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Abstract —

Most democracies involve elections in which some large

number of voters somehow choose W winners from among

N candidates, 0 < W < N . It is desired that those winners

“represent” those voters well, and (simultaneously) that

the voters tend to “prefer” them to the nonwinners. Un-

fortunately, these requirements can conflict and are vague.

We propose “asset voting,” a new voting scheme which

seems subjectively superior to all previously proposed

multiwinner schemes I know. Objectively, it has 12 ad-

vantages (which we state reasonably explicitly), whereas

I know no competitor with all 12. An experimental com-

parison of asset voting with other schemes in the single

winner case shows that it is sometimes superior to, and

other times inferior to, the previously undisputed cham-

pion “range voting.” The best available competitors to as-

set voting in the multiwinner case are forms of Hare’s Sin-

gle Transferable Vote equipped with the “Droop quota.”

Keywords — Asset voting, range voting, multiwinner elections,

Bayesian regret, STV, Arrow and Gibbard impossibility theorems.

1 Asset voting (and some variants)

Let there be N candidates from whom the voters have to
choose W winners, 0 < W < N . This is sometimes called the
problem of “electing a committee.”

“Asset voting,” our new election scheme:

Each voter’s vote is an N -tuple of nonnegative reals summing
to 1. These vote-vectors are added to get each of the N “vote-
totals.” Now, we do not just take the greatest W coordinates
of the sum-vector to determine the winners. Instead we enter
a “negotiation” stage, in which any subset of the candidates
is allowed to agree to re-allocate its votes among themselves.
After all such re-allocations have ceased, then the owners of
the top W vote-counts are the winners.

Example: Suppose there are N = 4 candidates A, B, C, D
and 5 voters, and we wish to select W = 2 winners. Suppose
the votes are as in table 1.1. If no negotiation were to take
place, then C and D would be the co-winners. However, sup-
pose instead that B agrees to sacrifice his votes by awarding
them to A. In that case A, now with 1.8 votes, and D (still
with 1.9) would (regardless of what C does) be the co-winners.

voter\canddt A B C D
#1 .7 .3 0 0
#2 .3 .5 .2 0
#3 0 0 1 0
#4 0 0 .1 .9
#5 0 0 0 1

total 1 .8 1.3 1.9

Figure 1.1. Voting example. N

A perceived disadvantage of the proposed scheme might be
the unconstrained character of the negotiations. Voters might
become unhappy about the possibility of mysterious, perhaps
partially secret, deals. For example, suppose all the candi-
dates walk into a smoke-filled room, then walk out an hour
later to announce the W winners, which seem completely un-
related to the votes, and then everybody refuses to say how
those W were chosen. To overcome that, here are four possi-
ble more constrained variant schemes:

1. We could demand the following bottom-up negotiation

procedure:

1. Find the candidate who got the fewest votes.
2. Eliminate him and ask him to distribute his votes among

the (not-yet-eliminated) candidate(s) of his choice in
any way he pleases.

3. Repeat until only W candidates remain. They are the
winners.

2. Same except that“sure winner” candidates with more than
1/(W + 1) of the votes are also questioned and asked if they
wish to donate any of their votes to anybody else (which they
may well wish to do, since they have “excess” votes).

3. We could also further constrain the negotiations by de-
manding, in step 2 of the procedure of variant 1, that each
eliminated candidate award all of his votes to a single not-
yet-eliminated candidate of his choice.

4. Optionally, we could modify variant 3 by permitting the
eliminated candidate to keep all his votes for himself, “taking
them to the grave.”

These variants also have the advantage that they definitely
terminate in N or N−W steps. In all of these variant schemes,
the full step-by-step description of who donated how much to
whom, would be announced to the public as part of the an-
nouncement of the election results. Also, it would be best
if the terms of any deals the candidates make among them-
selves, were made public too. In most cases the candidates
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themselves would wish to do that, but in cases when they do
not, the publication requirement seems unenforceable.

Of these, I presently prefer variant #2, with the candidate
chosen each negotation round for questioning being the one
with > 1/(W + 1) of the votes (but the least votes subject
to this) if one exists, otherwise the one with the least votes,
both of these subject to the overriding rule that no candidate
is ever questioned for a second time. However, I do not have
any very convincing argument that this variant is the best,
and there are other possible variants (e.g. restrictions could
be placed on the “total flow”of votes transferred in and out of
each candidate, or we could stop the negotiation once certain
conditions are satisfied).

2 Asset advantages

a1. Asset voting tends to cause more-popular candidates to
win, as opposed to simply attempting to get a representative
cross section of the electorate without any regard for quality
of the candidates as perceived by the voters.

a2. It tends to cause the winners to represent the electorate
as a whole – as opposed to zeroing out minority groups.1

a3. It encourages peaceful harmony among candidates (since
they must negotiate).

a4. In the single-winner special case W = 1 it will always
elect a true-majority winner (i.e. one with more than 50%
of the total votes) if one exists. (But if there is none, then it
remains possible that the other candidates can combine forces
to defeat the top vote-getter.) More generally, any candidate
getting more than 1/(W +1) of the votes can guarantee to be
among the W winners.

a5. The well known defect of plurality voting in 3-way single-
winner elections – the logic that voting for the apparently least
popular candidate is a “wasted vote” – seems absent in asset
voting, because the third candidate is free to tip the election
among the top 2 in any way he likes. Mike Ossipoff called
this defect the “favorite betrayal” property – voters in 3-way
plurality elections often can feel tactically forced not to vote
for their favorite candidate. It appears that in N = 3, W = 1
asset voting elections, favorite betrayal does not happen.

a6. Asset voting neither assumes nor requires political parties
to exist.

a7. It offers voters very high levels of expressivity.

a8. It is monotonic (at least in the pre-negotiation stage)
since it is additive. There is no issue of “nontransitive cycles
of voter preferences.” Giving more of your vote to a candidate
can never hurt him.

a9. It is algorithmically near-maximally simple.

a10. No voter needs to do anything more than once (as op-
posed to some multi-round or “runoff” systems).

a11. It seems immune to manipulation by artificial introduc-
tion of “cloned” candidates. That is, if all voters split their
votes for a candidate among his clones in some fashion, and
if all mutual clones agree to collaborate and “act as one” dur-
ing the negotiation stage, then the committee output by asset
voting will be the same (up to replacements of members by
clones) as it was before. This had been a well known defect of
plurality voting: introducing a clone of a candidate causes his
“vote to be split” often causing both clones to lose an election
one otherwise would have won. Some multiwinner schemes
have the opposite property – cloning a candidate causes that
“team” to be more likely to win. It seems best for neither
splitting nor teaming to work, i.e. cloning should have little
or no effect on the composition of the output committee.

a12. It seems to minimize the probability of near-tied elec-
tions (which have a bad habit of plunging the USA into crisis).

STV voting schemes involve a large number (up to N) of
“rounds” in which either candidates are eliminated, or are de-
clared to be winners because their vote counts exceed the
“Droop quota”2. Every round offers the terrifying possibility
of a vote near-tie and consequent crisis. In contrast, systems
like multiwinner plurality (v14 and v15 of §5) involve only
one possible tie, and at least in that respect are far less likely
to induce a crisis than, i.e. are far superior to, STV.

It is debatable how true a12 really is for asset voting. In
some sense asset voting completely ignores issues of who got
more votes than whom, and hence ties are irrelevant to it
and we have superiority even over multiwinner plurality. But
of course, in reality undoubtably very small shifts in certain
vote counts could completely alter the nature of the negotia-
tion stage.

3 Possible disadvantages

d1. A “unanimous Condorcet winner” U (whom every voter
awards a greater vote to, than to any other candidate) can
fail to be among the winners, even in a single-winner elec-
tion. For example, make every vote be (.4, .3, .3) and then
the two lowest-ranked candidates join forces. (However, see
advantage a4, and this pathology cannot occur if the candi-
dates themselves feel the same way about U as do the voters.)
Personally, I do not regard this as a “disadvantage” – at least
not in this example.

d2. Even if 51% of the voters rank some candidate L least-
preferred in their votes, he can still be among the winners.
An example with N = 2 and W = 1: Simply make 51% of
the voters vote (.6, .4) and 49% vote (0, 1). Again, personally,
I do not regard this as a “disadvantage,” at least not in this
example.

d3. Consider electing a 2-member sailboat-design committee
from among 100 candidates. Suppose it is obvious that this
committee, in order to accompish anything, requires expertise

1More precisely: if there are disjoint kinds of people who always vote for their own kind of candidate, and candidates of the same kinds agree to
collaborate during the negotiation stage, then if there are a sufficiently large number of voters and candidates so that rounding-to-integer effects
are comparatively negligible, then the committee output by asset voting will have the same composition as the electorate. More precisely and
strongly: type-t people will be able to assure election of Wt ≥ ⌊Vt(W + 1 − ǫ)/V ⌋ type-t winners, where Nt is the number of candidates of type t
from among the N total candidates, Vt is the number of voters of type t from among the V total voters, and W is the total number of winners.
(This holds provided Nt ≥ ⌊Vt(W +1− ǫ)/V ⌋; we use ǫ to denote an arbitrarily small positive real.) The proof is an immediate consequence of a4.

