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Abstract — Regard various standard approximate bio-
chemical assumptions as correct. Then we show that the
proteome of human cells constitutes an “information bot-
tleneck.” We use this to estimate the information con-
tent of a “blueprint” sufficient for efficiently building a
human intelligence (as opposed to some unintelligent an-
imal). We find it is only about 6 or 81 Kbytes (in two
oppositely-extreme models), with 4 times these figures
being proposed as a high confidence upper bound. This
seems surprisingly small compared to many software at-
tempts to create artificial intelligences.

However, in the companion paper we create a “mathe-
matical definition of intelligence,” use it to prove a the-
orem that a “universally asymptotically competitive in-
telligence” (UACI) exists, and show how to implement it
as a remarkably short program. (Although mathemati-
cally a success, this UACI is not a success in any engi-
neering sense because it will take a very long time before
doing anything interesting.) Also Fong’s PAPPI human
language principles package and Baum & Durdanovic’s
“Hayek” AI-via-artificial-economy code both lie between
these two numbers. Hence this perhaps is not really a
paradox despite initial appearances.

The tasks of creating an AI and of creating artificial life

may share the similarity of requiring a very large search

over configurations to find a good one.

1 Overview

We begin in §2 by looking at the “information content” of the
genomes of various lifeforms, noting in passing the “creation
problem” that the simplest life we know of is far more compli-
cated than the first life must have been. In §3 we focus in on
Homo sapiens and especially on its mind and brain. There
is an “information pipeline” – or perhaps a better analogy is
“bucket brigade” – which starts at your DNA, moves through
transfer RNAs to messenger RNAs, moves through proteins,
and further on that information is used to direct the cellu-
lar and multicellular development of the human form, and to
guide the development of the brain, which then transmits,
receives, stores, and processes electrical information, and cre-
ates the audio and written communications and physical acts
and creations that constitute human culture – which is the
final stage in the information pipeline.

We can (and do) estimate the information content – bit counts
– at each particular stage in this information pipeline. Each

of these estimates is necessarily an overestimate of the true
information content. However, the bottleneck in the informa-
tion pipeline – the bucket with the smallest raw bit count –
gives us the least overestimation and hence the best estimate.

Most of these bit counts arise easily from published literature
and simple arithmetic. But one exception is the number of
bits in human memory – a poorly understood and badly mea-
sured quantity that we review in §4. That review ceases to
affect our main argument as soon as it establishes that human
memory has far larger information capacity than the bottle-
neck. But our review is fairly extensive nevertheless, because
we wish to make clear the extremely poorly done nature of
human memory research and some easy ways to improve it
tremendously.

Our main purpose is to make it clear that the human infor-
mation bottleneck is the proteome. Under two oppositely-
extreme models, this bottleneck constitutes either 2.4 or 32
megabits of raw information (both numbers are estimates
believed to be within a factor of 3).

Now only a small fraction of this information – we estimate
2% – constitutes the “blueprint for human intelligence” that
causes humans to be “intelligent” as opposed to other “unin-
telligent” animals.

The result is an estimated upper bound on the Kolmogorov
complexity of human intelligence: either 6 or 81
Kbytes (in the two models, each estimate accurate to a mul-
tiplicative factor of .4).

This may seem impressively small. In §5 we compare these
numbers with the known code sizes of a list of computer
programs – including some designed to have especially small
code-lengths. All these programs of course would seem to ac-
complish far less than human intelligence – most observers
feel that no computer has yet achieved “intelligence.”

However, in a companion paper [37] we provide a “mathe-
matical definition of intelligence” and show how to construct
“universally intelligent” programs, called “UACIs,” with very
small code-lengths. Similar ideas had been invented inde-
pendently a few years earlier by Marcus Hutter [17]. Those
UACIs would produce interesting outputs only after an enor-
mous delay and hence would be too slow to to be practically
useful – but they would meet the technical definition of “in-
telligence.” The companion [37] also outlines an engineering-
research program aiming to produce more-practical universal
intelligences, and it is extremely unclear how difficult that
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improvement task will be. That is where the numerical esti-
mates of this paper come in: they provide at least some rough
bounds. This entire paper is focused simply on producing the
numbers in bold print above.1

2 The information content of life

lifeform #bits #genes
Psilotum nudum (whisk fern plant) 5 × 1011

Lily plant 2.4 × 1011

Lungfish 2 × 1011

Wheat plant 3 × 1010 60000?
Homo Sapiens (Human) 6.5 × 109 23000
Mus Musculus (Mouse) 6.0 × 109 27000
Maize plant 5 × 109

Danio rerio (Zebrafish) 3.4 × 109 25000
Xenopus Tropicalis (Frog) 3.0 × 109 20000
Gallus Gallus (Chicken) 2.1 × 109 19000
Tomato plant 1.9 × 109

Strongylocentrotus purpuratus (Purple Sea Urchin) 1.7 × 109 ?
Takifugu rubripes (pufferfish) 7.8 × 108 23000
Apis mellifera (Honeybee) 4.5 × 108 14000
Drosophila Melanogaster (Fruit fly) 2.6 × 108 14000
Arabidopsis thaliana (flowering weed)* 2.5 × 108 25500
Caenorhabditis Elegans (tiny transparent roundworm) 2.01 × 108 20000
Saccharomyces Cerevisiae (Budding Yeast, eukaryote) 2.4 × 107 7000
Plasmodium falciparum (Malaria) 4.6 × 106 5300
Escherichia coli (bacterium) 9.4 × 106 3200
Synechococcus WH8102(2) (motile photosynthesizing plankton) [28] 4.8 × 106 2050
Prochlorococcus SS120 (smaller non-motile phytoplankton) 3.5 × 106 1694
Mycoplasma genitalium (bacterium) 1160148 500 ± 30
Nanoarchaeum equitans (archaeon microbe)* 981770 544 ± 8
Coronavirus 59502
DNA viruses generally 10000 to 500000 10 to 900
RNA viruses generally 3400 to 120000 1 to 25
L1 retrotransposon inside human genome 13000 3
ΦX-174 (bacteriophage infecting E.Coli) 10772 10
Hepatitis B virus (single & double-standed DNA mix) 4800 4
Alu replicating element inside human genome 600 0
Viroids, satellite viruses, and virusoids generally 500 to 750 0 or 1
Spiegelman’s RNA “monster” 440 0 or 1
More-evolved Spiegelman monster [10] 108+96=204 0 or 1

