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Abstract — We survey the contributions of the entire the-

oretical computer science/cryptography community dur-

ing 1975-2002 that impact the question of how to run ver-

ifiable elections with secret ballots. The approach based

on homomorphic encryptions is the most successful; one

such scheme is sketched in detail and argued to be fea-

sible to implement. It is explained precisely what these

ideas accomplish but also what they do not accomplish,

and a short history of election fraud throughout history

is included.
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1 Introduction

We are going to explain, survey, criticize, and evaluate all
the main cryptographic procedures that have been proposed
for the purpose of holding verifiable and secure secret-ballot
elections. We begin by listing election desiderata in §2. Then
§3-4 surveys and explains most of the highlights of crypto-
graphic theoretical computer science during 1978-1995, espe-
cially“zero knowledge proof”technology. This is all developed
from the ground up (or anyhow from a fairly low level) and in
enough detail to try to make everything readable by political
scientists and programmers, and to permit engineers to be-
gin system implementation now, without need of any source
besides this. In fact, this is a superior introduction to mathe-
matical cryptography than any other source I know, although
a planned book by Daniel J. Bernstein titled“high speed cryp-
tography” (partially available on his web site) should eclipse
us and Schneier’s book [136] is a highly recommended broad
survey, although limited in its detail and having some aston-
ishing omissions.1 (Meanwhile, in the other direction, we will
point out some political desiderata that seem to have gone
unnoticed by the crypto-CS community.) The algorithmic
toolkit from §3-4 is summarized in a handy table and then
used in §5-7 to design different voting systems.

§6 and §8 review what we have learned. The latter analy-
ses and corrects the adamant anti-electronic-voting views of
voting expert Rebecca Mercuri. §9 surveys election frauds
throughout history, focusing especially on recent and Ameri-
can history. Due to the timidity of the US press, it is not com-
monly realized that 3 US presidents during 1950-2000 were
elected with substantial aid from fraud, at least comparable
to and sometimes far exceeding their winning margins.

Finally, §11 lays out what conclusions we have been able to
reach, including some not appreciated before.

The whole political -science question of which vote-combining
method should be used is largely – but not entirely – inde-
pendent of the computer -science question of how to implement
a given vote-combining method in such a way as to protect
voter privacy, make everybody confident the right election re-
sults got computed, etc. We are here focusing almost entirely
on the computer-science question.

This is a survey of the contributions relevant to voting of the
entire CS-cryptographic community. It therefore is mostly
unoriginal work. Nevertheless, to my surpise it now includes
a fair number of new theoretical contributions2 as well as some
numerous improvements more pedagogical rather than foun-
dational. Because there has not previously been a survey of

this sort collecting all this material in one place, we are now
for the first time able to see the “big picture” and hence to
reach some conclusions that seem not to have been previously
reached, or at least not previously clearly explained.

2 Election Desiderata

Here are three, possibly conflicting, desires.

1a. Easy cheap elections: To get tremendous savings in
cost and increases in accuracy and convenience, we want elec-
tions to be run using computers and the internet.

1b. Hard-to-steal: But people are also afraid (with rea-
son!) that such automation would also make it easy to steal
elections – quite possibly without anybody even noticing! We
want it to be difficult or impossible to cheat – so difficult, in
fact, that even huge corporations, and spy agencies such as
the NSA and CIA, should be unable to do it.

1c. Hack/destruction immunity; recountability: The
trouble with running elections via computers, electronics, and
the internet is: those things could be destroyed, or rendered
temporarily disfunctional, or their data erased, by some en-
emy. So it is necessary that all votes be stored in lower-tech,
but less vulnerable, forms (e.g. on paper ballots) to permit a
recount in such an event. But that seems to prevent the cost
savings in 1a.

Here is a quadruplet of desires which again seem (now even
more strongly) to be in conflict (and also to conflict with 1c):

2a. Secret ballots: Nobody but the voter should know how
he voted (because otherwise pressure could be placed on that
voter to vote in a certain way).

2b: No sale: Even more strongly, even if the voter wants
to reveal how he voted, he should be unable to do that in
any way more convincing than just his unsupported asser-
tion (because otherwise that voter would be able to “sell his
vote”). The voter should still be unable to do this even if he
collaborates with a (corrupt) election authority.

2c. Invisible abstention? Some support the still stronger
idea is that nobody but the voter (or somebody who has been
observing him continually) should even be able to tell whether
he voted (because otherwise pressure could be placed on that
voter to refrain from voting).

2d. Verifiability: All should be able to verify that only au-
thorized voters voted, they voted at most once and in a valid
manner, and their votes then were correctly used to determine
the election result. Each voter should be able to verify that
he successfully voted and his unaltered vote was incorporated
into the election result.

2a, 2b, and 2c are really increasing-strength versions of the
same thing. We might imagine achieving 2a by having vote
submissions be encrypted so that nobody besides the voter
and recipient knows the vote. With more cleverness perhaps
we could make the recipient also incapable of decrypting –

1For example, although Schneier extensively discusses Shamir secret sharing (our §4.11), he does not mention many details, e.g. verifiable secret
sharing is given only 1 sentence, and ignores its main theoretical use, secure multiparty computation ([18][40], our §4.27).

2New tables of nice safeprimes (§3.1), new kinds of signatures (§4.10), new general purpose zero knowledge proof protocols (§4.26), new recog-
nition of the inefficiency of Boudot’s interval-membership proofs (§4.22) and first way to repair that flaw, new realizations about voting, and new
homomorphic voting scheme involving “designated verifier” zero knowledge proofs to prevent voters from constructing “receipts.”
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but still able to total the votes! Then if the voter conve-
niently “forgot” the 300 random bits that he used to produce
his encryption, then no coercer would be able to force him
to remember them and the vote’s privacy would remain se-
cret. But 2b seems much harder – how can we prevent the
voter from intentionally remembering, then demonstrating re-
creation of his vote encryption to a vote-buyer?

Our final apparent dichotomy:

3a. More powerful computers would make elections and cryp-
tography faster.

3b. More powerful computers make stealing elections and
breaking cryptography faster!

But: are these really incompatible desire-sets? At least in
certain idealized mathematical models of the real world, and
under certain unproven (but widely believed)3 assumptions
that certain computational problems are super-polynomially
difficult, we shall see that these “incompatible” desires actu-
ally are simultaneously achievable. The cryptographic ideas
that make that possible are extremely ingenious. The goal of
this paper is to survey them.

3 The top things to know about
crypto

All cryptography exploits the contrast between the poly-
nomial and presumed-exponential (or at least, super-
polynomial) computational difficulty of performing certain
calculations in the “forward” and “reverse” directions. If, say,
some forward computation on n bits of data requires 100n3

steps but the backward computation requires 2n steps, then
if n = 100 the forward computation would take 108 steps (i.e.
less than one second on a modern machine) and the backward
one 2100 ≈ 1030 steps (requiring 40,000 years of computing
even with all the 109 computers in the world working on it in
parallel at 109 computational steps per second). As comput-
ers get faster, the forward computor can employ larger n so
that the asymmetry only grows more severe. This explains
why 3a and 3b are really not in conflict at all.

But it will be much more difficult4 to reconcile 2a,2b,2c with
1c,2d.

Everything depends on the computational contrast between
certain very easy and apparently very difficult tasks. Impor-
tant tasks nowadays known to be computationally easy (i.e.
performable in time bounded by a polynomial of N) include
[11]:

Arithmetic: Given N -digit numbers a, b, c, compute sum
(a + b), difference (a− b), product (ab), remainder after
division (a mod b) and quotient after division ⌊a/b⌋, or
perform a modular exponentiation (ab mod c; see §4.1).

Primality test: Given an N -digit number: decide if it is
prime [6][9][51][140].

Finding primes: Find a random N -digit prime number P
along with the complete factorization of P −1 (enabling
one to easily find generators g of the multiplicative
group modulo P and then to prove5 P prime) [12][97].

Legendre symbol: Compute the Kronecker-Legendre sym-
bol (a|b) where a, b are (≤ N)-digit integers.

Roots: Compute the rth root X1/r of X modulo some N -
digit prime P . (If it exists. Or say so if it does not.)

Extended GCD: 6 Given N -digit numbers a and b compute
integers c, r and s so that ra+sb = c = GCD(a, b). Note
this may be used to compute modular inverses: i.e. to
compute a−1 mod b (such that aa−1 = 1 mod b) we may
either compute r so that ra + sb = 1 if GCD(a, b) = 1
(and then a−1 = r), or show that GCD(a, b) 6= 1 (in
which case no such a−1 can exist).

Chinese remaindering: Given n relatively prime numbers
M1, M2,..., Mn, and given x1,x2,..., xn, compute the
unique number Y with 0 ≤ Y ≤ ∏n

k=1 Mk and Y mod
Mk = xk.

Important tasks presently thought to be computationally dif-
ficult (i.e. for which there apparently is no polynomial time
algorithm) include:

Discrete Logarithm: Given N -digit numbers a, b, c, find
an integer ℓ so that aℓ = b mod c, or prove no such ℓ
exists. (Thus if a = 67, b = 63 and c = 101, the answer
would be ℓ = 87 because 6787 = 63 mod 101.)

Integer Factoring: Given an N -digit number X , find its
smallest divisor greater than 1. (Thus if X = 165, the
answer would be 3 since 165 = 3 · 5 · 11.)

3Unfortunately, the key embarrassment in Computer Science as of 2004, is that nobody knows how to prove that most “obviously”hard problems
actually are hard. The most famous conjecture in computer science is that P 6=NP, i.e. that a vast class of problems called “NP-complete” are
hard. Everybody believes that but nobody can prove it; the best we can prove is that if any problem in NP is too hard to solve in polynomial(n)
steps on the hardest n-bit input, then so is every NP-complete problem, and further, hundreds of kinds of problems have been shown [70] to be
NP-complete. It has also been proven that Discrete Logarithm and some kinds of Quadratic Residuosity problems are “random self reducible” and
hence are equally hard on average (i.e. for random input) as they are on worst-case input.

4In fact, the vista of cryptography is littered with the bones of those who have published false proofs of schemes for accomplishing this rec-
onciliation. The scheme proposed by Benaloh and Tuinstra in 1994, in the very first paper introducing the idea of “receipt-free’ voting (making
vote-selling impossible), was shown to be bogus 6 years later [89] by constructing receipts. Then Okamoto in 1996 published another receipt-free
voting scheme which he himself later realized allowed receipts. Okamoto published a repaired version [121] in 1997 but heavily employed “anony-
mous untappable channels,” an assumption so strong as to make his scheme nearly useless. Magkos et al in 2001 then proposed another receipt-free
scheme now employing tamper-resistant hardware, but it too was flawed [96]. A scheme by Sako and Kilian is still regarded as correct, but after
later “clarification” by Michels and Horster was realized to require some rather strong assumptions/restrictions that had not really been explained
by its authors; this scheme’s later improvement by Hirt and Sako [89] only retains coercion-resistance under the unrealistically strong assumption
that the voters know which of the tallying authorities are corrupt [96]. The apparently best mixnet scheme by Furukawa and Sako in 2001 was
realized later by its authors to be flawed [69]. An important fast-track secret sharing scheme [73] is flawed (their appendix B is insecure). We shall
argue in footnote 60 that a widely publicized scheme by Chaum [35] also is unacceptably flawed, and in §7.4 that another scheme by Kiayias &
Yung [99] is unacceptably vulnerable to invalid votes. Hopefully the schemes in the present survey now really work as advertised – but I know I
made several errors in earlier drafts of this report, and it is difficult to have tremendous confidence in view of this historical record of blunders.
Advanced cryptography is a very tricky area.

