 2, R, in≤3 Wilson [256] x · (xy)−1 = xz · (x · yz)−1 where xx−1 = 1
9 • • 8i, 8R conjugacy-closed (CC) [116][150][161] L-conju.closed ∧ R-conju.closed

10 n ≤ 2 G-loop [115] isomorphic to all its isotopes
11 • • n ≤ 3 Moufang [181][180] xy · zx = (x · yz)x
12 8i, 8R Central loop (“C-loop”) [104][105][204] x(y · yz) = (xy · y)z
13 • see table 26.2 RIF-loop [152] inverse-property ∧ inner mappings preserve

n ≤ 3 inverses; equivalently xy · (z · xy) = (x · yz)x · y
14 n ≤ 3 ARIF [152] W1 ∧ W2 ∧ flexible
15 n ≤ 3 W1 [152] zx · (yxy) = z(xyx) · y
16 n ≤ 3 W2 [152] (yxy) · xz = y · (xyx)z
17 • n ≤ 3 diassociative [180][47] subloop generated by x, y is group
18 ? n ≤ 3 Left-Bol [47] x(y · xz) = (x · yx)z
19 ? n ≤ 3 Right-Bol [47] x(yz · y) = (xy · z)y
20 • i, 8R LC-loop [104][105][204] xx · yz = (x · xy)z
21 • 8i, 8R RC-loop [104][105][204] x(yz · z) = xy · zz
22 n = 0 A-loop [50] inner mappings are automorphisms
23 • n ≤ 3, R IP-alternative Inverse-property ∧ alternative
24 • power-associative [102] powers of x form multiplicative group
25 n ≤ 3, R alternative [47] LR-alternative∩flexible
26 • n ≤ 3, R Inverse-property (IP) [47] LIP ∧ RIP
27 n ≤ 3, R flexible [47] x · yx = xy · x
28 n ≤ 3, R LR-alternative (LRalt) L-alternative ∧ R-alternative
29 • L-alternative (Lalt) x · xy = xx · y
30 n ≤ 3, R R-alternative (Ralt) x · yy = xy · y
31 i, 8R nuclear-square (NS) [104][105][204] L-nuclear-sq.∧M-nuclear-sq.∧R-nuclear-sq.;

equivalently all orderings of x, y, z2 associate
32 i, 8R L-nuclear-sq. (LN) xx · yz = (xx · y)z
33 • i, 8R M-nuclear-sq. (MN) x(yy · z) = (x · yy)z
34 i, 8R R-nuclear-sq. (RN) x(y · zz) = xy · zz
35 • L4-power-assoc. (L4PA) x · (x · xx) = xx · xx
36 • 3-power-assoc. (3PA) x · xx = xx · x
37 • L-Inverse-property (LIP) x−1 · xy = y
38 n ≤ 3, R R-Inverse-property (RIP) yx · x−1 = y
39 ? n ≤ 3; see tab. 26.2 Weak-Inverse-property (WIP) [190] x−1 = y(xy)−1

40 ? 8i, 8R R-conjugacy-closed (RCC) z · yx = (zy/z) · zx
41 ? 8i, 8R L-conjugacy-closed (LCC) xy · z = xz · (z\yz)
42 n ≤ 3, 9 Antiautomorphic (aa) (xy)−1 = y−1x−1

43 ? R Automorphic Inverse (AI) (xy)−1 = x−1y−1

44 • Has 2-sided inverses (2SI) ∀x∃x−1: x−1x = xx−1 = 1
45 no n Steiner xy = yx ∧ x · xy = y
46 n ≤ 1, R Abelian xy = yx
47 • • no n Binary group xy = yx ∧ xx = 1 ∧ x · yz = xy · z

Figure 26.1. 47 named kinds of loops.

How to read figure 26.1. Any group automatically simul-
taneously is all the kinds of loops above the line. The “L”
column includes a mark “•” if this kind of loop obeys the
Lagrange property, no mark if it disobeys it, and The “Q”
column is marked “•” iff this kind of quasigroup is necessarily
a loop [162][205]. Statements involving x−1 should be read as
“for all x there exists a function of x called x−1 such that...”.

Unless otherwise stated, all identities mentioned are true in
the 2n-ons if n ≤ 2. The “2n-on” column includes

• if the defining identity holds for all 2n-ons; i if it holds for
all pure-imaginary 2n-ons,

R if it holds for all 2n-ons in the real coordinate only; iR if it
holds for pure-imaginary 2n-ons in the real coordinate
only,
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9 if it holds for all 2n-ons in coordinates 0, . . . , 8,
8R if it holds for octonions in the real coordinate only; 8iR if

it holds for pure-imaginary octonions in the real coord.
only,

8i if it holds for pure-imaginary octonions, and
A condition on n: if true for 2n-ons obeying that condition.

For each n ≥ 0, the 2n-on basis elements form a 2n-element
Steiner loop if their signs are ignored.

# 2n-ons type of loop & defining identity

0 • t · xt = t · xt
1 n ≤ 3 xy(z · xy) = (x · yz)x · y
2 i, 9, n ≤ 3 (b · ac)d = (b · ac)d where d = bc

3 • d(b · ac) = d(b · ac) where d = bc

4 *, n ≤ 3 (ab · c)d = (ab · c)d where d = bc

5 • d(c · ba) = d(c · ba) where d = cb
5 n ≤ 3, 9 LWIP: xL = (yx)Ly
6 n ≤ 3, R RWIP: y(xy)R = xR

Figure 26.2. RIF-like (above line) and WIP (below line)
properties of the 2n-ons. The meanings of the codes in the
2n-on column are the same as in figure 26.1. (*) The identity
in line 4 is valid for pure-imaginary 2n-ons for all n, provided
the real coordinate is ignored (i.e. if the “=” is interpreted as
“the imaginary coordinates are equal”).

Remarks on the loop definitions in figure 26.1:
McCune [177] pointed out that a minimal set of axioms for a
Moufang loop is 1x = x, x−1x = 1, and (xy · z)y = x(y · zy).
One may substitute (xy · x)z = x(y · xz) but not (x · yz)x =
xy ·zx for the lattermost of these. In a loop, any of the 4 Mo-
ufang equalities EQ 11 implies the other three ([47] lemma
3.1 p115; [200] ch. IV). Wilson [256] showed that M3 loops
were the same thing as Moufang Wilson loops while Chein
and Robinson [63] showed these were the same as Fenyves’
“extra” loops. Wilson loops are conjugacy-closed [116], and
indeed showed the M3 loops are the same thing as the flexible
CC loops while the Wilson loops are the CC loops obeying
the “right weak inverse property” (RWIP) that y(xy)R = xR.

The Mk loops are members of an even larger class of loops
gotten by regarding xk, not as the kth power map, but rather
as an arbitrary map among loop elements. Pflugfelder [201]
and Chein and Robinson [63] proved that (with this wider
interpretation applied to xk and xg)

1. A loop obeying the Mk-loop defining identity
2. A Moufang loop such that xg always is“nuclear,” i.e. as-

sociates with everything in the loop (where x ·xg = xk)

were the same thing. In particular M1 and Moufang loops are
the same thing, and M2 loops are the same thing as groups.
As another application, the power-map Ma loops automati-
cally are also Mb if a− 1 divides b− 1.

Outside of the loops literature, LIP is more commonly called
“left cancellation” and RIP “right cancellation.” Any two
among {LIP, RIP, antiautomorphism} implies the third and
implies the inverse-property [47]. (However, no one among
these three implies any other, due to counterexamples of
cardinality≤ 6.)

RWIP, the right weak inverse property, is y(xy)R = xR, and
LWIP, the left weak inverse property, is xL = (yx)Ly. Osborn
[190] showed that RWIP and LWIP imply each other; there-
fore they are more commonly simply called WIP, for weak
inverse property. WIP and antiautomorphism together are
equivalent to the full inverse property IP.

Any two among {AI, Abelian, antiautomorphism} implies
the third. Any conjugacy-closed loop obeying xx = 1 is an
Abelian group (corr. 3.24 of [150]).

The presence of antiautomorphism in a loop causes the Left
and Right versions of any property to imply its mirror, e.g. L-
Bol⇐⇒antiautR-Bol⇐⇒antiautMoufang, antiaut=⇒2-sided in-
verses, etc. For example, for a complete proof that L-
alternative=⇒antiautR-alternative see the proof of theorem 56.

The definitions of W1 and W2 given in figure 26.1 really only
are unambiguous as stated if flexibility is assumed. (Or, they
could be disambiguated by agreeing on any particular paren-
thesizations for the 3-term products. If W1 is assumed to
hold for both possible parenthesizations of its righthand side
[or its lefthand side], then flexibility happens automatically.)
Then W1∧flexible=⇒inverse-property [152]. By mirror sym-
metry, W2∧flexible=⇒inverse-property also. (This is one of
many instances where deductions may be made using mirror
symmetry.)

Figure 26.3 gives a large set of inclusion and equivalence
relations amongst these classes of loops. These relations
were either extracted from the literature [204][217] [152]
[104][105][115][116] [150] [151][200][47] [161] or proved (or dis-
proved) ourselves. McCune’s automated deduction engines
Otter [176] and Mace2 [175] were very helpful for construct-
ing such proofs or counterexamples. For example:

Theorem 99 (Proved by Otter in 10 milliseconds). A
loop which is both right-alternative and flexible is automati-
cally L4-power-associative.

As another example, the question arises whether a flexible
left-alternative left-cancellative loop could avoid being an-
tiautomorphic, right-alternative, right-cancellative, or weak-
inverse. The answer “yes” was proven by Mace2 in a fraction
of a second. Specifically, given the following hypotheses :

xy = xz =⇒ y = z, yx = zx =⇒ y = z, (245)

∀xy∃z(zx = y), ∀xy∃z(xz = y),

1x = x1 = x, x−1x = xx−1 = 1, (x−1)−1 = x,

xy · x = x · yx, xx · y = x · xy, x−1 · xy = y

Mace2 found the 6-element loop in table 26.2.2f.

Unfortunately, for hard problems, there is no limit to the
amount of computer time Otter and Mace require58.

58The speed, reliability, and deductive power of Otter and Mace2 are definitely superhuman on some problems, but on other problems their speed
and power are definitely subhuman. Otter often is strong in loop theory but seems extremely weak on nnac-ring theory.
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                   tag   

           BinaryGroup     =CC&Moufang=CC&flexible
          =Steiner&Mouf    =CC&Lalt=CC&antiaut=CC&LIP
                                       =Wilson&Moufang
        Abelian&Moufang                                
                                   PA−CC=Power−assoc    
IP&A=altern.&A                       & Conju.Closed     
                                                        
                    Steiner                  CC&RWIP=   

                        C&RIF                       NS&CC

       =L&R−Bol=                                         

                                                         

                                                         
                W1 W2           C−loops=                 
A−loops                        LC&RC=NS&IP               
            diassociative      =LRalt&NS                 
                                                         
             IP−alterntv           RC=RN&                
                               LC  MN&Ralt               
                                             NS&antiaut  
                                                        
       LBol                                   Nuc.Sqr=NS=
              RBol                             LN&MN&RN
                                                    
       IP=                 alterntv                   
      Inverse                                           
      Property              LRalt                        
     =L.&RIP                                             
    =WIP&aa                                 LN   MN    RN
              RIP                         
                   Power                  
           RWIP   assoctv  Lalt  Ralt  flexible
    LIP                                   
                        L4PA             
LWIP   antiaut                              LWIP=RWIP=WIP
         (aa)                  3PA   
                                        lines fathered by
      loops with two−sided−inverses        W1, W2 omitted

CC=

           ARIF=W1&W2&flex                              

    LBol&antiaut       AI               G−loops          

RIF   Abelian                    LCC   RCC
                            flex&C                       

=diassoc.&A

       M                                     Wilson     4

      Moufang=M        Bruck              Conju.Closed   1

                          M =Fenyves "extra"=Moufang&NS3

               Groups=M2

    Abelian Groups=Abelian&M3 Figure 26.3. Inclusions among about 50 classes of loops.
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False implication size disproof
1 Flexible∧C-loops=⇒RIF 24 table 1 of [152]
2 ARIF=⇒C∨RIF ? section 4 of [152]
3 C=⇒flexible 12 table 2 of [152]
4 tag=⇒group [90]
5 Inverse property=⇒3-power-associative 8 mace
6 Extra=⇒group 16 example 1 of [204]
7 Moufang=⇒LN∨MN∨RN ? Example 2 in [204]
8 3PA=⇒power-associativity 6 Example 3.1 of [204]
9 NS∧2-sided inverses=⇒antiautomorphic∨LIP 5 mace

