
Gurvits & Smith typeset 815 Feb 1, 2005 Permanents

Definite integration and summation are #P-hard

Leonid Gurvits & Warren D. Smith∗

WDSmith@fastmail.fm, gurvits@lanl.gov

3 Sept 1998

Abstract — We show that the common symbolic ma-

nipulation tasks of computing multiple partial deriva-

tives, definite integration, and definite summation, are

#P-hard, i.e., at least as hard as counting the accepting

input strings for any Turing machine that halts in poly-

nomial time. (The “multiple partial derivatives” part

was previously known.)

Keywords — multiple partial derivatives, definite integra-

tion, definite summation, symbolic manipulation tasks, #P-

completeness, permanents, Ryser’s formula.

1 Permanents, averaging, and partial

differentiation

LET A be an n × n matrix

A =

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

. (1)

The “permanent” of A is defined by

perA =
∑

σ

a1,σ(1)a2,σ(2) · · · an,σ(n) (2)

where the sum is over the n! permutations σ of {1, 2, ..., n}.
L.G.Valiant [8] showed that computing the permanent of

a matrix whose elements lay in the set {−1, 0, 1, 2, 3} was
#P-complete.

We first note that

perA =

[

coeff. of
z1z2 · · · zn in

] n
∏

k=1

(a1kz1 + a2kz2 + · · · + ankzn).

(3)
As a consequence, any “averaging process” on the variables
z1, z2,..., zn which serves to “cancel out” all the coefficients
in the monomial expansion of the polynomial on the right of
(EQ 3), except for the one coefficient we want, will lead to a
formula for the permanent. Special cases of this observation

∗Work done while both authors were at the now-defunct NEC
Research Institute, 4 Independence Way, Princeton NJ 08540 USA.
Gurvits is now at CCS-3 Modeling, Algorithms, & Informatics Group,
Computer & Computational Sciences Division, Los Alamos National
Laboratory. Non-electronic mail to Smith at 21 Shore Oaks Drive,
Stony Brook NY 11790.

have been discovered (and rediscovered) previously. For
example, “Ryser’s formula” [7]

perA =
1

2n

1
∑

q1=0

1
∑

q2=0

· · ·

1
∑

qn=0

n
∏

k=1

n
∑

j=1

(−1)qj+qkajk

 (4)

involving a sum over 2n binary words q1q2...qn, arises by
considering one such averaging process. This sum may be
evaluated in O(n2n) arithmetic operations by traversing the
binary words in a “Gray code” order in which any word
differs from its predecessor at exactly one bit.

The point of the Gray code is that each of the n terms
in the product may be updated, after changing one bit, in
O(1) steps. Note that in this algorithm, unlike the previous
one, the storage requirements are only linear.

Incidentally, a further factor 2 saving in work may be
garnered by only using the 2n−1 words with one of the bits
fixed. The only monomials this averaging process could get
wrong are ones in which z1 (assuming the bit with index 1
is the fixed bit) appears to an odd degree and all the other
zj appear raised to an even power. (Remember that z2

j = 1
if zj = ±1.) But, such monomials cannot arise.

Other averaging processes based on multiple uses of
Cauchy’s residue theorem, integration over spheres or ra-
dially symmetric Gaussians, summation over roots of unity
forming a regular p-gon (the above was p = 2), integrals
over tori, and so forth could also be used, leading to a large
number of possible permanent formulae. One useful trick
when devising such formulae is to let zj = exp(iqj) and

constrain qn to equal −
∑n−1

j=1 qj inside the averaging in-

tegral or sum, which causes
∏n

j=1 exp(iqj) to average to 1

and
∏n

j=1 exp(iqj)
mj to average to 0 if the mj are unequal

– precisely the desired effect. An alternative trick is to mul-
tiply the product in (EQ 3) by z1z2 · · · zn and then average
~z over any centrally symmetric probability distribution in
Rn. The term we want will average out to something posi-
tive since (z1z2 · · · zn)2 is nonnegative, but the other terms
will average to 0 because at least one power of at least one
zj must be odd.