5We define g to be a generator mod P if and only if gP−1 = 1 mod P but g(P−1)/d 6= 1 for each prime divisor d of P − 1. Theorem: P ≥ 3 is
prime if and only if a generator g exists mod P .

6GCD stands for Greatest Common Divisor. Thus GCD(12, 30) = 6. The first efficient GCD algorithms were invented by the ancient Greeks.
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Quadratic residuosity: Decide whether A is a square mod-
ulo M where A, M are (≤ N)-digit integers. (For ex-
ample 24 = 572 mod 75 is a square.)

Roots: Compute the rth root X1/r of X modulo some given
N -digit integer M . (If it exists. Or say so if it does
not.) If M ’s prime factorization is unknown, this seems
hard for each r ≥ 2.

Notice that factoring is quite similar to being the “reverse”
operation of multiplication; in fact if we are multiplying two
primes, the two operations are exactly inverse. Further, dis-
crete logarithm and root extractions are quite similar to being
the “reverse” operations of modular exponentiation. Produc-
ing squares (by squaring) and nonsquares (e.g. by finding A
with (A|M) = −1, or by multiplying any square by any known
nonsquare) modulo M are trivialities, but deciding square-
hood and finding square roots both are difficult if M ’s prime
factorization is unknown (although easy if it is known). In
all these cases we have forward operations that appear much
easier than their reverses.

How hard are these problems? Nobody has ever been able
to solve a random discrete logarithm problem with a good-
quality 300-digit prime modulus. As of 2001, the record was
120 digits [95], achieved in slightly over 400 MIPS-years of
computing.

Nobody has ever been able to factor a 300-digit product of
two random nearly-equal primes to back-deduce the primes.
As of 2004, the record was 174 digits. This accomplish-
ment required 13,200 MIPS-years of computing with the
“general number field sieve” and won a $10,000 prize from
www.rsasecurity.com/rsalabs. (A $20,000 prize remains
uncollected for a 640-bit [193-digit] example.)

The two main classes of cryptographic algorithms respec-
tively exploit these two contrasts. Specifically, the RSA cryp-
tosystem and various related ideas, associated with Rivest,
Shamir, and Adleman (R, S, and A, respectively) seem to be
based on the difficulty of integer factoring. A different group
of algorithms, associated with the name Elgamal, seem7 to be
based on the difficulty of discrete logarithm.8

3.1 Essentials of speed, security, and paral-
lelism

In both RSA and Elgamal algorithms, the key forward step,
which consumes the most computer time, is usually perform-
ing modular exponentiations ab mod c. Thus, it is impor-
tant to produce good modular exponentiation software (or, if
we really want speed, custom hardware).

Daniel J. Bernstein has written a highly optimized C program
called Zmodexp0.51 that will compute any 512-bit power mod-
ulo any 512-bit integer in at most 1627698 Pentium-II cycles.
(In other words, 4.66 milliseconds on a Pentium-II at 350
MHz. Bernstein says it usually runs in only 840000 cycles;

1627698 was a worst-case bound.) Although 4.66ms per ex-
ponentiation may sound fast, if there are 108 voters then any
secure-election method needing to perform 1000 exponentia-
tions per voter would require 15 compute-years on a Pentium-
II/350. Even only 1 modular exponentiation per voter would
require 5.4 days. (In contrast, it would take only CPU-seconds
for one such Pentium to add up 108 votes, if there were no
demands for either verifiability or vote-privacy.) This brings
home the need for many algorithms to be parallelizable and
also makes clear the need for fairly serious computing re-
sources. (With 5000 such Pentiums, costing ≈$5,000,000, i.e.
about $0.05 per voter, this 15-year runtime would drop to 1
day. Given that our budget were this large, it would probably
be worth creating custom hardware for high speed modular
exponentiation.)

Known algorithms perform modular exponentiation of N -bit
integers in a number of steps bounded by cN2 lg N , for some
constant c. The example of Zmodexp suggests that c ≈ 0.69 if
a “step” is a pentium-II cycle.

The reason Zmodexp prefers 512-bit numbers is that it is easi-
est, on modern computers, to run FFT-based (or Karatsuba-
based) “fast multiplication” codes [138][19] on 2n-bit-long
numbers. It is possible to do modular exponentiation even
faster than Zmodexp if especially nice moduli are employed.
Those who wish to use Elgamal systems thus might want to
pick one particularly nice prime modulus P , exactly 2n bits
long and permitting especially fast computation of x mod P ,
and stay with it. For example, we mention the remarkable
twin prime 2512−232±1 with a particularly computer-friendly
binary form (also 264 − 210 ± 1 is another such); the primes
2128 − 159, 2256 − 189, 2512 − 569, 21024 − 105, 2226 − 5, and
the Mersenne primes 2p − 1 with p =2, 3, 5, 7, 13, 17, 19, 31,
61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423,
9689, 9941, 11213, ...

However, brute speed is not the only game in town. Intelli-
gence also helps. A better top-level design of an algorithm
often yields greater speed dividends than merely optimizing
its innermost primitive operations.

In particular, in the present case (Elgamal), it does not pay to
select a prime modulus P purely to get high modding speeds.
We also want to pick P so that we get high security. Primes
P such that P − 1 has only small prime factors are insecure
because it is possible to solve the discrete logarithm problem
within large groups by combining solutions in smaller sub-
groups [127] using “Chinese remaindering.”

So it is instead better to choose P to be a safeprime, that is,
a prime such that (P − 1)/2 is also prime. (Safeprimes are
also good choices for the two factors of RSA moduli.)9 The
resulting increase in security then enables a smaller prime to
be used, which should lead to a considerable net speed in-
crease even though one will probably be forced to use a prime
slightly less congenial to fast modding. Tables 3.1-3.2 give
useful safeprimes.

7The reason for my use of the weasel-word “seem” is that, although we could break RSA if a fast factorer were available, it is conceivable that
there is some way to break RSA even if factoring is infeasibly hard. It would be better if somebody proved that factoring hard=⇒breaking RSA
hard, or equivalently that that breaking RSA easy=⇒factoring easy. There in fact have been some successes of this type, for example it has been
shown that quadratic residuosity is hard if and only if factoring is hard. Also, breaking even just the least significant bit of the ECC Diffie-Hellman
key exchange (§4.6) seems as hard as breaking it entirely (if discrete logarithms are hard) [22]. In this survey we shall ignore all such fine points.

8It also has been suggested that some cryptographic feats could be accomplished by exploiting the difficulty of finding the closest lattice point
or binary codeword to a given real vector (given a set of generating vectors or codewords for the lattice or binary linear code respectively).

9Notice that if P is safeprime, then every nonzero integer mod P , provided it is nonsquare (i.e. half of them), is a generator mod P .
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n a b c d e
16 269 389 413 473 773
32 209 1409 3509 4577 5453
64 1469 2597 8489 13493 16349

128 15449 21509 40697 43829 68033
256 36113 188069 241457 243017 315053
512 38117 49373 111053 235937 561533

1024 1093337 1370753 1428353 1503509 1833557

Figure 3.1. The five largest safeprimes below 2n are 2n− a,
2n − b,..., 2n − e. N

n a ± b ± c
64 14 + 5 + 2
64 19 − 10 − 6
64 20 − 11 − 2
64 21 − 12 − 10
64 23 − 20 − 2
64 24 + 20 − 12
64 24 + 21 − 11

128 24 − 19 − 14
128 24 + 6 − 2
128 26 − 25 + 3
128 27 + 25 + 3
128 29 − 26 + 7
128 33 − 14 − 4
128 33 − 24 + 9
256 24 + 12 − 8
256 25 + 11 − 2
256 26 + 17 + 12
256 35 + 11 + 5
256 38 + 14 + 5
256 46 − 31 − 22
256 49 − 36 − 34
256 51 − 34 − 6
256 64 + 57 − 33
256 64 − 32 + 24
512 40 − 13 − 10
512 46 − 44 − 27
512 48 + 35 − 31
512 50 − 39 − 16
512 58 + 49 + 10
512 61 + 47 + 5
512 64 − 42 − 27

1024 56 + 39 + 8
1024 96 + 69 − 61
1024 101 + 53 + 49
1024 116 − 83 + 23
1024 120 − 86 + 46
1024 121 − 38 + 7

Figure 3.2. Some safeprimes P = 2n− 2a± 2b± 2c− 1 with
nice binary representations. N

3.2 Elliptic curve groups – why you want
them and how to use them

For this reason (i.e. to get higher security, which in turn leads
to the ability to use smaller numbers and hence indirectly to
higher speed) it presently seems best to design cryptographic
algorithms around elliptic curve groups rather than RSA and
old-style Elgamal.

A lot of people are frightened of elliptic curves, but after the
publication of the excellent book [21] there is no longer any
reason for fear. At the core, the situation is quite simple.

Multiplication of nonzero integers modulo a prime P is an
abelian group. That is, denote ab mod P by a⊗b. The “group
operation” is ⊗, i.e. 1 ⊗ a = a ⊗ 1 = a (identity element),
a⊗ b = b⊗a (commutativity), a⊗ b⊗ c is unambiguous (asso-
ciativity) and for each a there exists an inverse element a−1

so that a⊗ a−1 = 1. This is in fact a cyclic group with P − 1
elements. (We shall also write xr to mean x⊗ x⊗ · · · ⊗ x

︸ ︷︷ ︸

r x’s in all

.)

Now this particular group is actually a field, that is, there is
also an additive group with a different commutative associa-
tive operation a ⊕ b (to denote a + b mod P ) with additive
identity 0 and inverse operation ⊖a (to denote P − a) coex-
isting with it, with 0⊗ x = 0 and (a⊕ b)⊗ c = a⊗ c⊕ b⊗ c.

Now the important realization is this: Most or all crypto-
graphic algorithms of Elgamal type only use the multiplica-
tive group mod P , i..e. only use ⊗ and x−1 and never use ⊕
and ⊖. I.e. the fact that we actually have a field is wasted
on Elgamal. Once we realize that, we realize that these same
algorithms may be transplanted into any cyclic group, includ-
ing groups which do not arise from fields. The “elliptic curve
groups of prime order” are just such cyclic groups, and there
are known10 algorithms by Schoof [139], Elkies, Atkin, and
Koblitz enabling us to find nice ones efficiently.

And in fact, transplanting Elgamal algorithms into elliptic
curve groups of prime order is a good idea for two reasons:

1. Although the additional mathematical structure inher-
ent in having a field does not help users of Elgamal
cryptosystems, it might very well help cryptographers
trying to defeat those systems.

2. So-called “factor base” or “index calculus” techniques
have been used11 to obtain all the world record largest
integer factorizations and discrete logarithm solves.
These constitute the only known subexponential-time
algorithms12 for integer factoring and discrete logarithm
problems. This whole class of techniques simply cannot
be used to attack discrete logarithm problems in ap-
propriately chosen elliptic curve groups [21], and conse-
quently only exponential -time algorithms are presently
known for solving discrete logarithm problems in most
elliptic curve groups.

Hence it seems to be far harder to break the elliptic curve
versions of Elgamal cryptosystems. That allows us to use

10These algorithms are highly technical. Schoof’s main idea is to compute the group order G modulo numerous small primes and then to use
chinese remaindering to find it as an integer. Once G is found, anybody may readily confirm its correctness by computing xG for various random
x and confirming that it is always 1.