10 Antiautomorphism=⇒3-power-associativity 6 mace
11 Flexibility=⇒Antiautomorphism 6 mace
12 Power-assoctv∧Conju.-closed∧NS=⇒diassociative 16 table 2 of [151]
13 LN=⇒3-power-associative∨MN. 6 Example 7 of [204]
14 MN=⇒3-power-associative 6 Example 8 of [204]
15 RN∧LN=⇒MN 8 mace
16 LC=⇒RN∨Ralt 12 ex. 5 of [204]
17 MN∧LN=⇒RN ≥ 8 since would imply RC and C
18 RIF∧flexible∧C=⇒Moufang∨Steiner [152]
19 RIF=⇒C [152]
20 Steiner∧C∧RIF=⇒Moufang 10 table 1 of [105]
21 L-alternative∧R-alternative∧C-loop∧2-sided-inverse

=⇒Moufang∨antiautomorphic∨flexible∨left-Bol 12 Table 2 of [152] = example 3 in [204]
22 A-loops=⇒Moufang; Moufang=⇒A-loops [151][50]
23 Diassociative=⇒ARIF∨L-Bol 27 Theorem 5.2 in [123], see caption
24 Flexible∧L-alternative∧2-sided-inverses∧(xx = 1)

=⇒R-alternative∨WIP∨antiaut 6 mace
25 Flexible=⇒L4-power-associative 6 mace
26 L-Bol=⇒flexible∨Ralt 8 Example 4 of [204]
27 A-loop=⇒inverse property [50]
28 R-alternative=⇒L4-power-associative 6 mace
29 Inverse-property=⇒L-alternative∨R-alternative 7 mace
30 2-sided inverses=⇒Inverse-property 5 Example 3.2 of [204]
31 Conjugacy-closed=⇒power-associative 6 Table 1 of [161]
32 (xx = 1)∧nuclear-square∧L-alternative∧LC

=⇒RC-loop∨antiaut 6 mace
33 L-Bol=⇒antiautomorphic∨R-Bol 8 example 4 in [204]
34 (xx = 1)∧NS∧antiaut=⇒LIP∨WIP∨RC∨C-loop 6 mace
35 Abelian∧Moufang=⇒group ch. 8 of [47]
36 LC=⇒C∨L-Bol 6 table 2 of [105]
37 Moufang=⇒Mk for some k > 2 counterexamples in [57][58]
38 power-assoc∧alternative∧IP=⇒ (ab · b)b = a(b · bb) 18 [203]
39 L-Bol∧G-loop=⇒Moufang ≤ 50 [218][212]
40 C=⇒Conjugacy-closed 10 mace
41 (xx = 1)∧nuclear-square∧antiaut=⇒C∨LIP∨WIP 6 mace
42 (xx = 1)∧RC=⇒C∨LIP∨antiaut 6 mace
43 conjugacy-closed=⇒antiaut∨LIP∨2-sided inverses 6 mace
44 WIP=⇒2-sided inverses 6 mace
45 2-sided inverses=⇒WIP 6 mace
46 nuclear-square=⇒2-sided inverses 6 mace
47 conjugacy-closed=⇒WIP 9 mace
48 WIP=⇒2SI 6 mace
49 G=⇒{2SI or any other equational property} [161]
50 W1∧flexibility=⇒LBol∨RBol since ARIF does not imply Moufang=LBol∧RBol
51 NS∧conju.closed=⇒2SI∨3PA∨LIP 6 mace
52 NS∧conju.closed=⇒WIP 16 example 2.20 in [150]
53 Alternative∧Abelian=⇒

(ab · b)b = a(b · bb)∨WIP∨antiaut∨AI∨power-assoc. 21 [203]
54 Automorphic-inverse=⇒2-sided inverse 5 mace
55 A-loop∧Abelian∧(xx = 1) =⇒alternative [50] p.322
56 A-loop with all isotopes also A-loops=⇒alternative 8 [50] p.321
57 flexible∧Lalt∧antiaut=⇒Ralt. 6 mace
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Figure 26.4. Non-implications in loops, including size of smallest known counterexample loop if the disproof is by explicit
counterexample. (For new counterexamples of size≥ 7, see figure 26.2.2.) ∨=or, ∧=and.

Remarks on non-implications in figure 26.4.
Theorem 5.2 in [123] constructed a non-group diassociative
loop of the same cardinality as any of a large class of groups, in
particular of order p3 for each odd prime p. Chein [57] showed
that Moufang loops of order p, p2, p3, or pq are groups if p and
q are prime, so these cannot be Moufang. (See also [58][62].)
They also cannot be ARIF because any odd-cardinality ARIF
loop is Moufang [152]. The smallest such counterexample has

cardinality 27.

Kunen [161] showed any equation valid in all G-loops is valid
in all loops.

Figure 26.4 mentions many counterexamples found by Mace.
We shall feel free not to state counterexample loops with ≤ 6
elements since Mace will find them in under a minute. We
give larger counterexamples in figure 26.2.2.

a | 0 1 2 3 4 5 6 7 b | 0 1 2 3 4 5 6 7 c | 0 1 2 3 4 5 6

--+---------------- --+---------------- --+--------------

0 | 3 0 1 2 5 7 4 6 0 | 5 0 3 2 1 4 7 6 0 | 4 0 3 5 1 6 2

1 | 0 1 2 3 4 5 6 7 1 | 0 1 2 3 4 5 6 7 1 | 0 1 2 3 4 5 6

2 | 6 2 5 0 1 4 7 3 2 | 3 2 1 0 6 7 4 5 2 | 6 2 5 0 3 1 4

3 | 4 3 7 1 0 6 5 2 3 | 7 3 0 1 2 6 5 4 3 | 2 3 4 6 5 0 1

4 | 1 4 3 7 6 2 0 5 4 | 1 4 6 7 5 0 2 3 4 | 1 4 6 2 0 3 5

5 | 2 5 0 6 7 1 3 4 5 | 4 5 7 6 0 1 3 2 5 | 3 5 1 4 6 2 0

6 | 7 6 4 5 2 3 1 0 6 | 2 6 4 5 7 3 1 0 6 | 5 6 0 1 2 4 3

7 | 5 7 6 4 3 0 2 1 7 | 6 7 5 4 3 2 0 1

d | 0 1 2 3 4 5 6 7 8 9 e | 0 1 2 3 4 5 6 7 8 f | 0 1 2 3 4 5

--+-------------------- --+------------------ --+------------

0 | 1 0 4 5 2 3 7 6 9 8 0 | 8 0 1 2 3 4 5 6 7 0 | 1 0 3 2 5 4

1 | 0 1 2 3 4 5 6 7 8 9 1 | 0 1 2 3 4 5 6 7 8 1 | 0 1 2 3 4 5

2 | 4 2 1 6 0 8 3 9 5 7 2 | 4 2 0 7 5 3 1 8 6 2 | 4 2 1 5 0 3

3 | 5 3 6 1 9 0 2 8 7 4 3 | 2 3 4 5 6 7 8 0 1 3 | 5 3 4 1 2 0

4 | 2 4 0 9 1 7 8 5 6 3 4 | 3 4 5 6 7 8 0 1 2 4 | 3 4 5 0 1 2

5 | 3 5 8 0 7 1 9 4 2 6 5 | 7 5 3 1 8 6 4 2 0 5 | 2 5 0 4 3 1

6 | 7 6 3 2 8 9 1 0 4 5 6 | 5 6 7 8 0 1 2 3 4

7 | 6 7 9 8 5 4 0 1 3 2 7 | 6 7 8 0 1 2 3 4 5

8 | 9 8 5 7 6 2 4 3 1 0 8 | 1 8 6 4 2 0 7 5 3

9 | 8 9 7 4 3 6 5 2 0 1

Figure 26.5. Counterexample loops found by Mace.
a: 8-element loop which is LN and RN but not MN (N=nuclear-square).
b: 8-element loop which is RBol but neither LBol, Moufang, nor antiaut.
c: 7-element loop with inverse property which is not right-alternative.
d: 10-element loop which is C but not RCC.
e: 9-element loop which is CC but not WIP.
f: 6-element loop satisfying the hypotheses in EQ 245 as well as x2 = 1. In this loop x−1y−1 = (yx)−1, xy · y = x · yy,
xy · y−1 = x, and x−1 = y(xy)−1 (and the right-Bol and all Moufang identities) all are, in general, untrue. For example
0 = 0−1 6= 2(0 · 2)−1 = 2 · 3−1 = 2 · 3 = 5.

The taxonomy in figure 26.3 attempts to include all possi-
ble inclusions and intends that every inclusion is strict. That
goal is largely achieved, but cannot be completely achieved
until several open problems are resolved. The precise degree
to which we have achieved success is described by the non-
implications in figure 26.4. The main ways in which we have
failed will be flagged as open questions in the ensuing text.

26.2.1 Power associativity

We almost completely understand which loop types in figure
26.3 are power-associative:

Theorem 100 (Power-associative loops). PA-CC-loops,
A-loops, L-Bol and R-Bol loops, and LC and RC-loops (and
all their “ancestors” in figure 26.3) are power-associative;

however all the other kinds of loops there in general are not
– except that it is presently unknown what the status of W1,
W2, and IP-alternative loops are.

Proof: The power-associativity of A-loops was shown by
Bruck and Paige [50], of Bol loops by D.A.Robinson [217], and
LC and RC-loops by F.Fenyves [105]. Fenyves and Robinson
employed the same methodology which was (in the LC case) to
prove xm+1y = x·xmy = xm ·xy and thence xm+ny = xn ·xmy
on the way to proving full power associativity. All the required
disproofs of power associativity arise from small counterexam-
ple loops, all easily found, mentioned in figure 26.4 which do
not even obey either 2SI, 3PA, or L4PA (or its mirror). The
sole exception, which was much harder, was Phillips’ [203]
discovery of a 21-element commutative alternative loop which
disobeys antiaut, AI, WIP, and power-associativity.
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However, this proof method fails to tell us whether W1 (per-
haps with flexibility also) implies power-associativity.59 I do
not even know whether LRalt loops necessarily have 2-sided
inverses60 or are flexible, nor whether IP-alternativity implies
(a · aaa)aa = a(aaa · aa). (J.D.Phillips [203] found a 18-
element loop showing that IP-alternativity does not imply
(ab · b)b = a(b · bb).) Q.E.D.

identity name mirror with 3PA implies
x(x · xx) = xx · xx L4PA R P
(xx · x)x = xx · xx R4PA L Q
x(xx · x) = xx · xx Q4PA P R
(x · xx)x = xx · xx P4PA Q L

x(x · xx) = (xx · x)x S4PA self T,U,V
x(xx · x) = (x · xx)x T4PA self S,U,V
x(xx · x) = (xx · x)x U4PA V S,T,V
(x · xx)x = x(x · xx) V4PA U S,T,U

xx · x = x · xx 3PA self none

Figure 26.6. The 8 inequivalent kinds of 4-term power asso-
ciativity, and the 3-power-associativity identity 3PA. In loops,
none of these imply any other. But in combination with
3PA, some of these do imply others (listed). The W1 iden-
tity zx · (y · xy) = z(x · yx) · y implies all of them, as does
LR-alternativity, but the inverse property does not imply any
of these. (All of these implications and non-implications are
proven in seconds by Otter and Mace.)

Similarly figure 26.3 includes a complete understanding of
which loop types are necessarily groups61, or are diassocia-
tive, conjugacy-closed, 3PA, and L4PA. The only loop type in
figure 26.3 whose status vis-a-vis 2-sided inverses is unknown,
is LRalt.

26.2.2 Antiautomorphism, WIP, LIP

Theorem 101 (WIP loops). The only loops in figure 26.3
which are WIP, LIP, or antiautomorphic are the direct and
indirect ancestors of the nodes whose labels include LWIP or
RWIP; LIP; or antiaut, respectively, except that it is presently
unknown what the status of alternative and LRalt loops are.

Proof: Again the disproofs are in table 26.4 and the proofs
are well known; all disproofs arise from small counterexam-
ple loops except for Phillips’ 21-element loop and the one in
figure e. Q.E.D.

26.2.3 Lagrange property and simple Bol loops

A finite loop has the weak Lagrange property if the cardinality
of each subloop divides the cardinality of the whole loop. It
has the strong Lagrange property if every subloop obeys the
weak Lagrange property.

Let P ⊂ L be a subloop of L. If x ∈ L then xP
def
= {xy :

y ∈ P} is a left coset of P and right cosets Px are defined
similarly. Unlike in group theory, cosets can have nonempty
intersection. P is a normal subloop of L if

xP = Px, (xP )y = x(Py), x(yP ) = (xy)P. (246)

(Normal subloops do have disjoint cosets, cf. p.92 of [47].) A
loop is simple if it has no nontrivial normal subloops.

