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Abstract —

We describe a linear-time algorithm for 4-coloring planar

graphs. We indeed give an O(V + E + |χ| + 1)-time algo-

rithm to C-color V -vertex E-edge graphs embeddable on

a 2-manifold M of Euler characteristic χ where C(M) is

given by Heawood’s (minimax optimal) formula. Also we

show how, in O(V + E) time, to find the exact chromatic

number of a maximal planar graph (one with E = 3V − 6)

and a coloring achieving it. Finally, there is a linear-time

algorithm to 5-color a graph embedded on any fixed sur-

face M except that an M-dependent constant number of

vertices are left uncolored. All the algorithms are sim-

ple and practical and run on a deterministic pointer ma-

chine, except for planar graph 4-coloring which involves

enormous constant factors and requires an integer RAM

with a random number generator. All of the algorithms

mentioned so far are in the ultra-parallelizable determin-

istic computational complexity class “NC.” We also have

more practical planar 4-coloring algorithms that can run

on pointer machines in O(V log V ) randomized time and

O(V ) space, and a very simple deterministic O(V )-time

coloring algorithm for planar graphs which conjecturally

uses 4 colors.

1 Summary

In 1890 P.J.Heawood gave ⌊(7 +
√

49 − 24χ)/2⌋ as the min-
imum number of colors required to color the vertices of any
graph embeddable on a 2D surface of Euler characteristic χ.
This formula was subsequently proven in every case except
the Klein bottle, for which it gives 7 while the correct answer
is 6. The most difficult proof by far is the 4-colorability of
planar graphs.

We show there is an algorithm running in linear time O(V +
E+|χ|+1) that will find a C-coloring of any V -vertex, E-edge
graph with known embedding on any surface with Euler char-
acteristic χ, and with C ≤Heawood’s corrected bound. (Also,
there are linear-time algorithms to detect and color the cases
of 1- and 2-colorability; the 3-colorable case can also be han-
dled if the graph-embedding is fully triangulated.) We also
give a linear-time algorithm to 5-color a graph embedded on
any 2D surface S, except that an S-dependent-size subset of
the vertices are left uncolored. All of these algorithms are in
the ultra-parallelizable class “NC.”

All these algorithms are simple and practical except for plane-

graph 4-coloring. Then the constants hidden in the O in both
the space and time upper bounds are enormous (106-1015).
Furthermore, although all the other algorithms were deter-
ministic and ran on a pointer machine, the 4-coloring algo-
rithm is (mildly) randomized and requires an integer RAM; it
may be derandomized if the runtime bound is multiplied by
O(log V ).

Denote large hidden constants with “Ô.” One source of this
hugeness is: our algorithm actually outputs not merely a sin-
gle 4-coloring, but in fact an Ô(V )-size data structure that im-
plicitly simultaneously represents a possibly-enormous num-
ber of different 4-colorings. One of those colorings may then
be extracted in O(V ) time in conventional format.

The best previously known algorithm for 4-coloring planar
graphs required O(V 2) time and O(V ) space. Only exponen-
tial runtime bounds were known for practical 4-coloring algo-
rithms. We describe some hybrid algorithms which attempt to
combine the good features of all of these. One has O(V 2) run-
time and O(V ) space bounds but empirical evidence suggests
it usually would run in only slightly superlinear time. Another
(which depends heavily on randomization) has an O(V log V )
expected runtime and O(V ) space bound, and should be heav-
ily parallelizable since it in the class NCrandomized (and can
indeed be derandomized to show it is in deterministic NC).
Finally, another has O(V + E) time and space bound and is
fairly easily programmed, but only conjecturally necessarily
produces a 4-coloring.

2 Historical Introduction

V , E, and F shall denote the number of vertices, edges, and
faces of a graph. A graph is k-colorable iff each vertex may
be colored one of k colors with no two adjacent vertices hav-
ing the same color. A.B.Kempe in 1879 and P.G.Tait in 1880
published different incorrect proofs that planar graphs were
4-colorable. Despite their incorrectness both proofs had some
merit.

Tait correctly proved that the vertices of a maximal (i.e. fully
triangulated) planar graph (MPG) were 4-colorable if and
only if its edges could be 3-colored in such a way that the
3 edges of each triangle-face had different colors. This in turn
is true iff the vertex set of the planar-dual (3-valent) graph is
partitionable into disjoint even-perimeter cycles.1 There are
simple linear-time algorithms for interconverting any of these

1“Cycles” with perimeter≤ 2 are not allowed – we demand genuine “simple” cycles. Many of Tait’s results actually hold for fully-triangulated
graphs on arbitrary 2D surfaces, not just the plane.
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3 types of solutions, explained on p.103-105 and p.111-112 of
[97].2

Tait’s 4-colorability “proof” then followed from the false as-
sumption (“proven”by J.Chuard in 1932) that the planar dual
of any MPG had a Hamiltonian cycle. This is the simplest
kind of such “even-cycle partition.” The first counterexample
MPG was found by W.T.Tutte [112] in 1946. Every MPG
(and its planar dual) is necessarily 3-connected by a theorem
of Whitney 1932. Holton and McKay [57] showed that the
smallest nonHamiltonian 3-valent 3-connected planar graph
were six found by Lederberg, Barnette, and Bosak in about
1965 [17] each with 38 vertices, 57 edges, and 21 faces. Tait’s
original argument therefore shows that every planar graph
with ≤ 20 vertices is 4-colorable, but fails at 21 vertices. In-
deed, Holton and McKay showed that there are exactly 6
different nonHamiltonian 3-valent 3-connected planar graphs
with < 40 vertices (all 6 of them are exhibited in [57] and each
has 38 vertices), and all 6 of them happen to be 4-colorable.
Tait’s argument therefore shows that every planar graph with
≤ 21 vertices is 4-colorable. It has been conjectured that ev-
ery “fullerene” (3-connected 3-valent planar graph with every
face a hexagon or pentagon) has a Hamiltonian cycle. In-
deed computers [3][22] have verified this for every fullerene
with ≤ 250 vertices. Thus Tait’s argument proves that ev-
ery maximal planar graph with valencies 5 and 6 only, and
≤ 250 triangular faces (i.e. ≤ 127 vertices), is 4-colorable. I
can prove3 that V -vertex fullerenes have cycles with at least
V −O(

√
V ) vertices, which proves every maximal planar graph

with valencies 5 and 6 only is 4-colorable if O(
√

V ) vertices
are deleted.

The error in Kempe’s [69] proof was found by P.J.Heawood in
1890, who gave a 25-country counterexample. This and two
additional simpler counterexamples by Errera (17 countries)
and de la Vallée Poussin (14 countries) are depicted on pages
123-124 of [117] and in [64]. Gethner and Springer [?] argued
that Kempe’s proof validly shows the 4-color theorem is true
when coloring ≤ 8 countries, but fails at 9 countries. Never-
theless Kempe’s key “Kempe chain” idea played an essential
role in the 4-color problem’s eventual resolution.

Heawood was able to prove, quite simply, that any pla-
nar graph is 5-colorable. Furthermore, he showed (essen-
tially) that any graph drawable on a orientable or non-
orientable surface with Euler number χ could be colored with
≤ ⌊(7 +

√
49 − 24χ)/2⌋ colors – except that Heawood was

unable to settle the 3 cases of surfaces with zero “handles.”

The Euler number χ of a graph with V vertices, E edges, and
F faces is χ = V − E + F . A graph drawn on a surface with
h ≥ 0 handles and c ∈ {0, 1} crosscaps has Euler number

χ = 2 − 2h − c. There is only one other kind of 2-manifold,
namely the Klein bottle, which has h = 0 and c = 2 and
χ = 0. Almost everything in topological graph theory is a
consequence almost solely of Euler’s formula and the obvious
equalities and inequalities E ≤ (V − 1)V/2 with equality ex-
actly in the case of a complete4 graph, 2F ≤ 3E with equal-
ity exactly in the fully-triangulated cases, and V, E, F ≥ 0.
For example the theorem that K5 is nonplanar follows from
E ≤ 3V − 3χ so that in our case V = 5, χ = 2 we get E ≤ 9
in contradiction with E = (V − 1)V/2 = 10. The fact that
K7 cannot embed on the projective plane (and hence not on
the Möbius strip either) arises in exactly the same way. The
fact that K3,3 is nonplanar is slightly trickier; we need to use
the fact that, since this graph is bipartite, it can have only
even-sided faces. If all faces have ≥ s sides then 2F ≤ sE.
Using the resulting inequality E ≤ (V − χ)s/(s − 2) where
s is the girth (perimeter of the shortest cycle) of the graph
(which we here assume is not a tree) yields a contradiction
9 ≤ (6 − 2)4/2 = 8 proving K3,3 is nonplanar.

The quantity (7 +
√

49 − 24χ)/2 in Heawood’s formula is ex-
actly the number V of vertices that would cause our two ex-
pressions (V − 1)V/2 (for the number of edges in a complete
graph) and 3V − 3χ (the number of edges in a fully triangu-
lated graph) to be equal.

For example, Heawood’s theorem states that torus graphs
(h = 1 handles, c = 0 crosscaps, Euler number χ = 2−2h−c =
0) are 7-colorable. This is best possible because K7 is a torus
graph (as was originally shown by Möbius and Heawood inde-
pendently, see figure). The two-holed torus has h = 1, c = 0,
χ = −2 and graphs drawn on it are 8-colorable.5

As we shall explain, Heawood’s proofs in fact yield linear-time
algorithms for coloring a graph with a known embedding on
an h-handle body (with or without crosscaps) with at most
this many colors.

The three cases Heawood could not handle are the following.

In the non-orientable h = 0, c = 1, χ = 1 case (projec-
tive plane and Möbius strip) Heawood’s formula says 6 colors
should suffice. This is true and we shall present a linear-time
6-coloring algorithm for graphs with known embeddings in
the projective plane or Möbius strip. This is best possible
because K6 is embeddable on the Möbius strip (and hence on
both the projective plane and Klein bottle, see figure).

In the non-orientable h = 0, c = 2, χ = 0 case (Klein bot-
tle) Heawood’s formula says 7 colors should suffice. This is
not best possible since 6 colors suffice and we shall present a
linear-time 6-coloring algorithm for graphs with known em-
beddings on the Klein bottle. From K6 that is best possible.

2 Vertex⇒edge coloring: If the two vertices sharing edge E are colored 0&1 or 2&3, then color E with a; if 0&2 or 1&3 then b; and if 1&2 or
0&3 then c. Edge coloring⇒even-cycles: The cycles consist of the edges of two particular colors only. Even-cycles⇒vertex coloring: To 4-color the
vertices regard the colors as 2-bit binary numbers; the first bit is the parity of the number of ab-cycles containing that vertex, and the second bit
is the parity of the number of bc-cycles.

3My proof of this is not published.
4The “complete” graph Kn is the n-vertex graph with (n − 1)n/2 edges.
5 The smallest number of vertices of a polyhedron in 3-space homeomorphic to an h-holed torus, is 4, 7, 10, 10, 11 for h = 0, 1, 2, 3, 4. The

tetrahedron is homeomorphic to a sphere and has graph K4. A polyhedron homeomorphic to a torus with graph K7 was found by Császár [28] in
1949, and a dualized version by Lajos Szilassi [102] was described in [40] in 1977. Both of these are known to be combinatorially unique. These
suffice to prove the optimality of Heawood’s bound when h = 0, 1, but the cases h = 2, 3, 4 from [20] [21] [15] [16] [91] [66] do not suffice for that
purpose. It is presently unknown whether a 2-holed-torus-type polyhedron exists that requires 8 colors.

The 1968 proof of Ringel and Youngs [92][91] that the genus of Kn is ⌈(n− 3)(n − 4)/12⌉ if n ≥ 3 proves the optimality of Heawood’s bound on
orientable surfaces, but at present the greatest known genus for an n-vertex polyhedron is only g∼n log n [81] and the maximum possible growth
of this function of n is unknown.
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Finally, in the orientable h = 0, c = 0, χ = 2 case (sphere)
Heawood’s formula says 4 colors should suffice. (And this is
best possible since K4 is planar.) This in fact was eventually
proven, with great exertion, by Appel, Haken, and Koch in
1976. The ideas underlying their proof were due to Heinrich
Heesch. Haken became confident based on a heuristic proba-
bilistic analysis of Heesch’s ideas that a proof of his sort must
exist and, further, one must exist that is small enough that it
should be feasible for a computer to find it. It then became a
matter of creative computer programming to guide a machine-
search for the proof. Frank Allaire later produced another
proof based on essentially the same set of ideas [4]. The lat-
est proof based on these ideas is due to Robertson, Sanders,
Seymour, and Thomas in 1997 [93]. It is quite streamlined
and error-free compared to the original Appel-Haken proof.
However, it still cannot be considered simple since it requires
executing about 1012 computer instructions to verify it.

E.F.Moore and W.Haken both found reasons to believe that
no Heesch-type 4-colorability proof can ever be short and sim-
ple: in 1963 Moore found a map (exhibited p.220 of [100], page
95-96 of [97] and 183 of [117]) claimed6 not to contain any re-
ducible configuration with ring size≤ 11. Haken’s probabilis-
tic estimates suggest that no Heesch-type proof exists with
only ring-sizes≤ 13 and that any unavoidable set of configu-
rations that do not include Heesch’s “obstacles” is necessarily
very large.7

Ringel & Youngs [91] in 19688 constructed 12 infinite fam-
ilies of graph embeddings, plus several “sporadic” small-n
cases, which in combination show that genus(Kn) = ⌈(n −
3)(n − 4)/12⌉ if n ≥ 3. (They also showed genus(Kst) =
⌈(s − 2)(t − 2)/4⌉ if s, t ≥ 2.) This proves that Heawood’s
formula cannot be improved upon in the case of orientable
surfaces. Ringel [90] in 1959 had already shown the non-
improvability of Heawood’s formula in all non-orientable cases
other than the Klein bottle; shorter proofs are in [91][73] of
the fact that Kn embeds in a nonorientable surface with h
handles when h = ⌈(n − 3)(n − 4)/6⌉ when n ≥ 3 and n 6= 7,
and K7 embeds with h = 3.