11They form the core of the very successful “number field sieve,” “quadratic sieve,” “Morrison-Brillhart,” and “elliptic curve method” integer-
factoring algorithms.

12These algorithms have (very roughly) runtimes like exp O(
√

N) and exp O(N1/3) instead of exp O(N) (which we are here calling “exponential”
time) where N is the total number of digits in all their input numbers. But note that these bounds still grow faster than any polynomial in N .
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smaller numbers inside them to get the same level of security.
Indeed, [21] estimate that an elliptic curve cryptosystem with
a 173-bit-long key, would have the same security as a conven-
tional public key system with a 1024-bit-long key. “Certicom
ECC-109 challenges” were solved in 2002 and 2004 (cracking
EC cryptosystems with 109-bit keys) to win a $10,000 prize.
This effort required 1000s of CPU-years; the ECCp-131 chal-
lenge $20,000 prize remains uncollected. Arjen Lenstra [106]
estimates that13

192-bit AES, 7000-bit RSA, and 384-bit ECC
128-bit AES, 3200-bit RSA, and 256-bit ECC

the second line requiring these approximate processor-cycle
counts for an encryption or decryption:

360, 80M, and 1.7M cycles

all have about the same security level14 against presently
known attacks and says“the choice [of ECC] is obvious.” Even
though performing the basic a⊗ b and x−1 operations on el-
ements in elliptic curve groups is more complicated and diffi-
cult than performing the corresponding group operations on
plain integers modulo P , we still get higher speed because we
can use smaller integers. This smallness also enables us to
consume less storage space.15

There are now five things the reader needs to know about
elliptic curve groups:

1. How can we represent their elements inside a computer?
2. What is the identity element we have called 1?
3. How can we perform the a⊗ b, xk, and x−1 operations?
4. How can we generate a random group element?
5. Give me a short list of different good quality elliptic

curve groups of various suitable large prime orders?

Here are the answers.16 The elements of an elliptic curve
group are the 2-tuples (x, y) mod P obeying

y2 = x3 + ax + b mod P, (1)

together with one extra point called “the point at infinity” or
∞, which serves as the identity element 1. There are approx-
imately P such elements since the right hand side is a square
mod P approximately half the time.17 The parameters that
specify the group are the prime P , and the integers a, b (which
must obey 4a3 + 27b2 6= 0 mod P ). An element (x, y) may
be represented inside the computer in either of two ways: we
may directly state the integers x and y mod P , or we may,
more concisely, merely state x and a single bit saying whether
or not 2y < P . Then y is efficiently deducible by computing
y2 = x3 + ax + b mod P , computing its two square roots y

and P − y mod P , and choosing the appropriate one. Note:
the point at infinity needs to be represented via some special
x-value, for example one such that x3 + ax + b is nonsquare
mod P .

This also leads to a fast way to generate a random group
element:

1. Generate a random x mod P , and compute y2 = x3 +
ax + b mod P .

2. If y is nonsquare (and the x is not the special one rep-
resenting ∞) then go back to step 1.

3. If x is the special ∞ value, then with probability 1/2
output ∞, otherwise go back to step 1.

4. If y = 0, then with probability 1/2 output (x, 0), other-
wise go back to step 1.

5. Compute y2’s two square roots y and P − y mod P ,
choose one (call it y) at random, and output (x, y).

The group operation ⊗ is then as follows: ∞⊗ (x, y) = (x, y)
and∞⊗∞ =∞. For finite points with distinct x-coordinates:
(x1, y1)⊗ (x2, y2) = (x3, y3) where

x3 = L2 − x1 − x2 and y3 = (x1 − x3)L − y1 (2)

where

L =







(y2 − y1)/(x2 − x1) if x1 6= x2

(3x2
1 + a)/(2y1) if x1 = x2.

(3)

The case x1 = x2 needs to be different to avoid division by
0. There are then exactly two possibilities: either y1 = y2

(squaring) which is covered in the second case of EQ 3, or
y1 = −y2 in which case we instead use

(x, y)× (x,−y) =∞. (4)

In all of these formulas all arithmetic is done modulo P .

The inversion operation is (x, y)−1 = (x,−y). Fast powering
may be done as in §4.1.18

Avoid weak elliptic curves. Elliptic curve groups mod P
(P prime) with group order G obeying either G = P [148] or
PB = ±1 mod G for 1 ≤ B ≤ 20 [66] are weak and should
be avoided. That is, there are abnormally-efficient ways to
solve discrete logarithm problems in these groups. Choosing
elliptic curves randomly modulo a huge prime P until we get
one with prime group order is, of course, extremely unlikely to
yield a weak curve. The only reason such curves have arisen
in human experience at all is because of too-clever people’s
attempts to generate anomalously “nice” nonrandom elliptic

13 K-bit AES-like cryptosystems are suspected to require 2K effort to crack. This is the same security as an ECC system with a 2K-bit prime
modulus. When K is large, approximately the same security for RSA against the number field sieve is got by using a 0.017K3/ ln(0.11K3/2)2-bit
composite modulus, which is hugely more expensive.

14The latter two are public key systems; the former is a secret key system. Old-style Elgamal should be slightly more secure than RSA.
15 In fact, let us be clear. Cryptographic algorithms which employ any public key techniques other than elliptic curves, are a sin that cost a

factor of 50 runtime increase. Our goal throughout this paper will be to avoid that sin.
16The reader may painfully confirm that commutativity and associativity follow from our formulas.
17 Hasse’s theorem: P + 1 − 2

√
P ≤ #points ≤ P + 1 + 2

√
P . Thus the number of elements is approximately P . It usually is not exactly

P , although Miyaji [114] shows how to construct elliptic curve groups in which this exact equality does hold. Miyaji’s curves, however, are
cryptographically weak [148].

18These formulas are not as mysterious as they seem. Associated with any cubic curve C in the xy plane is a natural commutative binary
operation: given two points on the curve, draw a line L through them and output the unique third point on L∩C. In the case of elliptic curves, a
slight modification of this operation miraculously yields a group. The “point at infinity” then obviously serves as the identity element. The x1 = x2

case is actually a limiting case of the x1 6= x2 formula as x2 → x1. When we then take all these formulas and set them in a finite field (the integers
mod P ) instead of the real field, obviously all the identities asserting commutativity, associativity, and so on must still work.

Sep 2004; revised Jan 2005 6 3. 2. 0



Smith typeset 12:13 10 Sep 2005 crypto vote

curves, which in too many cases led to anomalously weak ones.
Thus Miyaji [114] intentionally generated curves with G = P ,
while some others have generated curves Y 2 = X3 + aX + b
mod P with b = 0 and P = 3 mod 4, or with a = 0 and P = 2
mod 3. All three are automatically weak.

A few good elliptic curve groups. The elliptic curve cryp-
tography standards documents available from www.secg.org

tabulate recommended curve parameters; some others are in
the FIPS-186 digital signature standard and in appendix A of
the superb elliptic curve crypto book [21] (which also discusses
all of these topics in far greater detail).

A good toy example curve is Y 2 = X3 − 3X + 7 mod 10007,
which has 10193 points on it (including ∞). Here P = 10007
and G = 10193 both are prime. Of course this is far too small
for any cryptographic use. Serious cryptographic curves are
tabulated in table 3.3.

secp128r1 standard curve:
P = 2128 − 297 − 1, a = −3,

b = E87579C1 1079F43D D824993C 2CEE5ED3,
G = 2128 − 297 + 75A30D1B 9038A115.

WDS’s first 128-bit curve:
P = 2128 − 27 − 25 + 1 = 2128 − 159, a = −3, b = 63,

G = 2128 + 1 58CEDD4E 48CEA415.
WDS’s second 128-bit curve:

P = 2128 − 218 − 1, a = −3, b = 131,
G = 2128 + 1 39A8A6A8 FE09646D.

secp192r1=NIST P-192 standard curve:
P = 2192 − 264 − 1, a = −3,

b =64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1,
G = 2192 − 662107C9 EB94364E 4B2DD7CF.

WDS’s 192-bit curve: same as above but
b = 446, G = 2192 − 1 B7A36C38 1E019CD8 01A11015.

secp224r1=NIST P-224 standard curve:
P = 2224 − 296 + 1, a = −3,

b =B4050A85 0C04B3AB F5413256 5044B0B7 D7BFD8BA 270B3943 2355FFB4,
G = 2224 − E95D 1F470FC1 EC22D6BA A3A3D5C3.

secp256k1 standard curve:
P = 2256 − 232 − 3D1, a = 0, b = 7,

G = 2256 − 1 45512319 50B75FC4 402DA173 2FC9BEBF.
WDS’s 256-bit curve: previous P but a = −3, b = −109,

G = 2256 − 1 84CC553B 62923160 34742BA5 066C2CE1.

Figure 3.3. Some cryptographically useful elliptic curves
Y 2 = X3 + aX + b mod P with P prime. Each curve has
group order G, i.e. G =number of points ∞ ∪ (X, Y ) mod
P , which is prime. Numbers in this font are in radix-16,
e.g. 3D1 = 977, 159 = 9F. I generated the curves labeled
“WDS” by seeking the smallest (or nearly the smallest; I was
somewhat unsystematic) b with |b| ≥ 10 that causes the group
order (with a = −3 and with that P ) to be prime. The secp
type-r curves have a = −3 with b“generated verifiably at ran-
dom from a seed using SHA-1 as specified in ANSI X9.62.”
The secp type-k curves have“an efficiently computable endor-
morphism” and small |a| and |b|. N

A few comments about the curves in table 3.3: Some
of the standard curves have unappealing prime moduli P , es-
pecially in the 128-bit case. This may have been due to the
desire of the standards agencies to avoid “patents” on “nice
primes.” However Daniel J. Bernstein has a web page on
which he exhibits prior art to show these “patents” are in-
valid.

I know of no reason whatever to prefer large random b to the
smallest b ≥ 5. Both are “verifiable,” but the smallest b ≥ 5
is if anything more so – plus it is much easier to remember.

Indeed, the only argument I know in favor of verifiably ran-
dom b is that somebody is worried that there is some magic
trapdoor for some kind K of elliptic curves. This kind K has
never been noticed in the scientific literature, but we shrink in
terror of the possibility that the evil person who generated the
elliptic curve might have known about it and generated one of
them for poor gullible us to use. However: the “verifiably ran-
dom” b’s employed by the standardization agencies were gen-
erated by using secure hash function SHA-1, a 192→ 160-bit
hash. That means that with at most 2160 work (and perhaps a
lot less, depending on the properties of K), the forces of evil
could have generated a random-seeming, but actually type-
K, curve.19 But many of the standard curves are advertised
as providing much higher levels of security, e.g. secp521r1

supposedly is secure against a 2256-operation attack! So I am
quite confident that these standard b’s are, in fact, nonsense;
if they wanted to generate them verifiably at random, they
should have done so with a higher-security method.

Now, compare this with my own approach of providing the
smallest b. This is immune to any evil design or weakness
of SHA-1, and it produces easy-to-remember b. The mathe-
matics of elliptic curves nowhere seems to distinguish between
small and large b’s so no reason is known why these curves are
any weaker than those arising from random b. And finally, the
secg standards group admits this in that their type-k curves
(which they also recommend) have small |a| and |b|. (Per-
sonally, I think it more likely that the type-k curves will be
cracked than mine, so I do not recommend them.20)

Speed: Bernstein struck again by writing a highly optimized
program nistp224 in 2001 that will perform a random expo-
nentiation within the NIST P-224 curve group in an average
of somewhere between 522000 and 1357000 cycles, depend-
ing on the processor and certain auxiliary conditions. (This
program’s runtime and validity is unaffected by the value of
b.)