A different method of isolating the one coefficient we want
is multiple partial differentiation. This leads to:

Theorem 1 (Previously known)
If ajk ∈ {−1, 0, 1, 2, 3}, then evaluating the multiple partial

DocNumber 1 . 1. 0. 0

Gurvits & Smith typeset 815 Feb 1, 2005 Permanents

derivative

∂n

∂z1 ∂z2 · · · ∂zn

n
∏

k=1

(a1kz1 + a2kz2 + · · · + ankzn)
∣

∣

~z=~0
. (5)

at the point z1 = z2 = · · · = zn = 0 is #P-complete.

Proof. This is perA. 2

2 The complexity of 1D definite integration

Let p be an integer with |p| ≥ 2. Then we may express the
permanent of an n × n matrix A as a 1D definite integral:

perA =
1

2π

∫ 2π

0

n
∏

j=1

(6)

(

n−1
∑

k=1

ajk exp(ipk−1θ) + ajn exp(−i
pn − 1

p − 1
θ)

)

dθ.

The point is that this integral averages all the terms in the
generating function (EQ 3) to 0, except for the one we want.

Observe: to make everything real, we can replace every
occurence of exp(iα) by its real part cosα and use 1

π

∫ π

0

instead of 1
2π

∫ 2π

0
.

To avoid1 the use of transcendental functions (e.g. cos)
or of the transcendental number π as a limit of the inte-
gral, then by using the substitution θ = arctan(2t), dθ =
2/(1 + 4t2)dt, cos θ = (1 − t2)/(1 + t2), sin θ = 2t/(1 + t2),
exp(iqθ) = [(1+it)/(1−it)]q we may instead write the inte-
gral as a rational function of t integrated from −∞ to +∞
(for an appropriate choice of the branch of arctan). To avoid
integrals over infinite intervals, by a further rational change
of variables such as t = s/(1−s2), dt = (1+s2)/(1−s2)2ds
we may transform to the finite range −1 < s < 1.

So, we conclude

Theorem 2 Given a rational function of s (with Gaussian-
integer coefficients and integer degrees) determining its in-
tegral over the range −1 < s < 1 is #P-hard. This is
true even if the rational function integrand is expressed as
a “straight line code” program, and even if we promise that
the value is a positive integer only a polynomial2 number of
bits long, and even if we further promise that running this
code at any rational point s in (−1, 1) will run in polynomial
time. 2

On the other hand, the promise problem3 in the theorem
is in fact soluble in polynomial time with the aid of an oracle
for #P. Hence

1The reason why we go to extra trouble to make the theorem hold
for rational functions is that they are the “simplest” class of functions
that are not trivially integrable. Our point is that if rational functions
are hard to integrate, presumbably most everything else is at least as
hard to integrate.

2“Polynomial” in the number of statements in the input straight-
line program, which is a list of statements of the form a← b&c where
a, b, c are variable names and & is one of the four operators {+,−, ∗, /}.

3“Promise problem” is a standard technical term. It refers to the
notion of allowing the solution procedures for some class of problems
only to be required to work on the subclass of those problems which
obey some “promise,” e.g. that the output bit-length will be short.
Obviously, solving the full class of problems is at least as hard as
solving the promise-subclass.

Theorem 3 The promise problem of the preceding theorem
is #P-complete.

Proof: We need only to show that it is in #P. We take ad-
vantage of the fact that integrating a Fourier mode around

the unit circle (e.g.
∫ 2π

0 sin(mθ)dθ = 0) may be done by
summation at the vertices of a regular polygon, if the poly-
gon has n vertices with n ≥ m. In other words, for integrals
of this sort, the trapezoid rule is exact if there are enough
trapezoids. Hence the integral (EQ 6) is expressible exactly
as a finite sum at the vertices of a regular pn-gon

perA =
1

2πpn

pn
−1
∑

m=0

n
∏

j=1

(7)

(

n−1
∑

k=1

ajk exp(2πimpk−1−n) + ajn exp(−2πim
pn − 1

(p − 1)pn
)

)

.