2After Henry Richmond Droop (1831-1884).
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in both hull design and sail design. Of the 100 candidates, 10
have hull expertise and a disjoint 10 have sail expertise.

This kind of scenario – where there are interrelations and in-
terdependencies among the committee members, so that the
“net worth” of a committee is not described solely by the sum
of the net worths of its members – often arises. Then a more
accurate approximation would also involve a sum over the net
worths of pairs of committee members.

However, asset voting does not allow voters to describe such
interrelations in their votes. Crudely speaking, asset votes
are “linear” whereas “quadratic terms” would be needed to
describe this sort of effect. Almost all the voting systems we
survey in §5 also are subject to this same criticism.

Thus, in the sailboat example, it seems reasonably likely
(probability&1/4?) that any of these voting systems would
elect a completely disfunctional committee!

On the other hand, any system which did demand that vot-
ers specify information about candidate-pairs would run into
the obstacle that

(

N

2

)

pairs exist – corresponding to asking a

lot from each voter! For example
(

100

2

)

= 4950, and asking a
human voter for 4950 pieces of information – even 4950 single
bits – seems unreasonable. (And, even if this were regarded
as reasonable, then consider the fact that information about
candidate-triples could also be important...)

Although it is subject to this possibly-severe disadvantage,
in my opinion asset voting still is better than most compet-
ing systems (§5-6) in this respect. That is because there is a
decent chance, in the later negotiation stages, that the nego-
tiators will be able to recognize the disfunctionality threat and
correct for it. In contrast, in any purely mechanical system
such as STV, there is zero possibility for such a correction.

d4. If the “candidates” are actually not human beings, but
rather some more abstract entities, then our “negotiation”
stage becomes infeasible.

An example where this happens is inside “genetic optimiza-
tion algorithms.” Inside each “generation” in such algorithms,
it is desirable to choose a “winning” subset of the available
entities, and “mate” them in a subset of all possible ways to
produce a subset of all possible “children,” which then con-
tinue on to the next generation. The ultimate goal is, after a
large number of generations, to produce an entity with very
high “fitness” via “Darwinian evolution.” The design of ge-
netic algorithms is currently a black art, and when designing
these selection-and-mating procedures it is desirable both to
encourage high fitness, and also to preserve“genetic diversity,”
which are vague and conflicting goals.

d5. Many people feel uncomfortable about having any inter-
candidate negotiation (whose results could be unpredictable)
at all. Some feel an election ought to be completely pre-
dictable from the votes alone.

Others worry that the negotiation stage could sometimes
grant too much power to tiny sliver groups. For (the most
extreme) example, consider the 2000 USA presidential (sin-
gle winner) election, in which, roughly, A.Gore got 49%,
G.W.Bush got 49%, and R.Nader got 2%, of the vote. Sup-
pose these same vote counts had occurred in an asset voting
election. Nader would then have the power to choose the

winner. What would then happen?

Assume idealistically that Nader, Gore, and Bush were moti-
vated solely by their desire to do (their own notions of) good
for the USA. Then it would follow that Gore and Bush (each
believing he would do the USA more good as president than
the other) would be willing to offer Nader concessions (which,
in their view, would lessen total goodness) up to, but not ex-

ceeding the amount by which they felt they could do more
good than the other. So if Bush felt he could do the USA 157
units of good, whereas Gore3 would provide only 142, then
Bush (considering 157 − 142 = 15) would be willing to offer
Nader concessions decreasing his (Bush’s) view of the total
good by 14 units, but would not be willing to offer 16. In this
case, Nader’s power actually would not be hugely larger than
his voter support would seem to justify (and in many repeats
of this election in alternate histories, Nader often would be
unable to swing the election and hence on average, he would
have even less).

But now assume – more cynically and less idealistically – that
at least one among Bush and Gore is willing to go to any
lengths to attain the presidency. In that case, Nader would
have tremendous power as kingmaker and would be able to
determine nearly the entire agenda for the president’s term,
award himself a decent fraction of the federal treasury as a
payoff, et cetera. Many people find that a disturbing, and
too-likely, possibility.

However, suppose asset voting is only employed for
multiwinner elections (as was its original design intent). Then
somehow the potential for harm seems lower. The analogue of
“Nader” could now swing, say, the outcome between the elec-
tion of 3 Republicans and 3 Democrats, instead of the election
of 4 and 2. These 6 winners in turn would (in most democ-
racies) only constitute a small part (the representatives from
one 6-winner district) of a much vaster parliamentary body. In
many districts “Nader”would be unable to swing anything, so
averaged over all districts the effect of all the “Naders”would
be fairly small, as it should be.

Furthermore, this kind of effect could be viewed as an advan-

tage rather than a disadvantage. The“Naders,”with 2% of the
vote, would deserve 2% of the power. But in non-asset vot-
ing schemes with 6-winner districts, since 2% is much smaller
than 1/7, they would be “zeroed out” – able to obtain nei-
ther seats nor power. Another scenario would be a 6-winner
district with (if we temporarily ignore its third party voters)
44% Democrats and 56% Republicans. Since 2/6 ≈ 33.3%
while 3/6 = 50%, the election result that would happen in
a non-asset system (2 or 3 Democrats and 4 or 2 Republi-
cans) would be forced, by rounding-to-integer effects, to be
somewhat unfair. If 3 Republicans were elected, then in a
sense 6% of the populace would be being unfairly “ignored.”
Asset voting can ameliorate both of these kinds of unfairness
by causing the “unfairly ignored leftover” votes to represent
extra power at the negotiating table, i.e. to amount to some-
thing. In this sense asset voting has the potential to achieve
more fairness than any conventional (negotiation-free) voting
scheme, by not ignoring the votes left over beyond integer-
roundoff threshholds.

3After himself conceding whatever he would, in Bush’s estimation, concede to Nader.

Sep 2004 3 4. 0. 0



Smith typeset 19:44 8 Mar 2005 multiwinner

4 The 2002 French Runoff election

The French conduct presidential elections by plurality voting
with (if necessary) a second “runoff” election between the top
two finishers. This makes it possible for these top two to
negotiate with smaller parties between election rounds in an
effort to gain their support. Some defects of the French runoff
scheme were famously exhibited in the 2002 election.

The two major contenders, respectively leading left- and right-
wing coalitions, were Lionel Jospin and Jacques Chirac. How-
ever, the left-wingers fielded three additional candidates from
minor parties in the coalition, and part of the left-wing vote
went to candidates from far-left parties, presumably to protest
Jospin’s too-centrist policies. The third important candidate
was Jean-Marie Le Pen. His platform called for banning im-
migration, he once described the Holocaust and gas chambers
as “a detail of history,” and he was known to have practiced
torture while stationed in Algeria (he sued the Newspapers
accusing him of that for libel, but lost the case). In the first
plurality round,

Chirac got 19.88% of the vote; added to Franc̃ois Bayrou’s
6.84% (since he was in the same coalition) this is 26.72%.
Jospin got 16.18% of the vote; added to other candidates
in the same coalition Noël Mamére (5.25%), Robert Hue
(3.37%), and Christiane Taubira (2.32%) we get 27.12%.

While we cannot know for sure that voters for minor candi-
dates of each coalition would have voted for that coalition’s
major candidate, these sums suggest that Jospin had a slight
edge over Chirac. But Le Pen obtained 16.86% and thus went
to the second round of election, against Chirac, who beat him
by a huge 82.21% margin.4

So it is plausible in this case that Jospin “should” have won
and the French system “robbed” him; and it also is plausible
that asset voting would have “correctly” elected Jospin.

5 Theoretical comparison with 18
other multiwinner schemes

Subjectively: I think asset voting is superior to all previ-
ously proposed multiwinner election schemes that I know of.
This section will back that claim up by analysing 18 differ-
ent schemes – including the methods presently used in every
democratic country, as well as other schemes I either invented
myself, or extracted from the literature.

Exception: Some STV schemes seem to be the best previ-
ous multiwinner election methods available and in fact may
be superior to asset voting. Therefore, we will discuss them
seperately in §6.

Completely objectively: I do not know of any previously-
proposed scheme which features advantages a1-a12 simulta-
neously.

However, there are numerous caveats:

1. My knowledge of other schemes is unlikely to be all-
encompassing.

2. There undoubtably are many possible voting schemes
nobody has yet invented.

3. The question of which multiwinner scheme is the “best”
is extremely vague. I do not even know how to formulate
the problem.

4. There are probably an immense number of possible
bizarre behaviors of such voting schemes, most of which
have never occurred to anyone.

Consequently any claim that asset voting is “best possible” is
presently very conjectural and speculative.

We now briefly discuss 18 possible alternative voting schemes,
and for each we shall point out a disadvantage.

v1. Single winner pseudo-election. I had previously [25]
pointed out the advantages of range voting in single-winner
elections. That is, each voter in an N -candidate election sub-
mits a real N -vector, each of whose coordinates lies in the
real interval [0, 1], as his vote. The vote vectors are summed
and the winner corresponds to the maximum coordinate in
the summed vector.