Fundamental open question (Hard rings & fields?).
Elliptic curve groups of large prime order are an excellent
way to provide somebody with the ability to (1) perform quick
group operations in a large finite cyclic group, (2) allow quick
conversion of integers to group elements (that is, the inte-
ger i is converted to the ith element in the group’s cyclic or-
der) but (3) trying to convert in the opposite direction (group
elements→integers) is extremely difficult. My question is: is
there anything similar if group is replaced by field or ring?

19And (what is more likely) it is conceivable that the very design of SHA-1 was chosen in the first place to make that easy. Indeed, SHA-1 has

recently been “cracked” in the sense that it is possible to produce collisions for it with effort of order 269 hashings rather than the 280 needed for
a brute-force attack [164].

20Type-k curves have the advantage of allowing faster arithmetic (up to twice as fast) than for random elliptic curves [154].
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3.3 Still faster with secret key cryptography
Secret-key cryptography is considerably faster than public key
cryptography with the same security level and should there-
fore be preferred wherever its use is permitted. The greater
speed is both because shorter keys may be used, and also be-
cause the algorithms (especially the USA’s AES=advanced
encryption standard [44]) have been designed for high soft-
ware and hardware speed.

128-bit AES encryption (or decryption) has been implemented
to run in about 360 clock cycles on a Pentium-II/200MHz (i.e.
1.8µsec) on average. This is about 4000 times faster than
comparable-security public key encryption.

More recent processor chips will encrypt at Gbit/sec speeds.

Even higher speeds are achieveable with custom hardware
(although the gain is surprisingly small). Xilinx field pro-
grammable gate arrays were devised in 2003 that provide AES
encyption at 18 Gbit/sec, i.e. a 128-bit AES encryption may
be done with that hardware in only 7.1nsec on average, pro-
vided many such 128-bit words are “pipelined.” Slower speeds
(2Gbit/sec and up) are available in non-pipelined hardware.

4 Algorithmic toolkit

We shall provide brief descriptions of many important cryp-
tographic algorithms: what they do and how they work.

Most of the schemes we describe will be in the Elgamal frame-
work and may be transplanted into the ECC (elliptic curve
cryptography) framework by replacing all “ab mod P” opera-
tions where P is a publically known fixed large prime modulus
(preferably safeprime), by a⊗ b group operations in a publi-
cally known fixed elliptic curve group of (publically known)
large prime order. (We shall describe all the more difficult
such tranformations explicitly.)

4.1 Fast powering in semigroups
Binary powering: Procedure to compute xb: Write down
the binary representation of the positive integer b, remove
the leading 1, and replace each 1 with “SX” and each 0 with
“S”. So if b = 13 = 11012 we would get “SX S SX.” Input x
into a register r. Now read this character-string from left to
right. Each time we encounter an S, we square the register:
r ← r ⊗ r; while each time we encounter an X we multiply
r ← r ⊗ x. At the end of this process, r = xb.

If b is N bits long, binary powering performs ≤ 2N − 2 mul-
tiplications.

It is easy to see that at least ⌈ lg b⌉, i.e. sometimes at least
N − 1, multiplications are always needed, so at most a factor
of 2 improvement is possible over binary powering. The fol-
lowing algorithm, invented by Alfred Brauer in 1939, achieves
that optimal performance in the large-N limit. It performs
N + (1 + o(1))N/ lg N multiplications. The fact that no al-
gorithm can do better than this (except for improvements in
the “o(1)” term) was shown by P.Erdös [57]. We shall assume
b is odd since even powers can be handled by doing some
squarings after computing an odd power.

Brauer’s 2q-ary powering algorithm to compute xb:

1. Choose a number q ≈ lg N − 2 lg lg N .

2. Compute s = x2.
3. Compute and store a table of xk for k =

1, 3, 5, 7, . . . , 2q − 1 by repeated multiplication by s.
4. Regard b as being written in radix-2q. Let its “digits”

in order from most- to least-significant be b0, b1,..., br.
Compute z = x(b0) by table lookup.

5. for j = 1 to r do z ← z(2q)x(bj); end for. (Here the
2qth power is done by q consecutive squarings and the
bj power by table lookup of the largest odd factor of bj ,
followed by k squarings if bj contains k factors of 2; by
merging these squarings into the other kind they can be
made to cost nothing.)

This performs ≤ (q + 1)r + 2q−1 multiplications where r =
⌈(lg b)/q⌉ ≤ ⌈N/q⌉.
This method is actually a slight improvement on Brauer’s
original method. (It also is worth noting that in many fast-
multiplication algorithms, squaring is faster than arbitrary
multiplication.)

4.2 Fast inversion and square roots in finite
groups

Note that x−1 = xG−1 where G is the order of the group. So
if G is known we can perform inversions with the aid of fast
powering. (If the group is the multiplicative group of integers
modulo a prime P , then G = P − 1.)

If G = 2 mod 4, then we may compute the two square
roots r =

√
x (or prove neither exists) as follows. Iff x is

a square then x(G+2)/2 = x, and then its square roots are√
x = sx(G+2)/4 where s is either of the two square roots of

the identity element 1.

In most of the groups people care about, there is a simpler
way to perform inversion than this, but in its absence we
can always fall back on this powering method. Furthermore,
checking that xG−1 = x−1 for some random x is an excellent
“sanity check” that you both know the correct value of G and
have a working powering routine.

4.3 Finding discrete logarithms in “black-
box” groups

In some finite cyclic group of known prime order G, suppose
we desire to solve h = gℓ for the discrete log ℓ.

Suppose we have the ability to perform group-operations a⊗b,
a−1 and ai where i is any nonnegative integer.

The most obvious (but exceedingly slow) method is simply to
try every ℓ in the set {0, 1, 2, . . . , G−1}. More generally if we
originally somehow knew that a ≤ ℓ ≤ b we could try every ℓ
in the integer interval [a, b].

In large elliptic curve groups of prime order, solving discrete
logarithm problems is very difficult. However, it is not that
difficult: it is possible to solve such problems in O(

√
b− a + 1)

steps, i.e. roughly square rooting the naive amount of work.
Nothing better is known, and it has been argued [146] that no
better result is possible in “black box”groups. This can easily
still be exponentially large, e.g. if G is an n-digit number then√

G is an n/2-digit number.

Two approaches achieve this: the “baby step giant step”
method of D.Shanks, and the “rho method” of J.M.Pollard
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[10][129][159]. We may (by pre-multiplying h by g−a) with-
out loss of generality assume that the interval [a, b] is of the
form [0, b].

Baby step giant step. Let r = ⌈
√

b + 1⌉. Create an
r-entry table of “giant steps,” i.e. of the values gkr for
k = 0, 1, 2, . . . , r − 1. Now for each j = 0, 1, 2, . . . r compute
hg−j (baby steps) and look it up in the table (e.g. by hash-
ing). When a match is found at table entry k, then ℓ = j+rk.

Pollard rho method. The main problem with the
baby/giant method is that it requires enough storage for a
table of

√
b + 1 group elements. Pollard’s method also runs

in O(
√

b + 1) steps, but its storage needs are tiny. There is
a price for that: Pollard’s method is randomized and its run-
time bound involves a larger constant factor and only pertains
to expected rather than worst-case runtime.

The idea is to compute the sequence w0, w1, w2,... of group
elements where w0 is chosen randomly and wk+1 = F (wk) for
some magic iteration function F . Both F and the initializa-
tion procedure for w0 have to be devised in such a way that
the representations of wk = gαhβ are known to us for each k
(that is, all the αs and βs are known). We keep going until,
as it inevitably must, a repeat occurs: wm = wn. Then since

gα+ℓβ = gαhβ = wm = wn = gγhδ = gγ+ℓδ (5)

with α, β, γ, δ known, we may solve α + ℓβ = γ + ℓδ for
ℓ = (α − γ)/(δ − β) mod G. (If δ = β mod G, which oc-
curs extremely rarely, this will not work and we would need
to restart to seek a “useful” repeat.)

Pollard’s clever low-storage way to find a match is to have
two walkers through the sequence of wk (Pollard calls them
“kangaroos”), one hopping at speed 1 step per unit time, the
other at some slower speed, say 1/2 step per unit time. Be-
cause the sequence is ultimately cyclic (shaped like the Greek
letter ρ, hence the name “rho method”), the faster kangaroo
will eventually lap the slower one so that their locations must
eventually coincide21. If the function F behaves enough like a
random map, so that the walk wk behaves enough like a ran-
dom walk, then probability theory shows [83] the expected
lengths of both the preperiod and the period will each be
≈
√

πG/8.

A suitably random design for the iteration function F is

F (w) =







wg if H(w) = 1

w2 if H(w) = 2

wh if H(w) = 3.

(6)

where H is some (initially randomly chosen) hash function
that maps group elements into the 3-element set {1, 2, 3}.
Defining F this way makes it trivial to deduce the represen-
tation gαhβ of F (w) from the similar representation of w.

Pollard’s rho-method is parallelizable with linear speedup
[162] (although the naive method of parallelizing it yields a

much smaller speedup). The trick is to have each processor
start from its own random initial w and to post the table of
distinguished points (as in footnote 21) on a central bulletin
board that all processors can read. As soon as the same dis-
tinguished point is generated in two different ways, the job
is (usually) done (if not, that processor is restarted at a new
random point).

The rho-method runs in O(
√

G) expected steps, and does not
take advantage of any knowledge that the discrete log ℓ lies
in some short interval [a, b].

Pollard’s lambda method [129] does take advantage of that
knowledge (albeit with some loss of efficiency – it only runs
more quickly if b−a < 0.39G). There are many variants of the
lambda method. We shall just explain one. It involves two
kangaroos which start at different places (the “tame” kanga-
roo at gb and the “wild” one at h = gℓ where 0 ≤ ℓ ≤ b) and
ultimately coincide in location. The iteration function now is

F (w) = wgH(w) (7)

where H is a hash function that maps group elements to
a particular fixed O(log(b + 1))-element subset S of the
integer interval [0, b]. (Pollard recommends the set S =
{1, 2, 4, 8, 16, 32, . . . , 2k} where k is selected so that the av-
erage value of S is about 0.5

√
b + 1.) The tame kangaroo

makes 0.7
√

b + 1 jumps and then stops. The wild kangaroo
then starts jumping. If it ever collides with the (now station-
ary) tame kangaroo, we may solve for ℓ just as in the rho
algorithm. If it manages 2.7

√
b + 1 hops without ever hitting

the tame one, then we declare failure (about 25% of attempts
lead to failure). After each failure we restart the wild kanga-
roo from hgz for some small integer z, continuing until we get
a successful run.

It is also possible [162] to parallelize the lambda method with
the aid of distinguished points as in footnote 21, and there are
many tricks possible here too, but we shall not discuss them.
22

Quantum computers: All RSA and Elgamal (whether old-
style or ECC) cryptosystems would be destroyed if anyone
were ever to succeed in building a so-called quantum computer
because this new kind of computer could solve N -digit integer
factoring and discrete logarithm problems in polynomial(N)
steps [143]. Personally, I consider this unlikely, and even if it
did happen, it would be apparent many years ahead of time
that great progress in quantum computers was being made.