“The two biggest problems in loop theory” have been
claimed [59] to be

1. The Lagrange property for finite Moufang loops.
2. The existence of finite simple non-Moufang Bol loops.

Status. The Moufang-Lagrange problem has just recently
been solved by A.Grishkov and A.Zavrnitsine [119]: Moufang
loops obey the strong Lagrange property62. Furthermore
there are rumors that the second problem is also nearing so-
lution. Specifically, E.K.Loginov, of Ivanovo State Energy
University (Russia) claims [167] to have a proof that all fi-
nite simple left-Bol loops (with a finite number of possible
exceptions, arising when the left-multiplication group of the
Bol loop is sporadic simple) are Moufang. If so, and assum-
ing none of the possible exceptions actually happen, it would
follow from theorem 104 that Bol loops must obey the strong
Lagrange property.

It was previously known that groups, conjugacy-closed-loops
([150] corollary of theorem 3.1), A-loops with the inverse
property [59], Moufang loops of odd cardinality [112] or
cardinality< 16320 [59], left-Bol loops of odd cardinality [108],
and Mk-loops with k = 2r+1 or k even [56] all obey the strong
Lagrange property. If loop L has a normal subloop N such
that both N and L/N have the weak Lagrange property, then
so does L (this is lemma V.2.1 of [47]; it also holds if “weak”is
changed to“strong”). Moufang loops (and not merely groups)
are known to obey the Jordan-Hölder theorem of having a
“composition series” of normal subloops unique up to isomor-
phism [47].

On the other hand, a 5-element loop exists with 2-element
subgroups, and the 10-element Steiner loop in table 1 of
Fenyves [105] has subloops of cardinality 4.

Here is a powerful general way to construct loops disobeying
the Lagrange property: Start with a“block design,” i.e. a sys-
tem of “points” and “blocks” (point subsets) such that every
pair of points is in exactly one block. We can turn this into a
loop by demanding that the points forming each block be the
non-1 elements of a subloop. Because each pair of points is in
exacly one block, this (and the requirement that 1x = x1 = x)
completely defines the loop’s multiplication table. The car-
dinality of this loop is 1 plus the number of points, and the
subloop sizes are 1 plus the block sizes. In particular, if q is
any prime power, it is known that a “projective plane of order
q” exists, which is a system of q2 + q + 1 points in which all

59Otter proved that the form zx ·(y ·xy) = z(x ·yx) ·y of W1 implies R-alternativity, 2-sided inverses, 3PA, all the 4-variable 4-power-associativity
identities in figure 26.6, and several other kinds of partial power associativity. LR-alternativity implies all these things, except perhaps 2-sided
inverses, too.

60Exhaustive computer searches by J.D.Phillips [203] indicate that any LR-alternative loop without 2-sided inverses must have at least 33
elements.

61The ones which say “group”!
62Despite obeying the Lagrange theorem neither CC nor Moufang loops are not too group-like; e.g. Paige’s 120-element simple Moufang loop

has no elements x with x5 = 1, and Table 1 of [161] gives a 6-element CC loop with no subgroups of size 2, showing that both CC and Moufang
loops can disobey the Sylow theorem.
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the blocks (called “lines”) have cardinality q + 1, every pair
of points is in exactly one line, and every pair of lines intere-
sects at exactly one point. This will yield a loop disobeying
the weak Lagrange property for any prime power q such that
q +2 does not divide q2 + q +2, i.e. every prime power q ≥ 3.
The first example is q = 3 since 5 does not divide 14. In
this way we may create a non-Lagrange loop with any equa-
tional property we desire, provided that property is satisfiable
by loops of cardinality q + 2 with q a prime power, and pro-
vided that property’s defining identities involve at most two
variables. (E.g. commutative, diassociative.) Also we have

Theorem 102 (Some non-Lagrange loops). Abelian and
non-Abelian loops with transitive automorphism groups exist
which disobey the Lagrange property.

Proof: From the unique projective plane of order 3 (13 points
and 13 lines, each line consisting of 4 points), which has a sym-
metry group of order 5616 which includes the cyclic group of
order 13 (and therefore is transitive, i.e. includes symmetries
mapping any point to any other) we get by the construction
above a 14-element tag-loop with subloops of size 5. Namely:
The lines {s, s + 1, s + 4, s + 6}s=0,...,12 mod 13 are chosen to
be the non-identity elements of identical subloops. Now, if we
so desire, we may further choose the subloops to be identical
Abelian size-5 groups. In that case our size-14 counterexam-
ple loop is an Abelian loop. Q.E.D.

Combining all these results and counterexamples almost com-
pletely settles the question of which loops in figure 26.3 obey
the Lagrange property and which don’t; specifically it justifies
the “L” column in figure 26.1. Only these open cases remain:

1. Bol (and Bruck) loops (which Loginov’s proof, if correct,
would nearly settle);

2. A-loops (Note: theorem 2.2 of [50] goes in the right di-
rection toward proving A-loops obey the Lagrange prop-
erty...);

3. LCC loops. (I have done an exhaustive computer search
among LCC loops of cardinality n ≤ 12; none have
subloops of cardinality 2 or 3 unless these divide n.)

All simple Moufang loops have been classified
[192][165][88][183]; the only ones other than the simple groups
[65] are the “Paige loops,” which are the unit-norm octonions
over finite fields with octonions of opposite overall sign iden-
tified.

Chein et al. [59] proved that if finite Moufang loops have the
weak Lagrange property, then they have the strong one, and
then further reduced the Moufang-loop Lagrange problem to
proving the weak Lagrange property for Paige loops. Now
Paige loops have a tremendous amount of structure, and not
just loop structure but in fact algebraic structure. That is
why Grishkov and Zavarnitsine [119] were able to settle the
Moufang-Lagrange problem, and also why I was able to show
the following weaker, but simpler, and more intuitive, result.

Theorem 103 (Lagrange property for (≤ 2)-generated
subloops of Paige loops). Any subloop of a Paige loop that
is generated by 2 or fewer elements, has cardinality dividing
the cardinality of the full loop.

Proof: It is known that the subgroups generated by a sin-
gle element inside a diassociative loop must have cardinality

dividing the cardinality of the full loop ([47] theorem V.1.2);
therefore Paige loops do obey the weak lagrange property in-
sofar as their subloops (which automatically are subgroups)
generated by one element are concerned.

We now claim this is also true of the subloops (which also au-
tomatically are subgroups) generated by two elements. That
is because two octonions generate (both additively and multi-
plicatively) a quaternion subalgebra of the octonion algebra.
Therefore if we restrict ourselves to multiplicative generation,
we must get a multiplicative subgroup of a quaternion sub-
group of the unit-norm octonions. (Optionally with overall
± sign modded out in both cases, and this “sub”group of the
quaternions is permitted to be all of them.)

Now the full group of unit-norm quaternions necessarily has
cardinality dividing the cardinality of the unit-norm octo-
nions, because the right-cosets (q, 0)(a, b) of the quaternions
(q, 0) are the octonions (qa, qb), and all these cosets all are
disjoint or identical by considering the fact that a canoni-
cal representative (1, a−1b) of the coset is got by choosing
q = a−1 (or if a = 0 then choose q = b−1). [More precisely
one may postulate (qa, qb) = (rc, rd) and left-multiply both
sides by an appropriate quaternion to cause (1, B) = (1, D)
and then conclude either the 2 cosets are identical or reach a
contradiction.] Further, plainly these cosets tile the full set of
octonions.

In the reasoning above we have focused on the quaternion
subalgebra in the first 4 coordinates of the octonions, but
the same reasoning is valid for any other quaternion subalge-
bra, just the coordinate-based notation is no longer applica-
ble. Namely, instead of regarding an octonion as an ordered
pair of quaternions (a, b), regard it as a + ib where i is any
pure-imaginary unit-norm octonion orthogonal to the quater-
nion subalgebra a and b live in. Such an i always exists, even
in the octonions over a finite field, because we may use the
“7D vector product” (or 8D product of three 8-vectors; see
§25.2) to construct it.

Now by the Lagrange theorem in groups, any subgroup of the
full quaternion subgroup then must divide the full cardinality
of the unit-norm octonions.

(An alternative line of reasoning would be to actually compute
the cardinalities of quaternion algebras over a finite field.)
Q.E.D.

With theorem 103 known, it now suffices, to prove the La-
grange property for Moufang loops, merely to prove it insofar
as Paige loop subloops requiring≥ 3 generators are concerned.
I believe that the complicated Grishkov-Zavarnitsine proof
(although they did not look at it that way) really just did ex-
actly that. It depended upon relationships between subloops
of Paige loops and subgroups of certain certain “groups with
triality.” Probably if their proof (and the previous results
about simple groups it depended on) were all combined and
then streamlined, then everything would be a consequence of
properties of the octonion algebra.

Re the simple Bol loops question: since simple Moufang loops
are classified, the open question is whether there are any sim-
ple Bol loops besides them. A relation between the two prob-
lems:
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Theorem 104 (Chein et al. [59]). If all Moufang loops
obey the Lagrange property but some Bol loop violates the
weak Lagrange property, then there exists a finite simple non-
Moufang Bol loop. Conversely: If no finite simple non-
Moufang Bol loops exist, it then follows that Bol loops obey
the strong Lagrange property. (This theorem is also true with
the word “Bruck” substituted for every occurrence of the word
“Bol.”)

26.3 Some kinds of quasigroups
Phillips and Vojtechovsky [205] classified all the kinds of
quasigroups defined by one identity of “Bol-Moufang type,”
i.e. which asserts the equality of two 4-term products of the
same 3 variables in the same order, but parenthesized differ-
ently. Our figure 26.6 does the same if there is only 1 vari-
able, but the 2-variable cases remain unclassified. (They [204]
also did the same classification for loops; all of their types
were mentioned in figure 26.1.) Figure 26.7 lists the Phillips-
Vojtechovsky quasigroup identities not already present in fig-
ure 26.1.

# 2n-ons type of quasigroup defining identity
1 8R, i LC2 x(x · yz) = (x · xy)z
2 8R, i LC3 x(x · yz) = (xx · y)z
3 8R, i LC4 x(y · yz) = (x · yy)z
4 8R RC2 x(yz · z) = (xy · z)z
5 8R, iR RC3 x(y · zz) = (xy · z)z
6 8R RC4 x(yy · z) = (xy · y)z
7 8R LG1 x(y · zz) = (x · yz)z
8 8R LG2 xy · zz = (x · yz)z
9 8R LG3 x(y · zy) = (x · yz)y

10 8R RG1 x(xy · z) = (xx · y)z
11 • RG2 x(x · yz) = xx · yz
12 8R RG3 x(yx · z) = (xy · x)z

Figure 26.7. Kinds of quasigroups named by Phillips and
Vojtechovsky [205] and the behavior of their defining identi-
ties in the 2n-ons (same conventions as in figure 26.1).

26.4 Results about nnac-rings
The same figure 26.1 may instead be viewed as defining (but
now in combination with the nnac-ring axioms rather than
the loop axioms) various kinds of nnac-rings. (For properties
of x−1, we agree to assume x 6= 0.) One might then hope
for a considerable analogy between the properties of the thus-
defined loops and the corresponding nnac-rings, especially if
we agree to consider only unital nnac-rings (which makes their
multiplication more loop-like).

But this hope is only partially satisfied. Facts about loops
need not hold in nnac-rings or vice versa, because the multi-
plicative nnac-ring axioms are neither a subset nor a superset
of the loop axioms, even if we further assume the ring is unital.
However, the nonzero elements of any unital nnac-ring with
left- and right-cancellation, i.e. the loop “inverse-property,”
necessarily form a multiplicative loop and hence all results
about IP-loops will also hold for such nnac-rings. Examples:

1. A brilliantly simple argument of Evans and Neumann
(p.349 of [102]) showed that in a loop there is no fi-
nite set of equations equivalent to power-associativity.

In contrast, Albert [11] showed that a nnac-ring with
characteristic6∈ {2, 3, 5} is power-associative iff x · xx =
xx · x and xx · xx = x · (x · xx), i.e. iff 3PA and L4PA
hold. In loops, right-alternativity does not imply power-
associativity, indeed does not even imply L4PA. How-
ever, in rings with characteristic6= 2, right-alternativity
does imply both power-associativity and the right Mo-
ufang identity (xy · z)y = x(yz · y), see chapter 16 of
[259].

2. Right-Bol loops are power-associative [217]. However,
nnac-rings which are simultaneously left-Bol, right-Bol,
and obey a middle Moufang identity need not even be
3-power-associative – figure 26.8 gives a 4-element coun-
terexample. But unital right-Bol nnac-rings are power-
associative.

+ | 0 1 2 3 * | 0 1 2 3

--+-------- --+--------

0 | 0 1 2 3 0 | 0 0 0 0

1 | 1 0 3 2 1 | 0 2 2 0

2 | 2 3 0 1 2 | 0 0 0 0

3 | 3 2 1 0 3 | 0 2 2 0

Figure 26.8. Non-unital 4-element nnac ring with
characteristic 4 which obeys the left-Bol, right-Bol,
right-alternative, and middle-Moufang identities but is
neither left-alternative (0 = 0 ·2 = 11 ·2 6= 1 ·12 = 1 ·2 =
2), nor 3-power-associative (0 = 11 · 1 6= 1 · 11 = 2).