So, we could regard a multiwinner election with N candi-
dates and W winners as a single-winner election with

(

N

W

)

pseudo-candidates (the possible committees), and use range
voting to determine that winner! This scheme would have
the advantage that, if each voter were honest and provided
the true-utility of that committee (for him) for every possible
committee as his vote, then the winning committee would be
the genuinely best one (utility-sum-maximizing) for all soci-
ety.

Unfortunately, hopes for such voter honesty are unrealistic.
Even if they were, this idea would require each vote to in-
clude a ridiculously huge amount of information, namely

(

N

W

)

real numbers. For example
(

50

25

)

= 126,410,606,437,752.

Also, this scheme would lack advantage a2: Suppose N = 2W
and W of the candidates are “Republicans” and the other
W “Democrats.” If 51% of the voters award the unique all-
Republican committee the maximum vote, then it will win
regardless of what the other 49% of the voters do. The
Democrats would be “zeroed out,” which seems unrepresen-
tative.

v2. Single winner pseudo-election with functions as votes.
To get over our “tremendous information” objection to v1,
we could ask that each voter v provide as his vote, not

(

N
W

)

numbers, one rating each possible committee, but instead a
function Fv mapping committees to numbers.

(Note that by allowing these functions to include quadratic
terms, the potential exists to overcome disadvantage d3.)

The committee C maximizing the sum
∑

v Fv(C) of all the
functions would win. Disadvantages: First of all, it may not
be feasible to demand this kind of vote from typical vot-
ers. Second, it is NP- and APX-complete even to maximize
quadratic functions over the N -cube, so that such an elec-
tion would be algorithmically infeasibly difficult. (The NP-
completeness proof is an easy reduction from Maximum 2-

satisfiability [11].) Certain specially restricted forms of the
functions might lead to algorithmic feasibility, though,5 and
some examples will be discussed later.

4Arguably supporters of Le Pen’s former deputy and extremist rival Bruno Mégret (2.4%) would also have supported Le Pen.
5E.g. if the functions are linear.
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v3. Multiwinner Condorcet least-reversal voting. Each voter
supplies a permutation of {1, 2, 3, . . . , N} – a preference or-
dering of the N candidates – as his vote. We construct an
N -vertex directed graph with a directed arc pq if candidate q
is preferred to candidate p by the voters (with all candidates
other than p and q are erased from all votes, then regarding
this arc as a 2-candidate 1-winner sub-election). Each arc
is labeled with the numerical margin of victory for that 2-
candidate sub-election. Now we reverse the direction of some
subset of the arcs. Namely, the arc-subset with minimum pos-
sible total sum (of the numerical margins) is chosen subject
to the constraint that it will cause the digraph to contain a
W -element subset of “winner” vertices, such that all the arcs
between a winner and a nonwinner, point to the winner.

V3 is not algorithmically simple (i.e. disobeys a9): In fact
finding the required min-weight arc set to carry out the elec-
tion is an NP-complete task! (With W = 1 it is always linear
time, though.) The NP-completeness proof is an easy reduc-
tion from graph partitioning [11]. However, for elections
with N ≤ 30 candidates, this is no obstacle since it is feasible
to consider all

(

N
W

)

node-subsets exhaustively. Furthermore,
there is a different Condorcet-like method, due to N.Tideman
[31] which has the advantage that determining the W winners
is in P:

v4. Multiwinner Tideman. Each voter supplies a preference
ordering of the N candidates as his vote. In the Tideman
system, you pick the A > B candidate-comparison with the
largest margin and “lock it in.” Then you pick the next
largest one available (“available” means: not already used
and not creating a cycle in the directed graph of candidate-
comparisons) and continue on. This ultimately creates an
ordering of the candidates. The topmost W in the ordering
win. The Tideman system is equivalent to least-reversal Con-
dorcet variant if there are N ≤ 3 candidates; but if N ≥ 4
they can differ.

More seriously, both v3 and v4 can yield a very nonrepre-
sentative winner subset, disobeying a2. Suppose N = 2W
and W of the candidates are Republicans and the other W
Democrats. If 51% of the voters voted a “Republican straight
ticket” (preferring every Republican to every Democrat, but
the preferences within the Republicans are random and the
number of voters is very large) then the W winners will be
100% Republican no matter what the other 49% of the voters
do.

Tideman’s system is supposed to be immune to clones. That
is true in the sense that, with honest voters, it will yield the
same rankings of all clones in the output-ordering as the orig-
inal uncloned candidate. However it is false in the (for us,
more important) sense that the composition of the winner-
committee will be altered!

v5. Multiwinner Range Voting. Each voter generates N num-
bers in the real interval [0, 1] as his vote. The vote N -vectors
are summed and the greatest W components in the sum cor-
respond to the winners.

But again this scheme would zero out Democrat candidates.
Again suppose N = 2W and W of the candidates are Repub-
licans and the other W Democrats. If 51% of the voters voted
a“Republican straight ticket”(1, 1, 1, . . . , 1, 0, 0, 0, . . . , 0) then
again the W winners will be 100% Republican no matter what

the other 49% of the voters do.

v6. Multiwinner Coombs-STV Voting. Similar to Hare-STV
(discussed in §6), except the candidate eliminated each round
is the one with the most last-place votes.

This is a very bad system because strategic voters will rank
their least-liked among the favorites artificially “last.” This
will cause all the favorites to be eliminated in early rounds,
causing the winners to consist entirely of unknown “dark
horse” candidates.

Another flaw in Coombs is its vulnerability to cloning. If
candidate A is preferred by a 75-25 margin over B in a single-
winner election, then upon replacing B with 4 clones B1, B2,
B3, B4, the 25% of the population that hates A will eliminate
him (since the hates-B vote is split 4 ways, 20% to each Bi)
in the first round.

v7. Multiwinner Borda Voting. (Essentially the system used
in Norwegian internal party elections.) Each voter supplies
a preference ordering of the N candidates as his vote. Then
each time a candidate gets a Kth place vote he is awarded a
score of N − K + 1 and the W candidates with the greatest
score-sums win.

This again fails the straight-ticket Republican versus Demo-
crat test. It also has less voter-expressivity than asset voting
and in the single-winner case experimentally is worse than
range voting [25]. Also, “teaming” occurs: parties tend to be
rewarded by Borda for running many identical candidates.

v8. Multiwinner Nanson [24] Voting. Voters provide pref-
erence orderings as their votes. We proceed in rounds. In
each round the candidate with the smallest Borda score is
eliminated (both from the election, and from all preferrence
orderings). This continues until only W remain; they are the
winners.

This scheme seems vulnerable to manipulation by candidate
cloning, although its effect now seems beneficial to a candidate
(“teaming”), but this is still a Bad Thing. In a straight-ticket
voting 51-Republican 49-Democat scenario, the Democrats
will be entirely eliminated.

v9. Voting by convex programming. Each voter k supplies
a real-valued differentiable concave-∩ function Fk of N real
variables (each in [0, 1]) as his vote. The sum F =

∑

k Fk of
all such functions is also real-valued differentiable concave-∩.
By convex programming [18][30] it is algorithmically feasible
(i.e. in P [11]) to find the maximum of any such function on

the N -cube [0, 1]N intersect the hyperplane
∑N

n=1
xn = W , to

high accuracy. The N -vector representing the location of this
maximum is regarded as describing the winning committee.

Unfortunately, this committee may have “fractional mem-
bers,” i.e. the vector may not have entries that are 0 or 1
only, but instead it may contain fractional entries. In gen-
eral no algorithmically efficient way is known to find the best
rounding off to pure-{0,1} values. (It is relevant here that In-

teger programming and the problem of finding the max-
imum of a concave-∩ quadratic function on the discrete N -
cube {0, 1}N are both NP-complete [11]. Indeed the latter is
APX-complete.)

Surprisingly, fractional members might actually sometimes be
acceptable. We simply choose person X to be on the commit-
tee (or to participate in some particular committee activity)
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with probability equal to his fractional membership. This
would be a nondeterministic voting scheme in which chance
played a very substantial role, but it conceivably would be
better on average than any deterministic method. I’m rather
dubious of this whole idea, but have no convincing argument
against it.

v10. Voting by convex programming (more enjoyable special
case). Each voter k supplies a real N -vector ~vk as his vote.
These N -vectors all are required to obey the condition that
the sum of their greatest W entries is 1 and the sum of their
least W entries is 0 (a normalization which could be assured
automatically by a linear transformation, if the voter him-
self did not want to bother). The scheme will involve a fixed
concave-∩ monotonically increasing self-map g of [0, 1], for
example g(u) = ue for some fixed constant e with 0 < e < 1.
The winning committee is the one whose Boolean membership
vector ~x maximizes

F (~x) =
∑

Voters k

g(~vk · ~x). (1)

This would still be equivalent to range voting in the W = 1
case, albeit the equivalence mapping is a little involved.