Figure 2.1. Genome sizes. #bits(= 2×#base-pairs) given; #genes are usually estimates from www.ensembl.org. The
wheat gene count is a crude extrapolation based on partial sequence data collected so far. * denotes current record-holder
for smallest-known genome among plants, free-living microbes. Many organisms got on this list because they have atypically
short genomes. Prochlorococcus is by far the most abundant self-sufficient organism (≈ 95%) and Synechococcus is the second
most abundant. Both are cyanobacteria. Hepatitis B is an unusually small virus with a DNA-loop that is partially single
stranded and partally double stranded; it codes for 4 genes, all of which overlap on the DNA to save space. L1 is a “selfish
DNA” element capable over evolutionary time of inserting further copies of itself into the human genome (which currently
contains about 90 copies). (Also with help from retroviruses such selfish DNA elements can spread to other species.) Alu is a
much simpler stretch of selfish DNA which “parasites” off L1’s genes to copy itself at a considerably faster rate than L1, but
which could not “continue to reproduce” without L1. There are over 1 million Alu copies in the human genome representing
about 11% of our total DNA. I speculated elsewhere [36] that the vast differences in repetitive “junk DNA” quantity in the
genomes of various apparently similar organisms is caused by runaway dynamics among, and DNA “garbage” produced as a
side effect of, such “replicons.” “Satellite viruses” are viruses that can only reproduce in the presence of an associated larger
genuine virus. A “viroid” is a “small infectious pathogen composed entirely of a low molecular weight naked RNA molecule.”
They don’t act as messenger RNAs, i.e. don’t make the cell synthesize enzymes: they rely completely on pre-existing enzymes

1Our techniques can also be used to get small upper bounds on the description-complexity of the proteomic-metabolic dynamical systems of
simple bacteria. However, this is not of great interest for casting light on the “creation problem,” because for that purpose what matters is not
only the description length of the abstract dynamical system, but also the description length of the physical machinery (i.e. protein sequences)
needed to implement it. In contrast our work does cast useful light on the nature of intelligence, because there it really is an interesting question
to determine the descriptive complexity of an abstract system to instantiate an “intelligent being.”
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in the host for reproduction. Spiegelman monsters are RNA molecules that replicate quickly in vitro in the presence of a
certain viral RNA polymerase and xTP. N

Table 2.1 lists the genome sizes of several lifeforms. The cur-
rent smallest-genome record holders among free-living organ-
isms are Mycoplasma genitalium and Nanoarchaeum equitans

each at2 about 10Mbits.

But this is 4640 times larger than the maximum conceivable
irreducible description length for the first living organism on
Earth (250 bits) in view of probability, the < 1Gyear time
available, and the number of atoms on Earth, and avoiding
any supernatural explanation.3 Even if the relevant numbers
instead are regarded as the atom-count and age of the en-
tire observable universe, still at most 360 bits of description
length would seem allowable!

That is an immense paradox that anybody must tackle to
explain the creation of life. There will be no fully satisfac-
tory resolution until ultrasimple life is created in the lab or
discovered.

The presumed (and hence unsatisfactory) explanation is that
any initial small-description-length life might have had very
slow reproduction rates (10000 years?) or in some other ways
have had very poor Darwinian fitness compared to later large-
description-length life. Hence the later life killed it. (And even
if some still exists, it might be very hard to notice.)

But in suitably “more-friendly environments” than just naked
exposure to the elements on Earth, life with much shorter
description lengths is known to be possible. ΦX-174 phage
“lives” in the “environment” consisting of E.Coli host organ-
isms and their surrounding medium. Its raw genome length
is only 10772 bits, and assuming the same data-compression
factors discussed in footnote 2 are possible would reduce this
to 7750 or perhaps 2940 bits, i.e. “only” 31 or perhaps 12
times larger than the 250-bit-threshold.

This can be regarded as “cheating,”4 though, because phages
cannot survive in the absence of host organisms; they take
over their preexisting reproductive and synthetic machinery
for their own purposes. For this reason it is dubious to try
to use phages as models for Earth’s initial life forms. Other
things which “cheat” to an even larger degree can be even
smaller, e.g. “satellite viruses” which are parasites on viruses

which are parasites on cells.

3 The proteomic “information bot-

tleneck”

Consider the development of a human being starting from a
single cell as an “information pipeline” or “bucket brigade.”
We are going to number the buckets in the chain 1 to 10.

Initially (almost) all the information is contained in (1) our
DNA molecules. The stages in the information pipeline are as
follows: starting from (1) DNA, information flows through (2)
transfer RNAs into (3) messenger RNAs into (4) ribosomes
which synthesize proteins.

Now (5) proteins interact with both each other, the DNA and
RNA, and all metabolic chemicals and raw materials (such as
ions, sugars, lipids, vitamins) and the cell’s physical structure
(membranes and transport networks) to self-regulate and di-
rect the growth of the cell. We call this large network of chem-
ical interactions the “proteome.” It can be viewed mathemat-
ically as a large-dimensional time-evolving dynamical system
of nonlinear differential equations ; its variables are the con-
centrations of each particular kind of chemical.5 The system
also has inputs corresponding to chemical concentations and
other conditions external to the cell.

Now (6) in the development of a multicellular organism like a
human, the initial pluripotent cells develop into different kinds
of cells such as muscle cells, fat cells, neurons, transparent eye-
ball cells, etc. Why do these cells (all of which have identical
DNA) know what to be? The answer is that their proteomes
move to different attractor-regions in the high-dimensional
space in which the dynamical system lives. It appears that
different cells to some degree “know” their physical locations
and orientations inside the organism, and that to some degree
cells can communicate with their neighbors and also in some
cases to faraway cells. All this is not well understood (but
rapidly becoming better understood) by current science, but
anyhow all such cellular “self-knowledge” must be caused by

2 The M.genitalium genome really has smaller information content than the naive value of 1160148 bits because its DNA sequences are amenable
to “data compression.” One reason is that it has 32% GC content. Another reason is that arguably only the codon triplets within gene-coding

regions matter. Actually, promoter and repressor gene-prefix regions also matter, and RNA-coding-genes matter as well as just protein genes – but
if we simplistically ignore those facts: If only the amino-sequences of the proteins coded for by the apparent genes in M.genitalium (in a standard
20-character alphabet, separated by extra 21st characters) are considered, then its genome is 177708 characters long and the data compression
tool gzip encodes this in 832520 bits (1.39× smaller than the naive genome bit count). This is still 3330 times larger than 250 bits so the paradox
remains immense. The TIGR scientists who sequenced M.genitalium tried systematically destroying single genes in an effort to determine a small
gene-subset essential for survival. They concluded that only 56-78% of them were essential for living. The lower scale factor would reduce the bit
count to only about 466000 bits, i.e. reducing the 3330-gap-factor to “only” 1864. Perhaps an appropriate kind of lossy data compressor could
reduce this without its errors affecting viability of the organism. For example a well known approximate conception of proteins is that the 20 amino
acids can each be modeled as only two types – hydro-phobic and philic – with the exception of a few aminos per protein which have to be got
right because they form an “active site,” as opposed to mere “scaffolding.” Even assuming optimistically that this can be done would only get the
description length down to around 170000 bits – not counting the length of the decompression instructions – which is still an immense paradox.

3That is, there are 1050 atoms in the planet Earth, and assuming new configurations were being tried every nanosecond (which is very generous
since chemical reactions happen much more slowly on average) for 109 years, that is < 3 × 1075

≈ 2250 configurations tried in all. Hence if the
simplest life required more than 250 bits to describe, it would have been unlikely to occur.