3. It is an open question whether there is a finite
equational basis for loop diassociativity, and while
Moufang=⇒diassociativity, the reverse implication is
false due to a 10-element counterexample ([105] table
1). In contrast, in nnac-rings, any two among {L-
alternative, R-alternative, Flexible} suffice to imply the
third and then all Moufang identities and diassocia-
tivity; then the latter implies alternativity back again
([227] p.30, [259] p.35).

4. Diassociative loops automatically have the inverse prop-
erty. However, diassociative nnac-rings, even if unital
and even if some finite set of characteristics are forbid-
den, do not necessarily even have multiplicative inverses
for all nonzero elements. For example, construct the oc-
tonions over the ring of integers modulo n, where n is
a composite number. These octonions will in general
feature zero-divisors.

5. Just as in a loop, the presence of antiautomorphism in
a nnac-ring causes the Left and Right versions of any
property to imply the other, e.g. L-alternative⇐⇒R-
alternative.

6. Although the loops with “nuclear square” properties
form their own phylum in figure 26.3, the situation is
precisely the opposite for nnac-rings with nuclear-square
properties; see theorem 105.

Theorem 105 (Nuclear square nnac-rings are associa-
tive). A unital nnac-ring containing 1

2 obeying any of the 3
nuclear-square identities (LN, MN, or RN in figure 26.1) is
automatically associative.

Proof: If x2 and y2 associate with any other two elements
(on either the left, right, or middle), then by distributivity so
do x2±y2. Now note that if y = x−1 then y and x commute
so that x2−y2 = (x−y)(x+y) = x+y = 2x−1. Since 2x−1
associates with everything else, if the the ring contains 1

2 this
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means everything associates. Q.E.D.

26.5 Abstract 2n-ons
We define a new abstract algebraic entity, abstract 2n-ons,
by the following axioms designed to encapsulate the key al-
gebraic properties of 2n-ons independently of any particular
construction. There are the following abstract operations:
x + y, xy = x · y, and x, and there is an abstract notion of
being “real.” In terms of these we shall also define x−1, x− y,
−x, |x|2, and 2 rex, and the special symbols 0, 1, and 2.

1. Additive axioms: (x+y)+z = x+(y+z), x+y = y+x.
2. Multiplicative axioms: x(−y) = (−x)y = −(xy),

(−x)(−y) = xy, x(y + z) = xy + xz, xx · y = x · xy.
3. Axioms about 0: x+0 = x, x+(−x) = 0, −(−x) = x,

0x = x0 = 0.
4. Axioms about 1: 1x = x1 = x, 2

def
= 1 + 1.

5. Axioms about reciprocals: x−1 exists if x 6= 0, in
which case x−1x = xx−1 = 1.

6. Axioms about conjugation: x = x, x± y = x ± y;

|x|2 def
= xx = xx, |xy|2 = |x|2|y|2, 2 rex

def
= x + x.

7. Axioms about “reals”: 0, 1, |x|2, and 2 rex all are
real. If r and s are real then so are rs, r±s, r, and r−1.
If r is real then rx = xr, r · xy = rx · y, x · ry = xr · y,
x ·yr = xy ·r, (x+r)y = xy+ry, and re r = r, |r|2 = rr.

One could also add some axioms about characteristic, such as
2 6= 0 (characteristic6= 2). (Certainly some of the above ax-
ioms are redundant; I have made no effort to obtain a minimal
set of axioms.)

There are several reasons one might be interested in studying
abstract 2n-ons.

1. It is interesting to determine which axiom subsets imply
which properties.

2. Instead of starting the 2n-on doubling construction from
a field such as R or GF3, it is possible to start it off
from any kind of abstract 2n-ons. The doubled 2n-ons
will then obey the same properties. The resulting extra
freedom might enable new combinatorial constructions,
etc.

Example. Abstract 2n-ons obey the quadratic identity
x2−2re(x)x+ |x|2 = 0 and are power-associative. That is be-
cause the proofs of these things we have already given already
are (or may easily be rephrased to be) suitably abstract.

Theorem 106 (Finite abstract 2n-ons). The only finite
abstract 2n-ons with cardinality≤ 11 are finite fields, even if
we we omit all the abstract 2n-on axioms after axiom set 5
about reciprocals.

Proof: Exhaustive computer search. Q.E.D.

Example. One may ask such questions as: “is it possible
for flexible abstract 2n-ons (i.e. obeying xy · x = x · yx)
to exist which are not right-alternative (i.e. do not obey
xy · y = x · yy)?” I do not know, but an exhaustive com-
puter enumeration of for small finite sets 2n-ons shows that
this is impossible if there are ≤ 11 elements. On the other
hand, this is possible with a set of size 8 if we omit all the
axioms after and including axiom set 5 about reciprocals.

Example. Suppose you wanted to use abstract 2n-ons to find
interesting point sets in 24-dimensions, such as (perhaps) the
Leech lattice [67]. Simply write down an interesting finite (or
countably infinite) set of 3-vectors and define a “multiplica-
tion,”“addition,” and “conjugation” law for them. If the laws
you define satisfy the abstract 2n-on axioms, then upon dou-
bling 3 times using EQ 68, you will get a finite (or infinite)
set of 24-vectors which are abstract 2n-ons.

27 Comparison with other or previ-

ous attempts to create 16-ons

In this section we shall discuss other attempts to build 16-
ons from octonions. Some of these attempts are important
mathematically, while others are important historically.

During the course of this research, we found over 100 different
ways to create 16-ons with multiplicative norm from pairs of
octonions. However, since almost all of them have completely
unattractive algebraic properties, we’ll make no attempt to
describe them.

There are 8 particularly mathematically natural ways to try to
get 16-ons by modifying the Cayley-Dickson doubling formula
EQ 48 for (a, b)(c, d) in such a way as to cause the Euclidean
norm to be multiplicative. We call these the 8 pre-eminent
formulae. They are given in figure 27.1, together with some
of their properties.

8→ 16 doubling formula alternativity? linearity? antiaut? Jordan? orthogL?

(ac− db, cb + ab−1 · bd) left, right(0), flex(0) right, weak, left(0-8) 0-8 1-8 yes

(ac− db, cd−1 · db + ad) right, left(0), flex(0) left, weak, right(0-8) 0-8 1-8 yes

(ac− db, cb + ac · c−1d) right(0) left, right(0-8) 0-8 1-8 no

(ac− db, ca−1 · ab + ad) left(0) right, left(0-8) 0-8 1-8 no

(ac− da · a−1b, cb + ad) left(0) right, left(0, 8-15) 0, 8-15 8-15 no

(ac− dc−1 · cb, cb + ad) right(0) left, right(0, 8-15) 0, 8-15 8-15 no

(ab · b−1c− db, cb + ad) left, right(0), flex(0) right, left(0,8-15), weak 0, 8-15 8-15 yes

(ad · d−1c− db, cb + ad) right, left(0), flex(0) left, right(0,8-15), weak 0, 8-15 8-15 yes

Figure 27.1. The 8 pre-eminent 16-on multiplication formulas, for multiplying (a, b)(c, d) where (a, b) and (c, d) are 16-ons,
regarded as octonion 2-tuples. The one in the top line of the table is the one we have preferred in this monograph.

Coordinates numbered 0-15: 0-7 are the octonion subalgebra; 0 is the real coordinate.

(0-8) means “in coords 0,1,2,...8 only,” and (0,8-15) means “in coordinates 0, 8, 9, 10,..., 15 only.”
Left-alternative law is xx · y = x · xy. Right-alternative law is y · xx = yx · x. Flexible law is xy · x = x · yx.

20 Jan 2004 54 27. 0. 0



Smith typeset 11:37 14 Feb 2004 16-ons

Left-linear law is (x + y)z = xz + yz. Right-linear law is z(x + y) = zx + zy.
Weak left-linear law is (x± 1)z = xz ± z. Weak right-linear law is z(x± 1) = zx± z.
Weak-linear means both weak-left and weak-right linear.

Antiaut law is ab = ba. Jordan (1-8) means that coordinates 1-8 of (x ◦ y) ◦ x2 − x ◦ (y ◦ x2) are 0, where x ◦ y
def
= xy − yx.

OrthogL means that 〈x, xy − yx〉 = 0.

All 8 of the pre-eminent formulas will, starting with the reals,
generate the complex numbers, quaternions, and octonions.
At the next doubling they yield 16-ons with multiplicative
norm – and since these formulas resemble one another, one is
led to the question of whether they are, algebraically, actually
the same. They’re not:

Theorem 107 (Differentness). The table (figure 27.1) has
grouped the 8 pre-eminent formulas into 4 pairs. Each mem-
ber of the pair is the “opposite algebra” to the other mem-
ber of that pair, i.e. the two 16-on algebras they yield are
anti-isomorphic, i.e. left-multiplication in one corresponds to
right-multiplication in the other. But no member of any pair
yields 16-ons which are algebraically the “same” (in any com-
mon sense) as any member of any other pair.

Proof: The oppositeness claims are confirmable tediously but
straightforwardly (e.g. by computer as in §11, or by convert-
ing one formula into the other with the aid of octonion “eye-
shift” identities EQ 98).

Now note that coordinates 0-7 are algebraically special since
they correspond to the octonion subalgebra (and discontinu-
ity locus). Multiplying two 16-ons whose nonzero coordinates
lie in 0-7 and 0-7 (or in 8-15 and 8-15) yields another 16-on
whose nonzero coordinates are in 0-7; Multiplying two 16-
ons whose nonzero coordinates are in 0-7 and 8-15 yields one
whose nonzero coordinates are in 8-15.

With this in mind, it now is clear by inspecting the properties
listed in the table that any two 16-on formulae from different
pairs, are genuinely different. Q.E.D.

At the next doubling, none of these formulas, as written, yield
32-ons with multiplicative norm, although as we’ve seen in §9
it is possible to rewrite some of them in a way which is, at
the 16-ons, equivalent, which does keep going forever yielding
2k-ons with multiplicative norm.

Now these 4, genuinely different, pre-eminent algebra & oppo-
site pairs correspond (in the case of 16-ons) to the 4 obvious
variants of the block-matrix formula EQ 57.

Our 8 pre-eminent formulas actually are merely special cases
of these 4 parameterized families of formulas:

(a, b)(c, d) = (ac− db, cb + a[sb−1 + tc] · [sb−1 + tc]−1d)(247)

(a, b)(c, d) = (ac− db, c[sd + ta]−1 · [sd + ta]−1b + ad)(248)

(a, b)(c, d) = (ac− d[sa + tc−1] · [sa + tc−1]−1b, cb + ad)(249)

(a, b)(c, d) = (a[sb + td] · [sb + td]−1c− db, cb + ad)(250)

all of which yield 16-ons with multiplicative Euclidean norm
for any real parameters s, t (not both 0). Note, s and t are
allowed to depend upon a, b, c, d; it is not necessary that they
be constants. But generic members of these families are less
attractive than the 8 (nongeneric) pre-eminent formulas be-
cause, e.g., none of them are even 1-sided linear.

A particularly amusing formula (also leading to 16-ons, but
not 32-ons, with multiplicative Euclidean norm) is

(a, b)(c, d) = (a[dbd] · [dbd]
−1

c− d · b, c · b + a · d) (251)

which really is merely an instance of EQ 250 due to the oc-
tonion triple product identity EQ 209 and octonion flexibility
EQ 9.

J.D.H. Smith [235] suggested the following formula for 16-on
multiplication:

(a, b)(c, d) = (ab · cb−1 − b · d, bc + db−1 · ab). (252)

But the resulting 16-ons have little virtue. They are right-
linear. But they are neither left nor weak linear, nor
quadratic, nor power-associative, nor left nor right alterna-
tive. They do not yield a 15D vector product. They do
not obey the Jordan identity, nor any variant of the Bol or
Moufang identities I know of, in even a single coordinate.
This doubling formula, if applied to the quaternions, does
not yield the octonions. According to J.D.H.Smith [235],
the great advantage of these 16-ons is that division prob-
lems generically have unique solutions. However (1) we’ve
seen that our 16-ons also have the quotient-existence prop-
erty (and our proof techniques are also applicable to numer-
ous other possible 16-on-formulae) and (2) division problems
in J.D.H.Smith’s 16-ons do not always have a unique solution,
as one may demonstrate by constructing a counterexample
(a, b)(c, d) = (a′, b′)(c, d) = (X, Y ):

(a, b) = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0) 6=
(a′, b′) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0),

(c, d) = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), (253)

(X, Y ) = (0, 0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0, 1, 0, 0, 1).