By choice of g (or in the case g(u) = ue, by choice of
e) this scheme could be made, in the Republican-Democrat
straight-ticket 51-49 scenario, to elect some nonzero fraction
of Democrats, and that fraction indeed would be adjustable
by varying e.

Again it is algorithmically feasible (i.e. in P [11]) to compute

the ~x with components in [0, 1] (and with
∑N

j=1
xj = W )

which maximizes F (~x), since this is a “convex programming
problem” [30]. Unfortunately, again the answer could be a
committee with “fractional members”! To enforce genuine 0,1
membership requires solving a “convex {0, 1} programming”
problem, but that might be much harder computationally,
requiring an exhaustive backtrack search among all the

(

N

W

)

possible committees, which if N is large enough (N = 100?)
might become computationally infeasible.

v11. Range voting with negotiation. Each voter’s vote is
an N -tuple of reals in [0, 1]. These vote-vectors are added to
get each of the N “vote-totals” and then inter-candidate “ne-
gotiations” proceed as in the scheme of the present paper to
determine the W winners.

Disadvantage: Cloning a candidate many times will cause
more of him to get elected.

v12. Asset voting without negotiation. Each voter’s vote is
an N -tuple of nonnegative reals summing to 1. These vote-
vectors are summed and the W greatest coordinates in the
sum-vector correspond to the W winners.

Fails the Republican-Democrat 51-49 straight-ticket voting
test. Cloning causes damaging vote-splitting effects.

v13. Party-based plans. (Used in many countries includ-
ing Netherlands and Israel.) Voters vote for a political party,
not for candidates directly. Then the parties somehow get

together to determine the winners (there are many possible
ways for them to proceed at this point).

Disadvantage: This requires the existence of political parties.
It causes voters to have no direct input (or at best only a
subset of them have input) about the question of individual
preferences among the candidates from any single party. The
system is particularly outrageously undemocratic as imple-
mented in Israel, where the entire country (there is no dis-
tricting) votes simply for a party (a vote is just the name
of one party) and the party itself then decides who shall get
whatever number of seats it then has6.

v14. Multiwinner “non transferable” plurality voting. (Used
in Japan.) Each voter names a single candidate as his vote.
The W candidates with the most votes win.

This again fails the straight-ticket Republican versus Demo-
crat test. It also is subject to all the well known defects of
plurality voting, including cloning and favorite-betrayal.

v15. Multiwinner multivote plurality voting. (Variants used
in several democracies and in Philadelphia City Council elec-
tions.) Each voter names K candidates as his vote (for some
constant K). The W candidates with the most votes win.

This again fails the straight-ticket Republican versus Demo-
crat test and the cloning test.

v16. “Cumulative” vote. (Formerly used in Illinois state
house elections and in British school board elections in the
late 1800s.) Like v15 except that repeating a name is al-
lowed, i.e. the K names are a multiset which is not required
to be a set.

This again fails the straight-ticket Republican versus Demo-
crat test and the cloning test. It is, however, groping to-
ward the scheme we are advocating in this paper; in the limit
K → ∞ this is essentially the same as v12.

v17. Hamming distance-sum minimization.7 Each voter
names a subset of the candidates as his vote. (We could, if
desired, demand this subset have cardinality W .) The spec-
ification of this subset could be regarded as the ‘1’ bits in
an N -bit binary word. The winners are a W -element subset
(viewed again as a binary word) with minimum total summed
(Hamming distance)e to all the voters. (Here e is some fixed
real in [1,∞].) In the limit e → ∞ we get v18. In the case
e = 1 this is just multiwinner approval voting, which we have
criticized in v5.

If 1 < e < ∞ then it may not be algorithmically feasible
(i.e. may not be in P) to find the min-cost winner set. How-
ever, finding the N -vector with elements in [0, 1] which mini-
mizes the sum of the eth powers of the Euclidean distances to
the vote-vectors is algorithmically feasible (convex program-
ming). Allowing vote-vectors to be real rather than Boolean
seems superior anyway for the purpose of giving more expres-
sivity to the voters. Unfortunately the result is a committee
possibly including “fractional members” as in v8, and find-
ing the best N -vector with Boolean elements {0, 1} may be
algorithmically hard.

6Israeli Prime Minister Ariel Sharon sacked his deputy infrastructure minister Naomi Blumenthal in December 2002 after she refused to answer
questions from police about vote-buying. The Likud party selects its candidates for parliament through a vote of its central committee. (Note: not

the voters themselves.) Blumenthal won a prominent slot on the Likud Knesset candidate list and was charged with paying for rooms at a posh
Tel Aviv hotel in exchange for votes by central committee members.

7The “Hamming distance” between two equal-length binary words is the number of bit-positions in which they differ. For example the Hamming
distance between 11111011011 and 11011001101 is 4.
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In the straight-ticket Republican-Democrat 51-49 scenario,
v17 unfortunately would elect a 100% Republican committee.

v18. Voting via minimum enclosing Hamming-sphere [5].
Same thing as v17, but the winners are the W -element subset
(or binary word) with minimum maximum Hamming distance
to all the voters.

Disadvantages: often produces a non-unique result; algorith-
mically may not be in P; ignores duplicated votes, no matter
how many duplications there are; in the limit of a large num-
ber of voters (exceeding 2N) this method tends to become
completely equivalent to “pick a random result” because the
min-enclosing sphere simply becomes the entirety of Hamming
space.

If we optionally allow votes to be real N -vectors with com-
ponents in [0, 1] and instead find the minimum-radius en-
closing Euclidean sphere, then this is algorithmically feasible
[12][13][14][32]. but as in v8, the solution (the vector that is
the sphere center) may be a committee with fractional mem-
bership, i.e. be a vector whose entries lie in [0, 1] but not
necessarily {0, 1}. Again, requiring true 0,1 membership may
be algorithmically difficult. This Euclideanized scheme still
would ignore duplicated votes.

Remarks. Various other voting systems (most of them hy-
brids of subsets of the ideas above) are discussed on the ERS
web site [9], the appendix of [23], the books [21][22], and
throughout the excellent special issue J.Economic Perspec-

tives 9,1 (1995). For information about which schemes are
used in which governments see [6][8][21][23][29].

In the above discussion I have sometimes taken for granted
some understanding of computational complexity theory, in
particular the theory of P and NP and sometimes APX. For
P and NP see [11] and for APX see [2].8 We follow the usual
rule of thumb that algorithms in P can be regarded as “feasi-
ble”whereas NP- and APX-complete tasks should be regarded
as algorithmically infeasible and hence not recommendable for
application inside voting systems. Linear time algorithms are
the creme de la creme, the best algorithms in P. Asset vot-
ing (assuming the input consists of fixed-precision fixed-point
reals in a suitable order) is in that class.9

6 Comparison with STV methods

The two crucial ideas behind STV (Single transferable Vote)
methods were first invented by Thomas Wright Hill (Eng-
land 1763-1851; invented idea of vote “transfer”) and Carl
G. Andrae (Denmark 1812-1893; invented “quota” idea). An
independent discovery was made by Thomas Hare (England
1806-1891) and described in his book Treatise on the election

of representatives, Parliamentary and Municipal (Longman,
London 1859). Later revised editions came out in 1861, 1865,
and 1873, with the 1865 edition including a further refine-
ment, the introduction of “elimination.” An important final
refinement was the “Droop quota” created in 1868 by Henry
Droop and described in an 1881 paper [8].

The resulting system is clearly described, with a worked ex-
ample, in chapter 7 of [22]. The best description I know of
the conceptual development of STV is Tideman’s paper [28],
which is also the only reference I’ve seen that includes the
“proportionality theorem” statement and a proof.

An STV-advocacy group, the Proportional Representation
Society, formed in Britain in 1884. During the next 120 years,
they apparently had no success at causing Britain to switch to
STV, but did have some impact on Ireland, Australia, New
Zealand, and Malta, all of whose governments now employ
STV to some degree. The PR Society now call themselves the
Electoral Reform Society [9] and they now advocate a voting
procedure called “ERS97” which is similar to our pseudocode
below, but with additional refinements.

Here is a pseudocode description of the Hare/Droop STV pro-
cedure. Let there be N candidates, from whom V voters are
to choose W winners (0 < W < N , 0 < V ).

procedure STV-election
1: Obtain from each voter a preference ordering (permuta-

tion) of the N candidates;
2: Associate each vote with a real“weight”w with 0 ≤ w ≤ 1,

where initially all weights are 1;
3: Compute the “Droop Quota” Q = ⌊V/(W + 1)⌋ + 1;
4: loop

5: repeat

6: for c = 1 to N do

7: Compute Fc, the sum, over all votes ranking can-
didate c first, of that vote’s weight;

8: end for

9: g = argmaxFc;
10: {g is the “good” canddt with the most 1st-place

votes}
11: if Fg ≥ Q then

12: Multiply the weight of each vote which ranks g
first, by (Fg − Q)/Fg;

13: Declare g to be a “winner”and eliminate g from all
preference orderings;

14: end if

15: exitwhen W canddts have been declared winners;
16: until Fg < Q
17: b = argminFc;
18: {b is the “bad” canddt with fewest 1st-place votes}
19: Declare b to be a “loser” and eliminate b from all pref-

erence orderings;
20: end loop

This is a fairly complicated procedure. Many variants of it,
both less and more complicated, also exist. One of the best
seems to be Meek’s weighting scheme [19]10, but it is much
more complicated, e.g. involving a nonlinear multivariable
iteration to convergence.