4However, mammals also could not survive in the absence of other forms of life, and hence too are “parasitic” and not “true” life, by that
reasoning.

5We regard methylation of DNA, and the different rates of synthesis of different proteins as regulated by whatever is sticking onto the DNA at
that time, both as just part of the proteome dynamical system. And this system is really a system of “stochastic differential equations” because there
are considerable noise and randomized discreteness effects. This differential equation system model is a standard idea. For some representative
component differential equations, see any book on enzyme kinetics. Recently some extremely ambitious projects [1][31] have started with the goal
of producing just such a computerized differential-equation model of the entire E.Coli organism.
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different proteomic attractor states and all such “communica-
tion” between cells must be caused by chemical secretions or
receptions – which can be viewed as additional inputs and out-
puts of the dynamical system modeling one cell’s proteome.

Then (7) the human brain and neural system somehow self-
develops via such processes, and then additional electrical

communication between neurons can and does occur. This
electrical communication is believed (8) somehow to feed back
to affect the growth of “synapses” between neurons, allowing
the brain to remember information, as well as to self-alter
and self-develop in unknown ways. The ultimate result of
this plus sensory inputs is the development (9) of an “intelli-
gent conscious being.” Now (10) this human can contribute to
human knowledge stored in libraries, or in other ways affect

his external environment.

Observe that this pipeline features almost entirely one-way

information flow6 except in its central step 5: the proteome
interacts with almost everything.

Now let us consider the number of bits of information in each
bucket in the chain; see table 3.1. The important thing to
note is that although the initial and final buckets in the chain

are very large, there is a far smaller “bottleneck bucket” in the

middle describing the proteomic state.

If you want to understand the true information content of
an organism, then I recommend, to get an upper bound as
tight as possible, to measure the information content at that

bottleneck.

“information pipeline stage,” a.k.a. “bucket name” #bits info
Human DNA 5.8 × 109

Human “non-junk” (regulatory & coding) DNA 108

Proteomic state (A) 3 × 106 (range: times 3, or divided by 3)
Proteomic state (B) 4 × 107 (range: times 3, or divided by 3)
Proteomic state (Baum estim. [4] p.57 as corrected) 2 × 106

Number of synapses in human brain 2 × 1014

Number of cells in human body 1013-1014

Visual sensory information input & processed during human lifetime 4 × 1015

Amount of information output by human by writing 100 books 109

Amount of information output by vocal human by talking during life 1013

Information storable in a human’s memory 1010-1013

Information stored in books in world libraries 1013

Figure 3.1. Estimates of (uncompressed format) information at each stage in the pipeline; the minimal “bottleneck bucket”
is in bold.
Notes: Reasons to believe human DNA is 98% “junk” include the apparent absence of any coding or regulatory function, the
fact much of the junk consists of short repetitive sequences, the fact that closely related species can have vastly different
amounts of junk (and hence total) DNA, and the fact that Arabidopsis thaliana has 23 times less DNA than humans despite
being apparently comparable in genuine information content to plants with much more DNA than humans (plants generally
speaking have more DNA and more genes than animals), thus “proving” that at least 95% of our DNA is not really needed.
(Similarly, the zebrafish has vastly more junk DNA than the pufferfish.)

Data compression software will reduce books by about a factor of 2. Certain prolific authors have written over 100 books.
Each synapse stores at least one bit of information by its very existence or nonexistence. The estimate of 2 × 1014 synapses
comes from [27]. The fact that “20 questions” is a reasonable game suggests that humans remember and label 220 ≈ 106

concepts. But a far stronger lower bound estimate of ≈ 1010 bits is got by more sophisticated measurements ([20] with
corrections), and the feats of memory prodigy“Elizabeth”make even 1012 or 1013 bits seem plausible (we discuss these poorly
understood subjects in §4). “Visual information” assumes 3 Mbit/sec input rate [43] for 16 hours/day for 70 years. (Total
lifetime sensory input is at most about twice visual.) “Vocal information” is for somebody who speaks for 5 hours per day
for 70 years assuming MPEG audio compression to 20000 bits/second. (But speech can still be intelligible if compressed 10×
smaller than that.) For estimates about the information content of the proteomic/metabolic state, see text; A is assuming
introns and exons can be regarded as an earlier stage in the information pipeline and should not be reckoned as part of the
“proteome”; B is assuming the contrary, resulting in a much “larger”proteome; C is an independent estimate by Baum which
we shall also discuss. N

The important thing about the proteome dynamical system
is that it, and essentially it alone, suffices to understand the
cell and whatever multicellular development and all the rest
of it happens. In other words, if we knew enough informa-
tion to write down the system of differential equations known
as the human proteome & metabolism, and knew the initial
state-vector for the initial zygote cell, then we would in princi-
ple be able, by mechanical computation, to predict the entire

development of the human body, brain, and intelligence, etc.

So: how much “information” is that? We now estimate that.
Essentially there are not very many kinds of biologically-
important molecules in humans. In a bacterium, 23000 genes
would mean only 23000 protein and 23000 RNA types that
matter, and furthermore most of the RNAs would not really
matter in the sense that (it is generally believed) they do not

6Actually, many exceptions to unidirectionality are known, such as RNA “reverse transcriptase,” RNA “editing,” DNA manipulations occuring
inside our immune systems, and humans deciding who to mate with based on sensory and mental information. However, we shall follow the usual
practice of regarding such exceptions as comparatively unimportant and negligible.
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interact with anything besides ribosomes in any interesting
way, and hence should not be counted (or at least, the count
should be negligibly small) as part of the information bot-
tleneck because they really are an entirely separate (earlier)
bucket in the information bucket brigade.

However, eukaryote genes have introns and exons, which in-
creases the number of possibly-important RNA types (in the
case of the human genome [33]) by a factor of 16.6. It has
been speculated that the intron, exon, and associated RNA-
splicing machinery may play an important regulatory role.
But on the other hand, they might have essentially zero reg-
ulatory role and hence almost no impact on the bit-count in
the information bottleneck, and instead are there as a defense
against viruses or to increase “evolvability” and facilitate di-
versification.7 At present, the evidence to resolve this ques-
tion is murky, unclear, and lacking. (Similar remarks can be
made about the purpose of the nuclear membrane in eukary-
otic cells.)

So we are going to proceed simultaneously considering both
extreme hypotheses:

Bacterial model: Introns, Exons, and messenger RNA gen-
erally, should not be counted when reckoning the de-
scription bit length of the proteome dynamical system.

Exon-dominance model: Count them all.

Finally, we suppose there are also 10000 other important
chemicals. That means the proteome is a (D = 414800)-
dimensional dynamical system – but only (D = 33000)-
dimensional under the bacterial model.