Pfister [199][211] constructed rational sum-of-squares formu-
lae (EQ 41) for each power of 2. Although Pfister did not
look at it this way, his construction may be regarded as yield-
ing nnacd-algebras, with multiplicative Euclidean norm, of
each dimension 2k, k ≥ 0. Indeed the resulting construc-
tions can be written in such a way that they resemble our EQ
57. However, not surprisingly (because Pfister apparently was
completely unconcerned with the algebraic properties of these
constructions) the algebras that result are ugly – indeed, Pfis-
ter’s construction does not even yield the complex numbers
starting from the real numbers.

Zassenhaus and Eichhorn [257], building on Olga Taussky
[243], found a rational 16-square identity (EQ 41). This also
may be regarded as corresponding to a non-distributive 16-on
algebra with multiplicative Euclidean norm.

Their approach is based on defining the “determinant” of a
2× 2 matrix M =

(
a b
c d

)
, whose entries are octonions, to be

detZEM = ad− ac · a−1b. (254)
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This definition has the advantage that

(detZEM)detZEM = detZE(MMH) (255)

(Zassenhaus and Eichhorn note as an aside, following Taussky,
that detZEM 6= detZE(MH) in general. Also, EQ 255 does not
hold for 16-on a, b, c, d.) Upon rearranging terms, EQ 254 be-
comes the 16-square identity

(|a|2+ |b|2)(|c|2+ |d|2) = |ac+bd|2+ |ad−(ac)(a−1b)|2. (256)

The corresponding nnacd 16-on algebra then arises from the
doubling formula

(a, b)(c, d) = (ac + bd, ad− ac · a−1b) (257)

applied to the octonions. (This formula does not yield the
octonions starting from the quaternions.) The properties of
these 16-ons are unappealing compared to our EQ 72: They
are neither left nor right alternative, nor flexible (none of these
even in any one coordinate with the others ignored). They are
not even power-associative, e.g. aa2 6= a2a in general. They
obey neither weak-linearity nor the quadratic identity. They
still are right-linear, are left-linear if only the first 8 coordi-
nates of the answer are considered (as opposed to our 9), and
obey real-part antiautomorphism re(ab) = re(ba). But there
is at least one way in which they are superior to our 16-ons:
they obey the Jordan identity

(x ◦ y) ◦ x2 − x ◦ (y ◦ x2) (258)

in coordinates 1-15 (i.e. all imaginary coordinates), as op-
posed to our coordinates 0-8 only.

The most attractive octonion-to-16on doubling formula
that we know of (besides ours) is the following interesting
(new) formula

(a, b)(c, d) = (ad−1 · dc− bd, dc · d−1b + da). (259)

It is somewhat less attractive than ours (EQ 111). E.g. it does
not yield the octonions if applied to quaternions. EQ 259,
applied to the octonions, yields quadratic, right-alternative,
left-linear (left-alternative and flexible and right-linear in the
real coordinate only; meanwhile our 16-ons obey left-linearity
in coordinates 0-8), weak-linear, power-associative, power-
distributive 16-ons. They obey antiautomorphism ab = ba
and the Jordan identity

(x ◦ y) ◦ x2 − x ◦ (y ◦ x2) (260)

both in the real coordinate only (as opposed to our 16-ons –
coordinates 0-8).

But when it comes to Bol and Moufang identities (and vari-
ants thereof) EQ 259 seems superior to our EQ 72:

The 16-ons of EQ 259 obey the variant right-Bol identity
z(xy · x) = (zx · y)x. In contrast, our 16-ons (EQ 72)
don’t obey any Bol identities (nor any variants arising from
conjugating one of the repeated variables) except that they
obey the left-Bol identity in the real coordinate only, i.e.
re([x · yx]z) = re(x[y · xz]) (while the 16-ons of EQ 259 do
not).

Both kinds (EQ 259 and EQ 72) of 16-ons obey the middle
Moufang identity (cf. EQ 11) in the real coordinate only.
Both kinds obey the fundamental vector product identities
EQ 39 and EQ 40 (for the vector product EQ 221) but the
16-ons of EQ 259 are superior in the sense that their vector
product obeys

(b× a)× a = 〈a, b〉a− |a|2b (261)

whereas ours doesn’t.

The 16-ons of EQ 259 obey this variant-Moufang identity

xy · z = xz · [z−1y · z] (262)

but our 16-ons (EQ 72) don’t, although ours do obey

re(xy · z) = re([z · yz−1] · zx) (263)

while the 16-ons of EQ 259 don’t.

28 Automorphism groups of 2n-ons

The automorphism group of an algebra A is the set of trans-
formations x→ T (x) such that

multiplicative automorphism: xy = z (x, y, z ∈ A) im-
plies T (x)T (y) = (Tz).

additive automorphism: x + y = z (x, y, z ∈ A) implies
T (x) + T (y) = T (z).

Linearity. Any automorphism T obeying the additive aut
property must be linear. (Hence, it must also be continuous.)

Unsuccessful search for nonlinear 16-on automor-
phisms. It remains conceivable that there could be some non-
linear automorphism of the multiplicative structure alone of
an nnacd-algebra (ignoring addition). A theorem proved63in
the early 20th century by H.Brandt claims that

x→ cxc (264)

is an automorphism of the octonions x iff c6 = 1. But com-
puter experiments indicate that, in the 16-ons (where this
map is, in general, nonlinear), these are not automorphisms
for the multiplicative structure, if c is any 16-on obeying
c3 = 1 with exactly 2 nonzero coordinates.

Manogue and Schray ([169] eq. 33) further noted that if c3 = 1
then 2c = 1 + b

√
3 for some pure-imaginary octonion b with

|b|2 = 1, and then all identities arising from the automor-
phism EQ 264 are resolvable into two identities, one of which
is the coefficient of

√
3, while the other is the rest. (None of

them seem to generalize to 16-ons.)

Theorem 108 (Norms, conjugates, inverses). Any au-
tomorphism T of the 2n-ons, n ≥ 1, maps 1 → 1, 0 → 0,
the reals to themselves (T (x) = x if x ∈ R), x → T (x),
x−1 → T (x)−1, and |T (x)|2 = |x|2.

63This is theorem 2.2.1 of [149]. It was rediscovered by Max Zorn [264], J.H.Conway and D.Smith (theorem in §8.7 of [68]), and Manogue and
Schray ([169] eq. 29 & 31).
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Proof: The unique multiplicative identity 1 and the unique
additive identity 0 must be mapped to themselves. Then the
integers and rationals must also be self-mapped, and by con-
tinuity, the reals also. (Also, the fact, from theorem 5, that
the reals are the algebraically special “center” of the 2n-ons,
forces them to be self-mapped.) Since there are no automor-
phisms of the reals, any real x must literally be mapped to
x. Now since xx = xx = |x|2 is real, and x is, up to real-
proportionality, the unique 2n-on which, when multiplied by
x, yields a real, we see that x must be mapped to kxT (x) for
some real kx. Now since the only linear transformations of
multidimensional space which act as scalings along rays from
~0, are scalings, kx must be independent of x, i.e. we shall
simply write “k.” But considering x = x, we see that k2 = 1
so that k = ±1. But k = −1 is impossible because the pos-
itive reals are mapped to the positive reals, so k = 1. The
remaining claims should now be obvious. Q.E.D.

Corollary 109 (Inner product, Euclidean metric). Any
automorphism T of the 2n-ons, n ≥ 1, preserves Euclidean in-
ner product: 〈T (x), T (y)〉 = 〈x, y〉. Hence (considering linear-
ity) it must be an orthogonal linear transformation, preserving
~0 and the Euclidean metric.

Proof: Follows from 2〈x, y〉 = |x + y|2 − |x|2 − |y|2. Q.E.D.

Reals, complex numbers, and quaternions. There are
no automorphisms of the real numbers. The automorphism
group of the complex numbers just consists of the identity
and complex conjugation, and is abstractly Z2. The auto-
morphism group of the quaternions is64 abstractly SO(3).
SO(3) consists of the maps x → qxq, where q is a quater-
nion of unit norm (3 degrees of freedom). It includes the map
a + bi + cj + dk → a + bi− cj − dk. (The map x → x is not
included, but is an antiautomorphism, so that is ok.)

Octonions. The automorphism group of the octonions is65

abstractly the 14-dimensional exceptional Lie group G2. It
was stated incorrectly by Gürsey & Tze [121] that G2 con-
sisted of the maps x → (ab)[b(axa)b](ab) for unit norm oc-
tonions a, b (14 = 7 + 7 degrees of freedom). Unfortunately
these maps are almost never automorphisms (nor are any of
the two other, supposedly equivalent, maps given by [121]),
as one concludes immediately by numerical test. Manogue &
Schray [169] claim that G2 consists of the maps

TG(x) : x→ (d`) · (c`)(d · cx) (265)

where c, d and ` are octonions with |c|2 = |d|2 = |`|2 = 1,
re c = re d = re ` = 0, and 〈`, c〉 = 〈`, d〉 = 〈`, cd〉 = 〈c, d〉 = 0
(8×3−10 = 14 degrees of freedom). This, in contrast, passes
numerical sanity checking.

Conway and Smith ([68] appendix to ch.6) note that the octo-
nion automorphisms that take a particular quaternion subal-
gebra to itself form an SO(4) and map the quaternion 2-tuple
(x, y) to (axa, ayb) where a, b are quaternions (wlog of unit
norm) describing the automorphism.

See [68][21][94][227][141][264] for more discussion of the real,
complex, quaternion, and octonion automorphism groups; we
regard that all as known, hence we have contented ourselves

above with statements of the results only, without giving their
proofs.

28.1 Rotations

This leads to the following descriptions of 7D and 8D rota-
tions in terms of octonions, as promised in footnote 10. We
use the facts that

T7/G(x)
def
= LxL (266)

where |L| = 1, performs a rotation in 7-space that lies in
SO(7)/G2, and

T8/7(x)
def
= RxR (267)

with |R| = 1, performs a rotation in 8-space that lies in
SO(8)/SO(7). Thus a 21-degree-of-freedom parameterization
of SO(7), the 7D rotations, is

x→ T7/G(TG(x)) (268)

and a 28-degree-of-freedom parameterization of SO(8), the 8D
rotations, is

x→ T8/7(T7/G(TG(x))). (269)

28.2 16-on automorphisms

Theorem 110 (16-on automorphisms). The full set of
automorphisms of 16-ons (x, y) (regarded as octonion pairs)
are generated by (x, y) → (g(x), g(y)), where g ∈ G2 is an
octonion automorphism, and (x, y)→ (x,−y). The automor-
phism group is abstractly G2 × Z2.

Proof: Regard a 16-on as an ordered pair (x, y) of octonions.

The 16-ons (x, 0) form the octonion subalgebra and also are
the locus of the discontinuity in the right-multiplication map,
hence are algebraically special, hence 16-ons of this form must
be mapped, by any automorphism, only to 16-ons of this same
form.

Plainly, any automorphism of the octonions x → T (x), y →
T (y), yields an automorphism of the 16-ons (x, y), since the
16-on multiplication formula is defined by octonionic formu-
lae. Thus the group of 16-on automorphisms contains G2 as
a subgroup. Our plan to determine the automorphism group
A of the 16-ons will be to mod out the G2 inside it, i.e., we
consider the elements T ∈ A which fix x, i.e. which map
T (x, y) = (x, f(y)).

The 16-on equation (a, b)(c, 0) = (ac, cb) [special case
of our EQ 72] is mapped by such an automorphism to
(a, f(b))(c, 0) = (ac, cf(b)) = (ac, f(cb)). Therefore, any
such automorphism must obey cf(b) = f(cb) for all octo-
nions a, b, c. The only way in which this is possible is that
f(b) = λb for some scalar λ, since66 the only linear trans-
formations of R8 which commute with every octonion left-
multiplication are scalings. It is a simple matter to verify
from EQ 72 that λ = ±1 are exactly the allowed values of
this scaling parameter. Q.E.D.

64This is discussed in §2.1 of [149].
65This is discussed in §2.3 of [149].
66Octonion left-multiplications generate SO(8). So any element of SO(8) commuting with all octonion left-multiplications would necessarily

commute with everything in SO(8), and it should be obvious that only ± the identity matrix can do that.
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28.3 2n-on automorphisms

Theorem 111 (2n-on automorphisms). Let n ≥ 4. The
full set of automorphisms of 2n-ons (x, y) (regarded as pairs
of 2n−1-ons) are generated by (x, y) → (g(x), g(y)), where g
is is a 2n−1-on automorphism, and (x, y) → (x,−y). The
automorphism group (if n ≥ 3) is abstractly G2 × (Z2)

n−3.

Proof: We have already established this for n ≤ 4 so from
now on assume n ≥ 5. The key to the proof is to establish
that the 2n−1-on subalgebra S consisting of the first half of the
coordinates is algebraically “special.” At first this is not obvi-
ous because there are other “decoy”2n−1-on subalgebras, e.g.
consider only allowing the first and third 2n−2-wide blocks of
coordinates to be nonzero.