In view of Möbius’s complete classification of 2-dimensional
topologies [7] all this has completely settled the coloration
problem for graphs drawable on every possible 2-dimensional
surface topology. We may summarize the situation as

Theorem 1 (Heawood’s improved color↔genus for-

mula). Let S be a 2D surface, not necessarily orientable, with
Euler number χ. Let G be a graph drawn on S without cross-
ings. Then

C = ⌊(7 +
√

49 − 24χ)/2⌋ − 1S=Klein bottle (1)

colors are sufficient to color the vertices of G, and on every
surface there exists a graph G such that this number of colors
is necessary.
Theorem 1 represents the combined fruit of work by L.Euler,
A.Legendre, S.Lhuilier, A.F.Möbius, F.Guthrie, A.B.Kempe,
P.G.Tait, P.J.Heawood, L.Hefter, A.Bernhart, G.D.Birkhoff,
P.Franklin, W.Gustin, J.Mayer, J.W.T.Youngs, G.Ringel,
H.Heesch, K.Appel, W.Haken, and J.Koch during 1750-1977.

Remarks. It has often been erroneously claimed (e.g.
[86][37][70][71][18][52]) that the Appel-Haken proof [6] leads
to a quadratic-time 4-coloring algorithm for planar graphs.
Robertson et al. [93][95] claimed, however, that it actually
only yields a quartic-time algorithm (and claimed Appel and
Haken knew this in 1989). The confusion arises from sub-
tleties concerning the precise definition of “embedding” of a
reducible configuration, and of the definition of “reducible
configuration” itself – e.g. can the configuration “overlap it-
self”? According to [93], new “block-count reducibility” con-
cepts proposed by D.I.A.Cohen and by Gismondi & Swart
[45] in an effort to allow proofs simpler than those attainable
purely by means of Appel & Haken’s reduction-types, may
make the algorithmic situation even worse – perhaps even not
yielding a polynomial-time 4-coloring algorithm at all. Fortu-
nately their new simpler 4-colorability proof [93][94] yields a
quadratic-time coloring algorithm [95].

In practice, the experimentally-best available 4-coloring al-
gorithms for planar graphs seem to be by Morgenstern and
Shapiro [85][64]. Using their techniques plus an outer implicit
enumeration or randomization-restart, one may build an al-
gorithm that empirically always seems to succeed in slightly-
superlinear time (V 1.1?) but might, as far as is presently
known, require CV steps for some C > 1 on some as-yet-
unknown infinite family of “bad” planar graphs.9

Wagner [113][118] in 1937 extended the 4-color theorem by
showing that graphs without K5 minors are 4-colorable if
and only if planar graphs are; Robertson et al. [96] fur-
ther showed that graphs without K6 minors are 5-colorable
if and only if planar graphs are 4-colorable. H.Hadwiger con-
jectured in 1943 that every connected c-chromatic graph is

6Presumably this could be shown by checking every ring with size≤ 11 in Moore’s map by computer to demonstrate the non-reducibility of the
configuration it encloses. But I am unaware of any published proof of this and do not understand how Moore could have accomplished that in
1963, considering [117] the first computerized reducibility tests were made by Heesch in 1965. A complete list of all reducible configurations with
ring-size≤ 10 was prepared by Allaire and Swart [5] in 1978. According to Bernhart [12] this was extended to ring size 11 in work that was never
published. That would have enabled Moore to do what he claimed – albeit 15 years after he did it. And indeed, in [12] a much larger map (864
countries) was given by Moore on 26 March 1977 again claimed to contain no reducible configuration with ring size≤ 11 (but it does contain one
with ring-size 12), because a previous map had proved “inadequate.”

7Haken suggests that an extreme example of this sort of phenomenon might be the conjecture that the first n digits of π, infinitely often, yield
an integer that is a perfect square. Haken conjectures this statement both is true and has no finite-length proof. The existence of proofless true
statements was shown by K.Gödel. The existence of an infinite set of provable statements, the Nth of which is O(N) bits long, but whose shortest
proof is asymptotically longer than any computible function of N , was (essentially) shown by A.M.Turing.

8L.Hefter (n ≤ 12), C.Terry, L.Welch (n = 12k), W.Gustin (n = 12k+{1, 4, 9}), J.Mayer (n = 20, 23, 30) and R.Guy (n = 59) were also involved
in the proof. Hefter in 1891 pointed out that Heawood had failed to prove optimality except in the torus case, and then constructed optimality
proofs for genus 1,2,3,4,5,6 and found the genus of Kn if n − 7 is divisible by 12.

9They tested their program on graphs with up to 512,000 vertices and in all tests so far, success has been achieved rapidly and a restart has
never been needed. However, these experiments are not entirely convincing because their test-graphs, although supposedly designed to be hard to
color, constitute only a tiny fraction of all planar graphs and, e.g. include no graphs having any very-high-valent vertices. Thus from [3] we know
that all 3-connected maximal planar graphs with ≤ 90 vertices and maximum valence 6 are 4-colorable because their duals are Hamiltonian; this
suggests Morgenstern and Shapiro’s test graphs may actually have been easier to color than general planar graphs.

10In combination with a result of Dirac [30] handling the cases c ≤ 4.
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contractible to Kc; these results10 proved that for c ≤ 6.
Theorem 10.4.5 of [87] shows Hadwiger for c+1 colors implies
Hadwiger for c colors. R.Halin [53] showed that for every inte-
ger m > 0 there is an F (m) such that every F (m)-chromatic
graph is contractible to Km, and by theorem 10.4.6 of [87]
it is permissible to take F (m) = m for m = 2, 3, 4, 5, 6 and
F (m) ≤ 2F (m − 1) − 1 for m ≥ 7. S.Khuller [70] converted
Wagner’s theorem to an O(N2)-time algorithm for 4-coloring
graphs without K5 minors, and [71] also showed that graphs
without K3,3 minors are 5-colorable (which is best possible
since K5 is such a graph). Khuller’s arguments (combined
with the present paper’s demonstration planar 4-coloring is
in NC) indeed now show that both these coloring tasks are in
the class“NC.”Furthermore, I can show11 that, assuming [67]
is correct, that there are O(E + V α(E, V ))-time, O(V + E)-
space sequential algorithms for 4-coloring a graoph with no
K5 minor, or for proving or disproving it has a K5 minor;
here α denotes an inverse Ackermann function [104][99]. The
present paper’s linear-time 4-coloring algorithm for planar
graphs now shows easily that there is a linear-time algorithm
for 5-coloring graphs without K3,3 minors.12 The [96] proof
implies a polynomial-time algorithm to 5-color graphs without
K6 minors, but I am not sure of the degree of the polynomial.
Jørgensen conjectured that every 6-connected graph without
K6 minors is an “apex graph” (i.e. a graph with a “apex ver-
tex” whose removal renders it planar). If that is true then a
cubic-time 5-coloring algorithm would exist.

Matiyasevic [79] proved the 4CT equivalent to the claim that
two probabilistic events about random edge colorings, are pos-
itively correlated.

Kauffman [68] proved the insanity-inducing theorem that the
“associativity” statement “for any two ways to parenthesize a
3D vector-cross-product ~a×~b× · · · × ~z there exists an assign-
ment of {i, j, k} to the vectors causing the two expressions to
be equal and nonzero”is true if and only if the 4-color theorem
is true. (Here i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).)

In fact, Kauffman’s argument can be used to show, not only
equivalence, but in fact linear time equivalence, i.e.

Theorem 2 (Improved Kauffman). There is a linear-time
algorithm for 4-coloring planar graphs if and only if there is a
O(N)-time algorithm that, given any two parenthesizations of
an N -term 3D vector cross product, will find an assignment
of i, j, k to the variables causing the two products to be equal
and nonzero.
Proof sketch. Given the two parenthesizations, regard them
as rooted binary trees and“glue”their leaves together with the
leaf of tree #1 representing the kth variable being glued to the
leaf of tree #2 representing the kth variable, thus combining
both leaf-edges into a longer single edge. Also add an edge
joining the two tree roots. The result is a 3-regular planar

graph, and Kauffman [68] shows how from a 4-coloring of its
faces we may easily deduce an i, j, k assignment or vice versa.

In the other direction: given a maximal planar graph G, in lin-
ear time find [59] its triconnected components and separating
triangles [24]. Each triconnected component is itself a maxi-
mal planar graph and has a Hamiltonian cycle by a 1931 the-
orem of Whitney.13 For a linear-time algorithm to find such
a Hamiltonian cycle see [26]. The triangle-faces lying “inside”
the Hamiltonian cycle form a tree in the planar dual G′, and
the ones lying“outside”it do also. On these two trees regarded
as parenthesized products call the i, j, k-assigner, then use its
result to 4-color that triconnected component. Finally, glue
together the 4-colorings of all the triconnected components of
G (by color-renaming if necessary) in linear time (which can
be done if the gluings are done in a root-outward order guided
by the tree-structure of the triconnected components) to get
a 4-coloring of the whole of S. �

Kauffman’s result is highly related to an earlier result of
H.Whitney’s about“n-fold arranged sums”[115]. A full paren-
thesization such as [(a1+[(a2+a3)+(a4+[a5+a6])])+a7] of a
sum a1+a2+· · ·+an is called an“n-fold arranged sum,” and a
subsum enclosed by parentheses (such as a2 +a3) is a “partial
arranged sum.” Whitney proved that the 4CT is equivalent
to the statement that, given any two n-fold arranged sums,
one can give integer values to a1, . . . , an so that none of the
partial arranged sums are multiples of 4.

Hadwiger [51] showed that the 4CT is true if and only if, for
any convex polyhedron there exists some sequence of “corner
cutting-off” operations eventually yielding a polyhedron each
of whose face sidecounts is divisible by 3. (And at most V/2
such cut-off operations are necessary for a V -vertex polyhe-
dron.)

Minty [82] showed that the 4CT is true if and only if there is
a way to orient the edges of any planar graph so that around
any cycle, the ratio of forward to backward orientation-counts
is ≤ 3:1. This equivalence arises from a linear-time algorithm
in one direction but a slightly superlinear algorithm in the
other.14

We also should note that any V -vertex graph embeddable
on a surface of Euler number χ is “almost” 4-colorable since
by removing O(

√

|χ − 2|V ) vertices it may be made planar
[63][31].15 Joan Hutchinson’s 1984 question [61] remains open:
can any graph embeddable on any fixed surface S be made
4-colorable by removing a number of vertices depending on S
only?

Thomassen [106] showed that any graph embeddable, with-
out small-cardinality noncontractible cycles, on any fixed sur-
face S (orientable or not) is 5-colorable. This goes beyond

11My proof of this is not published, and since the “extended abstract” [67] states many of their results without proof, it would first be necessary
to go through [67] converting it into a genuine mathematical paper, before converting my unpublished proof into the same.

12Split the graph into its triconnected components [59]; use Wagner’s theorem that these pieces all are either planar or K5 to color the pieces;
finally glue the colorings with the aid of appropriate color-renamings in linear time.

13Whitney’s theorem was later extended by Tutte and Thomassen, who showed every pair of vertices in a 4-connected planar graph is connected
by a Hamiltonian path; by Thomas & Yu, who showed every edge of a 5-connected torus graph and 4-connected projective-plane graph is part of
a Hamiltonian cycle, and by Jackson & Xu [65] who showed that if every 4-connected piece of a maximal planar graph shares a triangle with at
most three other pieces, then G is Hamiltonian. Grünbaum and Nash-Williams conjectured that 4-connected torus graphs are Hamiltonian.

14The easy direction: orient each edge from the lesser to the greater color in O(V + E) time. The hard direction involves solving a single-source
shortest path problem in a directed version of our graph involving arc “lengths” −1 for going with the arrow and +3 for going against it, and with
no negative-length cycles. This may be done in O(V log3 V ) time according to [33]. The colors are then the distances mod 4.

15And there is an O(|χ| + V + 1)-time algorithm to find such a vertex set, if the graph’s embedding is known.
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Hutchinson’s [61] theorem that any graph embeddable on
any fixed orientable surface S in such a way that all edges
are short compared to the minimum-length noncontractible
curve on S, is 5-colorable.16 Steve Fisk gave an infinite class
of 5-chromatic graphs embeddable on the torus and projec-
tive plane with all edges short (specifically, any triangulation
of the torus or projective plane with exactly two odd-degree
vertices, is 5-chromatic) so these Hutchinson and Thomassen
theorems are best possible.

It is a consequence of Thomassen’s result (he did not mention
this consequence, but presumably knew it) that any graph
embeddable on any fixed surface S (orientable or not) can be
made 5-colorable by removing a number of vertices depending
only on S. (Proof: remove the vertices in a low-cardinality
noncontractible cycle [increasing χ]; keep doing it until either
5-colorability or planarity is reached.) This also shows that a
polynomial-time algorithm exists to find the vertex subset to
remove and to find the 5-coloring, albeit with the degree of
the polynomial depending dramatically on S.

What Thomassen did not know, is that there is a linear time
algorithm to do this, which also yields a far simpler proof. We
shall describe it in §3.