4.4 One time pads

“One time pads” are a truly unbreakable cryptographic
method. They were invented by Claude Shannon and used
for communications between the allies during world war II.

21 Actually, this 2-kangaroo cycle-detecting method will perform substantially more work than is necessary. A faster idea is to have only one
kangaroo, but every time it lands on a distinguished point, e.g. one whose hash has first k bits which all happen to be 0, that point is stored.
Cycles are detected by performing a table lookup each time the kangaroo lands on a distinguished point. By altering the value of k we can adjust
the storage requirements. If we adjust k so that approximately 100 distinguished points are expected to appear during the run, then the runtime
will be expected to exceed optimal by ≤ 1%.

22One application of Pollard lambda method is: by using the fact, from Hasse’s theorem in footnote 17 and the fact that xG = 1, that xP+1 has
discrete log base x lying somewhere in the interval [−2

√
P, 2

√
P ], we may compute that log in O(P 1/4) steps for some random x, thus determining

the order G of an elliptic curve group mod P in O(P 1/4) steps via a simple algorithm.

Sep 2004; revised Jan 2005 9 4. 4. 0



Smith typeset 12:13 10 Sep 2005 crypto vote

The method is this. Alice has a secret message M (a bit
string23) to send to Bob. She XORs24 M bitwise with a same-
length string R of random bits. She sends the resulting ran-
domized message to Bob. Bob then XORs the bits he receives
with R, getting M back, thanks to the identity a+̂b+̂b = a.

It is necessary for both Alice and Bob to have, before start-
ing, a common random bit string R, known as the one time
pad. If nobody else knows R, and if R is destroyed imme-
diately after Alice and Bob use it (i.e. it not used again to
encrypt some other message!) then all encrypted bit strings
are equally likely.

Optical version [115]. Imagine a checkerboard of square
pixels (each black or transparent) printed on a translucent
sheet. Each 2× 2-pixel square subregion may be regarded as
a single bit if it is either printed with

“0”=

(
�

�

)

or “1”=

(
�

�

)

. (8)

If two such sheets are overlaid, then co-located bits which dif-
fer will appear as a totally black 2 × 2 square, but if they
agree then they will appear 50% black, i.e. “grey”:

0+̂1 = 1+̂0 =

(
� �

� �

)

, 0+̂0 =

(
�

�

)

, 1+̂1 =

(
�

�

)

(9)
This provides a visual way – readable immediately without
need for a computer – to make 1-time pads. Bob simply over-
lays the R and M+̂R sheets to read M , which then will spring
out in solid black against a grey background. (Or if the sec-
ond sheet instead were R, then it would spring out in grey
against a black background.)

4.5 Secret key cryptosystems
Alice wishes to send a secret message M to Bob. Both Al-
ice and Bob know (but nobody else does) some random (but
fixed) bits K (the “secret key”). Method: Alice repeatedly
transforms M by applying one of two specially designed (and
publically known) invertible functions F0 or F1 to it. She
does this k times, once for each of the k bits of K (and using
those bits b to determine which Fb to use each time). She
then transmits the scrambled message to Bob on an insecure
channel. Bob then applies the F−1

b in reverse order to decrypt
the message. For sufficiently good designs of F0 and F1 and
sufficiently long M and K, this sort of scheme is regarded
as extremely difficult for any eavesdropper ignorant of K to
break (apparently the work required grows like 2k).

A sufficiently good design of F0 is this: apply a fixed and pub-
lically known random25 permutation to M ’s bits, then apply
similar fixed random 4096-permutations to each 12-tuple of
successive bits in M , regarded as a binary number between 0
and 4095. (F1 is the same design, but with different fixed and
publically known randomness.)

If both M and K are 128 bits long, that seems sufficient to
withstand attack by 1010 computers each trying 1010 keys per
second for 1010 years; 256 bits should withstand all the com-
puter power that ever will be available on this planet, even
running for the age of the universe. The system we have just
described is similar to, but in terms of security better than,
the AES (USA’s “advanced encryption standard” [5]). Note
that the software runtime of schemes like this grows propor-
tionally to the product of the key and message lengths.

Padding. If the message M is short or selected from a small
set of possibilities, then it is sometimes possible to break cryp-
tosystems by exhaustive consideration of all possible mes-
sages. Therefore, it is recommended to pad short messages
with a long sequence of random bits appended after the end
of the message, and only encrypt padded messages.

Secure hash functions. A secret key cryptosystem
E(key, message) such as AES-128 may be used to produce a
“hash function” mapping any bitstring M to a 128-bit “fin-
gerprint.” To do this, let M consist of successive 128-bit
blocks m1, m2,..., mℓ and proceed as follows ([20] schemes
3,5,7):

procedure iterated-hash
1: h← ℓ+some constant;
2: for i = 1 to ℓ do
3: h← E(h, mi)+̂h; ⊲ Scheme 3 appends +̂mi

4: end for
5: return h;

The Europeans have standardized a hash function called
WHIRLPOOL which hashes any bitstring to a 512-bit out-
put. (It works almost exactly according to the method we
just described, and source code for it is publically available.)
Any output size smaller than 512 bits can be got just by using
the first n bits of WHIRLPOOL’s output.

In 1993 the FIPS standardized a secure hash function called
SHA-1 that will produce a 160-bit-long fingerprint of any bit
string of length between 192 and 264 bits; SHA-2/256, SHA-
2/384, and SHA-2/512 were similarly standardized in 2003
and have output bit lengths 256, 384, and 512. The SHA-1
(and earlier SHA-0, which has now been fully broken) schemes
unfortunately were later found not to be as secure as was
hoped [164],26 the SHA-2 schemes, while still unbroken, are
now somewhat suspect.27

Verifiably random numbers. By repeatedly feeding the
output of a secret key cryptosystem into itself as input, or by
encrypting some predictable input stream, we can generate an
arbitrarily long stream of “random”numbers [85]. By making
the initial input consist of, e.g. the first page of the Bible, it
is clear to all that this stream was not generated with some
carefully designed malicious goal in mind. (ANSI X9.62 speci-
fies a particular standard way to generate “verifiably random”
numbers from a seed using [the now-broken] SHA-1.)

23Of course, a “message” can be regarded equally well as a character string, a bit string, or (via binary representation) as a (many-digit) integer.
24XOR means the “exclusive or” method of logical combination of two bits. It is the same thing as addition modulo 2: 1+̂1 = 0, 1+̂0 = 0+̂1 = 1,

0+̂0 = 0. Equivalently, the XOR of two bits is 1 iff the bits differ.
25Actually, although random permutations usually would work well, it is preferable to choose them with a certain amount of care to assure high

“expansion rate,” fast “mixing,” and generation of the full symmetric group.
26“MD5” is another heavily publicized hashing algorithm which has been broken.
27Source code for SHA-2/256 is publically available [50].
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4.6 Key exchange
Alice and Bob wish to agree on a common secret key (i.e.
N -bit binary integer) K which they can later use for the pur-
pose of communicating via a a secret-key cryptosystem, or for
some other common purpose.

But when they begin, Alice and Bob have no common in-
formation, and all their communications are insecure. So it
might seem difficult for them to create a key de novo without
somebody else (who is listening to them communicate) also
learning it.

Diffie and Hellman’s solution is as follows.

1. Alice and Bob agree on a large (N +1-bit) prime P and
a generator g modulo P (both can be publicized).

2. Alice chooses a random r and Bob a random s, both
mod P − 1 (and they both keep their values private).

3. Alice sends gr mod P to Bob, while Bob sends gs mod
P to Alice.

4. Alice computes K = grs = (gs)r mod P , while Bob
computes K = grs = (gr)s mod P .

Although Eve Eavesdropper learns g, P , and gr and gs both
mod P , there is no obvious way for her to deduce K = grs

mod P from this, unless she is capable of solving huge discrete
logarithm problems.

In the ECC version of this, Alice and Bob publicize a suitable
elliptic curve group of prime order and let g be any non-
identity element of it; then all exponentiations are performed
within the group and the bitwise representation of x (where
elements of the EC group are 2-tuples x, y) is used as the key.

4.7 Public key cryptosystems via RSA one
way functions

Bob announces publically the description of a magic “one way
function” FBob that anybody can use to transmit secret mes-
sages to him. Alice wishes to send a secret message M to
Bob. She computes FBob(M) (using the authentic FBob!)
then transmits it to Bob on an insecure channel. Bob then
applies F−1

Bob to decrypt the message.

This only works if suitable “one way” functions FBob are easy
to find, whose inverse functions both exist, and are difficult for
anybody beside the original creator of FBob to find, even by
somebody who fully understands the forward function. For-
tunately, all this is true.

The most famous kind of one way function is the “RSA cryp-
tosystem.” This works as follows. Let N = pq be the product
of two large primes p and q (e.g. each might be 300 digits
long). Let e and d be two integers such that ed− 1 is a mul-
tiple of (p− 1)(q − 1). (These are easily found by choosing a
random 300-digit integer e and then employing the Euclidean
GCD algorithm to find the smallest suitable d.) Then the
forward encyption function is FBob(M) = M e mod N . The
backward, i.e. decryption, function is F−1

Bob(M) = Md mod
N . The reason this works is the Fermat-Euler theorem from
number theory [11] which causes M ed = M (mod N). Bob
publicizes N and e so that everybody knows what the en-
cryption function FBob(M) is, but keeps p, q, and d secret so
that only he can decrypt messages. In principle it would be
possible to deduce p, q, and d from the published values of N

and e, but this is believed to be very computationally difficult
since essentially the only way anybody knows how to do it is
by factoring N to find p and q.

4.8 Public key cryptosystems via Elgamal
P is a large publically known prime and M is a nonzero inte-
ger modulo P .

I. Massey-Omura. In one Elgamal type scheme (often at-
tributed to Massey and Omura) Alice transmits secret mes-
sage M to Bob as follows. She computes M r (mod P ) and
transmits it to Bob, who then computes (M r)s (mod P ) and
transmits it back to Alice, both using an insecure channel.
Here r and s are special nontrivial random integers (mod
P − 1) known only to Alice and Bob respectively, e.g. be-
cause they were generated by them randomly shortly before
transmission. Alice also knows r−1 (mod P −1) and Bob also
knows s−1 (mod P −1) since each may compute these quickly
by using the Extended GCD algorithm. So Alice now expo-
nentiates with power r−1 to compute M s (mod P ), which she
transmits to Bob. Finally Bob exponentiates with power s−1

to compute M , the decrypted message.

It is believed to be very difficult for anybody ignorant of r
and s to deduce M from P and from M r, M s, and M rs all
mod P . Essentially the only way anybody knows how to do
it is by solving discrete log problems to deduce r and s.

The Massey-Omura scheme actually requires no secret keys
to exist at all! But it has the disadvantage that if requires a
two-way conversation between Alice and Bob.

II. Elgamal’s own scheme requires only a single (albeit
larger) one-way transmission. A large prime P , a genera-
tor g modulo P , and h = gK are all made public by Bob, but
Bob keeps the large integer K secret. Alice transmits secret
message M to Bob as follows:

1. Alice chooses a large integer r at random mod (P − 1).
2. Alice computes z = gr mod P and then c = Mhr mod

P (which is the same as MgKr mod P ).
3. Alice sends the Elgamal encryption of M , namely the

2-tuple (z, c), to Bob.
4. To decrypt, Bob computes M = (zK)−1c mod P .