We can ask our #P oracle to compute the number of sum-
mands at which bit b of the summand is 1, for all relevant b
(also using bits on the fractional side of the decimal point)
there being only a polynomial(n) number of bits that could
matter (due to the promises). From these counts we may
deduce the value of the sum (i.e. integral) accurate to the
nearest integer (i.e. exactly). 2

Again, since the integral of EQ 6 is expressible exactly as
a finite sum, we conclude

Theorem 4 Doing the definite integral of (EQ 6) (and its
equivalent versions discussed above) is #P-complete; so is
its summation version with pn terms to be summed.

The weaker result that determining whether an integral
of the form

∫ 2π

0

n
∏

j−1

cos(ajθ)dθ (8)

equals zero is NP-hard, was previously shown by Plaisted
[6]. Here the aj are integers represented in binary.
Plaisted’s problem is soluble in “pseudo-polynomial time,”
i.e. in polynomial time if the aj are input in unary.

In contrast, our integrals and sums remain #P-complete
even if our ajk are input in unary. However, we have other
exponentially large integers (of order pn) in our expres-
sion (EQ 6), which certainly couldn’t be input in unary.
These n numbers do have very simple radix-p representa-
tions, however. To be precise, the n numbers in question
are 1, p, p2, . . . , pn−1 and −(pn − 1)/(p − 1). If these were
written symbolically (as we’ve just written them) then all
input numbers could be unary. Also, if these numbers were
computed using straight-line code (or if exponentials yk for
our large integers k were computed using straight-line code)
then the straight-line code could “handle the binary” and
then only small numbers would need to occur explicitly, all
of which could be input in unary. (And of course we recom-
mend the simplest choice p = 2 for p.) Incidentally, these n
numbers could instead have been chosen to be any set of n
integers summing to 0 and such that the only way to pick

DocNumber 2 . 2. 0. 0

Gurvits & Smith typeset 815 Feb 1, 2005 Permanents

n elements (with replacement) from this set, such that the
selected multiset sums to 0, is to pick the entire set.

It remains possible that some other class of integrals than
ours is even more difficult than #P-complete.4

3 How hard is it to approximate the permanent?

Consider the problem of approximating the number of sat-
isfying assignments of a boolean formula (the approximate
“#SAT problem”). This is “APX-complete” [1].

We can build a boolean formula with n inputs such that
the left n/2 inputs have exactly 0 or 1 satisfying assign-
ments and such that the right half of the circuit is always
satisfied (the full circuit ANDs the left and right halfs).
Then the whole circuit will have either 0 or 2n/2 satisfying
assignments. Thus approximating the number of satisfying
assignments to within 2n/2 on an n-input SAT problem is
at least as hard as determining whether a SAT problem on
n/2 inputs has a solution, given the promise that it has
exactly 1 or 0 solutions.

Valiant [8] showed that #SAT could be reduced in poly-
nomial time to a single #3SAT computation, i.e. (in his no-
tation from [9]) SAT≤!3SAT. Valiant also found count pre-
serving (except for an easily computed factor of proportion-
ality) reductions to show that SAT≤!HAMILTONIAN CIR-
CUITS and [9] that 3SAT≤!{−1, 0, 1, 2, 3}PERMANENT.

These problems are complete over an interesting com-
plexity class called “UP” (for promised Unique P). Clearly
P ⊆ UP ⊆ NP . It is usual to conjecture that P 6= UP .