Gallai [39] (as improved by Krivelevic [75]) showed that any
k-color-critical graph with V > k vertices and E edges obeys

E ≥
(

k − 1

2
+

k − 3

2k2 − 4k − 2

)

V (2)

from which it follows (from Euler’s formula) that there are
only a finite number of 7-color critical graphs17 on any fixed
surface S. Thomassen [110] showed there are only a finite
number of 6-color critical graphs on any fixed surface S, but
for each surface other than the sphere Fisk’s construction
gives an infinite number of 5-color critical graphs. From this it
follows there is a polynomial-time algorithm18 to determine if
a graph embeddable on S is C-colorable for each C ≥ 5. (The
algorithm is to see if any of the bad graphs are in there – if
not it is C-colorable. We claim without proof that a polytime
algorithm also can actually find the coloring.)

Thomassen [111] showed that, on any fixed 2D surface S (ori-
entable or not) there is a polynomial time algorithm to deter-
mine the chromatic number of any graph of girth≥ 5 embed-
dable on S. (And obviously, deciding whether girth≥ 5 is a
polynomial-time task.)

Finally, 4 colors is best possible in the very strong sense that
there are an infinite number of planar graphs whose maximum
independent set has cardinality V/4 where V is the number of
vertices.19 As [52] observe, any C-coloring algorithm may be
converted into an algorithm to find a maximal20 independent
set of ≥ V/C vertices by simply taking the most popular color
class, then for each other color class (considered one color at
a time) adjoining all the vertices in it that one can.

For one beautiful example of how large independent sets can
be useful (they yield an O(N)-space data structure for 2D
point location which may be built in O(N) time and used in
O(log N) time) see [72].

3 Linear-time algorithms in the non-
spherical cases

First linear-time algorithm for coloring an embedded
graph with C colors:

1. If the graph has ≤ 4 vertices, color it optimally by brute
force. Stop.

2. Find a vertex X with minimum valency ν.
3. Delete X from the graph. (Optionally, the ν-gonal

“hole” may now be triangulated by diagonals.)
4. Color the remaining smaller graph recursively.
5. Color X with the first color not used by its neighbors.

Stop.

Because E ≤ 3(V −χ) the average valency is 6(V −χ)/V and
hence in step 2 it will always happen that ν ≤ ⌊6(V − χ)/V ⌋
and hence C ≤ ⌊7 − 6χ/V ⌋. This gives C ≤ 6 in the case of
the sphere, projective plane, cylinder, plane, or Möbius strip,
and C ≤ 7 in the case of a torus or Klein bottle. In the case of
a fully-triangulated graph, the C produced is no larger than
Heawood’s improved formula, in every case except the sphere
and Klein bottle.

Second linear-time algorithm for coloring an embed-
ded graph with C colors:

1. If the graph has ≤ 4 vertices, color it optimally by brute
force. Stop.

2. Find a vertex X with minimum valency ν; if ν = C then
among X ’s neighbors, find (if one exists) a nonadjacent
pair A, B with max{deg(A), deg(B)} ≤ 11. (If no such
A, B exist, then skip this X , i.e. go back to step 2 and
find another minimum-valence X .)

3. Delete X from the graph and shrink21 A, B into a sin-
gle vertex, and uniquify any duplicated edges created by
the pair-shrinks. (Optionally, additional such shrinks of
other nonadjacent pairs may also be done, provided this
does not destroy embeddability, and the “holes” could
now be triangulated by diagonals.)

4. Color the remaining smaller graph recursively.
5. Color X with the first color not used by its neighbors.

Stop.

Our second linear-time algorithm betters or matches the im-
proved Heawood formula in every case except for the spherical
case.

16But Thomassen’s theorem does not actually obsolete Hutchinson’s because his S-dependent constants are considerably worse than her’s.
Thomassen showed on a genus-g surface that if all noncontractible cycles have at least 214g+6 edges, then the graph is 5-colorable.

17A graph is “k-color-critical” if it has chromatic number k but any proper subgraph has smaller chromatic number.
18But the degree of the polynomial depends on S, probably rather dramatically.
19E.g. simply consider a bunch of disconnected K4s, which later may optionally be interconnected.
20A maximal independent set cannot be enlarged by adjoining another vertex, but is not necessarily of maximum cardinality among all inde-

pendent sets.
21We use the word “shrink” instead of the more standard word “contract” because we wish to avoid confusion; the latter word occurs with a

different meaning – namely the legal, or bridge-player meaning – elsewhere in this paper.
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For the analysis showing how to make these algorithms run
in linear time, see theorem 4. This analysis will depend on

Lemma 3 (Reducible vertices are common). In the
plane 5-coloring and Klein bottle 6-coloring cases, not only
must a minimal-valence vertex with valence C (C = 5, 6 re-
spectively) have two nonadjacent neighbors, but in fact one
must exist with both those neighbors having valency≤ 11, and
indeed, at least a positive constant fraction of all minimal-
valence vertices must either have valence< C or obey this
property.

Proof: Franklin [36] in 1934 showed that K7 does not em-
bed on the Klein bottle (also proven in [91]). We have seen
already that K5 is nonplanar.

It therefore follows that, in the Klein bottle case, ν ≤ 6 always
and step 2 will always succeed in finding a nonadjacent pair
A, B. Similarly, in the sphere case, ν ≤ 5 always and step 2
will always succeed in finding a nonadjacent pair A, B.

This already proves the second algorithm (if the degree-
constraints on A and B are ignored) will always succeed in 5-
coloring any plane graph or 6-coloring any Klein bottle graph,
and will achieve the same C-bounds as the first algorithm in
the other cases.

The rest of the lemma may be proven purely from Euler’s for-
mula. We know it is not possible for every neighbor of every
C-valent vertex to have degree≥ 12 (or even for too large a
constant fraction of C-valent vertices to have every neighbor
of degree≥ 12) if the minimum valency is C. That is because,
if that were possible, then the average valency would be larger
than is permitted by Euler’s formula. �

Remarks. For other 5-coloring algorithms for planar graphs
see [37][52][80][95][116] and ch.30 of [2]. Among all these al-
gorithms, the best22 is Frederickson’s [37], which is based on
the theorem23 that a planar graph either contains a vertex
of valence≤ 4 or a 5-valent vertex with two mutually nonad-
jacent (≤ 7)-valent neighbors. However, an idea of Williams
[116] may be used to simplify Frederickson’s algorithm fur-
ther. Frederickson’s theorem can be strengthened to show
that at least a positive constant fraction of all the 5-valent
vertices in a planar graph with minimum valence 5 are of his
type. Therefore, it is permissible to simply go through the
queues of ≤ 4- and 5-valent vertices applying the reduction
for those vertices of Frederickson’s types, and skipping them
otherwise, in which case the skipped vertex is moved to the
rear of the queue. Because all valencies are nonincreasing, and
because of the strengthened Frederickson theorem, whenever
the algorithm has used up enough of the queue so that it
scans a vertex again, the number of vertces in the graph has
decreased by at least a constant factor. In view of the con-
vergence of geometric series, this forces linear runtime. (And

Williams recommends tuning Frederickson’s constant “7” by
considering replacing it with larger values if that improves
performance.) The resulting Frederickson-Williams-hybrid 5-
coloring method then corresponds, essentially, to the plane
C = 5 special case of our second linear time algorithm.

The linear-time 5-coloring algorithm in [95] for embedded
fully-triangulated planar graphs, is inadequately and incor-
rectly sketched. It is based on Wernicke’s 1904 theorem
[114]24 that in a fully-triangulated planar graph, there must
exist either a vertex of degree≤ 4 or a vertex of degree= 5 hav-
ing a neighbor of degree≤ 6. They should have stated that
we need to maintain two doubly-linked lists (not “a stack”) of
all vertices of degrees ≤ 4, and of all vertices of degree 5 hav-
ing a degree≤ 6 neighbor, and should have noted that these
lists all may be fully updated in O(1) time after performing
any edge deletion, bounded-valence vertex deletion, or edge-
shrinkage, and this fast-updating is only possible because we
have an embedding represented, e.g. using the Guibas-Stolfi
winged-edge data structure [50].25

Thomassen [109] did not actually state an algorithm, but
merely an elegant 5-colorability proof.26 His proof is convert-
ible into a quadratic-time algorithm for 5-coloring embedded
planar graphs all of whose faces except for the external face
are triangles. Heawood’s original 5-colorability proof [55] also
is convertible into a quadratic-time 5-coloring algorithm.

Theorem 4 (Linear space and time). The plain version
of our first algorithm, may be made to run in time and space
O(V + E + |χ|+ 1) on a deterministic pointer machine. The
second algorithm, may be made to run in the same space bound
and in time O(E + |χ + 3|V ). In neither case is it necessary
to actually know a graph embedding. These bounds also are
valid for the optional variant algorithms but in those cases the
embedding is needed.

Proof: 1. We employ “degree-queues.” Each vertex X knows
its degree, for each integer ν with 0 ≤ ν ≤ H (where
H = V − 1 most simply, but we can make H be the corrected
Heawood color bound if that is smaller) there is a doubly
linked list of all the vertices with valence ν.

2. To represent the graph we make each vertex have a doubly-
linked list of its neighbors (and each vertex X points not only
to its neighbor Y but in fact to X ’s entry in Y ’s neighbor list)
This permits deleting a vertex of valence ν, or visiting all its
neighbors, in O(ν + 1) time, adding or deleting an edge ab
between two vertices provided the position of that edge in a’s
and b’s lists are known, in O(1) time, and shrinking a given
edge in O(1) time.

3. Note that all the degree information associated with each
vertex and in the degree-queues may be updated as any of

22Frederickson’s method does not require the graph to be triangulated and does not require an embedding to be known, and it will work for
many nonplanar graphs (the algorithm either succeeds in finding a 5-coloring, or fails in which case that proves the graph was nonplanar), and it
is fast and simple.

23Whose proof as usual requires nothing more than Euler’s formula.
24Which also may be proven using Euler’s formula alone. Indeed, one may show 4e55 + e56 ≥ 60 in any maximal planar graph with minimum

valence 5, where eab is the number of edges between an a-valent and b-valent vertex. If each face of an icosahedron is subdivided into 4 triangles
then we get a polyhedron with V = 42, E = 120, F = 80, e55 = 0, and e66 = e56 = 60, showing that this bound is tight.

25And they alluded to an “amortized analysis” of their algorithm. But no amortizing is needed to analyse the corrected algorithm.
26Actually, he proves something rather stronger than mere 5-colorability, e.g. he gets 5-colorability even if the colors on the outer cycle are

chosen from arbitrary presepcified 3-element lists and the remainign colors are chosen from arbitrary 5-element lists of eligible colors, one such list
for each vertex. This result is best possible because a 63-vertex planar graph with 4-element eligible-color lists at each vertex, which cannot be
colored [83].
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these operations are processed, while only increasing their
runtimes by constant factors at most.

4. In the second algorithm we may test adjacency of arbitrary
vertices a and b in O(1) steps because they have bounded va-
lence.

5. The above ideas (and the fact that the vertex we delete
always has valency O(

√

|χ| + 1)) suffice to make the plain
versions of both algorithms run in the claimed time bounds.
The optional enhancements also run in those time bounds if
the graph’s embedding is initially available. �

Third linear time algorithm:

1. Find a vertex A with minimum valency ν.
2. If ν ≥ 7 then fail (i.e. leave all the vertex colors blank).
3. If ν = 6 then, among A’s neighbors, find (if one exists)

a mutually nonadjacent triple X, Y, Z or two nonadja-
cent pairs W, X and Y, Z not dovetailed in the cyclic
order around A (with all vertices in these pairs or triple
required to have degree≤ 12). See the figure. If no such
triple or two pairs exist, then skip this vertex and try
again with another 6-valent vertex – if there is nonexis-
tence for every 6-valent vertex then fail.

4. If ν = 5, then among A’s neighbors, find (if one ex-
ists) a mutually nonadjacent pair S, T ; if no such pair
exists then skip this vertex and try again with another
5-valent vertex (and also allow trying 6-valent ones as
in the previous step if we run out of 5s) – if there is
nonexistence for every 5- and 6-valent vertex then fail.

5. Delete A, identify (i.e. shrink) the X = Y = Z, or
W = X and Y = Z, or S = T (or no vertex identifica-
tions are needed if ν ≤ 4) as the case may be. Uniquify
any duplicated edges created by these pair-shrinks.

6. Color the remaining smaller graph recursively.
7. Color A with the first color not used by its neighbors.

Stop.

Theorem 5 (Linear-time 5-coloring if ≤ F (χ) vertices
are removed). The third algorithm will run in O(V +E+1)
time and space on a deterministic pointer machine provided
an embedding of the graph on some surface of Euler number
χ is provided. It will not fail until the number of vertices in
the reduced graph is ≤ F (χ) for some function F . It will find
a 5-coloring of all the other ≥ V − F (χ) vertices.

Proof: This theorem and its proof are heavily based on
Hagerup et al. [52]. Hagerup et al indeed even discussed
extending their results to handle the positive genus case, but
that part of their discussion was incorrect,27 because their
lemma 1 depended upon planarity. Our contribution is to
detect and repair that error.

Their lemmas 1-4 show that, as a consequence of Euler’s for-
mula, in any χ-embeddable graph with ≥ F (χ) vertices, at
least a positive constant fraction of those vertices are “re-
ducible” i.e. have valence≤ 6 and obey at least one of our four
failure-preventing conditions. All these lemmas were proven
[52] for planar graphs but still are true for graphs embedded
on a surface of Euler number χ, except that lemma 1 needs
to be modified as we shall now discuss.