Both of these immediately transplant into ECC versions. For
example:

IIE. Elgamal in elliptic curve group: A large elliptic
curve group of prime order G, and a nonidentity element g
within it, and h = gK are all made public by Bob, but Bob
keeps the large integer K secret. Alice transmits secret mes-
sage M to Bob as follows:

1. Alice chooses integer r at random mod G.
2. Alice computes z = gr and then c = M ⊗ hr (which is

the same as M ⊗ gKr).
3. Alice sends the Elgamal encryption of M , namely the

2-tuple (z, c), to Bob.
4. To decrypt, Bob computes M = (zK)−1 ⊗ c.

One of the fascinating (and security enhancing) features of
these Elgamal systems is that they, if asked to encrypt the
same message twice, will generally produce two different en-
cryptions because of the included randomness. Hence padding
short messages with random bits (as we recommended at the
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end of §4.5) is unnecessary. However, the price paid for this is
a 2:1 expansion of the ciphertext’s bit length versus the plain-
text. For an Elgamal-type cryptosystem involving arbitrarily
small expansion factor see [82].

Multiplicativity (Homomophism): Note that the Elga-
mal encryption (gr, Mhr) of a message M has the prop-
erty that the elementwise product of two such encryptions
(grgs, M1M2h

rhs) = (gr+s, M1M2h
r+s) is the same thing as

an Elgamal encryption of the product of the two messages
(rgarded as group elements)! This allows multiplication of
encrypted quantities without ever decrypting.

Re-encryption: Another nice property of Elgamal encrpy-
tion is that the same message may be reencrypted without
ever decrypting it (and indeed this may be done by somebody
who does not know how to decrypt it), e.g. by “multiplying
the message by 1” as above.

Cooperative decryption: As we have described it above,
Bob, because he knows the magic secret key integer K such
that h = gK , is able to decrypt an Elgamal-encrypted mes-
sage. But suppose “Bob” is really a set of m people Bob1,
Bob2,..., Bobm, where Bobj knows an integer Kj such that
K = K1K2 . . . Km mod G. Then no individual Bobj is capa-
ble by himself of decrypting an Elgamal encrypted message
addressed to “Bob,” since no Bobj by himself knows the key
K. But all m of the Bobj ’s, by working together, can do it.
Indeed the crucial decryption step (powering something to the
exponent K) may be accomplished by each Bobj powering it
to the exponent Kj , in succession.

It also would be possible for the Bobj’s private exponents to
sum to K, in which case the product of each’s powering could
be taken to decrypt the code.

There have also been “threshold” schemes devised in which
at least t (for some t with 1 ≤ t ≤ m) of the Bobj need to
cooperate to decrypt a message [48][124][49] . This can be
accomplished by having K be the constant term P (0) of a
degree-(t− 1) polynomial where decryptor j knows P (j) but
nobody individually knows P (0). Then the value of P (0) is
deducible by Lagrange polynomial interpolation from t values
of P (x). Lagrange polynomial interpolation is a weighted sum
(the weights Lj are Lagrange interpolation coefficients, and
may, after a renormalization, be taken to be public integers);
the effect of exponentiation to the power K may be got by
private exponentations to the P (j) power followed by public
exponentiations to the Lj power and a final producting step
to combine it all together. (See also the end of §4.16 for dis-
cussion of how to make this idea cheat-proof and see §4.11 for
more discussion of the uses of Lagrange interpolation.)

4.9 Digital signatures via RSA or Elgamal

A signature scheme allows somebody (call him “Sam”) to sign
a message so that that signature can later be verified by any-
body else. This verification will prove that the message could
only have been signed by Sam, or somebody who knew Sam’s
private key at the time the message was signed.

I. RSA. One way Sam can sign a message by “RSA decrypt-
ing” it using F−1

Sam. Anybody can later “RSA encrypt” it using
Sam’s publicly known one way encryption function FSam, thus
“verifying”that that message could only have come from Sam
(or somebody able to run Sam’s secret decryption algorithm
F−1

Sam) and not from any other person.

II. Elgamal’s signature scheme (which was the basis of the
later “digital signature standard” of the FIPS) is as follows28:
Sam publishes the large prime modulus P , the generator g,
and h = gK (while keeping K secret) as usual just as in
§4.8II. Sam chooses a random nonzero r mod (P − 1), com-
putes a = gr mod P , and computes

b = (M − br)H(a, M)−1 mod (P − 1), (10)

where H(a, M) is a publically known secure hash function29.
Sam now outputs the tuple S = (a, b) as the signature for the
positive integer message M .

To verify this signature, anyone could simply verify that
hH(a,M)ab = gM mod P (since both sides equal gH(a,M)K+rb).
We would then know that Sam (or anyhow, somebody who
knew Sam’s secret K value) must have been the signer.

III. Nyberg-Rueppel. A different Elgamal-type signature
scheme, due to Nyberg & Rueppel [119], has the advantage
(for some purposes) that the signature is not separate from
the message. Let P = 2Q + 1 and Q be large public primes,
i.e. P is a safeprime, and let g be a public nontrivial square
mod P . Sam publishes h = gK while keeping K secret as
usual.

To sign the message M mod P , Sam selects nonzero z mod
Q at random and computes r = Mgz mod P and s = Kr + z
mod Q. The pair (r, s) is the signature.

At that point anybody may reconstruct the message M , at
the same time verifying Sam’s signature, via M = g−shrr
mod P .

IIIE. An ECC version of this is as follows. We assume there
is a public elliptic curve group of large prime order G. Sam
publishes the non-identity group elements g and h = gK while
keeping the integer K secret.

To sign the message M (which now is a group element rather
than an integer as in scheme II), Sam selects nonzero z mod G
at random and computes the group element r = Mgz and the
integer s = Krx + z mod G (where30 the integer rx denotes
the x-coordinate of the group element r). The pair (r, s) is
the signature.

At that point anybody may reconstruct the message M , at
the same time verifying Sam’s signature, via M = g−sh(rx)r
mod P .

4.10 Blind signatures
Suppose Bob writes a secret message on a sheet of paper,
puts it in an opaque envelope with a sheet of carbon paper,
and hands it to a Notary, who then signs the outside of the
envelope and hands it back. The result is that the Notary’s

28Except that we are presenting an improvement of both because we are making H depend on both a and M . See also [72].
29Actually EQ 10 is set in the integers and not inside the usual multiplicative group mod P . The elliptic curve analogue of this signature scheme

(and the FIPS also has a corresponding “elliptic curve digital signature standard”) involves using the group-order G everywhere we had written
P − 1; the modulo-P operations become elliptic curve group operations but the mod G operations stay integer operations.

30Actually, in place of rx, any hash function H(r, h, g) could be used.
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signature appears on Bob’s message, but the Notary never
sees the contents of that message.

Blind signatures are the digital equivalent of this story. They
involve a conversation between mutually distrustful parties
(Bob and the Notary). At the start Bob has his message M ;
at the end Bob has the Notary’s blind signature for M which
anybody may then verify in a manner which convinces them
that the Notary did sign M . Several protocols have been
devised to accomplish this [30][128][3].

The rough plan for obtaining blind signatures has always been
this (x and y represent secret key information known only to
Bob and the Notary, respectively):

1. (Optional) Notary sends Bob some information I.
2. Bob sends blinded version B(x, M) of his message M to

notary.
3. Notary sends signed version S(y, B(x, M)) back.
4. Bob unblinds message to get the signed version of his

message S(y, M) = U(S(y, B(x, M))).

The question is what magic blinding B, signing S, and un-
blinding functions U work (if any).

Blinded versions of both the Elgamal DSA and the Nyberg-
Rueppel signatures are known [30].

Blinded Nyberg-Rueppel: Let g and h = gK be public
elements of a large public elliptic curve group, of large public
prime order G, where K is known only to the Notary (it is
the Notary’s signing key).

1. Notary chooses random integer γ mod G, computes
I = gγ , and sends it to Bob.

2. Bob chooses random integers α and β mod G, computes
the group element r = MgαIβ and the integer B = rx/β
mod G, and sends B to Notary.

3. Notary computes S = KB + γ mod G and sends it to
Bob.

4. Bob computes U = Sβ + α mod G.

Then (r, U) is the Notary’s Nyberg-Rueppel ECC signature
of Bob’s original message M , as in §4.9IIIE (where, in the
notation there, z = α + γβ).

A different blindness scheme, and dated blind signa-
tures. There is a far simpler way to do blind signatures,
which for some reason nobody thought of before. It is sim-
ply this: do not sign M at all. Instead sign H(M) where
H is some publically known secure hash function. Then all
“blind” signings can simply be conducted in the open. Fur-
thermore, by signing not H(M), but H(M) with the date (or
other agreed common information) adjoined, we can get dated
signatures (whether blind or not).

Haber & Stornetta [80] imagined a “time stamping service”
(TSS). Anyone could send a hash of their document to the
TSS, which would send a signed and dated version of that hash
back. They pointed out thaat the TSS could be prevented
from dishonestly forward-dating the document, by making
each signature incorporate bits from that TSS’s preceding
hash.

4.11 Secret sharing
Alice wishes to transmit a message M to Q different players
in such a way that if at least T + 1 of those players collabo-

rate, then they can decrypt the message easily, but no subset
of ≤ T of the players can decrypt the message.

Shamir’s scheme [142]. To accomplish this, Alice can re-
gard her message as describing a degree-T polynomial F (x)
mod P for some large publically known prime P . (E.g. M
is the (T + 1)-tuple of its coefficients fk for k = 0, . . . , T ,

i.e. where F (x) =
∑T

k=0 fkxk.) She transmits the values of
the polynomial (mod P ) at integer points, i.e. F (1), F (2),...,
F (Q), to the respective players via secure channels (or inse-
cure ones, but employing cryptography). Decryption is then
just polynomial interpolation mod P .

Note that this scheme is not merely secure under some un-
proven assumption that some computation is difficult. It is
in fact information theoretically secure, i.e., the combined in-
formation possessed by any T -element subset of the players is
insufficient to reconstruct M (no matter how much computing
is done) because there are still at least P different possibilities
M could have been.

No leak of even partial information. However, as we
have described it, a colluding T -element subset of the players
could still obtain partial information about the secret F , i.e.
reducing the number of possibilities. That is fine if P is large
enough. However, if desired we may modify this scheme so
that not even partial information is obtainable. To do that,
make the (now integer) secret be the polynomial’s constant
term F (0). Generate F (1), F (2),..., F (T ) at random mod P
and then dole out the secret-shares F (1), F (2),..., F (Q). This
was, in fact, Shamir’s original suggestion and we shall employ
it from now on.

Verifiability. Shamir’s scheme has the defect that an evil
original owner of the secret could have handed out one or more
bogus shares, thus not really revealing his secret at all; when
the reconstruction later failed, that evil dealer could claim it
was not his fault – the problem was instead caused by an evil
player who faked that share! So that all may recognize evil
players and dealers, the protocol may be implemented in the
following way.

1. Dealer hands out shares for both his intended secret
S, and a random secret R. (Call the shares sk and rk

respectively, k = 1, 2, . . . , Q. Here sk is what we previ-
ously had been calling F (k) and S = F (0).)

2. For each k = 1, . . . , Q, dealer publically announces
H(rk, sk) where H is a publically known secure hash
function. This publically commits him to those sk and
rk.