The most important theorem about STV-election is the pro-

portionality theorem [28]: This postulates that the voters
and candidates consist of several disjoint types of people, and
each voter of a given type always prefers each candidate of his
same type, above every candidate of any other type. Let the

8Our text has sometimes stated minor theorems concerning the NP- and APX-completeness, or linear-time nature, of various computational
tasks – but not proved them. That is because all of these theorems are of the “undergraduate textbook exercise” level. We admit, though, that to
anybody completely unfamiliar with computational complexity theory, they could seem mysterious.

9Hint: employ an “adder tree.” This will lead to a linear-time algorithm for adding N numbers, each B bits long, on a 2-tape Turing machine.
10According to [29], Meek-STV may now be used in some New Zealand elections.
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number of voters of type t be Vt, the number of candidates
of type t be Nt, and the number of winners of type t be Wt.
Then: Wt ≥ ⌊Vt/Q⌋ if Nt ≥ ⌊Vt/Q⌋.

I have actually stated a stronger version of this theorem
than was previously available [28]. Nevertheless, due to the
rounding-to-integer effect inherent in the Droop quota for-
mula in line 3, this still is not as strong a proportionality
theorem as we showed for asset voting in footnote 1; because
asset votes are reals and not integers, better proportionality
is achievable.

Proof: Realize that any candidate with more than Q of the
first-rank votes is assured of election, and then regard the
first rank votes as being continually “transferred”between the
candidates, with any candidate exceeding the Droop quota Q
transferring all his excess votes above Q. The total number
of available first-rank votes is always V and of first-rank votes
for type-t candidates is Vt. If candidates always transfer votes
to their own kind of candidates whenever they are still avail-
able, evidently the number of candidates of type t who will
acquire ≥ Q votes, is ⌊Vt/Q⌋. Q.E.D.

Warning: There are various simpler STV procedures which,
however, don’t obey the theorem.

This theorem depends for its validity on the Droop quota
Q (line 3) and its use in determining “early winners” (lines
11-14) and in reweighting (line 12). It would have been possi-
ble to devise a much simpler elimination-only variant STV
scheme in which lines 5 and 9-16 (except for line 15) were
omitted (and in fact this variant is equivalent to our full algo-
rithm, and also to Meek and ERS97, in the single winner case
W = 1). However, that variant would not have satisfied the
proportionality theorem because of the following counterex-
ample.

Let N = 2W , let there be two kinds of people (“Democrats”
and “Republicans”), and let 49.99% of the voters be Demo-
crat and 50.01% Republican. Let there be W Republican
and W Democratic candidates, with all the Republicans be-
ing indistinguishable “clones” (whom the voters order ran-
domly) but with one special Democrat being more attractive
to each of the Democratic voters, than any of the other W −1
Democratic candidates. Then, no matter how large W is,
elimination-only STV will elect a committee consisting of the
one special Democrat and W − 1 Republicans (very unrepre-
sentative). That is because the unspecial W − 1 Democrats
will be eliminated since each has zero first rank votes.

In contrast, the full STV-election procedure would have
elected the special democrat immediately (exceeds quota),
and then eliminations would have roughly alternated between
declaring Republican and Democrat losers, until at last a com-
mittee with 50-50 composition was attained.

It would instead have been possible to simplify STV-election

to get rid of the elimination steps in lines 17-19. However, the
resulting procedure could loop forever with no candidate ever
reaching the quota necessary to declare him a winner! (This
would in fact usually happen if all vote orderings were ran-
dom.) To fix that problem we could (further) eliminate the
quota entirely (kill lines 3, 9, 12, and 16) to simply elect the
candidate with the most first-rank votes each round. Unfor-
tunately that kind of simple transfer procedure also would
elect nonrepresentative committees: in the above Republican-

Democrat scenario, but without the special Democrat (all
Democrats now are randomly-ordered clones too), a 100% Re-
publican committee would be elected.

Now that we understand Hare/Droop STV and its properties,
we are in a position to compare it with asset voting. Both
STV-election and asset voting share advantages a1, a2, a4
(appropriately reworded), a5 (in some sense), a6, a10, and
a11, and both share alleged disadvantage d2.

Another shared disadvantage is that neither reduces to range
voting in the single-winner case (which is experimentally the
best single-winner voting system [25], at least among known
conventional systems in which the possibility of “negotiation”
is forbidden). This is irrelevant in practice if we are only us-
ing these schemes for multiwinner elections, but it certainly is
theoretically bothersome. In 3-candidate 1-winner STV (also
Condorcet) elections, it can be tactically wise to vote dis-
honestly [25][7][16], whereas in a 3-candidate 1-winner range-
voting election, the tactically best vote always has ≤ relations
compatible with (i.e. a valid limiting case of) that voter’s
true preference ordering. Arguably tactical asset voting in 3-
candidate 1-winner elections also is honest (which if so would
be another advantage for asset voting over STV) but due to
the haziness of “negotiation” it is difficult to be sure of this.

Asset voting is superior with respect to a3, a7 (in STV there
is no way for voters to express the intensity of their prefer-
ences), a8 (in STV, even in the single-winner case, your vote
ranking some condidate first can cause that candidate to lose

[3][7]), a9 (asset voting is clearly simpler, e.g. requiring only
addition without multiplications or divisions), and a12.

Asset voting is inferior with respect to disadvantages d3 and
d4 (because it requires an intercandidate negotiation) and
with respect to alleged disadvantage d1.

Because STV is worse with respect to a3, a7, a8, a9, and a12,
our claim that “no known” multiwinner election system has
advantages a1-a12 remains technically true. However, in my
view, none of these superiorities or inferiorities represents a
“knockout punch,” so I cannot make any blanket statement
that one or the other among Hare/Droop STV (or some of
its variants) and asset voting is clearly superior in all appli-
cations. (In contrast, I do view the voting systems v1-v18 in
§5 as having suffered a knockout punch.)

Despite that, I will say that asset voting is so tremendously

simpler than STV-election that, in any moderately large
election run without the benefit of computers, it almost cer-
tainly is to be preferred. In practice STV is even more com-
plicated than we have sketched, because of the needs (1) to
allow voters to express equalities in their preference order-
ings, (2) to do something about voters who rank-order some
but not all of the candidates, and (3) possibly to break ties.
In contrast, in asset voting issue 3 is nonexistent, issue 1 is
trivial, and issue 2 is easily dealt with because we can just
allow the voter to say “...and award X votes to each of the
remaining candidates” for some voter-chosen value X .

Furthermore, in asset elections held at several voting locations
simultaneously, each location can simply transmit its subtotal,
once, to a central agency. In STV elections, on the contrary,
the required communications could be far more voluminous
(e.g. every single vote) or time consuming (e.g. many rounds
of 2-way communication, with possible need to restart every-
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thing each time any error is found or a new, as-yet-uncounted,
vote comes along).11

7 Experimental evaluation in the

single winner case

I do not know how to experimentally assess asset voting in
the multiwinner case, because I do not understand the soci-
etal (or personal) benefit of electing any particular committee.
(If these were known, then it would be possible to construct a
mathematical theory of a multiplayer game with known pay-
offs, etc.)

However, we do have a pretty good idea how to compare sin-

gle-winner voting systems [25]: we construct artificial voters
and candidates. By some randomized method, we create a
private personal utility for the event “candidate C is elected”
from the viewpoint of each voter V . We then run an ar-
tificial election using some voting method M . (The voters
can be made “honest” or “rational-strategic” and/or suffering
from “ignorance” – we shall regard those choices all as em-
braced within the definition of M .) The difference between
the society-wide (i.e. summed over voters) utility of the elec-
tion winner, versus the society-wide utility of the hypothetical
maximum-utility winner (with this difference averaged over a
tremendous number of such Monte Carlo experimental elec-
tions) is the Bayesian regret of voting method M . Voting
methods with smaller regret are, of course, to be preferred.
This is a quantitative measure of how good a single-winner
election method is.

In these experiments, it is possible to vary the number of vot-
ers and candidates, and to vary the randomized private-utility
generator. This in general will cause the Bayesian regret val-
ues to change. Thus it always is necessary to compare voting
methods when these parameters are the same, and it is of
interest to see what happens to the comparison when they
change.

My previous [25] contained the world’s largest such experi-
mental study of single-winner voting systems, and came to
the remarkably clear conclusion that range voting was supe-
rior to all other voting systems tried.12

We shall now describe a new and smaller such study, re-
designed to allow asset voting to participate. The exper-

imental setup:

Each candidate and each voter is regarded as a point on the
surface of a unit-radius D-dimensional ball (D = 1, 2, 3 were
tried), i.e., a unit-norm D-vector. The private utility of a
candidate, as viewed by a voter, is the inner product of the
voter’s and candidate’s vectors.13 These utilities all therefore

lie in the real interval [−1, 1]. The candidates and voters are
disjoint, i.e. candidates are not allowed to vote. (We shall
regard the voters as male and the candidates as female to
enhance clarity in what follows.)