It is not true that every 5-valent vertex must have 2 nonadja-
cent neighbors (although this is true in the plane since K6 is
nonplanar). However, every occurrence of K6 in the surface
cuts that surface into pieces each of which have smaller topo-
logical complexity as measured by χ. That forces there to
be at most F (χ) different induced K6 subgraphs of G. That
forces every 5-valent vertex except for at most a constant num-
ber of exceptions, to have 2 nonadjacent neighbors.

It also is not true that every 6-valent vertex must have 2
nonadjacent nondovetailed neighbor-pairs or a nonadjacent
neighbor triple – although this is true in the plane due to
the planarity argument shown in the figure. However, again,
whenever this planarity argument fails A and its 6 neighbors
must induce a nonplanar subgraph of G, and by the same
argument as before, the number of occurrences of any partic-
ular nonplanar induced subgraph of G inside G, is bounded
by F (χ). That forces every 6-valent vertex except for at most
a χ-dependent number of exceptions, to obey [52]’s lemma 1;
further, in at least a positive constant fraction of these in-
stances, A’s neighbors all must have bounded valence as a
consequence of Euler’s formula.

We again employ degree queues for degrees≤ 6 with skipped
vertices being moved to the rear of the queue. To represent
the graph and its embedding we employ a data structure in
which each vertex has a doubly-linked list of its neighbors in
clockwise28 order (and A’s pointer to neighbor B points not
only to B, but in fact to where in B’s clockwise order A lies).
Or, equivalently, the elegant “winged edge” data structure of
Guibas & Stolfi [50] could be employed.

Hagerup et al. [52] go further and in fact show how to im-
plement our algorithm in parallel on an EREW PRAM in
O(log N log∗ N) time on a machine with O(N/(log N log∗ N))
processors. �

Remarks. The best F (χ) is probably O(|χ| + 1) but I
have only proven the much weaker statement F (χ) ≤ 353−χ,
−∞ < χ ≤ 2.

Actually all three of these linear-time algorithms may also be
regarded as NC parallel algorithms if we alter them slightly
and take advantage of lemmas that the reducible configura-
tions actually are dense in the grah, i.e. occur in at least or-
der V locations simultaneously; we then find a vertex-disjoint
set of such configurations with cardinality of order V using a
fast parallel independent set finding algorithm [46] and reduce
them all.

4 The cases of one, two, and three
colors

It is trivial to decide (in linear time O(V + E)) if a graph
is 1-colorable (has no edges) or 2-colorable (bipartite) and to
find the (essentially unique) colorings if so.

Lemma 6 (3-colorability). A fully-triangulated plane graph
is 3-colorable if and only if every valence is even.

27It is, however, correct if their algorithm’s goal is merely to find a 7-coloring, rather than, as here, a 5-coloring; and this arguably is all they
were claiming. In that case our result is new.

28If this order is not known then we regard the embedding as not being known.
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Proof: The “if” part is readily deduced from Tait’s even-
cycle decomposition theorem and the recognition that the
dual graph necessarily is bipartite and hence has only even
cycle perimeters. The “only if” is from considering coloring
just a vertex and its immediate neighbors; if the vertex has
odd valence, it cannot be done. �

This fact was (essentially) stated by Kempe as a side-remark
to his 1879 “proof” in American J. Math’cs.

Lemma 7 (More powerful 3-colorability fact – equiv-
alent in the plane29). A fully-triangulated graph embedded
on a 2D surface is 3-colorable if and only if the triangle-faces
are of two types, “light” and “dark,” with no two triangles of
the same type sharing an edge, i.e. if the graph dual to the
triangulation is bipartite.

Theorem 8 (Fourth linear-time algorithm30). It takes
linear time O(V +E+F ) to decide whether a fully-triangulated
graph embedded on a 2D surface is 3-colorable, and any such
coloring is necessarily unique31 and is readily found by first
coloring the vertices of one particular triangle-face, then al-
ways coloring a vertex adjacent to an already-colored pair of
adjacent vertices.

Remarks. Our second linear-time algorithm will also work
to find a 3-coloring (if there is one) of any fully-triangulated
graph embedded in the plane. That is because the minimum
valence (since all valencies are even) is always 4 and since K5

is nonplanar step 2 will always find a nonadjacent pair AB.
After removing the 4-valent vertex all 4 of its neighbors get
odd valency, but upon shrinking AB and uniquifying the now-
duplicated edges they all are restored to even valency and the
reduced graph still is fully triangulated.

Our “more powerful fact” was essentially known to Heawood
in the 1930s. Furthermore, according to [101], the follow-
ing more general planar theorem was known to Heawood [56]
and was rediscovered by various other authors e.g. [78]: A
planar graph G is 3-colorable if and only if there exists an
even-valent triangulation T such that G is a subgraph of T .
(But this theorem usually seems unhelpful for the purpose of
deciding 3-colorability!)

Stockmeyer [41] showed it is NP-complete to tell whether a
planar graph is 3-colorable, even if the graph is connected and
the minimum and maximum valences are 2 and 4, but as we’ve
just seen there are linear-time algorithms in the fully trian-
gulated case. By modifying32 the Stockmeyer proof, we can
force his graph to be 3-connected planar and optionally can
also force the minimum and maximum valencies to be 3 and
4, thus proving the NP-completeness of deciding 3-colorability
for polyhedral graphs which are not fully triangulated.33

There is also a (trivial) linear-time algorithm to find a 3-
coloring (which always exists) if the graph is a triangulated
simple polygon.

A famous theorem of Grötzsch ([47][49][107][108][74] and [87]
theorem 13.2.1) states that any triangle-free planar graph is
3-colorable; Kowalik [74] was able to turn this theorem into an
O(N log N)-time, O(N)-space algorithm (involving a remark-
able data structure invented by him) to find the 3-coloring.
Kronk and White [76] showed that triangle-tree torus graphs
were 4-colorable and Thomassen [107] that girth≥ 5 torus
graphs were 3-colorable; Gimbel & Thomassen [44] showed
girth≥ 6 graphs on the double-torus are 3-colorable. (There
are known linear-time algorithms [88][24] to test planar and
torus graphs for triangle-freeness and quadrangle-freeness and
these were generalized to arbitrary fixed cycle length and fixed
genus by Eppstein [32].)

5 Some remarks about coloring geo-

metrical graphs

Many graphs that arise in computational geometry settings
(such as finite-element codes) obey the following one-sided
valence bound property: there exists an ordering of the
vertices and a constant B such that each vertex has ≤ B
neighbors among the vertices with larger index in the order-
ing.

For example, let there be V (possibly overlapping) objects,
each a convex set of bounded aspect ratio (ratio of circum-
radius over inradius) in any fixed-dimensional space, such
that each point of space lies within at most some constant
number of objects. Then: the intersection graph of the ob-
jects obeys a one-sided valence bound property, using as the
vertex-ordering, just the ordering of the objects by increasing
volume.

Useful Fact. Any class of graphs closed under vertex-
deletion and obeying a one-sided valence bound property has
chromatic number ≤ B + 1 and our first linear time coloring
algorithm works to produce such a coloring.

Many other properties of graphs have been proposed that
seem of less computational-geometric interest/usefulness. For
example, graphs with “excluded minors” are of little use be-
cause the nearest- and second-nearest-neighbor graph of the
equilateral triangle grid does not exclude any minor. For an-
other example, the class of graphs embeddable in the plane
with few (compared to V or E) edge crossings, also do not
exclude any minor and indeed can include Kn as an induced
subgraph for arbitrarily large n and hence have arbitrarily

29Whose proof is essentially the same. See footnote 2. Warning: the fact that all faces have an even number of sides, while sufficient to assure
bipartiteness of a planar graph, does not suffice for graphs on other 2D surfaces. Indeed an infinite number of 4-chromatic quadrangulations of the
Klein bottle and projective plane are known, as are embeddings of Kn on handlebodies with all faces even and arbitrarily large n. See [62][35][84].

30This algorithm also runs in O(log V ) parallel time using O((V +E)/ log V ) processors by checking bipartiteness fast by computing the distance-2
graph (which is a linear-size graph if the original graph has bounded valences; and 3 is bounded) and then using a fast algorithm [42] to compute
connected components. This works because 3 is bounded; I do not know of an efficient highly-parallel algorithm to check bipartiteness in graphs
with no upper bound on valence. However, we can test bipartiteness in polyhedral planar graphs in O(log V ) steps using O((V + E)/ log V )
processors; create the (linear-size) graph consisting of distance-2 relations between vertices on the same face and then use a fast algorithm [42] to
compute connected components.

31Up to color renamings.
32Clone v2 and v3 in the original nonplanar construction so that v1 has valency 4 instead of 2 and to increase the connectivity. Now apply the

usual crossover [41] gadgets to make it planar, then optionally employ the node-duplication gadgets to make the maximum and minimum valencies
be 4 and 3.

33Steinitz’s theorem [48] says the graphs of convex polyhedra are exactly the 3-connected planar graphs.
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large chromatic number.

6 Four colors suffice

Wlog our planar graph is fully triangulated, i.e. has E =
3V −6, and is already embedded in the plane. (Linear-time al-
gorithms are known for testing planarity [60], producing such
an embedding [25][19] and for adding diagonals to reach fully
triangulated form.) Although one might presume it to be eas-
ier to 4-color nonmaximal planar graphs, we shall ignore that
possibility because our focus here is to devise the simplest
possible algorithm that works even for worst-case input, not
to produce the most practical or fastest algorithm.

Theorem 9 (Robertson,S,S,T 1997 [93][95]). Any em-
bedded maximal planar graph G with at least 10 vertices con-
tains either (or both) of the following:

1. A k-cycle with k ∈ {3, 4, 5} containing at least ⌊(k −
1)/2⌋ vertices of G in its interior and at least ⌊(k−1)/2⌋
vertices of G in its exterior. This case arises automat-
ically if any vertex in G has degree≤ 4. All k of the
vertices on the k-cycle can be demanded to have valence
≤ 11 each and the cycle can be demanded to be chord-
less.

2. One or more of the 633 “reducible configurations” pic-
tured in the 10-page appendix of [93].34

Let us discuss Robertson et al’s 633 configurations, and the
sense in which they are “contained” in G. A “configuration”C
within G is a subset of G’s vertices, triangle-faces, and edges,
and a function γ(v) mapping vertices v of the configuration
to integers, such that

1. The configuration’s vertices, edges, and triangles form
a connected planar graph all of whose faces, except for
the single external face, are triangles.

2. Each vertex of C is also a unique vertex of G.
3. Each edge of C is also an edge of G. If any two vertices

a, b ∈ C are adjacent in G, they are also adjacent in C,
i.e. C contains the edge ab.

4. Each internal triangle-face of C is also a △-face of G.
5. For each vertex v ∈ C its graphical degree (number

of neighbors) in G is degG(v) = γ(v), and γ(v) ∈
{5, 6, 7, 8, 9, 10, 11}. (The vertex of degree 8 in the very
last configuration in the appendix of [93] has γ(v) = 11;
other than that every γ(v) in every configuration obeys
γ(v) ≤ 10.) Also degC(v) ≤ γ(v) ≤ degC(v) + 3.

6. Various “Heesch obstacles to reducibility” (certain sub-
configurations) do not occur (e.g. see p.222 of [12]).

7. Removing a vertex v of C splits it into at most 2 com-
ponents; and if exactly 2, then γ(v) = 2 + degC(v).

8. If a vertex v ∈ C is not on the external face, then γ(v) =
degC(v) = degG(v). Otherwise γ(v) = degG(v) >
degC(v).

9. 6 ≤
∑

v∈Co
[γ(v) − degC(v) − 1] ≤ 14. Here Co is the

subset of C’s vertices lying on its external face and not
including any vertex whose removal would disconnect
C. Consequently the set of G-vertices adjacent to a
vertex of C (but not in C) has cardinality≤ 14. This
cardinality is called the “ring size” by [93].

10. The number of vertices of C is in [4, 12]. The number
of vertices on C’s external face is in [4, 10]. The number
of vertices internal to C is in [0, 2].

11. Each one of the 633 configurations has graphical diam-
eter≤ 4, i.e. for any pair {A, B} of vertices in a config-
uration, B is reachable from A via a path of ≤ 4 edges,
all of which are in that configuration.

12. More strongly, each has graphical radius≤ 2, i.e. each
configuration contains a vertex X from which any other
one of its vertices may be reached via a path of ≤ 2
configuration-edges.

13. Each of the 633 configurations contains at least one ver-
tex with G-valence= 5.

14. Each configuration is known to be “Dk-reducible” for
some k ∈ {0, 1, 2, 3, 4} where k is the cardinality of [93]’s
“contract.”

15. The fact that the 633 configurations are “unavoid-
able” was proved [93] via a “discharging argument” in
which charge was always pushed between a pair of ver-
tices, each of valence≤ 8, according to 32 “discharging
rules.”35 Each such vertex pair was a member of one
of 32 “discharging rule” configurations, each of which is
a connected planar graph with ≤ 10 vertices, graph-
ical radius≤ 2, and all vertex G-valencies in the set
{5, 6, 7, 8}, and containing at least one vertex with G-
valence 5.

16. There is an essentially unique way, called by [93] the
“free completion” in which a configuration C can be
joined to the neighboring vertices of G, and there are
exactly r such vertices where r is that configuration’s
ring size.

17. C does not contain a nonfacial triangle, nor even one
edge of a nonfacial triangle, but there could be a non-
facial triangle abc in G where a ∈ C and b, c are G-
neighbors of a that are not in C.