3. Each player verifies that her H(rk, sk) agrees with what
was announced. If not, the player publically complains,
and the dealer reveals that rk and sk so that the com-
plaint’s validity may be judged by all; then all the other
players kill whoever lied or refused to follow the proto-
col.

Later, during secret-reconstruction, the players broadcast
their sk and rk and players who fail to obey the H(sk, rk) con-
dition may be recognized as corrupt. The remaining ≥ T + 1
of the players reconstruct S and R, recompute the sk and
rk, and re-verify the H(sk, rk). If any of these verifications
fail, the dealer may be recognized as corrupt. Finally, if the
reconstructed S is unsatisfactory, the dealer was corrupt.
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Instant Verifiability. Even this “verifiable” scheme still is
subject to the objection that a corrupt dealer (handing out
sk that simply do not arise from any S, or supplying an un-
satisfactory secret S) would only be detected later – it would
be better to do so immediately after he doles out the secret-
shares. (There is no hope to detect all corrupt players at this
stage because they may only take the course of evil during the
later reconstruction.) Both these objections may be dodged
[73][137]

First, the fact that S is a“satisfactory”secret has to be proven
via some kind of publically broadcast zero knowledge proof
(see §4.13) at the time the shares are doled out. Just what
that proof is depends on just what satisfactoryness conditions
are to be placed on the secret, so it won’t be discussed here.

Second, the dealer must convince everybody that the sk and
rk he is handing out really do come from some S and R, and
in particular from the same S that he just proved satisfactory.

To accomplish that, we need three ideas. First, we agree not
to use just any old hash function H(a, b), but in fact this
one: H(a, b) = ga ⊗ hb for two public constant nonidentity
elements g and h of some public large group (e.g. an elliptic
curve group of large prime order).It is convenient to demand
that the dealer also publically commit to the value of the se-
crets themselves (i.e. to the constant term F (0) = f0 = s0

of his polynomial, and similarly to r0) by also publishing
H(s0, r0) = gs0hr0 .

Second, we note [141] that checking any polynomial identity
P1(x) = P2(x) may be accomplished by trying random x. If
the check fails, the identity is false. If it succeeds, then since
a polynomial of degree T can have at most T roots, we be-
come convinced of the validity of the identity with confidence
≥ 1 − T/Z where Z is the cardinality of the set that x had
been randomly sampled from. Also, if more than T distinct
X ’s are successfully tried, then the confidence is 100%.

Third, we note that the reconstruction of a polynomial
F (x) =

∑T
k=0 fkxk from its values at T + 1 integer points

x may be done via Lagrange interpolation of the form fk =
∑T

j=0 F (xj)Ljk where the Ljk (which are precomputable if
the xj all are known) are the rational Lagrange coefficients.
(Specifically, they arise from the coefficients of the polynomial
∏

0≤j≤T

j 6=k

(x−xj).) These rationals Ljk all become integers Ijk

if they are multiplied by an appropriate pre-computed and
public LCM of all possible denominators.

In particular the reconstruction of the value of the secret poly-
nomial’s value F (X) at any particular integer location X may

be done via F (X) =
∑T

k=0

∑T
j=0 F (xj)LjkXk. This makes it

convenient for us to define Lj(X)
def
=
∑T

k=0 LjkXk and their
integer version

Ij(X)
def
=

T∑

k=0

IjkXk. (11)

The key insight of the immediate verification idea of [73] is
that, since EQ 11 is just a weighted sum with publically pre-
computable weighting factors Ij(X), its discrete exponential
gF hR may be publically computed, purely from the publi-
cally known discrete exponentials gshr of sk and rk, by using

a product of the form

(gh)C · gF (X)hR(X) =

T∏

j=0

(gsj hrj )Ij(X). (12)

(where C is some integer constant whose value will not mat-
ter).

So: [73] simply suggest checking that this same value (at any
particular randomly chosen integer X) is got when we instead
take the j-product over any other (e.g. random) (T + 1)-
element subset of {0, 1, 2, . . . , n} besides {0, 1, 2, . . . , T}. If
so, then the sk and rk must truly have consistently resulted
from genuine degree-T polynomials F (X) and R(X) (or our
random selection of X was incredibly unlucky, but we can try
again with different random X suggested by outside verifiers,
or also just try enough X ’s to get 100% confidence).31

If the check fails, it is publically revealed – immediately – that
the dealer was corrupt. If it succeeds, we know the dealer
started with a satisfactory secret S [and some other genuine
polynomial R(x)] and genuinely distributed it to the sharers.

Adding (or subtracting) two shared secrets. Since the
sum of two degree-T polynomials is another (and their con-
stant terms sum) sharers of two secret integers A, B mod P
can add them by simply adding their secret-shares. The re-
sult is a shared-secret A+B. What is interesting here is that
the secret sharers can perform certain arithmetic operations
(A±B mod P ) on shared secret integers despite the fact that
they do not individually know what those input and output
integers are.

No dealer. Self-generation of a random secret by the shar-
ers themselves, is easily possible in this framework by having
each player share out its own random secret and then using
their sum as the secret. In that case, the effect will be just as
though a dealer has dealt out a random secret, but now there
will be no party who knows it.

Multiplying two shared secrets. It is not as easy to mul-
tiply two shared secrets (multiplying the shares would double
the degree of the polynomial and hence will not work). Never-
theless, a method for doing so was devised by Gennaro, Rabin,
and Rabin [73]. (For an excellently clear discussion of it, see
section 3.1 of [86].) Unfortunately, a key step in this method,
a zero-knowledge proof that ab = c in appendix B of [73], was
later shown [87] to be wrong.32 Their multiplication method
still works if the parties are honest; the flaw is in their at-
tempt to remove the need for that assumption by providing
a way to detect dishonesty. There still are ways to do the
multiplication [18][40] securely, but they are rather grotesque
and expensive.

Other tricks with shared secrets. By giving players dif-
ferent numbers of shares (e.g. Alice gets 2 shares, Bob gets 3)
we can get the effect of “weighted sharers’ where any super-
threshold weighted set of sharers can reconstruct the secret.
By also allowing secret shares themselves to be shared secrets,
we can impose hierarchical societal structures on shared se-
crets – e.g. demand that at least three red sharers plus at

31Furthermore this check can be made non-interactive by requiring the dealer himself to publish such a check using as X, some hash of all his
other publsihed values.

32Because it is possible to generate fake proofs which their verifier will accept.
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least 5 blue sharers and at least 7 green sharers must coop-
erate to decrypt the secret. In 1993 the US government tried
and failed to impose the “clipper chip” cryptosystem, which
was supposed to work like a secret-key cryptosystem but with
a“back door”enabling the government (which possessed extra
keys) to read encrypted transmissions otherwise only readable
by their intended recipient. The clipper chip was based on a
secret algorithm depending on secret tamper-resistant hard-
ware. However, a open scheme with similar properties based
on public key cryptography can be devised using the secret-
sharing methods we just described, where either the intended
recipient, or a super-threshold set of (hopefully independent)
government agents, could decrypt the message. But even then
the whole clipper idea would remain silly because genuine
criminals would simply use a cryptosystem without a back
door, so that the government could only eavesdrop on people
uninterested in being criminals.

4.12 Verifiable shuffles and mixnets
A verifiable shuffle is an algorithm A that is given n en-
crypted messages as input. It then shuffles those messages,
i.e. permutes them into an apparently random order, while
at the same time replacing each encrypted message by a re-
encryption of that message. Finally, the shuffled and re-
encryted messages are output. (We are envisioning Elgamal
encryption and re-encryption as in §4.8.)

So far, of course, this is simple and direct to do. What makes
it interesting is the further demand that the algorithm also
output a zero knowledge proof that it has accomplished its
task. That is, anybody who examines the input and the out-
put of the algorithm, and the proof, should be able to easily
convince himself that the output really is a shuffled and re-
encrypted version of the input, but still should have no idea
(more precisely, should have extreme computational difficulty
in trying to determine – of course both the decryptions and
the shuffle are deducible in principle by trying all possibili-
ties) what the re-encryption transformations were, nor what
the shuffle permutation was!

Several authors have devised verifiable shuffle schemes. Here
is one particularly simple method:

One way a verifiable shuffler could work. The shuffler,
in addition to the input list A and the shuffled and exponen-
tiated output list B, also produces a third randomly shuffled
list C re-encrypted with random nontrivial exponents, and of-
fers either to prove that A = C or that B = C, whichever the
verifier prefers. The proof is simply to reveal the permutation
and exponents that map A (or B) to C.

If the shuffler is lying, i.e. A and B are not really shuffled
and exponentiated versions of each other, then the verifier
will detect that lie with probability≥ 1/2.

By repeating the procedure s times with a new randomly gen-
erated C each time, the probability of an undetected lie drops
to ≤ 2−s.

Non-interactive version. The shuffler

1. Inputs A, outputs B, and also outputs 256 different C’s,
call them C(1), C(2),..., C(256).

2. Shuffler outputs a standard 256-bit secure hash H of all
of the data in A, B, and the C(j).

3. For j = 1 to 256: Shuffler demonstrates (as before) that
A = C(j) or B = C(j), which one being determined by
the jth bit of H .

We do not recommend this algorithm for practical purposes
because of the large amount of work involved (due to the large
constant 256). We present it merely to make it completely
obvious that a non-interactive O(n)-step verifiable shuffle is
possible.

Less versus more. If, instead of checking that A (or B) is
equivalent to C, the verifier only checks a fraction f of the
correspondences at random, then the verifier, happily, can do
only a fraction f , 0 < f ≤ 1, of the usual amount of compu-
tational work (modular exponentiations). She then will gain
confidence that the shuffler is not producing anything “too
far away” from being a true permutation. For example, if
the shuffler had removed 10 entries from the list and inserted
10 fake replacements, then a check with f = 0.1 would have
had a decent chance of detecting that. This kind of partial
checking may well be adequate for many purposes.

More practical version. It is also possible [92] to make this
f -scheme almost (or even completely) non-interactive by hav-
ing the “randomness” actually be (cryptographically strong)
pseudo-randomness generated from a small seed “challenge”
provided by the verifier. In fact (to be concrete about it)
a single-round, almost non-interactive verification protocol
would be

1. Shuffler outputs all n elements of A, B, and C (3n in
all) in encrypted form.

2. Verifier presents random challenge-seed κ.
3. Shuffler uses κ as a pseudo-random seed to generate (in

a standard, cryptographically strong way) a 2-coloring
of C with ⌊n/2⌋ red and ⌈n/2⌉ disjoint blue elements.
He publishes this coloring. Shuffler now reveals the en-
cryptions used to generate the red C’s from the cor-
responding A’s (and reveals the correspondences) and
similarly for the B’s that come from the blue C’s.

After this, the verifier is confident that the shuffler has truly
shuffled (and re-encrypted) the n elements of A to get B, ex-
cept perhaps for a bounded number m (independent of n) of
added, deleted, or wrongly-encrypted “cheat” elements (or is
confident that the shuffler can break the cryptosystem or en-
joyed an exceedingly vast amount of luck). Specifically, if the
shuffler produced m cheat-elements, then his chance of being
caught would be ≥ 1− 2−m.

Objections, and modifications in response. The above
scheme can be made completely non-interactive by having the
shuffler generate κ himself as a standard cryptographic hash
function (§4.5) of everything he output in step 1; and pro-
vided n is larger than the security parameter (encryption-key
bitlength) the scheme should remain secure. However, be-
cause an evil shuffler usually can make a probability-ǫ event
happen by working 1/ǫ times harder (i.e. trying 1/ǫ different
shuffles and proofs, and picking the nastiest one) this com-
pletely non-interactive version is probably less desirable in
practice than the almost non-interactive version we gave.