Now suppose a typical chemical’s concentration time-
derivative is directly affected by 2 other “random” chemi-
cals (we do not count ubiquitous chemicals such as water,
ions, and ATP as “random” – those interactions have a much
smaller information content thanks to the high data compres-
sion properties Huffman coding can achieve for high-frequency
letters; also undoubtably some chemicals are directly affected
by many more than 2 others but only the average matters).8

That means that describing the directed-network structure of
the interactions takes about D lg((D − 1)D/2) bits. (Avail-
able wallcharts of metabolism & etc networks roughly support
these estimates.)

We also need to associate some numerical coefficients with
each arc in the network, and we assume that typically, it suf-
fices to get each coefficient right to within a factor of 11% ac-
curacy (because we assume cells are robust enough to survive
24% changes) on a factor-1000-wide logscale [i.e. each coef-
ficient can be stored in 5 bits, plus a sign bit], and that for
each network arc there are two coefficients. Plus add 4 more
coefficients per node to describe interactions with ubiquitous
chemicals, and another two coefficients for self-regulation (8 in

all), for a total of 48 = 8×6 bits per chemical (node). Finally,
to describe the initial log(concentrations) of all chemicals suf-
ficiently accurately, again suppose 5 bits per chemical suffice.

We conclude that

Bacterial model: With 23000 genes, the description length
of the human proteome is 0.66×106 bits to describe the
network structure, plus 1.58 × 106 bits to describe the
coefficients, plus 0.16 × 106 bits to describe the initial
state, for a total of 2.40 × 106 bits.

Exon-dominance model: With 23000 genes, and 16.6 in-
trons and exons (combined) per gene, the description
length of the human proteome is 10.4 × 106 bits to de-
scribe the network structure, plus 19.9 × 106 bits to
describe the coefficients, plus 2.1 × 106 bits to describe
the initial state, for a total of 32.4 × 106 bits.

There is evidence [9] that biochemical dynamics are extremely

robust even to extremely large numerical perturbations. In
that case, these bit count estimates might be decreasable by
a factor of 3. On the other hand more interaction types (i.e.
a more complicated network) might be needed than we esti-
mated, perhaps increasing the bit counts by a factor of 3.

Now if we only consider the mental part of the human pro-
teome, i.e. consisting of those genes that concern themselves
with the development of human brain and intelligence, and
crudely9 model the non-mental genes and proteome dynam-
ics as “identical” for humans and other mammals commonly
regarded as “unintelligent,” then (in view of the known “98%
similarity” between human and chimp genomes10) these esti-
mates shrink by a factor of 50. We conclude:

The “blueprint” for building a human-like brain and intelli-

gence, as opposed to some unintelligent animal, fits in

Bacterial model: 6 Kbytes

Exon-dominance model: 81 Kbytes

(central estimates; ranges are /4 or ×4); 1 Kbyte=8192 bits.

We now describe an independent estimate by Baum ([4] box
on p.57, section 2.2). Baum’s argument (but with altered
numbers that we consider to be accuracy-improvements) is
this. The human genome contains about 23000 genes.11 As-
sume approximately that each codes for a protein with average
length 300 aminos. Since there are 20 amino acids, defining
each protein sequence takes lg(20300) = 1297 bits per protein.
Multiplying by 23341 we find that a total of 30 Mbits de-
scribes them all. Multiply by 2 as a “fudge factor” to account
also for regulatory information. The result is 60 Mbits as the
descriptive complexity of a human.

Now Baum insightfully points out that Keefe & Szostak [18]
found that 1 in 1011 random 80-amino polypeptides had a

7It is known different races of humans have vastly different vulnerability to smallpox, measles, and yellow fever viruses, and in the former two
cases, it is known that those genetic differences must have developed during the last 5000 years. Had the human species been incapable of evolving
that quickly, it would have been a much less-fit species.

8Actually, these biochemical networks appear to have “power law valence scaling” [2] i.e. the probability that a node has valence v is proportional
to a fixed power of v. The approximation we have been describing is a crude attempt to estimate the entropy of this.

9This should still yield a valid upper bound because not all chimp-human differences are mental.
10From an “NIH News” press release 31 Aug. 2005 based on the 1 Sept Nature paper [6] on the chimp genome: “The consortium found that the

chimp and human genomes are very similar and encode very similar proteins. The DNA sequence that can be directly compared between the two
genomes is almost 99% identical. When DNA insertions and deletions are taken into account, humans and chimps still share 96% of their sequence.
At the protein level, 29% of genes code for the same amino sequences in chimps and humans. In fact, the typical human protein has accumulated
just one unique change since chimps and humans diverged from a common ancestor about 6 million years ago.”

11As of March 2006, the Ensembl genome-annotation system estimates there are 23341 human genes plus 719 “pseudogenes.”
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particular chemical functionality (namely, binding to ATP).12

Assume that this is true for any given chemical functionality.
(This is a rather dramatic extrapolation from one data point!
– But that is somewhat ameliorated by the fact that we shall
take the logarithm.) Hence really a protein described by its

function perhaps is describable in only lg(1011) = 37 bits. In
that case,13 again putting in a “fudge factor” of 2 to account
for regulation and fine-tuning, the descriptive complexity of
a human really would be only 1.7 Mbits.

This corrected-Baum number coincides quite closely with our
bacterial-model estimate of 2.4 Mbits. Baum goes on to ob-
serve that this is far smaller than the number of Darwinian
evolutionary experiments that went into finding these 1.7
Mbits – in [37] we provide an estimate of “between 2.8× 1042

and 3.6×1044 not counting viruses, and these numbers would
be increased by a factor between 16 and 251 if we also count
viruses” for the number of lifeforms throughout Earth history.

Finally, it also is possible to get an intelligence-blueprint up-
per bound by yet another method. The chimp-genome pa-
per [6] says that the human-chimp difference consists of “35
million single-nucleotide changes, 5 million insertion/deletion
events, and various chromosomal rearrangements.” Multiply
by 2% to only consider the changes in the non-junk and figure
each change can be described with (on average) 10 bits, to get
8 Mbits as an upper bound on the description complexity of
the human-chimp difference. If only exonic changes are con-
sidered interesting, this can be halved. Also, it is legitimate to
instead reckon the difference between the human and X genes,
where X is the most recent human-chimp common ancestor,
as half the human-chimp difference. That also leads to a halv-
ing. The result is either 4 or 2 Mbits as an upper bound on
the description complexity of a human-intelligence blueprint.
We can further reduce these numbers by considering the fact
that genomic information is larger than the proteomic bottle-

neck ; the results of applying that final reduction (in our two
models) are quite close to ours.

4 Human memory and memory

prodigies

We now review the history of quantitative human memory
research, which unfortunately has been a comedy of errors.

Landauer’s estimates about typical human memory.
For our purposes, Landauer [20] is as far above most psychol-
ogists studying memory, as a dog is above an ameoba, be-
cause he actually has heard of the concept of “a bit” and uses
at least approximately-valid information-theoretic techniques
[13][7] in his experimental design and analysis, whereas the
others would seem (at least from their writings) entirely bliss-
fully ignorant of all of that. I strongly recommend they adopt
Landauer’s techniques – or preferably better ones, because
I chose the word “dog” advisedly; even Landauer still fails
to use fully correct information theory (consequently mak-

ing major errors), thus bringing the net number of memory-
psychologists ever to do so, to a grand total of zero.