All voters and candidates are chosen independently from a
single common distribution on the D-ball’s surface, which
we now describe. Fix a parameter µ called the “number of
clumps.” (Values µ = 1, 2, 3, 4, 5,∞ were tried.) Fix µ differ-
ent random unit vectors (picked from the uniform distribution
on the D-sphere) called the “clump centers.” The method for
finding a newborn voter’s characteristic D-vector is then to
pick a random-uniform vector on the D-sphere, and then test
whether it has inner product ≥ 0.9 with any clump-center14.
If so, the vector is accepted (otherwise we retry). The case
µ = ∞ corresponds to the case of uniform distribution on the
sphere; but when µ is finite we get a situation where voter
and candidate opinions tend to fall into “clumps.”

We studied these 10 single-winner voting methods:

1. Pick a random winner from among the candidates (com-
pletely ignoring all votes). This was included purely to
provide a “yardstick” allowing the reader to get a good
idea how bad the other methods are. (Not surprisingly,
this method always yielded larger regret values than all
the others.)

2. Strategic plurality voting. Plurality voting is used.
Each voter picks the candidate, from among the first
two (“the two most favored in pre-election polls”) with
the (in his view) greatest utility.15

3. Honest plurality voting. Each voter picks randomly
among those candidates having (in his view) maximum
utility.

4. Strategic approval voting (which is the same thing as
strategic range voting [25]). Let j ≥ 2 be the smallest
number such that the first J candidates do not all have
the same perceived utility. The voter votes 1 and 0 for
them (the higher utility ones get the 1). Then, he goes
through the remaining N − J candidates in order. For
each, if that candidate’s utility exceeds the average of
the preceding candidate’s utilities, she gets a ‘1’ vote,
otherwise a ‘0’ vote.

5. Honest range voting. The voter uses his private utili-
ties for the candidates as his vote, except that first he
rescales these utilities via a 1-dimensional linear trans-
formation so that the (in his view) best candidate gets
a vote of 1 and the worst 0.

6. No-negotiation asset voting. The voter uses his pri-
vate utilities for the candidates as his vote, except that
first he rescales these utilities via a 1-dimensional linear

11In a future paper [27], I intend to describe a new multiwinner voting system called “reweighted range voting” that attempts to combine the
advantages of both STV and Range Voting. This new system reduces naturally to range voting in the single-winner case, and grants voters the
same amount of expressivity as in range voting (i.e. real vectors rather than preference orderings, i.e. more expressivity than in ordinary STV).
It is monotonic (unlike ordinary STV), and it does not involve any negotiation (unlike asset voting). Unfortunately, although it is simpler than
STV-election, this new scheme still is considerably more complicated both to describe and use than asset voting, and again in a multilocation
election the communication requirements can be very onerous.

12This was true no matter whether honest, strategic, or ignorant voters were used, and no matter what the number of candidates and voters,
and no matter which of numerous utility generators were employed.

13Because |~x − ~y|2 = |~x|2 + |~y|2 − 2~x · ~y, if both vectors ~x and ~y are of unit norm this is just = 2 − 2~x · ~y. This allows satiating the desires of
people who prefer thinking about distances instead of inner products.

14Thus these clumps are spherical caps with angular diameter 2 arccos(0.9) ≈ 51.68◦; two clump-caps can overlap; and the distribution is uniform
within the union of all such caps.

15If both have equal utility then he votes for the first candidate with maximum utility.
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transformation so that the (in his view) worst candidate
gets a vote of 0 and the votes for all candidates sum to
1. The candidate with the most votes wins.

7. Asset voting with plurality-like voting. The voter votes
1 for the (in his view) best candidate, and 0 for all the
others. (Probably a close approximation to what real
voters, in an effort to be strategic, will actually do.)
The candidates negotiate as follows: the candidate with
the currently least votes hands them all to the as-yet-
uneliminated candidate whose utility (from her point of
view) is maximal, and then drops out. This continues
until only one candidate (the winner) remains.

8. “honest” asset voting, i.e. with utilities as votes: Same
voting as in method 6; same negotiation as in method
7.

9. Honest STV. Votes are honest preference permutations
(same order as perceived candidate utilities).

10. Strategic STV. Votes are preference permutations got as
follows: Rank the favorite among the first two candiates
top, and the other bottom. Then rank the remaining
N − 2 candidates honestly (within the remaining N − 2
slots).

In all cases, ties were broken randomly in any tied elections.

The results of these experiments (with 7 and 101 voters per
election) are tabulated at the end of the paper. We only
tabulate cases with N = 3 and 4 candidates.16 There then
are 72 = 2 × 3 × 6 × 2 experiments in all (each a comparison
of 10 different voting systems), corresponding to 2 possible
numbers of voters (7 and 101), 3 possible space-dimensions
(D = 1, 2, 3), 6 possible clump numbers (1, 2, 3, 4, 5,∞), and
2 possible numbers of candidates (N = 3, 4). Hence we tabu-
late 72×10 regret numbers, each of which represents an aver-
age over 500,000 elections for the 101-voter elections, and an
average over 2,500,000 elections for the 7-voter elections.

These results are very interesting and make asset voting look
both very good and very bad, depending on the circum-
stances. (In over 80% of the cases, though, it looks good.)
There were several surprises.

Is negotiation a good idea? When D = 1 (the case where
all candidate utilities are Boolean) negotiation was always a
good idea – since it always got the regret down to zero!

But when D ≥ 2 our simple negotiation procedure failed,17 in
83% of the cases, to improve things over utility-based asset
voting without negotiation, i.e. method 8 usually had at least
as large regret as method 6! In fact, in 4% of the cases in-

cluding negotiation made utility-based asset voting perform
worse than every other method (except random-winner).18 In
retrospect, this is not surprising. If voters are honest and are
allowed to fully express themselves (votes=utilities) then usu-
ally19 the best thing to do, from the point of view of society-
wide utility, is to let them have their way! Negotiation only is
needed if the voters instead try to be strategic=dishonest, or
if they are not allowed to express themselves fully (because,
e.g. they use plurality voting and hence can only express
information about one of the candidates) in which case dam-
aging strategic phenomena such as “vote splitting” enter the
picture. The whole purpose of the negotiation stage is to
partially repair that damage.

Hence it is more interesting to consider the effect of negotia-
tion after an honest-plurality-like vote (which is our best guess
about what strategic asset voting would be like). Here, we
find that negotiation improves20(or at least does not worsen)
Bayesian regret in 93% of the cases. In 82% of the cases21

this improvement was great enough to cause asset method 7 to
yield smaller regret than strategic approval voting (method 4)
– making it (in those 82%) apparently the best voting method
with strategic voters known! This is powerful testimony for
the usefulness of negotiation!

An unexpected side effect of this study was: realistic ex-
amples of situations where strategic plurality voters actually
yield better societal results (lower regret) than honest ones!
This only happened in a statistically significant way in 12 out
of our 72 experiments22 – but it is impressive that it can hap-
pen at all. Apparently, honest plurality voters in these cases
suffer heavily from “vote splitting,” and by agreeing to focus
on just two arbitrary (but fixed) “major party” candidates,
they get rid of enough vote splitting to more than compen-
sate for the loss of honest information.

Honest range voting always was at least as good as honest
STV voting, and strategic range voting always at least as
good as strategic STV voting, in all 72 election scenarios, with
the single exception that in the µ = 1, D = 2, N = 3 case (a
distribution where, as we’ve mentioned, honest range voting
does particularly badly) honest STV actually was superior
to honest range. (This case is the first time that has ever
happened naturally, but since this distribution seems fairly
unconnected to reality, range voting remains clearly superior
to STV.)

The situations that made method 7 look maximally

bad – worse than every other (non-random) method tried! –
were the µ = ∞ (no clumping) D = 2, 3 cases with 101 voters.

16With 2 candidates, we confirmed by computer that all voting methods except random-winner had identical Bayesian regret values, because
they are identical voting methods.

17There were exactly 12 exceptional cases among these 48 experiments in which negotiation improved over an honest utility-based asset vote.
All involved 3 or 4 candidates, D = 2 or 3, and 2-4 clumps.

18Specifically, in three 101-voter elections with µ = 0, D = 2, 3.
19 No-negotiation utility-based honest asset voting was not as good as honest range voting, although it usually was not bad. Amazingly, in the

4-candidate 7-voter 1-clump D = 2, 3 cases, it actually was better than honest range voting – the first time any realistic voting method has achieved
that in a realistic scenario! (For some reason it appears that the 1-clump cases of our distributions are particularly ill-suited for honest range
voting.) The worst performances for negotiation-free utility-based asset voting (in comparison with honest range voting) seem to occur when the
candidates all seem nearly identical in the eyes of most voters. In that case, most voters will scale their votes to reduce the importance of candidate
differences, causing the election results to be dominated by the few freak voters for whom there is one very good candidate. That introduces a lot
of “noise” which range voting is comparatively immune to.