But S has the following unique property among 2n−1-
dimensional nnacd subalgebras: elements s ∈ S (plus you
may add to s an arbitrary real multiple of a certain algebra
element i which is orthogonal to everything in S) have the
property that the left-multiplication map x → sx for generic
x in the full 2n-on algebra, is a rational function of degree
smaller than every competitor.

Observe that “degree” is a algebraically visible notion, due to
metrical behavior on the unit sphere (since by corollary 109
this metric is automorphism-invariant).

With this hurdle surpassed, we may now simply follow the
proof of the preceding 16-on theorem, changing “16” to “2n,”
“octonion”to“2n−1-on,”and“G2” to“the 2n−1-on aut group,”
everywhere. This establishes the induction step in an induc-
tion on n in which the base cases n = 3 and n = 4 were
already known. Q.E.D.

Remark. Eakin and Sathay [92] found the automorphism
groups of all the Cayley-Dickson 2n-dimensional linear al-
gebras, and claim the answer also is G2 × (Z2)

n−3. Their
proof also depended on finding a (different) reason the 2n−1-
dimensional subalgebra in the first 2n−1 coordinates was“spe-
cial.” Their reason was, essentially ([92], lemma 1.2) that if y
is a Cayley-Dickson 2n-on such that x, x, y associate (in every
order) for all x, then y is of the form a+ib where a, b ∈ R and
i = e2n−1 . However, this claim is not true in our nonlinear
2n-ons. All y of this form indeed work – but also, by theorem
34, all “niners” y work. I.e., 9-alternativity is violated in the
linear Cayley-Dickson 2n-ons if n ≥ 4, but is satisfied in our
nonlinear 2n-ons; this is one (surprising) way in which our
nonlinear 2n-ons are nicer than the linear ones.

Remark. Our proofs about automorphism groups still go
through over any base field F with charF 6= 2, instead of
R. The result is that the automorphism group of the 2n-ons
over F is G2(F ) × (Z2)

n−3 for each n ≥ 3, if G2(F ) is the
automorphism group of the octonions over F .

29 Multiplicative complexity

What is the minimum number of multiplications (and/or divi-
sions) needed to accomplish such bilinear tasks as multiplying
two octonions (or other “ons”)?67 The naive method for mul-

tiplying two Cayley-Dickson 2n-dimensional numbers requires
4n multiplications. However, it is possible to use much fewer.

The simplest example is this. The naive method for multi-
plying two complex numbers P = (a + ib)(c + id) requires
4 multiplications and 2 additive operations. But we may in-
stead employ only 3 multiplications and 3 additive operations
via X = (a + b)(c + d), Y = ac, and Z = bd, and then
P = (Y − Z, X − Y − Z).

I undertook a computer search for bilinear algorithms with
small numbers of multiplications. The results of that search
are in table 29.1. (We shall not describe the search methods
here, reserving that, and a deeper look at the search results,
for a later publication. The theory of bilinear multiplicative
complexity is discussed in [51].)

I believe that the cases with cost2 < 10−9 correspond to ex-
act formulas. Thus, there apparently is a way to multiply
octonions that employs only 24 real bilinear multiplications
(improving over the old record 30; there is a lower bound of
15). The 8-mul and 3-mul exact algorithms for quaternion
and complex multiplication were already known – and known
to be minimal (even if non-bilinear algorithms are allowed)
[106][86][85][76][33][132] – they here have been rediscovered
by computer.68

#muls cost2 cost2
complex bi-complex

2 1.0 1.7× 10−30

3 0.0 1.1× 10−18

4 0.0 4.5× 10−19

quaternion bi-quaternion
5 4.00004
6 2.867 2.0
7 1.934 3.2× 10−18

8 2.4× 10−18 9.5× 10−18

9 4.0× 10−18

octonion bi-octonion
15 8.798
16 6.46
17 1.845
18 0.412
19 0.115
20 3.366 0.038
21 1.0605 0.0063
22 0.00014 0.002
23 8.7× 10−5

24 2.2× 10−10

Figure 29.1. Results of computer search for bilinear formu-
lae for multiplying complex numbers, quaternions, and octo-
nions using few bilinear scalar multiplications. (“Cost2” is 0
if exact formula; positive if inexact formula; computer search
attempts to minimize this but often cannot be completely suc-
cessful due to limitations of floating point arithmetic.) In the
“bi” cases the “scalars” are complex numbers.

What is perhaps more interesting is the computer’s apparent
discovery of a 22-mul “ε-algorithm” for multiplying octonions

67The justification for only considering multiplications is supposed to be that they are much more expensive than either additions or scalings by
constant factors. This is maximally true if the coefficients are not reals but rather large matrices.

68At least 8 multiplications and/or divisions are required to reciprocate a quaternion, and at least 11 are required to perform a quaternionic
division [33].
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to accuracy O(ε). That is: the constant coefficients in the
algorithm depend rationally on ε. (Multiplication by a con-
stant does not count as a “true bilinear multiplication.” By
choosing ε to be, say, 2−100, we can get high accuracy.)

Such ε-algorithms first arose during investigations of the bi-
linear multiplicative complexity of matrix multiplication. The
naive method for multiplying a 2×2 matrix by a 2×3 matrix
requires 2·2·3 = 12 multiplications. Hopcroft et al. [127][128])
found a way to do it with only 11 multiplications. Alekseyev
[13] claimed to have shown 11 to be minimum possible. (There
are errors in his proof, although his result is probably correct.)
However, Bini et al. [32] found a 10-multiplication ε-formula,
illustrating the fact that ε-algorithms can have fewer multi-
plications than any exact algorithm. This leads [51] to an
algorithm for (exactly) multiplying N ×N matrices, N →∞,
in O(N2.77989) (exact) arithmetic operations, improving over
both the naive O(N3) method and Strassen’s O(N2.80735)
method. The present record is N ε+2.375477... by Coppersmith
and Winograd [69] and employs not only ε-algorithms, but
many other ideas due to many authors.

The fact that bicomplexes may be multiplied in only 2 com-
plex multiplications (known to be minimal) is due to their
algebra isomorphism to C ⊕ C discovered by C.Segre [230]
in 1892 (see our theorem 9), and here rediscovered by the
computer. This is the simplest example I know of where, by
allowing complex constant coefficients in a bilinear algorithm,
the mul count may be decreased below what is possible if only
real coefficients are permitted.

The fact that biquaternions may be multiplied in only 7 com-
plex multiplications (which is known to be minimal) is due
to their algebra isomorphism (known to C.F.Gauss) to C

2×2,
combined with Strassen’s 7-mul formula [240] for multiply-
ing 2 × 2 matrices, both of which are rediscovered here by
computer. The situation with bi-octonions remains unclear.

Theorem 112 (Both way Cayley-Dickson product).
There is a bilinear algorithm for computing both AB and
BA simultaneously, where A and B are two N -dimensional
Cayley-Dickson numbers, in

(
N+1

2

)
bilinear multiplications.

Remark. This improves over the naive N 2 by a factor ap-
proaching 2 as N →∞.

Proof: Here is the algorithm:

1. Find all Ai ·Bi products (N in all).
2. Find all (A0+Ai)·(B0+Bi) products for i = 1, . . . , N−1,

i.e. N − 1 in all.
3. Find all (Ai −Aj) · (Bi + Bj) products for 1 ≤ i < j ≤

N − 1, i.e. (N − 1)(N − 2)/2 in all.
4. Finally, we claim it suffices to take linear combina-

tions (with constant coefficients) of the preceding re-
sults. The total number of bilinear multiplications re-
quired is N + N − 1(N − 1)(N − 2)/2 =

(
N+1

2

)
.

The final claim is justified because this corresponds to De
Groote’s 10-mul method [76] for quaternions in the case N =
4 = 22 and to Karatsuba’s complex-number-multiplication
method if N = 2 = 21, and we may now just consider all the
quaternion subalgebras inside Cayley-Dicksons if N = 2n > 4.

This algorithm actually works in any linear algebra whose
multiplication table is defined by quaternion (or complex)
subalgebra multiplication tables with 1 common identity ele-
ment. Q.E.D.

30 Open problems

1. Top open problems about the loop taxonomy in
§26.2 include:

1. Is there a finite equational basis for diassociativity?
Probably the answer is “no” since there is none for
power-associativity [102]. (One might also ask: is there
a finite equational basis for diassociativity within power-
associative loops?)

2. Are IP-alternative loops necessarily power-associative?
3. Is every M4 loop an A-loop?
4. Does LR-alternativity imply 2-sided inverses?

Perhaps related, and perhaps not: Are flexible 16-ons (i.e
obeying x · yx = xy · x) impossible? (See also [28] and our
§26.5 re this.)

2. (a) Is the multiplicative loop of unit-norm 16-ons (over R)
“simple?” Paige [192] and Liebeck [165] showed that the oc-
tonions over finite fields were the only simple finite Moufang
loops, aside from the (already-classified) finite simple groups.
(b) If the 16-ons are taken over finite fields, instead of over R,
what happens? Does it lead to any interesting discrete struc-
tures (such as the Hamming codes and the 240 root vectors
of E8, which arise [67] from the unit-norm octonions)? Are
there interesting derived algebras?

3. Can it be shown, on topological grounds, that nnacd di-
vision algebras over R, whose generic division problems have
unique solutions, can only exist in dimensions 1,2,4,8,16 –
even if a discontinuous multiplication map (but with only cer-
tain mild kinds of discontinuities, e.g. “generalized smooth-
ness” in the sense of §22) is permitted? Conjecture:
generalized-smooth maps Sn × Sn → Sn exist only if n ∈
{1, 3, 7, 15}. Conjecture: If there are n tangent vector fields,
all mutually orthonormal, on Sn, and these fields are “gener-
alized smooth,” then n ∈ {1, 3, 7, 15}. Conjecture: If there
is a generalized-smooth “vector-product” operation on pairs
of n-vectors, then n ∈ {1, 3, 7, 15}. Conjecture: If there
is a nnacd-algebra in R

n, with 2-sided identity, with right-
linear multiplication, and such that the Euclidean norm is
multiplicative, and in which generic division problems have a
unique solution, then n ∈ {1, 2, 4, 8, 16}.
4. Do the 16-ons have applications in theoretical
physics? J.C.Maxwell’s [171] initial derivation of his equa-
tions for electromagnetism clearly was inspired by the
quaternions. Recently, quaternions have been usefully em-
ployed in celestial mechanics, e.g. solar system simulations
[247][248][249][250][251]. They have also been used in fluid
mechanics [221]. C.Lanczos, in his PhD thesis [164] of 1919,
claimed that the Maxwell vacuum equations are precisely the
conditions – analogous to the Cauchy-Riemann equations for
complex functions – for the “analyticity”69 of a biquaternion-

69See §21.3. Much later, Lanczos’s characterization of Maxwell’s equations was rediscovered by Imaeda [137] by using Fueter’s theory. Neither
Fueter’s group, nor Imaeda, were aware of Lanczos’s earlier work. Lanczos also discovered the quaternion generalization of the Cauchy integral
theorem (which involves a 3-dimensional integral) well before these authors.
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valued function in 4-space. Daboul & Delbourgo [73] dis-
covered an interesting new representation of octonions, and
then used it to show70 that P.A.M.Dirac’s equation for the
wavefunction of an electron has a very nice octonionic refor-
mulation – indeed apparently nicer than Dirac’s own formu-
lation involving certain 4 × 4 matrices. (These, of course,
are two of the most important equations in physics. But see
also [193].) Proca’s equation for spin-1 particle (“Maxwell’s
equations with a massive photon” [237]) also can be refor-
mulated quaternionically, and we’ve seen earlier how Lorentz
transformations may be nicely represented biquaternionically.
So far, physicists have not made any great use of these ob-
servations. Baez ([21], page 147) claimed that SL(2, D) is
algebraically isomorphic to the Lorentz group SO(d+1, 1) for
the d-dimensional (d ∈ {1, 2, 4, 8}) division algebras D with
identity over R.

More recently there has been interest in, and success at, re-
formulating 10-dimensional string theory and supersymmetry
theory octonionically, and in trying to develop octonion-based
Grand Unified Theories. Numerous papers on this will be re-
trieved in any computerized literature search, but we are in-
competent to comment about them. The validity of the Trot-
ter product formula (EQ 153) – which is the basis of quantum
mechanics – in the 16-ons, also suggests the possibility of ap-
plications to physics.

5. Might it be possible to (a) Reach a complete understand-
ing of every possible rational “doubling formula” that leads
to a multiplication which preserves Euclidean norm; (b) show
that if such a 2n-dimensional multiplication exists, it must
arise via n successive such doublings; (c) understand in what
ways our doubling formula is the “best” among these?