These facts were extracted from [93][95]and/or by examining
their electronic file of the 633 configurations.

7 Our 4-coloring algorithm

7.1 The properties we shall require of the
underlying 4-colorability proof

We shall assume in the rest of this paper that a 4-colorability
proof with the same properties as [93]’s exists, albeit with the
following changes allowed.

1. The number of configurations need not be 633; any con-
stant will do.

2. The maximum number of vertices, the maximum “ring-
size,” the maximum graphical radius and diameter, and
the maximum γ, allowed in a configuration can be any
constants, not necessarily the values peculiar to [93]’s
proof.

3. The maximum allowed vertex valence in a separating k-
cycle (3 ≤ k ≤ 5) can be any constants, not necessarily
the ones in [93]’s proof.

34There actually are more than 633 if chirality is taken into account.
35It is important to note that these discharging rules are used once per edge and not reiterated forever.
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4. We allow Dk reducibility for k = 0, 1, 2, 3, 4, . . . , K for
any constant K. We do not insist, as in [93], that K ≤ 4,
but it is simplest if K ≤ 1. (Robertson et al [93] stated
that they “expected” proofs with K = {0, 1} only, and
even with K = 0 only, would exist but did not bother
to find them. They also said they had found a proof
involving “about 900”D≤1-reducible configurations and
only a “handful” of Dk-reducible ones with 2 ≤ k ≤ 4.)

5. For the O(V log V )-time algorithm in §8 we shall also
require the existence of a finite set of discharging rules
each involving only bounded-valence vertices, having
bounded graphical diameter, and with each discharg-
ing rule, and each configuration, involving at least one
5-valent vertex. Furthermore, we shall demand that
all these discharging rules have the “make and preserve
progress” property that they are only used in a circum-
stance where at least one of their vertices has a posi-
tive charge, and then, after using the rule, at least one
of their vertices still has a positive charge. (All 32 of
the rules pictured in figure 4 of [93] make and preserve
progress.)36

To keep things simple, we shall often just employ the numbers
in [93]; just keep in mind these are not sacred.

7.2 The set of 4-colorings we shall produce

Let Q be the maximum number of vertices in a configuration,
and let ν be the maximum G-degree γ of any configuration-
vertex. A set of G-vertices adjacent to, or on, a connected
subgraph with (≤ Q)-vertices all of valency≤ ν, is called “el-
igible.” Eligible sets have cardinality bounded by a constant
≤ (ν + 1)Q. The number of possible (≤ 4)-colorings of the
vertices of an eligible set is bounded by a (large) constant, at
most (4/3)·3(ν+1)Q, i.e. Ô(1) for short. Therefore the number
of eligible vertex sets inside G is Ô(V ).

We are going to produce a set S of 4-colorings of our maximal
planar graph G (37) with the following

key invariant inclusiveness property: (3)

No matter which eligible set s of vertices is
chosen, and no matter what (≤ 4)-coloring c of
them is chosen (provided it is extendible to some
4-coloring of all of G’s vertices), at least one col-
oring C in S agrees with c on s.

Because there are only Ô(V ) possible 2-tuples (s, c), our set of
colorings S could in principle be required to have cardinality
Ô(V ) at most, and conceivably even fewer colorings (perhaps
only Ô(log V ) or even Ô(1)) are really minimally required,

but our data structure shall in fact encode a potentially far
larger number – often exponential in V – of colorings.

For cognoscenti: the motive behind the insane-sounding idea
of maintaining many colorings rather than just one, is that it
allows avoiding what [95] call “Kemping” – a linear-time op-
eration – in favor of constant-time operations.38 Among the
multitude of colorings we maintain, all the already-Kemped
ones are already present without any need for us to produce
them – via Kemping – ourselves.

If all the N colorings in S were to be printed out in conven-
tional form, the total output might be O(NV ) long, which
would be unacceptable since we are seeking a linear-time and
linear-space algorithm and N can be at least as large as order
V . Therefore all these colorings will be simultaneously repre-
sented inside an O(V )-space data structure, to be described
soon. Note that if each coloring were a random string from
a 4-letter alphabet, then obviously it would not be possible
to compress N colorings into less than order NV memory.
The compression only is possible because our colorings are all
highly related to each other.39

Each eligible vertex-set s, and each possible coloring c of it,
will “know” which colorings in S agree with c on s.

7.3 The 4-coloring algorithm
The 4-coloring algorithm is essentially as follows. But to
really understand how it works you will need to know about
certain data structures and ideas which shall be discussed
later, especially in §7.6.

1. [Input] Input the embedded, plane, maximally-
triangulated graph G. Refuse invalid input. (Notes: on recur-
sive calls, step 1 is skipped. A linear-time planarity tester and
embedder [60][19] would enable inputting even a non-maximal
planar graph, checking its validity, embedding it, and trian-
gulating it, all in O(V + E + 1) time.)

2. [Handle small graphs] If the graph has ≤ 9 vertices
then find all (≤ 4)-colorings of it by brute force in constant
time. Stop.

3. [Build data structures] Build various data structures
described in §7.6.

4. [Handle small-degree vertices] If there exists a ver-
tex v with deg(v) ≤ 4 then delete v from G; if the resulting
“hole” is not a triangle then identify two of its non-adjacent
vertices (two such must exist since K5 is nonplanar). Re-
move any redundant duplicated edges this identification cre-
ates. (Of course as we make these graph-modifications we
update all vertex-degree, degree-list, configuration-list, and
edge information, see §7.6.) Now recursively 4-color the re-
sulting smaller embedded plane graph G′, and then color v

36The fact #3 that either one of the 633 configurations exists, or a separating k-cycle with bounded valencies, follows from the fact that the
discharging argument only moves charges among vertices of bounded valence and ignores vertices of too-large valence.

37Actually, of G∗, which is a (still planar) graph got by identifying certain pairs of vertices within G; these identifications can help us by
reducing the number of allowed 4-colorings; and at intermediate stages, we shall color various subgraphs of G∗; it is entirely possible to phrase
everything purely in terms of G, not G∗, at an unimportant cost in efficency, with the existence of G∗ merely used as a mental crutch to see that
suitable colorings of G exist, and without the algorithm ever needing to actually construct G∗; this is done by e.g., simply not performing the k
vertex-pair-shrinks in the “contracts” associated with the Dk-reducible configurations.

38 A “Kempe chain” is a connected subgraph of G induced by vertices colored with some particular 2-element subset of colors. The operation
of “Kemping” a Kempe chain K is to interchange those two colors on the vertices of K. Morgenstern & Shapiro [85] empirically found that their
Kempe-chains had cardinality ≈ V 0.6, which would force any coloring algorithm utilizing Kemping to help color at least a constant fraction of
vertices, to consume at least order V 1.6 time.

39Or unrelated. For example one can store a description of all 2n strings of n bits in only O(log n) space.
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with a color not used by its neighbors. Stop. Note: finding
such a low-degree vertex (or realizing that none exist) requires
only constant time by taking advantage of our “degree lists.”

5. [Search for configuration or suitable separating k-
cycle] Find a configuration C (from among the magic 633
types) inside G. If one does not exist, then the search for that
configuration will automatically discover a chordless k-cycle
R with k ∈ {3, 4, 5} containing at least ⌊(k − 1)/2⌋ vertices
of G in its interior and at least ⌊(k − 1)/2⌋ vertices of G in
its exterior and each vertex of which has bounded valence.
(Indeed [95], one of the 633 possible Cs always will be there,
but perhaps with some of its vertices identified or joined by
an extra edge, causing the k-cycle.) In that case go to step
7. Note: finding such configuration or k-cycle requires only
constant time by taking advantage of our “configuration lists”
and the boundedness of configuration vertex-valencies and of
the configuration’s cardinality, see §7.6.

6. [Handle configuration C]. Shrink each edge in the set T
of ≤ k edges (some perhaps artificial) that was pre-tabulated
as the “contract” for that configuration [93], i.e. identifying
certain vertex-pairs in G, and/or delete C entirely (i.e. delete
all its vertices) from G, leaving a hole of perimeter ≤ 14 –
whichever the reduction instructions prepackaged with that
configuration say to do. Remove any redundant duplicated
edges this creates and triangulate by diagonals any nontrian-
gular polygonal faces thus created. (As usual as we make these
graph-modifications we update all vertex-degree, degree-list,
configuration-list, and edge information, see §7.6.) The result
is a smaller embedded fully triangulated plane graph G′, with
O(1) fewer vertices. Recursively 4-color it.

Now unshrink the O(1) shrunk vertex-pairs and restore the
O(1) deleted edges, vertices, and faces. Finally, go to step 8
to handle coloring the O(1) uncolored vertices and associated
updating.

7. [Handle separating k-cycle R]. Produce two smaller
graphs G′ and G′′ consisting of the vertices inside-or-on, and
outside-or-on, the cycle R. If k = 4 the other side of the cycle
should be triangulated by adjoining a diagonal ab so that the
recursive call may be done on fully-triangulated graphs; the
same diagonal must be added in both cases and a and b must
be nonadjacent in G to allow this (and some nonadjacency
must exist since K5 is nonplanar). If k = 5 then we triangu-
late the other side of the cycle by adjoining an artificial extra
vertex adjacent to every vertex on the cycle. Note: when
producing G′ and G′′ we do not perform a graph exploration
(which would take linear time[103]40), but instead simply la-
bel the cut edges as “cut” and pass the old graph (and a start
vertex) in situ in O(1) time. Recursively 4-color them. Also
note: when we match up the colorings of G′ and G′′ on R
by taking advantage of our key fact that, e.g., a G′ coloring
is already available that extends every extendible coloring of
R alone. Therefore there is no need for us to recolor G′ by
permuting the color names, in order to be able to match it
to G′′. Finally, go to step 8 to handle (in Ô(1) time) the up-

dating of the many-colorings data structure for eligible sets
in the neighborhood of R.

8. [Coloring of uncolored vertices and associated up-
dating]. We now have a partial coloring of G, i.e. G is fully
colored except on a certain known connected set K of O(1)
uncolored vertices, each of bounded valency. Consider every
possible coloring of them (there are only a constant number
of possibilities to consider at most). For each possible eligible
vertex-subset s intersecting or neighboring K (there are at
most a constant number of such sets) and for each possible
coloring c of it (of which there are only a constant number
at most) create a link to all colorings of G from among those
we already have from the recursive call (or two) that agree
with c on s for each c compatible with the coloring of K
currently under consideration. To avoid creating order-V or
more links here (we only shall create O(1)) make each such
link really consist of only O(1) links to previously constructed
and stored link lists associated with colorings of node-subsets
of s which agree with the old set S′ of colorings on the old
smaller graph G′ (or S′ and S′′ on the two smaller graphs
G′, G′′). See §7.6 for more precise and complete discussion of
the coloring-containing data structure and how to update it.
Stop.

9. There is a final stage of the algorithm, related to producing
the output, discussed in §7.6.

Note that the total number of eligible-vertex-sets s produced
in the course of this algorithm, including all recursions on all
smaller graphs, is O(V ) since indeed O(1) new ones are pro-
duced each pass. Therefore, the total size of the data structure
storing all the colorings is O(V ).

7.4 The two phases of the algorithm

The algorithm may be regarded as (1) first “shrinking” the
graph by deleting vertices until a constant-size graph is (or
several disjoint constant-size graphs are) reached, which may
be colored trivially. These colorings obviously will fit in O(V )
memory space. Then (2) it “grows” the graph back, coloring
vertices as they are added.

The first phase of the algorithm is actually plausibly practi-
cal41 because in a fully triangulated planar graph, searching
for a configuration centered at a given (bounded valence) ver-
tex is easy – no “backtracking” is required and the worst-case
runtime is linear in the size of the configuration times the va-
lence of the start-vertex. Our first stage may be thought of
as producing an ordering of the vertices of G (reverse of the
chronological ordering of their deletion), which will be col-
ored, in that order, by the second stage. Outrageously large
constant factors in the space and time bounds occur only in
the second stage. The second stage colors each vertex, in or-
der, once and thereafter never “backtracks”to recolor it. (Or,
alternatively, we can regard some backtracks as happening,
but we never backtrack more than a constant distance in the
vertex ordering, i.e. once vertex number v + κ is colored,

40One could also do the G′ and G′′ graph production and adjustment in conventional format in O(min{|G′|, |G′′|}) time, via graph explorations of
the small side, where |X| denotes the memory-size required to represent X, i.e. in our case |G′| = 1+E′ +V ′. However, this could lead in the worst
case to superlinear runtime of order V log V , because the solution of the recurrence T (N) = T (A)+T (B)+min(A, B) with A+B = N and A, B > 0
is T (N) ≈ N log N if A = B = N/2 every time. To assure a linear runtime bound we need a recurrence like T (N) = T (A) + T (B) + c min(A, B)p

for some constants c, p with 0 ≤ p < 1 and c > 0. By the no-recoloring and no-exploration tricks we achieve this, indeed with p = 0.
41But a fairly determined programmer would be required, since all 633 configurations from [93] are involved...
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the colors of vertices numbered ≤ v are permanently frozen,
where κ is some constant.)