20In our 72 experiments there were only 5 cases where negotiation worsened an honest plurality vote: all were clump-free (i.e. fully spherically
symmetric) cases with D = 2, 3.

21 In our 72 experiments there were only 13 where method 7 was worse, by a statistically significant margin, than strategic approval voting.
Furthermore, it was better than strategic STV voting in all but 3 cases (all of which had µ = 0 – perfect spherical symmetry – and 101 voters).

22All were cases with 101 voters.
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That presumably is because in these cases perfect spherical-
symmetry is approached, i.e. all candidates are identical ex-
cept for small perturbations due to the fact that the ran-
dom locations of the 101 voters cannot be exactly uniform
on the sphere. While the non-asset voting methods tend to
be comparatively good at extracting the needed statistical in-
formation about the tiny differences between the candidates
in this case, the negotiation stage of asset voting introduces
huge perturbations which arise almost entirely from “noise.”
It also does not help that the pathology of footnote 18 simul-
taneously happens in this case, yielding a “perfect storm.” In
view of this, any claim of the superiority, or even the com-
petitiveness, of asset voting must rest on the assumption that
this kind of situation of exact symmetry, in which all can-
didates are nearly identical, is rare in practice! Fortunately,
that probably is a pretty realistic assumption, and when it is
not, then arguably the question of who wins the election does
not matter much anyway.

8 Conclusion

Philosophy. The first stage of the present paper’s scheme
converts votes into a conserved asset similar to money. Then
the second (“negotiation”) stage allows the laws of economics
to enter the picture. Representation is assured since a voter
group of say 15% of the voters will control 15% of this “as-
set,” which will enable them to “buy” 15% of the seats. Fur-
ther, perceived-as-better candidates will get more of the asset,
which is good.

It is for this reason that we call our method “asset voting.”23

What motivates candidates during the negotiation? There are
several possibilities. They could care about their ideas and
hence would support the candidate whose views were closest
to their own. They could care about power and hence would
donate their votes to candidates who agreed to give them fa-
vors, or “pork,” or cabinet posts, in return. They might be
influenced by agreements to act in certain ways (“support my
health plan and I’ll give you my vote”) or they could care
about money (“buy my votes”) – which is somewhat equiva-
lent to power at least in today’s US politics.

Some of the above possibilities are more deplorable than oth-
ers, but all are approximately good because they are doing
roughly what the voters want. Anybody who votes for a can-
didate C does so because he wants C to get more power. Even
if C is doomed to lose because he didn’t get enough votes,
those votes can still suffice to give him power at the negotiat-
ing table. There, C can then try to convert that power into
other forms, such as power to choose winners, or into favors,
pork, policy changes, or cabinet posts. Either way, your vote
is accomplishing something in roughly the direction you want
(and if it isn’t, that is your fault for foolishly voting for C
and misjudging what C was going to do). Similarly, votes for
a candidate who does have enough to win are not wasted be-
cause they too give him more power at the negotiating table,
which he can use to avoid granting concessions to less-popular
candidates, and (further) in variant #2 of asset voting, he can

use his excess votes to help his “friends.”

How good is it? On paper, based on the list of theo-

retical desiderata in §2, it appears asset voting is superior
to all multiwinner election methods known to me. How-
ever, those advantages seem insufficiently large to constitute
a clear “knockout punch” over the best STV schemes – and
asset voting also suffers some theoretical disadvantages rela-
tive to those schemes (see §6). Hence, reasonable judges could
well still prefer STV, at least for some applications. Experi-

mentally, asset voting often appears to be the best available
method (when applicable) for single-winner elections. This is
assuming strategic voters, and assuming our notion of “good
strategy” in asset voting24 is approximately correct. Specifi-
cally, in 82% of the experimental scenarios tried, asset voting
had comparable or smaller regret than strategic approval vot-
ing (the best previously known method). In 96% of the experi-
mental scenarios strategic asset voting was better than strate-
gic STV voting, and although it was worse in the remaining
4%, it was only worse by 9-46%, i.e. not a lot worse since
STV also performed quite badly in those cases (namely 2.3-2.6
times worse than strategic approval voting). This single win-
ner data suggests that asset voting might also be preferable to
STV in multiwinner elections. In a small percentage (≈ 7%)
of the experimental scenarios, the negotiation stage of asset
voting on average causes more damage than it repairs, caus-
ing disturbingly poor performance (high regret values), worse
than plain plurality voting. Perhaps this 7% is trying to tell
us something – it may mean that there is a still better voting
system, which nobody has yet invented. It also may be that
the “bad 7%” reduces to a much smaller badness-percentage if
asset voting is only employed in multiwinner elections (which
we advocate).

Some remarks about Arrow’s and others’ impossibil-

ity theorems. Ken Arrow won the 1972 Nobel prize in
Economics for his “impossibility theorem” showing (vaguely
speaking) that “good”voting schemes (satisfying a certain list
of desiderata) cannot exist. Brams & Fishburn called Arrow’s
result “one of the most significant developments of the 20th
century” in their 2002 survey Voting procedures [4].

I believe all that is nonsense. (The time has come to slaugh-
ter this sacred cow.) Arrow proved his “impossibility” result
by adopting silly rules about what a “voting system” was (his
input votes are preference orderings; so is his output). In fact,
if the input votes are real vectors and output is identity-of-
winner, then one of Arrow’s “obviously desirable” postulates
actually is obviously undesirable and upon fixing that there
is no Arrow impossibility theorem, as I proved in my paper
“Range Voting” [25] by showing that “honest utility voting”
satisfies all of Arrow’s (revised) postulates. Thus, to put it
bluntly, Arrow’s “great result” would be better described as
“he devised a stupid model.”25

What I regard as actually a much more important result (al-
though it did not win a Nobel) is Gibbard’s [16] dishonesty
theorem saying voters in an N -candidate election, N ≥ 3, will
always sometimes find it strategically desirable to be dishon-
est. (Actually range voting [25] partially avoids that theorem

23“Unit mass voting with negotiation” somehow seems to lack zing.
24Namely, method 7 of §7.
25Also, Arrow required an entire book [1] to prove it (after repairing his original 1950 wrong theorem and proof; the story is recounted in [20]).

His theorem and proof were later redone by Fishburn [10] in a few pages and finally by Geanakopolos [15] in 1 page.

Sep 2004 11 8. 0. 0



Smith typeset 19:44 8 Mar 2005 multiwinner

in the special case N = 3, but not when N ≥ 4.) Arrow had
ignored strategic voting entirely, which was another aspect of
his theorem’s silliness.

Later, I proved my own impossibility theorems [26][27].

So both of the two original impossibility theorems may be
evaded (totally for Arrow, partially for Gibbard) by devising
a “voting system” which “breaks the rules,” i.e. was not re-
garded as a“voting system”by the definitions implicit in those
theorems.26 Those original definitions are now seen, with the
benefit of hindsight, to have been too restrictive.