And unfortunately, Landauer only tested normal people and
made no effort to find super-talented memorists. The latter
may be more interesting as giving a better estimate of true
human “hardware capabilities,” under the view that most of
us do not reach our ultimate limits.

As a simple example of his techniques: Landauer notes that
in prose passages with random words omitted, people can
guess the omitted words about 50% of the time. This, he
argues, proves the information content of prose per word av-
erages about 1 bit. The most important remark about that
is that this is far less than might be naively supposed based
on the fact that number of words in dictionaries far exceeds
2. Now actually, Landauer’s 1 bit/word deduction is false
(albeit far closer to being true than anything the other psy-
chological authors say) because, if, say, half the words were
deducible and the other half were 64-way uncertain, it would
really be 3 bits per word. A second reason is that to make
this argument valid, really the deduction of the word needs
to be based on the preceding prose only. There are in fact
techniques based upon “gambling” (where people make real-
money wagers about the next word) to estimate the true en-
tropy of English prose, but Landauer did not use these more
sophisticated techniques. Also guessing the next letter is su-
perior to guessing words, and also non-gambling techniques
superior to Landauer’s already had been given by Shannon
[35] at the dawn of information theory.14 The Cover-King
gambling estimate [8] finds that the entropy of English text
is 1.3 bits per symbol, closely coinciding with Shannon’s es-
timates, both of which (note) are about 7 times larger than
Landauer’s (crude and wrong) estimate! And furthermore,
Cover, King and Shannon apparently used a comparatively
low-entropy text (the book “Jefferson the Virginian”) in their
experiments [24], so really the correction-factor for Landauer
probably should not be 7 but in fact 10.

As a more sophisticated example, Landauer found that peo-
ple guessing random missing words in a prose passage they
had never seen before, could do so 48% of the time, but if the
prose passage had been read before in its entirety (i.e. with
all words) then their success rate was 63%. Landauer there-
fore estimated that the amount of extra information about
the prose that the humans had stored in long-term memory
during their previous reading, was log2(63/48) ≈ 0.4 bits per
word. Using their measured reading speed, Landauer then
found their memorization bit rate was 1.2 bits per second.
Again, this estimate is not really valid and would have been
improved via gambling-based techniques to measure true en-
tropy: probably a better estimate than Landauer’s (which
I got by crude scaling of the Cover-King estimate) is about
(63−48)×10/100≈ 1.5 bit per word, i.e. 4.5 bits per second;
and considering the harder-to-guess words are probably pre-
dominantly longer ones, 6 bits per second is probably more

12This is Baum’s analogue of our “proteome differential equation system” idea. In our approach, we argue all that matters is the “differential
equations.” In Baum’s approach all that matters is the “chemical functionality.” Both are in essence the same idea.

13Precisely: 2 × 23341 × lg(1011) ≈ 1705817. Baum made an arithmetic mistake here and got a result over 4 times larger.
14Shannon’s procedure was for a human to guess the next letter and keep guessing until they succeeded. He gave two formulas for producing

lower and upper bounds on the entropy of text as functions of the number of guesses required. Shannon thought his upper bound formula was
probably far closer to the truth because humans are good guessers. Better analytical methods than Shannon’s, resulting in tighter entropy bounds
at the cost of more computation, later were devised by Levitan & Reingold [22].
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appropriate, i.e. over an order of magnitude higher than Lan-
dauer’s flawed estimate. Nevertheless, even Landauer’s highly
flawed estimate is far superior to the other psychologists who
had no information-theoretic estimates whatever.

Also note that the humans could have been memorizing bits
encoded very inefficiently, e.g. actually storing 10 bits per
every actual bit of true information useful for this word-
guessing task. Landauer’s experiments give no insight into
this encoding-efficiency question. That is important since for
our purposes in this paper, what seems to matter more than
“true information content” is in fact the (larger) number of
“raw” bits stored in the underlying hardware. Finally, note
that Landauer’s measurements concerned the information ab-
sorbed during normal albeit concentrated, reading. At least
for me, reading is an effortless act and garners some but not
all available information (which I might describe as a com-
pressed version of the “meaning”) – whereas intentionally try-
ing to memorize a prose passage verbatim is an unnatural and
effortful act. Because Landauer’s measurements were focused
more on normal human reading and picture viewing as op-
posed to abnormal rote-memorizing acts, they probably give
a substantially better picture of true average human informa-
tion storage.

Now in some related (and probably also flawed) ways [20]
Landauer was able to estimate people’s true memorization
bit rates from pictures (for picture-recognition tasks), finding
2.3 bits per second. Interestingly (according to Landauer), it
appears that several different kinds of input types all yield
roughly the same number, namely 1-3 bits/second, for the
memorization uptake rates of average humans.

Then Landauer under the assumption a typical human learns
2 bits/second all the time for 70 years of 16-hour days, de-
duces human memory is 2 × 109 bits lifetime, albeit due to
Landauer’s flawed techniques this number really should be
both less certain than he said and probably larger, e.g. 1010

bits.

However, this all is under the (of course wrong) assumption
that no bits are lost during those 70 years. Landauer also
was able to use his techniques to estimate true-information
loss rates in humans, finding an estimate (and he admits dis-
comfort with its crudity and large suspected error) of 10−9

bits/bit/second. If that number is correct, then Landauer
finds that his human-lifetime memory estimate of 2×109 bits
needs to be decreased by a factor of 2, and about the same
factor should pertain to our corrected larger Landauer esti-
mate.

So Landauer’s final estimate was that humans in their lifetime
typically store about 109 bits of true information, which we
correct to about 1010, which suggests (in view of the number of
synapses in the human brain, which is 4-5 orders of magnitude
larger) a very inefficient coding scheme. This corresponds to
a net rate of about 1 truly-useful bit per second memorized
during waking hours, where this net figure includes both gain
from memorizing and loss from forgetting; but this should be
corrected to more like 5 bits per second. This same corrected
figure is what also would result from Reed & Durlach’s [30]
table of human information input and output bit rates from

various modalities (braille, morse code, visual reading, audio
communication, court stenography machine, etc; the fastest
input bit rates found were for visual reading and listening to
speech at 30-60 and 25-60 bits/sec respectively) by multiply-
ing them by (63 − 48 = 15)%.