7.5 How to build a practical compromise al-
gorithm

If we omit our second phase and instead simply employ a
coloring algorithm like Morgenstern and Shapiro’s [85] using
the vertex ordering found in the first phase, then we get a
practically-implementable hybrid algorithm which (1) should
exhibit the same excellent empirical performance as the meth-
ods of [85], (2) runs in O(V 2) worst-case time and (3) con-
sumes O(V ) worst-case space (with only a small constant hid-
den in this O). This is because we know that with our magic
vertex ordering, 4-coloring occurs in such a way that any “im-
passe” (attempt to color a vertex which already has neighbors
of all 4 colors) is resolvable purely by local recoloring and lo-
cal Kemping. These are precisely the methods [85] used to
break impasses. They had no theoretical guarantee that their
impasse-breaking attempts would succeed.42 But we (with the
right choice of limits on the local-search size and the number
of Kemping attempts) do: our hybrid method will always suc-
ceed in breaking any impasse after at most a constant number
of local recoloring and local Kemping steps.43 Each Kempe
could conceivably take linear time in which case the total run-
time would be O(V 2). However [85] empirically found that
the average Kempe only took O(V 0.6) time (in which case
our runtime would be O(V 1.6)) and also found that by set-
ting a high enough cutoff on their backtrack- and “wandering
5th color” based local recolorers they only needed to resort to
Kemping very rarely. Hence they, empirically, achieved near-
linear runtime. We too would expect that typical behavior,
with the only major difference being that we have a Ô(V 2)
worst-case runtime bound.

7.6 The data structures (and other minor
tricks) we need to make it run in linear
time

First of all, we employ all the data stuctures used in the proof
of theorem 4. We also employ:

Vertex self-knowledge: Each G-vertex knows its degree d,
and for each i = 1, 2, . . . , 633, knows whether it is the center-
point of a configuration of type i.

Graph representation: Each vertex has a doubly-linked
list of its neighbors in clockwise44 order (and A’s pointer to
neighbor B points not only to B, but in fact to where in B’s
clockwise order A lies). Or, equivalently, the elegant “winged
edge” data structure of Guibas & Stolfi [50] could be em-
ployed.

Hashed edge-table: Each edge ab is stored in a dynamic
hash table [23][29] so that vertex-pair adjacency testing may
be done in O(1) steps. Edges may be added or deleted from
this table in O(1) expected time and each hash table entry
points to the location of that edge in its endpoints’ clockwise
angular lists.

Degree-lists. There are 4 “degree-lists,” list i containing all
the vertices known to have degree i + 2 for i = 1, 2, 3, 4 (but
all degrees ≥ 6 are lumped into the single list #4).

Configuration-lists. There are 634“configuration-lists,”list
i containing all the vertices known to be the centerpoint of
a configuration of type i, for i = 1, 2, . . . , 633 (and list #0
contains all the remaining vertices).

Short chordless cycles. Each vertex knows if it is a mem-
ber of a chordless separating k-cycle with 3 ≤ k ≤ 5 with all
vertices of the cycle having valence ≤ 11; and for each such k
there is a list of all such vertices.

All of of the above may be updated, as the graph is modified
via vertex-deletions or additions of bounded-valence vertices,
or adding or deleting an edge ab between two vertices (pro-
vided the position of that edge in a’s and b’s clockwise orders
are known), in O(1) total extra time. That is because of the
bounded graphical radius of, and bounded valencies of all the
vertices in, our configurations and short-cycles; this causes
the total exploration outward from a graph-modification (to
visit everything it affects) to be possible in O(1) steps.

Quick removal of duplicated edges: If an edge ab is
shrunk to a single node, then all redundant duplicated graph
edges created by this shrinking may be removed in O(1) time
provided one of more among {a, b} (say a) had bounded va-
lence. That is because the duplicated edges arise from com-
mon neighbors of a and b and there are at most deg(a) of
them; we examine them and for each enquire (using the hash
table) if it is a neighbor of b. In particular, note that all the
“contract”edges [93] in configurations C have at least one end-
point in C and hence have bounded valency, so their shrinkage
is O(1) time.

Quick removal and re-insertion of configurations: All
the vertices in a configuration C have bounded valency, and
there are a bounded number of them, so the entire C can be
removed in O(1) time. Note that the graph vertices neighbor-
ing C (of which there are a bounded number) might include
some of unboundedly high valency, but because we know the
location of their edges to C in their cyclic adjacency lists,
their information can still be updated in O(1) time.

If we desire to retriangulate (by diagonals) the “hole” (of
bounded perimeter) left by some such removal, then that too
may be done in O(1) steps and note that adjacency testing of
all pairs of hole-perimeter vertices may be done in O(1) time
with the aid of the hash table.

A precomputed list of all 633 configuration-types and
their “contracts” and “centerpoints.” Downloadable
from [93].

A precomputed list of all the eligible sets we shall ever
need in all the graphs (and partial graphs) we get by
adding in the vertices, in phase 1’s output-order, one
at a time. May be found in Ô(V ) time and space after phase
1 but before starting phase 2. Should be stored in the form
of a trie to permit access to any s-element eligible set in O(s)

42And hence the possibility remained open that algorithms of their sort might have ≤ CV success probability for some constant C with 0 < C < 1,
or ≥ CV expected runtime for some constant C > 1.

43Undoubtably algorithm “tuning” by adjusting the sizes of the local-search and Kemping cutoffs, and perhaps having several increasing layers
of such cutoffs, would yield better performance in practice.

44If this order is not known then we regard the embedding as not being known.

April 2005 12 7. 6. 0



Smith typeset 17:00 6 Jun 2005 four color

time. Each trie node conatins an O(V )-size pointer array but
since there are Ô(1) eligible sets and hence trie nodes the
whole trie consumes Ô(V ) space.

The coloring-containing data structure.45 At the start
of phase 2, the graph has only a constant number of vertices
and the “data structure” is merely an Ô(1)-size list of every
possible 4-coloring, found by brute force. (If there are sev-
eral disjoint constant-size graphs, these lists could take Ô(V )
space, Ô(1) space per graph.) As phase 2 proceeds, we add
more vertices to the graph. At any moment each new eligible
set s in the current graph (which was not eligible in the older,
smaller graph a constant number of vertex-additions ago) is
made to have a list of all possible colorings c of it alone, each
with a list of pointers that point back to all possible colorings
of the older graph that are compatible with c. After adding
a bounded-by-a-constant number of new vertices, the num-
ber of new s and c is bounded by a constant. The number
of pointers that we need to create per (s, c) two-tuple is also
bounded by a constant because we do not create one pointer
per coloring of the whole previous graph; each pointer really
encodes a possibly very large set of colorings described via a
pointer to the most recent among the older eligible sets which
are a maximum-cardinality subset of (s, c). Also each pointer
comes with a full list of the extra (color,vertex) pairs that are
being adjoined to the old coloring (this list has Ô(1) entries)
and a count of how many colorings it concerns46 (i.e. the
number it is pointing back to, times the number of new ex-
tensions). Also, whenever we insert a pointer we also create
a back-pointer leading in the other direction (to allow later
bidirectional exploration of the data structure we are creat-
ing).

Incidentally, mental cleanliness seems aided if we agree not
only to add pointers back to compatible colorings of the old
graph, but also to incompatible ones (but these pointers
should be labeled with a special flag bit saying “do not use
this pointer, it indicates an incompatibility”).

As we proceed through phase 2, we do not actually compute
the counts (except in the cases of the brute force colorings
of the initial graphs, for which we know the exact counts, all
of whose values are 1 for each coloring); we merely leave the
count-fields in the data structure blank or, if it is discovered
that some coloring c of some eligible set s is disallowed since
it leads to an incompatibility with all previous colorings, then
we overwrite its count field with zero.

Final stage of algorithm. After phase 2 is complete, we
now do a linear-time re-exploration of our O(V )-size data
structure, this time filling in the count fields. This consists
of, first, a backwards pass filling in zeros in count fields all

of whose chronological successors have zeros. I.e. if, in some
eligible subset there are backpointers to the present field, and
all those backpointers have the “incompatible” flag set, then
overwrite the present field count with zero. Then, second, we
do a forward pass filling in each count field with a true count
(or at least, a valid lower bound which is nonzero whenever
the true count is nonzero). These counts may be filled in
from knowledge of their predecessor count-fields (and their
zero-entries).

The final count field (corresponding to the chronologically-
last eligible vertex set) is the one that matters most, since
it tells us how many valid 4-colorings of the graph we have
found. Due to the validity of the 4-color theorem and its proof
via the 633 configurations and associated reduction rules, this
final count will be ≥ 1. Because plenty of planar graphs exist
whose 4-colorings are unique (up to color-renaming) it could
be only O(1). But more often it will be some exponentially-
large number of order CV for some C with 1 ≤ C ≤ 2.

Note: this final count will not necessarily be equal to the
number of 4-colorings of the graph, e.g. because the underly-
ing 4-coloring proof-via-reductions is not claimed to generate
every possible 4-coloring, merely ≥ 1 valid colorings. So our
count will only be a lower bound on the true count – but
usually a large lower bound. Incidentally, the counts could
easily become so large that multiprecision arithmetic would
be required. To make the algorithm run in linear time with
O(log(1 + V + E))-bit-wide words of memory we therefore
would recommend representing all sufficiently large counts
via approximate floating-point arithmetic, with relative error
≤ 0.01/(1 + V + E), say.

Finally, it is a simple matter to extract some valid colorings
from the data structure at the end by exploring through the
back-pointers starting from some positive-count on a final eli-
gible set, outputting vertex colors from each set visited during
the backward exploration. This takes Ô(V ) time.

Theorem 10 (Main result). There is a O(V +E+1)-space
and expected-time randomized algorithm, running on an inte-
ger RAM with O(log(2+E+V ))-bit wide words and unit-time
arithmetic operations, to find a 4-coloring of a planar graph.
Indeed it will produce a Ô(V )-space data structure represent-
ing a set S of 4-colorings of the graph which obeys property
(3).

Proof: The considerations above have shown that the algo-
rthm runs in O(V + E + 1)-space and expected time. The
randomization is used only for hashing [38][23][29]47 and any
future invention of a deterministic hashing scheme would de-
randomize it.48 Also, one could derandomize it at the cost
of introducing an extra factor of O(log(2 + E + V )) into the

45The following toy example may be helpful for those who just want to understand how it can be logically possible for an O(N)-size data structure
to store inside it, an exponential number of colorings. Consider 3-coloring the N-vertex path graph. It has 3 · 2N−1 colorings, but we can represent
them all in O(N) space! In fact walk down the path. At the nth node say “the colorings of the n nodes so far are: color this node 1 and adjoin it
to all colorings of the previous stuff that have the last node colored 2 or 3. Or color this node 2 and adjoin... 1 or 3. Or ... 3 ... and adjoin... 1
or 2.” Writing these sentences requires O(1) space. So the total mass of all the sentences ever written requires O(N) space. Each sentence may be
thought of as consisting of 2 back-pointers to colorings in the previously built part of the data structure. The full data structure we are proposing in
this paper is similar except that: all pointers are bidirectional; we add not one, but a bounded-size chunk, of new vertices each step; we backpoint
not merely to a set of colorings specified by statements like “the colorings of 1, . . . , n − 1 which have color 1 on vertex n − 1” but instead to a set
of colorings specified by statements like “the colorings of 1, . . . , n − 1 which have colors 1,3,2,3,3 on vertices 77, 87, 21, 22, 23 respectively.”

46Or merely a lower bound on such a count suffices, provided it is nonzero whenever the true count is.
47E.g. for the purpose of fast adjacency testing in the 4-valent vertex case in step 4 or during duplicated-edge removal.
48Probably a slightly better underlying 4-colorability proof could be devised which would eliminate the need for hashing. I suspect one can prove

that one of the 633 configurations have to arise even if 4-valent and 3-valent vertices are permitted, provided these 4- and 3-valent vertices have
at least one sufficiently high-valent neighbor. If such a strengthening of the 4-colorability proof were established, then we would no longer need to
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runtime bounds, by simply replacing all the hash tables by
AVL trees.

The only thing to prove, then, is the algorithm’s correctness.
That follows from (1) the (assumed) correctness of the un-
derlying 4-colorability proof [93] and (2) the fact that the key
property (3) is obviously true at the beginning of phase 2,
and inductively and by design continues to be correct as the
algorithm proceeds. �

8 A simpler O(V log V )-expected
time randomized 4-coloring
method

This section will present a fairly simple O(V log V )-expected
time O(V + E)-space randomized 4-coloring method for pla-
nar graphs. The ideas behind it trace back to two obsolete
5-coloring methods [18][77]. Although its running time bound
is asymptotically worse (by a O(log V ) factor) than the linear-
time 4-coloring method, the linear time method is almost cer-
tainly impractical whereas this method is probably practical
(although those are unanswered experimental questions).

That is because

1. The O(V log V ) method involves only one coloring, not
a data structure encoding many colorings, hence only
has a small constant in its space bound,

2. There is reason to suspect it may also have a small con-
stant in its expected time bound. That hinges on the
expected number of random Kempes that need to be
done before a configuration becomes 4-colorable. This
quantity could have been (but was not) computed by
the same computer that brought us the 4-colorability
proof [93], and quite plausibly for most or all of the 633
configurations, it is reasonably small.49 (If this is true,
then the O(V 2)-time method in §7.5 also will have a
small constant.)

Also, our O(V log V )-time method may be heavily parallelized
(it is in NC) whereas the linear-time method seems inherently
sequential.

Obstacles to parallelization. Why is it that finding a 5-
coloring of a planar graph is a highly parallelizable task [52],
whereas our 4-colorer above seems inherently sequential? The
underlying problem is that a huge planar graph might con-
tain only O(1) instances of any of the magic 633 reducible
configurations. Any 4-coloring algorithm based on removing

reducible configurations could therefore only remove one (or
at most a few) at a time. The following lemmas are designed
to remove that obstacle.