6. Improve our 16-on uniqueness theorem 60 so that no as-
sumption that the 16-ons have an 8D subalgebra, is needed
anymore. Decide what (if anything) the next (i.e. 15D) iden-
tity should be, corresponding to the Jacobi identity and Mal-
cev identities for the 3D and 7D vector products arising from
the pure-imaginary quaternions and octonions respectively.

7. Classify the “homogeneous” (in the sense of [84]) nnacd -
algebras. I conjecture there are none with dimension> 8.

8. For what percentage of unit-norm y is the 2n-on right-
multiplication map x→ xy two-to-one, one-to-one, etc.?

9. Find some version of the following conjecture that is
true, and prove it: The 2n-ons are the only normed left-
alternative right-linear weak-linear power-associative nnacd-
algebras whose multiplication law is defined by rational func-
tions, such that they contain a 4D associative71 division sub-
algebra H , and such that the flexible, alternative, and dis-
tributive laws each are obeyed provided at least one of their
variables lies in H .

10. Find the multiplicative complexity of 2n-on multiplica-
tion.

11. What cardinalities are possible for finite abstract 2n-ons,
as defined in §26.5? Are the cardinalities that arise by just
applying our doubling construction starting from some finite
field, the only possibilities?

31 Historical notes

Some of the following information about the little-known early
mathematicians Olinde Rodrigues [188] and Thomas P. Kirk-
man [31] (and the latter’s famous “schoolgirls problem” –
which as we now see is related to the sedenions) seems to be
unavailable in the usual sources about the history of mathe-
matics.

31.1 Rodrigues: mathematician and social
reformer

Benjamin Rodrigues was born 6 Oct 1795 and died 17 Dec
1851, both in France. He used “Olinde” in preference to his
given first name. Apparently nobody knows what he looked
like. His father was an accountant/banker of Spanish de-
scent. Rodrigues acquired a doctorate at the newly founded
University of Paris in 1815. He was influenced by Gaspard
Monge (1746-1818) and taught by M.Dinet. R. did not enter
the Ecole Polytechnique despite taking their admission exam
twice (came top). There have been claims R. was barred from
admission because of being Jewish, but those claims seem
contradicted by evidence. Nevertheless, anti-Semitism after
the restoration in 1816 seems to have been sufficiently strong
(and R. found this obvious) to block him from pursuing an
academic career. R’s thesis contained the (now well known,
but at that time ignored and forgotten) “Rodrigues formula”
for Legendre polynomials. At about the same time he found a
theorem associated with his name about curvature of surfaces
in differential geometry.

Rodrigues later became a wealthy Parisian banker, the direc-
tor of the Caisse Hypothécaire bank, and an investor in early
railroads. In his spare time he published pamphlets on so-
cial reform, politics, and banking, including arguing against
racism and sexism. Rodrigues is best known as a patron
and/or disciple of the philosopher and pre-socialist economist
Claude Henri de Rouvroy, the Comte de Saint-Simon (1760-
1825). Apparently Rodrigues and Saint-Simon only first met
in May 1823, when R. was 26. This was only two years be-
fore the latter’s death on 19 May 1825. Rodrigues became,
by some accounts, S-S’s chief assistant, and the formation of
the sect of Saint-Simonians was largely due to his exertions.
Rodrigues’ brother Eugene apparently also was an excellent
student at the Univ. of Paris and a follower of Saint-Simon,
but he died at the age of 23 from a heart problem.

Saint-Simon had initially been a rich nobleman (his family
claimed a line of ancestors tracing back to Charlemagne; S-S.
once organized the first company to build the Panama Canal,
but that project was overtaken by the French Revolution and
failed). But he later became penniless. S-S. wrote prolif-
ically about such topics as the future of industrialization,
the utopian reorganization of society, emancipating women,
new improved kind of Christianity, etc. Some have consid-
ered Saint-Simon, for his advocacy of studying history and
religion via quasi-scientific methods, to be the founder of so-
ciology and perhaps of theology. He is credited with inspiring
Marx and Engels and of being the inventor of the Panama

70The key problem overcome by Dirac was to find the “square root” a certain differential operator. The point is that such operator square roots
can be easy to create if we allow ourselves to use octonions.

71Perhaps “4D associative” must be replaced by “8D alternative.”
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Canal concept. But some have dismissed him as unorganized
and incoherent.

After Saint-Simon’s death, his followers diverged in differ-
ent directions, some advocating “free love,” others forming
a quasi-religious cult. Rodrigues became infuriated with the
directions leading Saint-Simonians S-A. Bazard and especially
P. d’Enfantin were taking, and in February 1832 split away
from them, declaring himself to be the one true representative
of Saint-Simon. Rodrigues published Saint-Simon’s Oeuvres
in 1832 and succeeded him as head of the French Socialist
party (or what later became that party). Also, soon after
S-S’s death, R. founded the journal Le Producteur.

Rodrigrues’ 1840 paper [J.de Math. Pures et Appliquees 5
(1840) 380-440] on rotations, discussed in [15][117], may be
thought of as a discovery – predating Hamilton’s – of the
quaternions. (Still earlier, C.F.Gauss had also made un-
published remarks about 2 × 2 complex matrices and Eu-
ler’s 4-square formula [published by Euler in 1754 and ex-
pressing the multiplicativity of the quaternion norm], which
also may be thought of as a pre-Hamilton discovery of the
quaternions. Hamilton published incorrect versions of Ro-
drigues’ rotation formula. But, to paraphrase a remark by
John Tukey regarding his [re]discovery of the FFT: when
Hamilton discovered the quaternions, they stayed discovered.)
In combinatorial works which also were forgotten and ig-
nored until long afterwards, Rodrigues discovered [J.de Math.
P.&A. 4 (1839) 236-240] that the number of permutations of
{1, 2, 3, ..., n} having I inversions was the coefficient of tI in
(1 + t)(1 + t + t2)(1 + t + t2 + t3) . . . (1 + t + t2 + ... + tn−1),
and found a formula (derived recursively) for the number of
ways to triangulate an n-gon.

A conference on Rodrigues’ life and works took place on 1 Dec
2001 at Imperial College, London [188]. On 17 July 1898, the
Olinde Rodrigues, 3098 tons, was captured by US forces in
the cruiser New Orleans off Cuba when it attempted to run
the US blockade of that island 72.

31.2 Kirkman: sedenion-schoolgirl connec-
tion?

The triples in EQ 55 are a solution to the Reverend
Th.P.Kirkman’s famous “15 schoolgirls problem” from combi-
natorics [153][156][157], indeed, it is [170] the most symmetric
possible STS(15), with 8!/2 symmetries (or 168 symmetries
for either of its two resolutions into a KTS(15), which num-
ber also is maximal).

Could Kirkman (1806-1895) – who was a graduate of Trin-
ity College, Dublin (same location as Hamilton), was a friend
of Hamilton’s, and was interested in quaternions, and who
created the schoolgirls problem only 4 years after Hamilton
and Graves discovered their algebras – have known about the
sedenions, and indeed might his invention of the schoolgirls
problem have been inspired by sedenionic questions? The
answer appears to be: Kirkman knew of the connection be-
tween sedenions and the schoolgirls problem and worked on
both during the same 3-year-wide span. However, Kirkman’s
papers contain errors which prevented him from actually dis-
covering the sedenions.

Here is a deeper look. In 1846, Kirkman invented [31][153]
what now are mis-named “Steiner triple systems” (STSs), in-
deed completely settling their existence question years before
Steiner even posed it. An STS(n) is a set of triples of n
things such that each pair of things is contained in exactly 1
triple; Kirkman showed an STS(n) exists iff n mod 6 ∈ {1, 3}.
He later posed and solved [156][157] the “schoolgirls prob-
lem” of finding a “resolvable” STS(15), i.e. a KTS(15),
where a KTS(n) means an STS(n), which may be parti-
tioned into “parallel classes” of n/3 mutually-disjoint triples
each. J.J.Sylvester then asked whether, further, the set of all(
15
3

)
triples could be partitioned into 13 disjoint KTS(15)’s.

Kirkman claimed incorrectly [156] to have solved Sylvester’s
problem, but in fact his KTS(15)’s overlap. The first gen-
uine Sylvester solutions were found by R.H.F.Denniston over
120 years later [77]. Kirkman in 1848 [154][156] wrote pa-
pers concerning the possible existence of“pluquaternions,” i.e.
a 16-dimensional (or more generally N -dimensional) algebra
with multiplicative Euclidean norm. Kirkman (spurred by a
“pregnant hint” from Cayley) claimed to give a combinatorial
test of existence for such N -ons for any particular even N ,
and this test was, essentially, the existence question for an
STS(N − 1) but with certain sign/chirality/consistency con-
ditions imposed on each triple. He further claimed to have
carried out this test in the case N = 16, finding as the result
that 16-dimensional pluquaternions, and bilinear sum-of-16-
squares identities, could not exist. While this conclusion of
impossibility was correct, as was proved by A.Hurwitz nearly
50 years later, Kirkman’s reasoning wasn’t. He seems not
to have understood how to manipulate nonassociative quan-
tities. Indeed, by means of some bogus reasoning Kirkman
deduced that the sedenions exhibit an internal contradiction
of the form i = −i, and, not to be deterred, proposed intro-
ducing “bisignal imaginaries” for which this would not be a
contradiction, but merely a new law. This is quite insane.
However, this can be somewhat salvaged if we recognize (and
this is not at all what Kirkman had in mind) that 1 = −1
over any field F with charF = 2. I.e.:

Theorem 113. For any N with N mod 6 ∈ {2, 4}, there is an
N -dimensional commutative (but in general non-associative)
algebra over GF2, such that the sum of squares (which is just
the parity of the number of 1-bits) is multiplicative.

Proof: Define N − 1 different
√
−1 symbols, and define their

multiplication by requiring that each triple from a STS(N−1)
on the symbols, acts like quaternions (i, j, k). The norm will
be multiplicative because all the “unwanted cross terms” will
be multiples of 2, i.e. 0; i.e. because (ax+by)2 = (ax)2+(by)2

in characteristic-2 fields. Since the quaternions mod 2 are
commutative, so are these. Indeed these N -ons are alterna-
tive, i.e. diassociative, but for all sufficiently large N one
can easily construct example STSs yielding non-associativity.
Q.E.D.

On the other hand, Kirkman’s actual constructions of Steiner
systems and of sum-of-squares identities, presumably were
correct (and all were rediscovered by later authors). For ex-
ample, Kirkman found that any product of two sums of 8k
squares may always be expressed as a sum of 8k2 squares

72The former name of this ship was Franconia, built 1872. It was purchased from Hamburg America Line and scrapped in 1908. This may be
the only ship named after a mathematician.
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of bilinear functions, so that, in particular, from the case
k = 2 we have that (

∑
16 x2

j )(
∑

16 y2
j ) = (

∑
32 z2

j ) where
the zj are bilinear functions of the xk and y`. Kirkman
credits this particular (k = 2; 16,16,32) special case to a
communication from “professor J.R.Young.”73 Also, Kirk-
man showed any product of sums of (6k + 2b + 8)n squares
where k ≥ 0 and b ∈ {0, 1}, may be expressed as a sum of
[9k2 +3(2b+5)k +(b+7)b+8]n2 squares. In particular, take
n = 1, k = 0, b = 1 to get: (

∑
10 x2

j )(
∑

10 y2
j ) = (

∑
16 z2

j ).
These (16,16,32) and (10,10,16) identities were rediscovered
much later, and still later were proved, via topology [2][211],
to be best possible. (See also [163][234][5].)

32 Conway’s role in all this

John H. Conway74, after hearing lectures by A.Pfister in
about 1969, invented EQ 72 and realized it would yield 16-
ons with multiplicative Euclidean norm. He did not publicize
this. In 2002, Conway was writing a book [68] on Octonions
with Derek Smith75and was attempting to un-bury his old 16-
on ideas, and happened to mention EQ 72 to me. After then
discovering its generalization to any n and the 16-on division-
existence and uniqueness theorems, I proposed to Conway
that we write a joint paper on 2n-ons. But, due to other re-
sponsibilities, Conway ultimately was only able to do a small
fraction of the work on this paper, and hence eventually pro-
posed that he no longer be listed as an “author,” and instead
merely be given a hefty “acknowledgment.” Conway has been
very helpful to me throughout. He also was mostly respon-
sible for the simplified equation 111 and theorem 110, and
partially responsible for the notions of the 8 “pre-eminent”
formulas in §27 as well as spotting several important errors in
early drafts.

32.1 Conway’s ideas about notation and
simplicity

Conway emphasized to me the importance of presenting the
simplest possible form of the key doubling formula which de-
fines the 2n-ons, and he wanted to devise the simplest possible
notations for dealing with them, and also to prove that our
definition of 2n-ons was the “best” possible one. Let me dis-
cuss some of his and my thoughts on that.