It would be a good idea to redo all of Landauer’s experiments
this time correctly; our preliminary estimate is human mem-
ory is 10 times larger than his estimate.15

Rajan Srinivasan Mahadevan once memorized 31811 digits
of π to get listed in the Guinness Book of World Records;
he recited the first 10,000 digits to his inviligators at a mean
rate of 4.9 digits per second. This is a recall bit rate of 23
bits per second, although Rajan gradually slowed down dur-
ing the next 21811 digits, in his final stages achieving only 2.8
digits/sec. Rajan could memorize matrices of random digits
at a rate of 1 digit per 1.5 to 5.8 seconds depending on the
matrix size from 5 × 5 to 20× 20 with larger matrices taking
longer per digit. (Error rate< 1%.) Note that a “digit” is
log2(10) ≈ 3.32 “bits,” so these are memorization bit rates of
0.6 to 2.2 bits per second. In contrast, normal humans had
4-5 times slower memorization rates to get error rates ranging
from slightly to 10 times higher [41].

Shereshevsky was a Russian professional mnemonist stud-
ied as “S” by A.R.Luria [23]. S could remember sequences
(of apparently unboundedly long length) of letters, numbers,
words, or nonsense words, provided the items were read out
to him slowly and distinctly at a rate of about one per 3-4 sec-
onds (or presented in writing) without distracting influences
such as noise or other people talking. S would then (inside his
mind) go over the sequence once, after which he could recall it
either forwards or backwards, usually with no mistakes, even
many years later. Assuming a million candidate nonsense-
words, this is a memorization bit rate of 7-10 bits per second,
not counting the time for the mental revisit/check.

Note that Rajan fell below, while S exceeded Landauer’s (cor-
rected) bit rate estimates for typical humans, albeit their feats
pertain to a more difficult memorization task than Landauer’s
since Landauer had made absolutely no demand for high ac-
curacy and verbatim recall.

“Elizabeth,” a 23-year old teacher and artist [39][40], could
gaze at an image of a million random dots with her right eye
for three 3-minute periods. Four hours later she could look
at another such image with the other eye. The randomness
was correlated between the two images to form a“random dot
sterogram”; anybody looking simultaneously at both images,
one to each eye via special optics, will see a simple 3D figure,
although either picture alone is just a random dot cloud. Eliz-
abeth could merge the memorized image with the new one to
see the 3D figure, which appeared by parts in her mind over a
period of 10 seconds. She then would describe the 3D figure.
Other feats by Elizabeth:

1. With a 104-dot random stereogram, 1 minute of gaz-
ing at the first picture sufficed, and then she could see
the 3D figure immediately when the second picture was
presented and viewed with her left eye. She could do
this anywhere from 10 seconds to 72 hours (or presum-
ably more) later. Some of these feats were done un-

15Landauer was also criticized heavily by L.Hunter, whose paper [16] opens “Landauer’s estimate is deeply flawed.” However this intense piece
of criticism was itself of very poor quality, as is indicated by the fact that it totally neglected to mention all our Landauer criticisms.
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der double-blinded conditions where not even the ex-
perimenter knew the 3D image during the experiment.
(Normal people cannot do this even if the delay between
images is made as short as 150mSec, although with the
two images flashed alternately to each eye at > 20Hz,
almost everybody can see the 3D figure.)

2. She could selectively recall any desired one of four such
memorized 104-dot pictures.

3. She could match a memorized R-picture with more than
one L-picture to see entirely different 3D images.

4. She could remember images with either eye eye-
specifically.

5. She could recall a poem in a foreign language as an im-
age, years later, and write it down rapidly.

6. She claimed once to have recalled a 10-second interval
of a Laurel and Hardy movie, eidetically one week after
viewing.

The “Shass Pollak” were a group of (mostly Polish) Jews
who carried on a religious tradition of memorizing the Baby-
lonian Talmud [38]. This tradition was speculated to have
started in the days when books were very expensive and it
was deemed a religious duty to preserve the Talmud inside
human memory. To appreciate their feats one must realize
that the Babylonian Talmud consists of 12 large volumes in
total 5422 pages long. All printed editions have the same
number of pages and in all editions each page has the same
number of words and the same initial and final word. Thus
one could ask one of the Shass Pollak “what is the 4th word
on the 8th line of the Tractate Berakhot volume?” and then
confirm his answer by consulting the book. The Shass Pollak
evidently had in their minds, essentially a photograph of each
Talmud page.

A 34-year old woman named “AJ” claimed that since
age 11 she’d had an extraordinary memory for daily events;
she could remember instantly and vividly details of her past,
without having ever devoted any particular effort (such as
mnemonics or rehearsal) to doing so. She first became aware
of her extraordinary abilities at age 12 and by age 14 they
had improved and become automatic. If any date in her high-
remembrance period (age 14 onward) were stated to her, she
could immediately tell you what day of the week it was, what
news events or events from favorite television shows happened
on that day, what the weather was, what she was doing that
day (“shopping with my mother”), etc. [29][19].

Bit counts for Elizabeth. Assuming Elizabeth’s eidetic im-
ages were stored permanently (or at least in non-overlapping
fashion) and that she could in principle accomplish her feat
every 15 minutes per 13-hour day for 50 years, and assuming
the image storage requires 10 bits per dot, we find that Eliz-
abeth has a 1013-bit memory. This is interesting because it
is actually nearing the number of synapses in a human brain,
which has been estimated to contain 2 × 1014 synapses by
Pakkenberg et al [27] and for nearby estimates see [5].

Caveats. However, this all is not completely clear because
(a) Elizabeth was tested on random dot stereograms of sim-

ple 3D figures such as T-shapes and raised squares; hence
she might, in principle, have only memorized the locations of,
say, 1% of the 106 dots and would still be able to describe
the 3D figure. Had she been tested on a nonstereographic

random-dot image pair whose superposition was a relatively
complicated and unpredictable figure, and had she been asked
to draw that figure with a pen on the later random dot sheet,
then if the result was accurate we could be fairly certain she
actually memorized all the dots – but this experiment unfor-
tunately was never performed.

However, if Elizabeth really only memorized 1% of the dot-
locations, then we must ask how she picked out the particular
1% subset, and how she memorized those particular locations
so accurately without remembering the others as“landmarks.”
Also, it seems plausible that Elizabeth must have been able
to store these images in a highly uncompressed “raw” form in
order to be able to successfully export the data to her mental
stereoopsis mechanism. That mechanism evidently expects
image data in a raw form (as opposed to some form highly
compressed by “feature recognition” to a small list of “image
features”) which seems proven by the very fact that random
dot stereograms – or successful stereoscopic depth detection
when viewing otherwise featureless surfaces with fine surface
roughness – work at all. This reasoning all makes it plausible
that Elizabeth really did memorize the locations of all 106

dots in about 10 minutes.

(b) More than one type of random dot stereograms were used
including a type with a square grid of black-or-white pixels
50% of which were black. To store this type, only one bit
per pixel suffices, whereas for the type with randomly located
sparse circular dots, many more bits per dot are required – e.g.
about 10 bits per dot for dots of sparsity 1/1024 and integer
coordinates; or for dots of sparsity 1/64 with location accu-
racy of 1/4 of a dot-width. And unfortunately Strohmeyer
[39][40] did not say which type of stereogram was used in the
most impressive (106-dot) experiments!