Lemma 11 (Shield existence and non-rarity). A fully
triangulated V -vertex planar graph either

1. contains at least order V/ log2 V disjoint instances of the
633 magic configurations and/or chordless separating k-
rings (k ≤ 5) with bounded vertex valencies, i.e. the
“rarity” of these things is “at most logarithmic” within
the graph, or

2. at least a constant fraction of the vertices of the graph
are members of disjoint “n-shields,” meaning a regular-
hexagon-shaped chunk of the equilateral-triangle lattice
with sidelength n ≥ 3 and n odd (see figure; these n-
shields are allowed to have different values of n),

3. or both.

Proof: Consider the fact [93] that a reducible configuration
(where we here are counting the k-rings and (≤ 4)-valent ver-
tices among them) is entirely contained within distance≤ 2
(distances measured along paths of bounded-valence vertices
only) of each “positively charged” vertex after the 32 “dis-
charging50 rules” of figure 4 of [93] have been applied. Con-
sider also that all vertices of valence k initially have “charge”
120(6−k) and that all the charge-motion rules involve pushing
charge between ≤ 8-valent vertices that lie within distance≤ 2
of a 5-valent vertex (distance measured along paths containing
≤ 8-valent vertices only). Consider also that there are only
a finite number (32 in fact) of discharging rules and each one
moves ≤ 2 units of charge a distance ≤ 1 and each rule is ap-
plied only once per edge, and with an arbitrary chronological
order among the edges. Finally, consider the fact that each
discharging rule “makes or preserves progress” in the sense
that it only does anything if there is a positively charged ver-
tex included inside its pattern, and after it does it, there still is
a positively charged vertex included inside its pattern. From
all these facts we see that we can apply the discharging rules
in an order such that

1. Ultimately, all positively charged vertices are at
distance≤ 2 from a 5-valent vertex, and

2. The expected distance a positive charge moves, if all
(edge,rule) 2-tuples are utilized in random51 order, is
O(1), and indeed there exists52 some ordering causing
every charge to move a distance ≤ O(log E/ log log E),
with almost all53 of them traveling only a distance O(1).
All these “distances” are measured along paths consist-
ing of bounded-valence vertices only.

test adjacency of neighbors of removed 4-valent vertices – except when those neighbors had low valence, in which case we would have enough speed
even without hashing. Also, we perhaps could eliminate the need for hashing when getting rid of (or otherwise worrying about) duplicated edges,
by simply permitting duplicated edges. With no hash tables, the algorithm would then be deterministic. It would still require a RAM because it
uses tries.

49Indeed, in the Appel-Haken proof, configurations were abandoned (even if they might be reducible) if they were not “easy” to show reducible.
This tended to cause only configurations for which only a small expected number of random Kempes were needed, to predominate.

50A better name would have been “charge motion.”
51To see this, it will help to consider the following toy problem Suppose there are E spots, one of which is You. A random ordering of them is

chosen from the E! possibilities but kept secret from you. A blacksmith now goes through the spots in order, hitting them with his mallet. If you
are hit, you move to another dot. What is the expected total number of times T you are hit? The probability Ph you are hit ≥ h times obeys
Ph ≤ Ph−1/h so that Ph ≤ 1/h!. Therefore the expected number Eh of hits you suffer tends to e ≈ 2.71828 as E → ∞ and the tail probability
drops superexponentially.

52Since our probability argument shows the probability is positive that a random ordering accomplishes this. It is completely irrelevant how
hard it is algorithmically to find such an ordering, since nobody is every going to find it; we only care that some such ordering exists so that we
know the positive charges need not move very far form their initial locations at ≤ 5-valent vertices.

53That is, a fraction which may be made arbitrarily near to 100% by making the “O(1)” large enough.
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Therefore (considering the expected-distance and alomost-
all distances result; the logarithmic maximum-distance result
does not matter for this) there are two possibilities. Either
vertices of valence≤ 5 are common (are at least some positive
constant fraction of all vertices), in which case reducible con-
figurations are common (at least cV exist for some constant
c > 0) or ≤ 5-valent vertices are rare.

We conclude that reducible configurations can only be rare if
vertices with valency ≤ 5 are rare, and that in turn can only
happen (in view of Euler’s formula) if vertices of valency≥ 7
also are rare. More strongly, edges AB with either A or B
not 6-valent, must be rare, constituting < 0.001 of all edges.
Consequently vertices of valency= 6 dominate (e.g. > 0.999V
are 6-valent). That in turn forces at least a nonzero con-
stant fraction of the vertices to lie inside n-shields with n ≥ 3
and n odd. That is because maximal planar graphs in which
all vertices have valency 6 are “locally unique.” Specifically,
start at at some 6-valent vertex. Consider the 6 triangle-
faces involving it. Now consider the 6 other vertices on those
faces, and the 6 triangles ringing them. and so on. In this
way we see that every 6-valent vertex of a maximal planar
graph, which is graphical distance≥ n away from any vertex
of valency 6= 6, must be the center of an n-shield. Because the
edges of valency 6= (6, 6) are rare, n-shields must be common
(occur at least a constant fraction of the time). �

Lemma 12 (Shield reducibility). If the external vertices
(lying on the hexagon boundary) of an n-shield (n ≥ 3 and
odd) are 3-colored in any manner, then the interior vertices
may be compatibly 4-colored by a linear time algorithm.

Proof sketch. Induction on n. The claim is obvious when
n = 1, and may be proven by exhaustive enumeration when
n = 3; these form the basis for the induction. There is a linear
time algorithm to decrease n to n − 2 by coloring the “outer
two layers” with the inner of these 2 layers being 3-colored,
as follows: first 4-color the outer layer using the 4th color at
its corners and at positions even distances along the hexagon
sides joining those corners. Second, 3-color the inner layer. �

We now present Our randomized 4-coloring algorithm:
1. [Input] Input the embedded, plane, maximally-
triangulated graph G. Refuse invalid input [89][8].

2. [Handle small graphs] If the graph has < 300 vertices
then color it by brute force. Stop.

3. [Find reducible things] Find a set of vertex-disjoint
reducible things comprising, in toto, at least a fraction c > 0
of all the vertices in the graph. The “things” can be either:
(≤ 4)-valent vertices, the 633 magic reducible configurations,
chordless separating k-rings for 3 ≤ k ≤ 5, or n-shields with
n odd and n ≥ 3. For maximum parallelizability, we must
impose an upper bound on n, say 3 ≤ n ≤ 9. However, if
we only plan to use O(

√
V ) processors, no upper bound on

n needs to be imposed, since the shield-coloring algorithm in
lemma 12 can be parallelized with n processors.

4. [Reduce] Remove all the interior vertices of each n-shield,
replacing them with just a single vertex attached to all the
external vertices. Perform the usual reductions on the other
cases, e.g. omitting vertices of reducible configurations. (See
[93] near the end for the method of handling the k-rings.)
The result is a maximal planar graph (or several disjoint such

graphs) with ≤ cV vertices, for some absolute constant c with
0 < c < 1.

5. [Recursive color] Recursively 4-color this smaller graph
(or graphs).

6. [Partial restoration I] Restore all the omitted vertices
inside n-shields and 4-color them using lemma 12.

7. [Partial restoration II] Restore all the omitted vertices
inside the magic 633 reducible configurations.

8. [Randomized Kemping] The properties of “reducibil-
ity” are such that it may not be possible to extend the color-
ing from the ring of ≤ 14 precolored vertices surrounding a
configuration into the configuration itself. However, it is al-
ways possible to do that after we “Kempe” some subset of the
Kempe chains containing outer-ring vertices; at most a con-
stant number of Kempings are needed to recolor the graph
in such a way that any particular configuration becomes 4-
colorable. Because there are at most 4 colors and at most 14
ring-vertices, there are at most a constant number of possible
types of Kemping. (See footnote 38 for Kempe definitions.)
So if we were to choose randomly among all Kempe possibil-
ities, then we would expect at least some positive constant
fraction of the configurations to become colorable. So, this
is precisely what we shall do: Call the following be an “i, j-
randomized Kempe:” We choose a color-pair (i, j) from among
the

(

4
2

)

= 6 possibilities, find all the connected components in
our graph whose vertices are colored i and j, and for each such
connected component we, based on flipping a coin (one inde-
pendent coin flip per component), randomly decide whether
to interchange colors i ↔ j within it. We do (i, j)-randomized
Kempes (choosing the (i, j) also randomly) a constant num-
ber of times; each one can be done in O(V + E) time and
space.

9. [Coloring] Color the configurations which now are 4-
colorable. In expectation, at least some constant fraction
C > 0 of them are 4-colorable. Because at most 100% are
colorable, we therefore conclude that with probability ≥ C/2,
at least a fraction C/2 are colorable. (As a practical program-
ming matter, it probably would be better to intermingle steps
8 and 9.)

10. [Loop back] Go back to step 8 until all configurations
are colored. The expected number of loopbacks is O(log V ).

11. [Final restoration] Restore (mainly via gluing together)
all the partial graphs resulting from the cutting along separat-
ing k-cycles, renaming colors in each subgraph as necessary
to make this legitimate. Note: the properties of the k-ring
reduction are such that no Kemping is required. Also note:
when we color G′ and G′′ we use a V -entry “color indirection
array.” That is, the 4 colors used for G′ are, say, col[1],
col[2], col[3], and col[4] and the 4 colors used for G′′

are, say, col[5], col[6], col[7], and col[8]. Finally we
permute the colors within G′ so that G′ and G′′ match on
R. This graph-wide recoloring may be done in O(1) time
by simply writing appropriate data into col[1], col[2],

col[3], and col[4]. These color-indirection arrays can in
fact be the “set-union/find” linear-space data structure anal-
ysed by Tarjan [104][99], where each unification across a k-
ring causes, e.g. the vertex-set represented by col[3] and
col[7] to become unified. This data structure introduces an
time-overhead of α(V + E) where α is an inverse Ackermann

April 2005 15 8. 0. 0



Smith typeset 17:00 6 Jun 2005 four color

function, but this is swamped by the log V overhead we have
elsewhere and hence does not affect the runtime bound. Stop.

Remarks. Because the configurations have bounded graph-
ical radius and consist solely of bounded degree vertices,
and because of the parallel algorithms for finding maximal
independent sets [46], in step 3 we can find a set of dis-
joint reducible configurations of at least constant density in
O(log∗ V ) time by V processors, or in O(V ) time sequentially.

Because the configuration set is dense, each recursion colors
a graph with ≤ cV vertices for some constant c > 0 and
therefore at most O(log V ) levels of recursion are needed.

In step 1, planarity checking (and embedding, if desired!) may
be done in O(log V ) expected steps with O((E + V )/ logV )
processors via combining [89][11][42][54].

In step 8, all the connected components of the i, j-colored sub-
graph may be found in O(V + E) sequential time and space,
or O(log(V + E + 2) parallel time using O((E + V )/ logV )
processors [42]. (The connected components algorithm has
even been redone for an EREW PRAM [54] and derandom-
ized [27] although the latter at the cost of introducing an extra
O(log log N) factor into the runtime.)

The total expected sequential runtime is O(V log V ) with the
log factor coming solely from the expected number of loop-
backs in step 10.

A tricky part of parallelizing the algorithm is dealing with the
separating k-rings. The trouble is that coloring the graph on
one side needs to be done before coloring the graph on the
other (since the second graph needs to be modified in a way
dependent on the coloring of the first graph ([93], [14], [87]
theorem 12.1.5). This by itself is ok (it only multiplies the
parallel runtime by a factor of 2), but if there are many sep-
arating k-rings, parallelism might be destroyed. The worst
case is where the splittings conceptually form a balanced bi-
nary tree, in which case the parallel runtime would be at least
proportional to the number of leaves of that tree, which could
be as large as V c for some constant c with 0 < c < 1. A valid
bound on the total parallel runtime, using O(1 + V + E) pro-
cessors, is thus O(R + (log V )2) where R = O(V ) is the total
number of nontrivial separating k-rings employed during the
reduction process.

Although the R term can in principle destroy parallelizability,
in practice in many situations, R will be small, and further-
more with an additional trick each recursive level ℓ of the
algorithm may be implemented to run in O(log Rℓ + log V )
steps. So in practice there should usually be substantial par-
allelizability.

But if this is viewed as insufficient, let us hasten to reassure
those theorists, completely unconnected to reality, who enjoy
the class “NC” of ultraparallelizable algorithms, that planar
4-coloring is in (randomized) NC.54 The reason is that we can
deal with a k-ring by simply doing all the possible graph mod-
ifications (and colorings of the modified graph) in parallel on
the smaller side of the separating ring. Letting P (N) denote
the number of processors for a size-N problem, we then have
the recurrence P (N) ≤ P (A) + cP (B) where A ≥ B ≥ 0,
A + B = N/k for some constants k > 1 and c > 1. The so-
lution of this recurrence is P (N) = O(N log

k
(c/2+1)). Thus, a

polynomial(N) number of processors suffice to 4-color a pla-
nar graph in expected time O((log N)2).

Theorem 13 (Practical 4-coloring). There is a random-
ized algorithm to 4-color planar graphs in O(V log V ) sequen-
tial expected time and O(V + E) space. Using a polynomial
(in V and E) number of processors, a 4-coloring may be com-
puted in O((log V )2) expected parallel time, and §8.1 will show
how to accomplish that without any randomization.

8.1 Derandomization to show planar 4-
coloring is in deterministic NC

Here is a useful way to generate a deterministic replacement
for N random bits. To get more generality we shall consider
not merely bits (mod 2), but instead trits (mod 3) or more
generally “pits” – integers modulo any fixed prime p.

Start with some k × N matrix of full-rank modulo p. For a
concrete example, a Vandermonde matrix with ab entry ab−1

mod p will do.