The joy (or sorrow) of asset voting is that it “‘breaks the
rules” in a new way. It is not a map from votes to election
results at all. Instead it is merely a map from votes to “assets”
– which are then used in a “negotiation.” Thus in principle
the door is now open to devising new voting systems avoid-
ing both Arrow’s and Gibbard’s “impossibility” theorems and
thus potentially better than was previously thought possible.
But since “negotiation” is a difficult concept to formalize, it
is unclear whether this door really has opened, or whether,
upon deeper investigation, it will once again slam shut.
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µ N D 1:randwin 2:plurS 3:plurH 4:appS 5:rangeH 6:NNass 7:PLass 8:assetH 9:Hstv 10:Sstv
∞ 3 1 1.64145 0.14154 0.00000 0.07348 0.00000 0.40894 0.00000 0.00000 0.00000 0.54638
∞ 3 2 1.43697 0.55113 0.21690 0.25028 0.09215 0.14159 0.20352 0.39805 0.13167 0.55113
∞ 3 3 1.22732 0.49850 0.22421 0.22886 0.10810 0.11090 0.24419 0.39425 0.15543 0.49850
∞ 4 1 1.91436 0.21376 0.00000 0.11889 0.00000 0.76455 0.00000 0.00000 0.00000 0.82178
∞ 4 2 1.71422 0.82580 0.32071 0.35887 0.12563 0.16047 0.29455 0.64048 0.18060 0.82580
∞ 4 3 1.47310 0.74456 0.32239 0.32036 0.12717 0.10948 0.35506 0.60527 0.20729 0.74456
1 3 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 3 2 0.18977 0.06053 0.04131 0.04458 0.01858 0.02037 0.02692 0.02982 0.02699 0.06053
1 3 3 0.21058 0.07597 0.03739 0.03194 0.01465 0.01523 0.02916 0.03385 0.02405 0.07597
1 4 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 4 2 0.21420 0.08473 0.06496 0.05876 0.02142 0.01812 0.04122 0.03704 0.04075 0.08473
1 4 3 0.24682 0.11219 0.06044 0.04398 0.01662 0.01421 0.04416 0.05002 0.03574 0.11219
2 3 1 0.82102 0.07126 0.00000 0.03683 0.00000 0.20526 0.00000 0.00000 0.00000 0.27339
2 3 2 1.05927 0.35557 0.20360 0.27215 0.05095 0.19386 0.09246 0.09629 0.09246 0.35557
2 3 3 1.03258 0.35156 0.21084 0.24632 0.04917 0.17632 0.10198 0.10224 0.09870 0.35156
2 4 1 0.95787 0.10606 0.00000 0.05906 0.00000 0.38321 0.00000 0.00000 0.00000 0.41120
2 4 2 1.22655 0.52279 0.32021 0.39685 0.07020 0.22233 0.14374 0.20247 0.14353 0.52279
2 4 3 1.20120 0.52149 0.33035 0.36850 0.06909 0.18191 0.15818 0.22664 0.15339 0.52149
3 3 1 1.23028 0.10698 0.00000 0.05580 0.00000 0.30761 0.00000 0.00000 0.00000 0.41134
3 3 2 1.37789 0.45887 0.22153 0.29766 0.07287 0.18237 0.11994 0.15402 0.11537 0.45887
3 3 3 1.27542 0.43667 0.20910 0.25978 0.07431 0.14481 0.12996 0.16297 0.12029 0.43667
3 4 1 1.43638 0.15954 0.00000 0.08887 0.00000 0.57370 0.00000 0.00000 0.00000 0.61463
3 4 2 1.58701 0.66680 0.35690 0.43024 0.10038 0.21417 0.18218 0.28368 0.17352 0.66680
3 4 3 1.47592 0.63785 0.33477 0.38013 0.09957 0.15694 0.19251 0.29784 0.17587 0.63785
4 3 1 1.43575 0.12484 0.00000 0.06445 0.00000 0.35905 0.00000 0.00000 0.00000 0.47911
4 3 2 1.49265 0.50303 0.22556 0.29250 0.08137 0.17207 0.13584 0.19979 0.12403 0.50303
4 3 3 1.35133 0.46946 0.21103 0.25363 0.08233 0.13463 0.14428 0.20162 0.12764 0.46946
4 4 1 1.67400 0.18584 0.00000 0.10492 0.00000 0.66958 0.00000 0.00000 0.00000 0.71635
4 4 2 1.72303 0.73162 0.35835 0.42067 0.11097 0.19902 0.20187 0.35070 0.18198 0.73162
4 4 3 1.56888 0.68589 0.33144 0.36886 0.10828 0.14552 0.20977 0.35327 0.18227 0.68589
5 3 1 1.53894 0.13401 0.00000 0.06961 0.00000 0.38487 0.00000 0.00000 0.00000 0.51257
5 3 2 1.52671 0.52327 0.22466 0.28318 0.08442 0.16473 0.14725 0.23558 0.12708 0.52327
5 3 3 1.37424 0.48624 0.21333 0.24782 0.08672 0.12899 0.15674 0.23007 0.13231 0.48624
5 4 1 1.79243 0.20038 0.00000 0.11185 0.00000 0.71812 0.00000 0.00000 0.00000 0.77022
5 4 2 1.77213 0.76456 0.35380 0.40806 0.11507 0.18956 0.21554 0.40618 0.18392 0.76456
5 4 3 1.60175 0.71113 0.33004 0.35845 0.11186 0.13885 0.22563 0.39536 0.18627 0.71113

Figure 9.1. Bayesian regrets for 10 single-winner voting systems with 7 voters. (Smaller regrets are better.) Each datapoint
is an average over 2,500,000 simulated elections. See the text of §7 for descriptions of the 10 voting systems and of the
(µ-clump D-dimensional) probability distributions governing the 7 voters, the N candidates, and their utilities from each
other’s point of view. The 99% confidence error bars on each regret value should be ±0.005 or smaller. N
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µ N D 1:randwin 2:plurS 3:plurH 4:appS 5:rangeH 6:NNass 7:PLass 8:assetH 9:Hstv 10:Sstv
∞ 3 1 6.01656 0.51442 0.00000 0.26137 0.00000 6.02019 0.00000 0.00000 0.00000 2.02020
∞ 3 2 5.42690 2.16125 2.64467 0.91954 0.26901 2.19472 2.59917 3.63132 0.78950 2.16125
∞ 3 3 4.62092 1.95052 2.11992 0.84315 0.31616 1.19052 2.84726 3.12186 0.86210 1.95052
∞ 4 1 7.04712 0.79609 0.00000 0.44346 0.00000 4.02696 0.00000 0.00000 0.00000 3.03111
∞ 4 2 6.44689 3.17011 3.14124 1.25427 0.20153 3.05011 3.46265 4.01366 1.13853 3.17011
∞ 4 3 5.55364 2.88727 2.75961 1.12965 0.24771 1.55072 3.39147 2.99895 1.21033 2.88727
1 3 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 3 2 2.31490 0.68275 0.68187 0.41731 0.23558 0.25742 0.24374 0.42517 0.20755 0.68275
1 3 3 2.44679 0.83019 0.39035 0.15936 0.07222 0.09936 0.24722 0.51125 0.11568 0.83019
1 4 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 4 2 2.65183 1.01244 1.15456 0.57437 0.22475 0.22613 0.51631 0.35763 0.40907 1.01244
1 4 3 2.92865 1.31540 0.75085 0.25013 0.08706 0.11125 0.41215 0.47674 0.19158 1.31540
2 3 1 3.02114 0.25894 0.00000 0.13678 0.00000 2.99847 0.00000 0.00000 0.00000 1.00553
2 3 2 8.20734 3.24094 4.86640 2.65586 1.04553 3.69536 2.24003 1.79457 2.22254 3.24094
2 3 3 8.21943 3.46955 5.24408 2.44548 1.00252 3.62689 2.59016 1.93289 2.53217 3.46955
2 4 1 3.50993 0.38860 0.00000 0.21863 0.00000 2.01594 0.00000 0.00000 0.00000 1.50006
2 4 2 9.59556 4.61790 6.50954 3.59752 0.90580 3.24904 3.54203 3.18043 3.47029 4.61790
2 4 3 9.73793 4.97283 6.79950 3.33448 0.87367 3.34690 3.98917 3.39668 3.85986 4.97283
3 3 1 4.50858 0.39700 0.00000 0.20679 0.00000 4.51315 0.00000 0.00000 0.00000 1.51157
3 3 2 12.90874 4.35668 4.73412 2.69079 0.78248 3.02204 2.03887 1.86889 1.90001 4.35668
3 3 3 12.40685 4.24489 3.93247 2.19649 0.59021 1.76104 1.92839 1.78924 1.73327 4.24489
3 4 1 5.26983 0.57886 0.00000 0.31660 0.00000 3.02043 0.00000 0.00000 0.00000 2.24368
3 4 2 14.92060 6.38689 8.34035 3.85357 0.69741 4.11684 3.50124 2.95619 3.22026 6.38689
3 4 3 14.44695 6.29120 7.79925 3.19526 0.51438 2.92660 3.26809 2.76481 2.89888 6.29120
4 3 1 5.29342 0.45242 0.00000 0.23199 0.00000 5.27097 0.00000 0.00000 0.00000 1.75233
4 3 2 13.72700 4.58349 4.31436 2.43298 0.74390 2.55893 2.06640 2.45601 1.75599 4.58349
4 3 3 12.84877 4.39684 3.55071 1.98823 0.64832 1.69466 2.03314 2.63892 1.62872 4.39684
4 4 1 6.14536 0.68879 0.00000 0.38067 0.00000 3.50410 0.00000 0.00000 0.00000 2.63580
4 4 2 15.90849 6.74479 7.60583 3.45000 0.63553 3.64580 3.49158 3.47161 2.90649 6.74479
4 4 3 14.98539 6.48117 6.21270 2.83337 0.55491 2.25441 3.29264 3.39748 2.57819 6.48117
5 3 1 5.65726 0.48839 0.00000 0.25533 0.00000 5.63600 0.00000 0.00000 0.00000 1.87368
5 3 2 13.39278 4.48213 4.08632 2.15377 0.66859 2.39055 2.12131 2.97955 1.64104 4.48213
5 3 3 12.70132 4.32411 3.50702 1.78910 0.60266 1.58423 2.10140 3.09617 1.57751 4.32411
5 4 1 6.56193 0.72325 0.00000 0.40172 0.00000 3.75564 0.00000 0.00000 0.00000 2.80731
5 4 2 15.52413 6.55825 6.89255 3.04145 0.56773 3.38481 3.52514 4.00830 2.69461 6.55825
5 4 3 14.78633 6.39985 5.91592 2.55120 0.50580 2.11165 3.34401 3.75977 2.50231 6.39985

Figure 9.2. Bayesian regrets for 10 voting systems with 101 voters. Each datapoint averages 500,000 simulated elections. N
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