Conclusions about Elizabeth. It seems clear that Eliza-
beth when memorizing eidetic images memorized at least 20
bits/second and quite possibly as many as 16,000 bits/second
(the vast gap between these two estimates is a sad artifact of
the incredibly poor experimental design and reported infor-
mation in [40] and the complete lack of attention they paid
to bit count estimates). That is much more impressive than
the other memorists.

Bit counts for the Shass Pollak. To memorize 5422 pages
with 2800 characters per page requires (at 5 bits per charac-
ter) 108 bits of memory. Assuming the memorization was of
bits compressed to the Shannon-Cover-King entropy estimate
of 1.3 bits per symbol, this would be only 2 × 107 bits. We

can take that as a confident lower bound on human memory.

On the other hand if Shass Pollak memorization was photo-

graphic – as uncompressed images not words or characters –
then the bit count is much larger, ≈ 1010. Unfortunately no-
body mentioned in [38] ever asked the Shass Pollak how they
remembered the data (as characters, words, or photographic
image) nor ever tested them to try to find out which it was
(e.g. could they remember printing flaws?).

My guess would be that it was as an image, for the follow-
ing reasons which fall far short of certainty. If I were sim-
ply remembering text, then I would not know which was the
10th word on the 20th line. E.g. Rajan when memorizing
π (and also A.C.Aitken) used “auditory” methods sometimes
combined in Rajan’s case with links to perverse cues (such as
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“111”was “Nelson” because “Admiral Nelson had one leg, one
arm, and one eye”) while other π memorizers used mnemon-
ics and number-to-syllable verbal codes – hence none of them
would have been able to tell you the 15793rd digit of π without
performing a long count. The printed editions of the Talmud
do not have numbered lines. Conceivably, though, the Shass
Pollak could have regarded the Talmud as a text string with

artificially added line numbers in which case mental “photog-
raphy” would not have been necessary (and similarly Rajan
probably could have modified his π memorization methods to
permit him to quickly retrieve requested digits, if he had had
that goal in mind). But even then, any memorizer regarding
the Talmud as text would probably as a side effect be able
to interpret it and would have thought a good deal about it,
whereas, some or all Shass Pollak apparently felt unable to
interpret it.

Eidetic memory in infants? Strohmeyer speculated that
perhaps eidetic memory was more common in children than
in adults. Indeed, one could even make the (wild) speculation
that perhaps all or many children in some age range that is
a subinterval of 0-3 years old, have eidetic memory (and then
almost all lose it). This speculation might not be incompat-
ible with the available data because of “infantile amnesia,”
i.e. the fact that all or most people do not remember any-
thing that happened to them before age 3. If true, this wild
speculation would of course be tremendously important for
the light it would shine on children’s mental development. It
could be experimentally tested even for pre-verbal infants by
use of (nowadays common) eye-tracking devices. Specifically:
show an infant some random dot images, some of them mag-
ically correlated to yield interesting combined images, and
some not. (There is no need for stereo for this purpose.) If
the eyetracker shows the infants look at the magic images
longer, that (and some trivial statistical-significance analysis)
would prove the speculation. Unfortunately, this experiment
has never been done.

Bit counts for AJ. Unfortunately none of the extensive ex-
periments on AJ attempted to estimate a bit size of her mem-
ory.16

It would have been easy enough to do. Let me explain one ap-
proach. Show AJ a movie she has not seen before but thinks
would be interesting (since AJ’s memory works best on things
she’s interested in). After some delay, ask her prepared ques-
tions about the movie, e.g. who entered the scene, who left,
what was sitting on the shelf, what color was somebody’s shirt
etc, and/or have her just describe random subintervals of the
movie in detail. The point is, we can estimate how many bits
it would take to be able to answer all possible questions of
the same ilks as the ones asked, and we know what percent-
ages AJ is able to answer – and with secret preparation of
questions intended to act like a random sample from ques-
tions of those same ilks, there is no way for AJ to prepare for
them. Then by arithmetic we find a lower bound on how many
bits AJ remembers about the movie. Another approach (fol-
lowing Landauer [20]) would be to have other control humans
view the movie up to a certain point immediately before some
event, then be required to guess what that event would be –

and even better (following Cover & King [8]) would be to use
the “gambling” methodology of converting those guesses into
entropy estimates. The differences between the success rates
before and after seeing the rest of the movie would be useable
to estimate the information gain got from any previous view-
ing by either AJ or anyone else. Now scale the duration of the
movie up to AJ’s entire 26-year period of high-performance
memory – and what is the resulting bit count? (The same
experiment could also be done for normal humans of course.)
It is not even necessary to show AJ a movie; this also could
be done simply on some movie she is known to have seen pre-
viously and liked, and by doing this for several movies she
saw at various dates further and further into the past (easy
since AJ remembers all dates) we can determine her “forget-
ting curves.”

In the absence of such purpose-designed experiments, we must
estimate AJ’s bit count from what was published in [29] un-
doubtably yielding a gross underestimate. Assuming AJ re-
members 5 events per day, each event stored in 200 bits, for
28 years, that is 107 bits.

5 Comparison with some computer

programs

Recall from §3 our central estimates (Bacterial & Exon-
dominance models: 6 & 81 Kbytes) for the size of a“blueprint”
for building a human-like brain and intelligence, as opposed
to some unintelligent animal. (Ranges of uncertainty in these
numbers: /4 or ×4.)

That is amazingly small! First, it is smaller than the bit
counts for even the smallest known bacterial genomes from
table 2.1. Second, many a computer programmer, including
me, has written a program much longer than 7 Kbytes with-
out creating anything near a human-like artificial intelligence.
And those programs that have been intended to try to create
anything reasonably near an artificial human-like intelligence,
usually have been much larger than 7 Kbytes.

Examples are listed in table 6.1.

(Possible) Lessons. It is interesting that both “Hayek” [4]
and PAPPI’s [11] principles file (both in bold print in the ta-
ble) – although not the PAPPI natural language system as a
whole, which is far larger – lie between our estimated upper
bounds for the human intelligence blueprint. This perhaps

indicates that the underlying conceptions of their progenitors
– Eric B. Baum & Igor Durdanovic and Noam Chomsky &
Sandiway Fong respectively – are not too far off the mark
as theories of how human intelligence works. The fact that
they exceed our smaller (7 Kbyte) bound perhaps indicates
that the “bacterial model” is wrong and the “exon dominance
model” correct, or perhaps merely indicates the inability or
unwillingness of these authors plus the gzip compressor to
code these things concisely. It also perhaps indicates that
most of the infrastructure for both “intelligence” and “innate
linguistic principles”was already built into the brains of many
very-prehuman animals – since that would might give us 5-15
or more times more “elbow room” than if we assume this all

16Also not published were“forgetting curves.” I am unable to explain the incredible allergy to bit counts among psychologists researching memory.
Reading that literature it often seems as though those authors are engaged in an intentional conspiracy to try hard to avoid measuring the single
most important number in their field.
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arose between chimps and humans: we are basing everything
on the widely quoted “98% similarity”between the chimp and
human genomes, as opposed to the “70-90% similarity” be-
tween the mouse and human genomes.