Quick review of linear algebra: The “row rank” of a rectan-
gular matrix M over a field is the maximum number of rows
of M which are linearly independent. It is a theorem that
the row and column ranks are equal. An r × c matrix has
“full rank” if its rank is min(r, c). A square Vandermonde ma-
trix with ab entry xb−1

a has determinant
∏

i>j(xi − xj) which
is nonzero if the xi are distinct, which forces our proposed
matrix to have full rank if p > max(k, N).

Now consider the pk possible linear combinations (operating
mod p) of its k rows. The result is pk different chunks of N
bits.

Lemma 14 (k-wise independence). These pits have the
property that if any k-element subset of the N pit-positions is
chosen, then our pk chunks yield, in those k locations alone,
all pk possibilities.

Proof: If they yielded fewer then there would be some
nonzero linear combination of the rows of our k × k matrix
which would be 0 mod p. Hence the row-rank of this matrix
would be < k. Hence, the original N × k matrix could not
have had full rank, contrary to assumption. �

By using these bits (with a large enough value for the constant
k) we can assure that every possible bounded-size configura-
tion sees every possible Kemping and hence assure that it will
be successfully colored.

Unfortunately this converts an N -bit randomized algorithm
into a pkN -bit deterministic algorithm with p of order N , i.e.
what was a linear-time algorithm (O(N)) now has a large
polynomial runtime O(Nk+1). That is of no practical use.
However – this is good enough for the theoretical purpose of
proving that 4-coloring is in the “deterministic NC” computa-
tional complexity class.

9 Simple linear-time 4-coloring?

In this section, we sketch a simple algorithm that, given a
V -vertex, E-edge planar graph and an integer k ≥ 1, will run

54That is: there is an NC algorithm which inputs the planar graph and O(V + E) random bits, and with probability> 3/4 outputs a 4-coloring.
In §8.1 we shall see how to replace these O(V + E) random bits by (V + E)O(1) deterministic bits to get probability=1 of outputting a 4-coloring.
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in O(1 + E + 16kkV ) steps and O(V + E + 4k) memory loca-
tions, and will output a 5-coloring of the graph that uses the
5th color on ≤ V/k of the vertices. (Here the 5th color is a
special “wild-card”color: two vertices with color 5 are allowed
to be adjacent.) Our algorithm is an apparent improvement
of one invented by Brenda Baker [9].

Conjecture 15 (Simple 4-colorer). If k is sufficiently large
(k ≥ 8) then the coloring output by our “improved-Baker” al-
gorithm below will be a 4-coloring.

If this conjecture is correct, then this linear-time 4-coloring
algorithm should render much of the rest of this paper (and
perhaps indeed of 4-coloring theory generally) obsolete.

Essentially the same algorithm will find an independent set
in the planar graph of the maximum possible cardinality ex-
cept possibly for ≤ V/k missing vertices, in O(1 + E + 4kkV )
steps and O(V + E + 2k) memory locations. We similarly
conjecture that if k is any sufficiently large constant (to be
concrete, if k ≥ 8) then the independent set it outputs will
have cardinality ≥ V/4.

Baker defines the graph induced by the vertices of the outer
face of a planar graph G to be outerplanar. If these vertices
are deleted, then the graph induced by the vertices of the
outer face of the new planar graph also is outerplanar, and
the graph induced by the union of these two vertex sets is 2-
outerplanar. And so on: if we remove the vertices of the outer
face k times successively, then the subgraph of G induced by
these vertices is k-outerplanar.

Baker observed that it is possible to find a maximum-
cardinality independent set in a V -vertex k-outerplanar graph
in O(1+4kkV ) steps and O(V +2k) memory locations by“dy-
namic programming.”55 Furthermore, it similarly is possible
to find a c-coloring, or prove one does not exist, or more gen-
erally can find a (c+d)-coloring that uses the last d colors the
minimum possible number of times, in O(1+(c+d)2kkV ) steps
and O(V +(c+d)k) memory locations. Other well known NP-
hard problems also are soluble in linear time when the graph
is k-outerplanar.

Baker’s proposed coloring algorithm,56 then, would be to
choose a number i ∈ {0, 1, 2, . . . , k − 1} and delete all the
vertices of the original planar graph G in layer-ℓ inward, for
each ℓ congruent to i mod k ([9] page 158). She would then
color all the resulting (k − 1)-outerplanar graphs optimally
and finally the deleted vertices would be colored with an ad-
ditional 3 colors (note: an outerplanar graph has a 3-coloring
which may easily be found in linear time). Since every k-
outerplanar graph could be 4-colored, Baker would thus find
a 7-coloring of the full planar graph. By using the best value
of i (found by trying all possibilities) the number of vertices
colored with colors 5-7 would be assured to be ≤ V/k.

Now let us describe our improvement of Baker’s algorithm.
We observe that it is possible to find a maximum-cardinality

independent set I in a V -vertex (k − 1)-outerplanar graph in
which the outermost layer’s vertices’ memberships (and non-
memberships) in I are pre-specified in O(1+22kkV ) steps and
O(V + 2k) memory locations by dynamic programming. Fur-
thermore, we can find a c-coloring, or prove one does not exist,
or more generally can find a (c+d)-coloring that uses the last
d colors the minimum possible number of times, in a V -vertex
(k− 1)-outerplanar graph in which the outermost layer’s ver-
tices’ colors are pre-specified in O(1 + (c + d)2kkV ) steps and
O(V + (c + d)k) memory locations – and only O(1 + c2kkV )
steps and O(V + ck) memory locations if we agree simply to
fail whenever we cannot find a c-coloring.

Our improved-Baker coloring algorithm optimally col-
ors the (k−1)-outerplanar graph consisting of the outer k lay-
ers of G. Assume G has L layers total, i.e. is L-outerplanar.
For i = 1, 2, . . . , L we then optimally color57 the k-outerplanar
graph consisting of layers i, i+1,... i+k−1 of G in which the
(outermost) layer i’s vertices’ colors are pre-specified to agree
with those got in the previous for-loop iteration.

This algorithm presumably produces a coloring at least as
good as some coloring output by Baker’s algorithm, be-
cause any k-outerplanar it colors, it colors optimally, whereas
Baker’s coloring of the same k-outerplanar might be nonop-
timal (using extra colors more times than we do). Unfortu-
nately that presumption, while very likely, is unproven be-
cause it is possible that, even though we do at least as well
as Baker on any particular k-outerplanar, we might do worse
on the planar graph as a whole because “greed” on one k-
outerplanar hurts us on the next. Because of her buffer lay-
ers, Baker’s k-outerplanars are independent and greed on one
cannot hurt the next. (One may make similar remarks about
the independent-set version of our versus Baker’s algorithm.)

Our algorithm has the advantage over Baker’s that it can of-
ten (although perhaps not always) totally avoid using colors
beyond the 4th, since it, unlike Baker’s method, has no need
for “safety buffers” every kth layer.

It would be very interesting to see a proof or disproof of our
conjecture. The version of this conjecture that states that,
for some sufficiently large constant k, our Bakerian color-
ing algorithm will always find a 3-coloring of any 3-colorable
planar graph, is definitely false due, essentially, to the NP-
completeness construction [41]. However, if G is a maximal
planar graph, i.e. fully-triangulated, then that version of the
conjecture definitely becomes true by §4. The 4-color ver-
sion of our conjecture is therefore more likely to be true if we
demand that G be fully-triangulated.

10 Open problems

1. [chromatic # of fully-△-graph] For any fixed 2D sur-
face topology S (orientable or not): Is there a polynomial-

55Actually, Baker had 8ks in her bounds, because she used a sillier kind of dyanmic programming. The right procedure is this. Regard our graph
as subsumed inside some fully triangulated k-outerplanar graph. Pick a central point (inside the innermost layer) and proceed “around” the graph
“clockwise” with respect to p considering consecutive “radial” k-sets of vertices, according to a “topological scan.” For each tabulate the 2k possible
vertex subsets and for each, whether it is allowed in an independent set and (if it is) what is the largest coardinlaity compatible independent set
among the vertices scanned so far. When the scan goes “all the way around” 360◦ we demand compatibility with the original start-set, and this
procedure has to be used for all 2k possible start-sets.

56Actually, Baker did not discuss the question of coloring planar graphs, although she did discuss many other NP-complete problems. However,
she could have, since her techniques can address coloring.

57By which we mean, color using the minimum possible number of occurrences of the colors> 4.
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time algorithm to determine the chromatic number of a fully-
triangulated graph embedded on S? We have seen the an-
swer is “yes” if the chromatic number is either ≤ 3 or ≥ 5
[39][110], or if S is the sphere. But it might be hard to
distinguish between the 4- and 5-chromatic graphs. Gimbel
& Thomassen [44] showed that there for each S there is a
polynomial-time algorithm to determine the chromatic num-
ber k of a triangle-free graph embedded on S, if k ≥ 4; and
there is a polynomial-time algorithm to determine the chro-
matic number of a girth≥ 6 graph embedded on S.

2. [4-colorability with bounded number of exceptions
[61]] For any fixed 2D surface topology S (orientable or not):
Is there a constant CS such that removing ≤ CS vertices from
an S-embeddable graph, suffices to render it 4-colorable? We
have seen this is true if “4” is replaced by “5.” Removing
O(

√
hV ) vertices from a V -vertex graph is known to suffice

on an h-handle body [63][31] to render the graph planar.

3. [chromatic number bounds for polyhedra] What
about coloring the vertices (or faces) of polyhedra? See foot-
note 5. Thomassen ([10], [110] p.98) showed that every toral
polyhedron with convex faces has 6-colorable vertices and 5-
colorable faces (it is unknown if these statements are tight)
although without the face-convexity restriction 7 colors can be
required in both cases [28][102][40]. Polyhedra with genus-g
surface and all faces convex can be face-colored using o(g3/7)
colors [44], which is smaller than Heawood’s g1/2 but still
might be very weak. The true answer conceivably might be
O(log g) or even O(1).

4. [matchings and edge colorings] Tait’s even-cycle parti-
tion result also may be used in the other direction. By taking
every other edge in each even cycle we find a perfect matching.
Thus this paper’s linear-time 4-coloring algorithm for planar
graphs immediately yields a linear-time algorithm to find a
perfect matching in any 3-regular 2-connected planar graph.
In fact, we actually produce three edge-disjoint matchings cor-
responding to Tait’s three edge colors. Petersen’s theorem of
1891 had shown that any 3-regular 2-edge-connected graph
has a perfect matching, but until very recently the fastest
known algorithm to find it was O(V 1.5) time. This is dis-
cussed in [13], who in 2000 found an entirely different linear-
time matching algorithm in the planar case (but which only
finds one, not three, matchings) and a O(V log4 V )-time algo-
rithm for general 3-valent graphs. That algorithmic version of
Petersen caused some excitement because it suggested there
might be some unknown new algorithm for finding perfect
matchings in V -vertex E-edge graphs that would be far su-
perior to the Micali-Vazirani O(E

√
V )-time algorithm. How-

ever, it seems impossible to generalize their algorithm even to,
e.g, 5-regular 4-edge-connected graphs. The algorithm here,
in contrast, depends on finding an even-cycle partition or an
edge coloring. Those concepts perhaps can be generalized.
The question then is: which r-regular graphs have even-cycle
partitions or edge-colorings? Considering the immense effort
that it took to prove the 4-color theorem, this question might
be very difficult. It is known (“Vizing’s theorem”[34]) that ev-
ery graph with maximum valence ν can be edge-colored with
either ν + 1 or ν colors, the only difficulty is deciding which.
Holyer [58] proved that this decision problem is NP-complete
even for 3-regular graphs, and in the 3-regular case the even-

cycle-partition problem is equivalent to edge 3-colorabilty and
hence also is NP-complete, but as we’ve seen, both are linear
time for planar 3-regular graphs. (Holyer’s construction in-
volves a large amount of nonplanarity.) So this approach may
actually be a step backward. Schrivjer [98] showed that ev-
ery bipartite regular graph has an edge-coloring that can be
found in O(E2/V ) time. Robertson, Seymour, and Thomas
(unpublished) recently claim to have proven Tutte’s conjec-
ture that every 3-regular 2-connected graph without Petersen-
graph minors, has an edge 3-coloring (and it may be found by
a polynomial time algorithm).

5. [multidimensional version of 4-color conjecture]
Consider a d-dimensional convex polyhedron with simplex
(d− 1)-faces.58 Can each (d− 2)-face be colored so that each
(d − 1)-simplex face has all its (d − 2)-faces (of which there
are d) different colors, and there are d colors in all in your
palette?

When d = 3 the answer is “yes” – this is Tait’s form of the
4-color theorem. When d = 2 this is the claim that we can
2-color the vertices of a polygon – which is true for even-gons
and false for odd-gons. When d = 4, 5, 6, . . . these are new
questions. I have a slight amount of evidence their answers
always are “yes.”
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FIGURE CAPTION. Top left: K7 embedded on a torus.
Top right: K6 embedded on a Möbius strip.
Bottom left: The “3-shield” graph.
Bottom right: Hagerup et al [52]’s 5-coloring reduction for a 6-valent vertex w in a maximal planar graph. If all neighbors
of w are nonadjacent, then three of them, such as 2,4,6, may be shrunk down to a single vertex after w’s removal, without
destroying planarity. If there is an adjacency we can assume wlog it is 1-3. If 1 is adjacent to both 3 and 5, then vertices
2,4,6 must be mutually nonadjacent and hence can be shrunk down. But if 1 is adjacent to 3 but not 5, then (1,5) and (2,4)
would be shrinkable.
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