First, it is not clear what “best” (or “simplest”) should mean.
Our lemmas 62 and 63 and theorems 60 and 64 (see also §14)
gave senses on which our 16-ons are uniquely best, and weaker
senses in which our 2n-ons for all n are uniquely best. But
neither Conway nor I are fully satisfied with this, and indeed
I found different 16-ons (EQ 259) which in some ways seem
“superior.”

Conway was unhappy about the large number of “bars” in my
defining formula EQ 68 for the 2n-ons76. Therefore Conway
devised the simplified but isomorphic formula EQ 111, which
my lemma 62 shows is indeed the simplest possible way to
rewrite EQ 68.

But EQ 111 has some annoying features, such as the fact
that “left multiplication by i”does not do the “expected thing
(0, 1)(c, d) = (−d, c)” [although this is obeyed by EQ 68] but
instead causes (0, 1)(c, d) = (−d, c). Thus, annoyingly, the
2n-ons of EQ 111 obey neither the “eyes-left (a, b) = a + ib”
nor “eyes-right (a, b) = a + bi” conventions, despite the fact
that they are isomorphic to the “eyes-left” 2n-ons of EQ 68.
Unhappiness reigned.

Conway then came to believe that the following was the Path
Of Righteousness. Define not one, but two, (related) vector-
vector multiplication operations among 2n-ons a, b, denoted

c = a{b} and c′ = {a}b (270)

The first of these is the usual 2n-on multiplication c = ab of

EQ 68. The second is c′ = ab. I.e.,

{a}b def
= a{b}. (271)

(In the 2n-ons with n ≤ 3, these two kinds of multiplication
are identical due to theorem 8.) The {}’s surround the mul-
tiplicand in which the multiplication is linear 77.

We hypothesize that the ab operation will arise frequently,
as will long sequences of repeated left-multiplications or re-
peated right-multiplications. Conway’s notation is well suited
to handling these events. For example, Conway would rewrite
our 2n-on defining formula EQ 68 as

(a, b) {(c, d)} =
(
a{c} − {d}b, {c}b + {a{{d}b−1}}b

)
,

(272)
[where in the special case b = 0 then use

(a, b) {(c, d)} = (a{c} − {d}b, {c}b + a{d}) (273)

instead of EQ 272, and as usual (a, b)
def
= (a,−b)] which has

only two bars, and also strikingly resembles the original linear
Cayley-Dickson formula EQ 48, making it easy to remember.
Because this is so nice, Conway then dropped his objections
to EQ 68 and abandoned his favortism of EQ 111, provided
EQ 68 is rewritten as EQ 272.

I have chosen to stay with conventional algebra notation in
this monograph, but Conway’s notation may prove superior
in the long run.

73Dickson [79] cites papers by Young in Trans. Royal Irish Acad. 21, II (1848) 311-338; Proc. Royal Irish Acad. 4 (1847) 19-20, 50; Philosophical
Magaz. (3) 34 (1849) 114.

74Conway: Math. Dept., Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000.
75

Note on Smiths. Derek Smith (coauthor with J.H.Conway of book [68] on octonions), J.D.H.Smith (loop theorist and former student of
Conway’s), Tara L. Smith (coauthor with Paul Yiu of papers about Octonions, Cayley-Dickson algebras, and Hurwitz’s sum of squares problem),
Frank D. “Tony” Smith (author of extensive strange web pages about octonions and physics), and Warren D. Smith are, as far as we know, all
unrelated.

76But I personally rather like them because, essentially, the most bars that can be used, are used, and always in a right-to-left manner, which
makes the formula easy to remember – also the matrix formulation in EQ 57 has a pleasing “symmetry” about it.

77It seems best to emphasize linearity, rather than nonlinearity, since in long products, if n ≥ 4, there will be exactly one linear multiplicand, in
general.
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33 Acknowledgments, apologia, and
computer code

33.1 Acknowledgments
Daniel B. Shapiro78, author of [231], also helped me by con-
tributing about 4 pages of comments on an earlier draft,
including pointing out several important papers I had not
known about, pointing out the current formulation of theo-
rem 4 item 6, and spotting one of the same errors detected by
Conway. Derek Smith also helped me.

33.2 Two missing topics
Despite its length, in some ways the present work remains
incomplete. The two most significant omissions (which I had
originally intended to include) are:

1. A section on how to define “determinants” of matrices
of 2n-ons,

2. Studies of 2n-ons over finite or discrete fields and rings
rather than the reals; the question of whether interest-
ing new combinatorial configurations can be obtained
in that way; and the examination of subalgebras of the
2n-ons.

These perhaps will be addressed in future works.

33.3 Computer code
During this research I wrote a useful collection of com-
puter routines, in the computer language “C,” [158] for
experimenting with 2n-ons and their variants. It is
available electronically (as is this monograph itself) from
http://math.temple.edu/∼wds/homepage/works.html.
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[44] L.E.J.Brouwer: Über Abbildungen von Mannigfaltigkeiten,
Math.Annalen 71 (1912) 97-115.

[45] Robert B. Brown: On generalized Cayley-Dickson algebras, Pa-
cific J. Math. 20 (1967) 415-422.

[46] Robert B. Brown & Alfred Gray: Vector cross products, Com-
mentarii Mathematici Helvetici 42 (1967) 222-236.

[47] Richard Hubert Bruck: A survey of binary systems, Springer-
Verlag 1958, third corrected printing 1971 (Ergebnisse der Math.
#20).

[48] R.H.Bruck: Loops with transitive automorphism groups, Pacific
J. Math. 1 (1951) 481-483.

[49] R.H. Bruck & Erwin Kleinfeld: The structure of alternative divi-
sion rings, Proc. Amer. Math. Soc. 2 (1951) 878-896.

[50] R.H. Bruck & L.J. Paige: Loops whose inner mappings are auto-
morphisms, Annals of Math. 63,2 (1956) 308-323.

[51] P.Bürgisser, M.Clausen, M.A.Shokrollahi (with T.Lickteig): Al-
gebraic complexity theory, Springer (GMW #315) 1997.

[52] John Canny: Improved algorithms for sign-determination and
existential quantifier elimination, Computer Journal 36,5 (1993)
409-418.

[53] E.Cartan, J.A.Schouten: On Riemannian geometries admitting
an absolute parallelism, Koninklijke Akademie van Wetenschap-
pen te Amsterdam, Proc. Sec. Sciences 29 (1926) 933-946.

[54] J.W.S. Cassels, W.J. Ellison, A. Pfister: On sums of squares and
on elliptic curves over function fields, J. Number Theory 3 (1971)
125-149.

[55] Arthur Cayley: On Jacobi’s elliptic functions in reply to the Rev.
B. Bronwin; and on quaternions, Philos. Magazine 26 (1845) 208-
211.

[56] O.Chein: Lagrange’s theorem for Mk loops, Arch. Math. Basel
24 (1973) 121-122.

[57] O.Chein: Moufang loops of small order I, Trans.Amer.Math.Soc.
188 (1974) 31-51.

[58] O.Chein: Moufang loops of small order, Memoirs AMS 13 (1978)
#197.

[59] O. Chein, M.K. Kinyon, A. Rajah, P. Vojtechovsky: Loops and
the Lagrange Property, Results Math. 43, 1-2 (2003) 74-78.

[60] O.Chein & H.O.Pflugfelder: On maps x → xn and the isotopy-
isomorphy property of Moufang loops, Aequationes Math. 6
(1971) 157-161.

[61] O.Chein, H.O.Pflugfelder, J.D.H.Smith: Quasigroups and loops,
theory and applications, Heldermann Verlag 1990.

[62] O.Chein & A.Rajah: Feasible orders of nonassociative Moufang
loops, Comment.Math.Univ.Carolin. 41,2 (2000) 237-244.

[63] O.Chein & D.A.Robinson: An ‘extra’ identity for characterizing
Moufang loops, Proc.Amer.Math.Soc. 33,1 (1972) 29-32.

[64] V.P.Chuvakov: Prime, right-alternative, almost-alternative rings,
Algebra & Logic 25 (1986) 380-387

[65] J.H.Conway, R.T.Curtis, S.P.Norton, R.A.Parker, R.A.Wilson:
ATLAS of finite groups, Clarendon Press Oxford 1985.

[66] J.H.Conway: On numbers and games, Academic Press 1976.

[67] J.H.Conway & N.J.A.Sloane: Sphere packings, lattices, and
groups, (Third edition) Springer-Verlag 1998.

[68] J.H.Conway & Derek Smith: On quaternions and octonions,
A.K.Peters, Jan. 2003.

[69] D.Coppersmith & S.Winograd: Matrix multiplication via arith-
metic progressions, J.Symbolic Comput. 9,3 (1990) 251-280. Ab-
breviated version in ACM Sympos. Theor. Computer Sci. 19
(1987) 1-6.

[70] H.S.M.Coxeter: Quaternions and Rotations, Amer. Math.
Monthly 53 (1946) 136-146 & postscript 588.

[71] H.S.M.Coxeter: Integral Cayley numbers, Duke Math. J. 13
(1946) 561-578.

[72] Jane Cronin: Fixed points and topological degree in nonlinear
analysis, American Mathematical Society, Providence, R.I. 1964

[73] J.Daboul & R.Delbourgo: Matrix representations of octonions,
and generalizations, J.Math’l Physics 20,1 (1984) 1-10.

[74] J.W.Dauben: Georg Cantor: His Mathematics and Philosophy of
the Infinite, Princeton University Press 1990.

[75] C.A.Deavours: The Quaternion Calculus, Amer. Math. Monthly
80,9 (1973) 995-1008.

[76] Hans F. de Groote: On the complexity of quaternion multiplica-
tion, Information Processing Letters 3,6 (July 1975) 177-179.

[77] R.H.F. Denniston: Some packings with Steiner triple systems,
Discrete Math. 9 (1974) 213-227; Sylvester’s problem of the 15
schoolgirls, 229-233.

[78] P.Dentoni and M.Sce: Funzioni regolari nell’algebra di Cayley,
Rendiconti Seminario Matematico Universita Padova 50 (1973)
251-267.

[79] L.E.Dickson: On quaternions and their generalization and the
history of the eight square theorem, Annals of Math 20,3 (1919)
155-171 and 297.

[80] L.E.Dickson: A new simple theory of the hypercomplex integers,
Journal de Math. Pures et Appliquées (1923) 281-326

[81] Leonard Eugene Dickson: Algebras and their arithmetics, Univ.
Chicago Press 1923.
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[129] H.Hopf: Über die Abbildungen von Sphären auf Sphären
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[135] Adolf Hurwitz: Über die Komposition der quadratischen For-
men, Mathematische Annalen 88 (1923) 1-25 (published posthu-
mously).

[136] K. Imaeda & M.Imaeda: Sedenions, algebra and analysis, Appl.
Math. & Computation 115,2-3 (2000) 77-88.

[137] K. Imaeda: A new form of classical electrodynamics, Il Nuovo
Cimento 32,1 (1976) 138-162.

[138] K.Imaeda & M.Imaeda: The theory of functions of an octonion
variable, The Bulletin of the Okayama Univ.of Science 19A (1984)
93-; 20A (1985) 133-. (I have been unable to obtain a copy of this.)

[139] K.Imaeda, H.Tachibana, M.Imaeda, S.Ohta: Solutions of the oc-
tonionic wave equation and the theory of functions of an octonion
variable, Il Nuovo Cimento 100B,1 (1987) 53-71.

[140] T.Iwaniec, G.Martin: The Liouville theorem, pp.339-361 in Anal-

ysis and Topology, World Scientific 1998.

[141] N.Jacobson: Composition algebras and their automorphisms,
Rendiconti del circolo matematico di Palermo, ser 2, vol 7 (1958)
55-80.

[142] N.Jacobson: Basic Algebra (2 vols), Freeman 1985.

[143] N.Jacobson: Structure and representations of Jordan algebras,
American Mathematical Society (Colloquium pub #39) 1968.

[144] N.Jacobson: Lie algebras, Dover 1979.

[145] D.Joyner, R.Kreminski, J.Turisco: Applied abstract algebra,
Johns Hopkins Univ. Press 2003.

[146] Valentine Kabanets & Russell Impagliazzo: Derandomizing Poly-
nomial Identity Tests Means Proving Circuit Lower Bounds, Tech-
nical Report TR02-055, Electronic Colloquium on Computational
Complexity. and ACM Sympos. Theoretical Computer Sci. 35
(2003) 355-364.

[147] I.L. Kantor & A.S. Solodovnikov: Hypercomplex numbers, An
elementary introduction to algebras, Springer-Verlag 1989.

[148] Irving Kaplansky: Infinite-dimensional quadratic forms admitting
composition, Proc. Amer. Math. Soc. 4 (1954) 956-960.

[149] Sailah H. Khalil & Paul Yiu: The Cayley-Dickson algebras, a
theorem of Hurwitz, and quaternions, Bulletin de la société des
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