The “principles and parameters” linguist community that
Chomsky & Fong associate themselves with seems remark-
ably uninterested in the competing“link grammar”framework
invented by computer scientists [14]. Their link parser sys-
tem also is electronically available to everybody, works fairly
well, seems (at least to me) more easily understandable, as-
similable, and incorporatable into other programs, and it is
of comparable size: about 800 Kbytes uncompressed source
code, plus about 1 Mbyte of data (dictionaries, word proper-
ties, etc) including about 20 Kbytes of “knowledge.” (Because
of this size-similarity, only Fong’s system is listed in table 6.1.)

6 The dominance of culture

Some of the 10 stages in our “information pipeline” are dif-
ferent in the sense that some of their information arises not
only from DNA but also from the external environment – in
particular, from reading books and listening to other humans.
Indeed, Baum [4] and van Schaik [34] have argued that a great
deal of human intelligence is transmitted not genetically but
in fact through human culture. Humans have a great advan-
tage over other animals because they have spoken and writ-
ten language, which enables the easy transmission and stor-
age of “computer programs.” Other animals without language
still can (and do) learn by imitation,17 but that only enables
transmission of a restricted class of computer programs; those
whose actions are largely externally visible. But for future AIs

(computerized artificial intelligences) transmission and stor-
age of computer programs is expected to be a triviality so
they in turn will have a large advantage over humans in this
respect.

Is Baum’s “culture dominates” claim justified? Yes. We can
tell that because using any of our three upper bounds on
the bottleneck, and considering from §4 the fact that humans
learn 5 bits/sec from reading or listening, we can see that
only a few days to months of reading and listening will suffice
to get more cultural information than your entire amount of
genetic information transmitted through the bottleneck.

If cultural information dominates our intelligence, then what
is the meaning of our assertion that a “blueprint” for human
intelligence would fit in 81 Kbytes? It is a matter of defi-
nition. Humans have genetically what it takes to build and
maintain a culture to amplify their intelligence and chimps
and other animals do not — and our blueprint-size bound is
a valid upper estimate of the information-content responsible
for that difference.

Baum ([4] chapters 12-13) gives an interesting discussion to
show that “intelligence” varies smoothly from E.Coli to hon-
eybees to dogs to humans. In the event that the reader

considers some creature X other than chimps on this spec-
trum “unintelligent” and humans “intelligent,” then he can
produce an appropriate altered version of our numbers by
scaling the human-chimp genome similarity of 98% to what-
ever the human-X genomic similarity is.
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size program
108 axioms D.Lenat’s planned (but incomplete) CYC system [21] encoding “commonsense knowledge”

which he argued was an essential prerequisite for intelligent behavior.
6 × 107 lines of code Debian GNU/Linux operating system version 2.2, mostly C. But only 390K lines of assembly-

language code and “kernel” is only 1.8 million lines. (All counts exclude comments.)
3 × 107 lines of code Microsoft windows 2000 operating system.
157 Mbytes The NAG Fortran library (April 2006).
688K lines of code “GNAT” Ada compiler (2000).
630K lines of code “Emacs” text-editor (2000).
“Typically several megabytes” Executable code for Mathematica symbolic manipulation program (says §2.14.4 of [44]).
3.2 Mbytes C source code for “Logistello” world champion othello game playing program by Michael

Buro (source code publicized 2002), not including either opening book or eval function
tables. “Zebra,” an also-strong freeware othello program by Gunnar Andersson & Lars
Ivansson, consists of only about 51K lines of C code.

1.8 Mbytes bzip-compressed Java source code of ALICE (2006 version of chatterbot by R.Wallace,
N.Bush, et al; won 2000, 2001, & 2004 Loebner prizes for best Turing test contestant).

210K lines of code LEDA C++ algorithms library v4.0 (line count includes comments).
125K lines of code “Booch components” ADA library 1987 (line count omits comments), but line count shrunk

to only 15K in the C++ release 2.0 (with increased functionality!).
450 Kbytes Qhull 2003.1 multidimensional convex-hull-finding program [3], C source code (& documen-

tation included, which is about 50%).
440 Kbytes in 78 files The LISP source code files included on the diskette accompanying Norvig’s AI book [26].
229 Kbytes Gzip-compressed C source code for gnuchess-5.07 (opening book not included), a compara-

tively weak free chess program (low master strength).
188 Kbytes (gzipped) LISP source files included with Russell & Norvig’s AI book [32]; 983 Kbytes uncompressed.
96 Kbytes Freeware “first person shooter” video game with very impressive graphics.
75 Kbytes “Hayek” attempted artificial intelligence via an “artificial economy” [4] (C++ code by

I.Durdanovic); add 14 Kbytes to make it try (unsuccessfully) to learn to solve Rubik’s
cube.

16 Kbytes gzipped C source code for Seidel polygon-triangulation algorithm [25].
1440 bytes Turing’s program [42] to rigorously confirm/deny the Riemann Hypothesis about the zeta

function in given intervals along the critical strip. (Turing read numbers in radix-32 in a
strange alphabet with same ease nowadays people read decimal, so no need to do 32→10
radix conversion; also Turing had to write everything, like basic I/O and

√
x subroutines,

unlike now where programmers use libraries.) Size grows to 2080 bytes if also count numerical
tables entered by Turing.

1663 bytes (gzipped) Patrice Bellard’s“Tiny C compiler” (winner of 2002 international obfuscated C code contest)
which is able to compile itself. Subset of C general enough to write a small C compiler, then
extended subset until reached 2048 bytes of C source excluding ’;’, ’{’, ’}’ & space characters.

1683 bytes (gzipped) Oscar Toledo’s tiny chess program (a winner of 2005 IOCC contest).
1000 instructions LISP interpreter by Richard Stallman.
874 characters of C++ Thistlewaite’s nested-subgroup algorithm to input and solve Rubik’s cube configurations in

about 30 moves average (authored by Tomas Sirgedas of Ann Arbor MI to win a program-
ming contest; the shortest successful cube-solving program entered was only 528 characters
of Perl).

625 Kbytes PAPPI “principles and parameters” human-language parsing program by Sandiway Fong
(Prolog source code as compressed with gzip tool; omits lexicons, linguistic principles &
parameters, and dynamic libraries).

22 Kbytes The universal linguistic principles used by PAPPI (gzip-compressed).
2426 bytes The parameters for English language (gzip-compressed).

Figure 6.1. Sizes of some computer programs. Most programs today are written totally ignoring the size of the source code;
the rare exceptionally small programs have historically been (a) programs written for early machines with tiny memories,
and (b) bizarre programs written to win programming contests. We include those here, as well as (c) more conventional and
familiar programs and (d) programs intended to be (or to move toward being) “Artificial intelligences.” Programs falling
between our two models’ size estimates for human intelligence, are in bold print. N
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