One reason to believe that P 6= UP is that the following
problem is in UP, but looks too difficult to be in P:
PROMISE PROBLEM: Does a product of two primes have a
factor in a given range?
INSTANCE: An integer N , promised to be of the form N =
pq, p ≤ q both prime, and an integer interval [ℓ, u].
QUESTION: Is ℓ ≤ p ≤ u?

Even more convincingly, Valiant and Vazirani have shown
[12] that RUP=NP, i.e. if one could detect unique solu-
tions to NP problems in randomized polynomial time, then
RP=NP.

There is some speculation [2] that UP 6= NP , i.e. that
the randomness in [12] was essential.

Anyhow, the moral is that

Theorem 5 There exists c > 1 such that it is impossi-
ble to approximate permanents with elements in the set
{−1, 0, 1, 2, 3} to within an additive factor ±cL and a mul-
tiplicative factor cL (where L is the input length) in random
polynomial time, unless RP=NP. 2

4In fact, the integral
∫

3

0
xN−1dx = 3N /N has a value which re-

quires exponentially many (as a function of the number of bits in N)
bits to express in binary. This sort of triviality is best abolished with
the aid of some sort of promise, which is in fact what we did. A
slightly different approach would be, with the aid of the promise that
the integral’s value is a rational number, to ask for the value of that
rational modulo some small prime. For example, it is trivial for a
Turing machine to evaluate 3N /N mod 5 in a number of steps poly-
nomial in bit length of N . However, modular evaluation of integer
permanents also is #P-complete [9], so that the comparable question
about the integrals in theorem 2 is #P-complete.

However, it was recently shown [3] that there is a fully
polynomial randomized approximation scheme for approx-
imating permanents of matrices with nonnegative binary-
integer entries to within any desired constant factor 1 + ǫ.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, M. Protasi: Complexity and Approximation. Com-
binatorial Optimization Problems and their Approximability
Properties. Springer, Berlin, 1999.

[2] R. Beigel, H. Buhrmann, L. Fortnow: NP might not be as easy
as detecting unique solutions, STOC 30 (1998) 203-208.

[3] Mark Jerrum, Alistair Sinclair, Eric Vigoda: A polynomial-time
approximation algorithm for the permanent of a matrix with non-
negative entries, ACM Sympos. Theory of Computing 33 (2001)
712-721. To appear in J. Assoc. Computing Machinery. I. Beza-
kova, D. Stefankovic, V. Vazirani, and E. Vigoda have recently
claimed (in a preprint) to have reduced the runtime to approx-
imate 0-1 permanents to O∗(n7) steps from O∗(N26), but still
do not regard their algorithm as practical.

[4] D.S.Johnson: A catalogue of complexity classes, chapter 2 pages
67-162 in Handbook of theoretical computer science (volume A),
MIT Press 1990.

[5] David A. Plaisted: Sparse Complex Polynomials and Polynomial
Reducibility, JCSS 14,4 (1977) 210-221.

[6] David A. Plaisted: Some Polynomial and Integer Divisibility
problems are NP-Hard, SIAM J. Computing, 7,4 (1978) 458-464.

[7] H.Ryser: Combinatorial mathematics, (Carus math. mono-
graphs #14) Wiley 1960.

[8] Leslie G. Valiant: The complexity of enumeration and reliability
problems, SIAM J. Comput. 8,3 (1979) 410-421.

[9] Leslie G. Valiant: The complexity of computing the permanent,
Theor. Comput. Sci. 8,2 (1979) 189-201.

[10] Leslie G. Valiant: Completeness classes in algebra, STOC 11
(1979) 259-261.

[11] Leslie G. Valiant: Reducibility by algebraic projections, pp. 365-
380 in Logic and Algorithmic: internat. sympos. held in honour
of Ernst Specker, Monographies de l’Enseignement Mathema-
tique 30 (1982).

[12] Leslie G. Valiant & Vijay V. Vazirani: NP is as easy as detecting
unique solutions, Theor. Comput. Sci. 47 (1986) 85-93.

DocNumber 3 . 3. 0. 0