The scheme we just gave has the disadvantage that it reveals
n bits of partial knowledge about the shuffle, namely we know
that the ⌊n/2⌋ red items do not get shuffled to the ⌈n/2⌉ blue
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locations. This in many applications would not matter (e.g.
n bits is asymptotically negligible compared to the number
log2 n! of bits required to specify the shuffle fully). That dis-
advantage can be eliminated (at the cost of O(n) additional
proof and verification work) by zero-knowledge-proving, for
each of the red C-items, that it corresponds to either of two
A-items, but without saying which (and let all the A-pairs be
disjoint). That can be done using the “OR of two ZK-proofs”
technique of §4.17.33

Another (tiny) disadvantage of this scheme (which again
would not matter in many applications) is the fact that it
allows a cheating shuffler to have a 2−m chance of cheating
on m items without being detected. That chance could be
reduced to 2−mf by forcing him to provide f parallel proofs
(each with different C and using further bits output by the
pseudo-random generator) for any integer f ≥ 1. Alterna-
tively, that chance could be increased to 2−mf where now
0 < f < 1, by having the verifier only verify a fraction f
(chosen randomly) of the prover’s claims about items – sav-
ing a huge amount of verification work in the limit f → 0+.
This also would save proving-work because the prover would
first say (in stage 3) exactly what he was going to prove, then
the verifier could say (in stage 4) which proofs he actually
wanted to examine (which again could be done using a very
short challenge-seed) and then in stage 5 the prover would
produce only the requested proofs.

Better (?) shuffles [69][78]. One may make several criti-
cisms of the simple-shuffle scheme described above. First, it
is not very efficient if we desire to make the error probability
extremely low. Second, it requires interaction between the
prover and verifier (with multiple seperate interactions and
proofs required if there are multiple verifiers who do not trust
one another); it would be better if the prover could simply
provide one proof, which any verifier could then read.

Both these criticisms appeared to be met by Furukawa and
Sako’s [69] considerably more complicated scheme: which re-
quired about 8n exponentiation operations for the proof and
10n for the verify, with the 18n total being reducible “‘to the
work-equivalent of ≈ 5n exponentiations,”and which could be
converted, by the Fiat-Shamir hash function trick, to only em-
ploy non-interactive proofs. But unfortunately, that scheme
was later realized by its authors to be flawed because their
proofs are not zero-knowledge.

Jens Groth [78] then proposed a different verifiable secret
shuffle scheme, requiring only 6n exponentiations to construct
the proof and 6n to verify it. This scheme also appears to be
convertable by the Fiat-Shamir hash function trick, to employ
only non-interactive proofs. However, I do not understand
Groth’s method and in view of the historical record of poor
correctness of complicated shuffle schemes, I am currently un-
happy about trusting it. Therefore in §7.1 we will recommend
a simple mixnet scheme reminiscent of Abe’s [2] which seems
practically useful.

Mixnets: If several mutually distrustful parties consecutively
perform verifiable shuffles to n items, then the resulting per-
mutation (assuming at least two of the parties refuse to di-
vulge their random permutations to the others) is unknown
to anybody. This is called a “mixnet.”

4.13 Zero knowledge proof protocols
A zero knowledge proof protocol involves two mutually dis-
trustful parties, the prover and the verifier. The prover knows
some fact and wishes to convince the verifier of it. The goal
is to set up a polynomial-time protocol of questions and an-
swers such that, if both obey the protocol, then the verifier
ultimately ends up convinced (with probability exponentially
close to 1) if and only if the fact is true – if it is false then
the verifier will detect a flaw in the prover’s argument (with
probability exponentially near 1) – but during the conver-
sation the verifier learns, essentially, nothing more than the
single bit distinguishing “correct” from “flawed.”

As a concrete example, suppose Peter wants to convince Vera
that he has a 3-coloring of some graph G (whose nodes and
arcs are known to both), but without revealing what that 3-
coloring is.

1. Peter changes the colors randomly (e.g. replacing red
by yellow, yellow by blue, blue by red).

2. Peter encrypts the node-colors34 using a different (ran-
domly chosen) encryption key for each node. He then
shows Vera the graph including the encrypted colors for
each node.

3. Vera selects a graph-arc A.
4. Peter reveals the decryption keys for A’s two endpoints.
5. Vera confirms the decryptions succeed and the two col-

ors of the endpoints are both legitimate and different.

Each time this procedure is performed, Vera’s chance of spot-
ting an attempt by Peter to fool her with an invalid 3-coloring,
is at least 1/E where E is the number of graph edges (as-
suming Peter does not have enough computational power to,
in any reasonable amount of time, dream up fake decryption
keys which would miraculously confirm fake equalities). After
Ek runs of this procedure without failure, Vera is convinced
the graph is 3-colorable with confidence≥ 1− (1− 1/E)Ek >
1 − e−k, but still has no better idea of what that coloring
is, than when she started (unless she does enough computa-
tional work to break the cryptosystem, which we regard as
effectively impossible).

Amazingly, Goldreich, Micali, and Wigderson [77] showed
(constructively) that35

Theorem 1 (ZKP⊆NP). If one-way functions exist, then
every language in NP has a zero-knowledge proof protocol.
Examples: Since“shuffling with encrypting”is in NP, the ex-
istence of a protocol for performing a verifiable secret shuffle
is immediate – although the scheme arising from this gen-
eral purpose result would be far less efficient than schemes of

33If n is odd there would be a leftover A-item, which would have to be dealt with using a triple instead of a pair, just for it.
34Since it is silly to encrypt a very short message such as the 3-character string “red,” instead we agree to encrypt, say, a string consisting of

“redredred...red” with 50 repeats, padded with random characters to make it a 300-letter-long string.
35Actually, there are numerous alternative precise mathematical definitions of the concept of “zero knowledge proof,” depending on whether the

lack of knowledge is protected by assumptions of computational dificulty (and which ones) or information theoretically, whether “probabilitistic
proofs” are accepted, etc. We have absolutely no intention of providing those definitions, so in that sense the theorem statements in this paper are
subject to criticism.
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§4.12 designed specifically for shuffling. “Signature schemes”
may also be regarded as just a very special case of zero knowl-
edge proofs, as well as some elements of the verifiable secret
sharing scheme of §4.11.

Proof: The proof is actually immediate once we understand
the above zero knowledge proof protocol for 3-colorability!
Because graph 3-colorability is an NP-complete problem
[70][155], any problem in NP is readily transformed (by a
polynomial time transformation procedure known to all) to
an equivalent 3-colorability problem, with any solution of the
original NP problem being transformed to a 3-coloring and
any 3-coloring being back-transformed to a solution. Q.E.D!

Our point is that this general purpose result is a power-
house.36 It enables one to design astounding cryptographic
algorithms from the “top down”: the designer merely says
what he wants, and the result magically assures him he can
get it, and (if desired) creates it for him! Then only later does
the designer need to work on refining everything to make it
more efficient.

4.14 (Poor) Efficiency
Unfortunately, theorem 1 provides inefficient zero-knowledge
proof protocols.

Stockmeyer’s reduction [155] will convert any n-variable c-
clause 3-satisfiability problem into an equivalent V -vertex E-
edge planar graph 3-coloring problem where V = 3 + 2n + 6c
and E = 3+3n+12c. That means that, in order for the veri-
fier to obtain confidence ≥ 1−10−s of correctness, the prover
needs to perform about 2.3sV E = 2.3s(3 + 2n + 6c)(3 + 3n +
12c) ≥ 20 + 13sn2 + 165c2 encryptions (where 2.3 ≈ loge 10).
In other words, theorem 1 is telling us that any computation
involving B bit -operations may be turned into a zero knowl-
edge computation with ≤ 10−20 probability of undetected
malfeasance – but now involving about 3312B2 encryption
operations.

Example: Suppose we wish to add and multiply some 32-bit
integers: d = ab+c. That is about the simplest thing one can
do on a modern computer – some do this as a single instruction
– and it may be accomplished in somewhere around 1000 bit
operations. So according to theorem 1, we can devise a zero
knowledge proof protocol to (1 − 10−20)-convince anybody
that we really have numbers a, b, c, d, and we really have com-
puted d correctly – but not revealing what a, b, c, d are – and
this protocol will involve a mere 3,312,000,000 encryptions or
so. Since 128-bit AES encryption has been implemented to
run in about 360 clock cycles on a Pentium-II/200MHz (i.e.
1.8µsec) on average, the prover’s part in this protocol would
require about 2 hours. With hardware-assisted AES encryp-
tion this could come down to as little as 24 seconds. However,
keep in mind that the proof-time required grows as the square

of the number of gate operations in the original computation,
so that even with such hardware it quickly becomes infeasible
to zero-knowledge-prove any really interesting computation.
A computation involving 106 instructions instead of just one
would require 1012 times as much work to zero-knowledge-
prove, i.e., 7500 centuries instead of 24 seconds.

So, although theorem 1 assures for theoretical purposes the
existence of all kinds of wonderful zero knowledge proof pro-
tocols with the forward prover-verifier computation requiring
“only” polynomial time whereas the effort required to defeat
the system is (presumably) exponentially huge – in practice
these protocols require so much work that this theorem is
almost useless.

To get anything practical, we need to either improve the gen-
eral purpose theorem 1 to make it more efficient, and/or we
need to devise a toolkit of especially useful and efficient zero
knowledge proofs which may be performed far more efficiently
than by general methods. We shall do both: the improved
theorem 1 in §4.26 and the toolkit starting now.

4.15 Zero knowledge proof that know dis-
crete log

Suppose Peter Prover knows that gℓ = h, for some public non-
identity elements g and h in some large public group of known
size G, e.g. an elliptic curve group of prime order G = P . He
wishes to convince Vera Verifier that he knows ℓ, but without
revealing the value of ℓ.

Schnorr’s protocol:

1. Peter chooses v randomly mod G.
2. Peter computes t = gv and announces its value to Vera.
3. Vera computes the “challenge” c = H(g, h, t), where H

is a secure hash function (arising, e.g. from a secret-key
cryptosystem with a key devised randomly by Vera) and
announces its value to Peter.

4. Peter computes and announces r = v − cℓ mod G.
5. Vera may now compute t′ = grhc and verify that t = t′

and/or that H(g, h, t′) = c.

Why it works. Obviously, if Peter is an honest prover,
Vera’s verification will succeed. If Peter is cheating (i.e. does
not really know ℓ), then since the hash function is hard to
invert, we may assume Peter fixed the value t′ = grhc before
computing c. Furthermore, Peter had to be prepared for many
possible challenges c, since otherwise his probability of suc-
cessful lying would be too small. But that means Peter could
compute many different representations of t′ of the form grhc

with r and c both known – which implies Peter knew ℓ and
hence wasn’t cheating!

36 Some statements not in NP can also have zero-knowledge proof protocols. For example graph nonisomorphism is in coNP but not known to
be in NP. If Peter has enormous computational power he can convince Vera that two public graphs A and B are nonisomorphic as follows: Vera
chooses one of {A, B} at random, chooses a random graph isomorphic to it, and asks Peter which of {A, B} (if any) it is isomorphic to. If, every
time Vera tries this, Peter always answers correctly, then Vera becomes convinced that A and B must be nonisomorphic (since otherwise Peter
could not know which one she had in mind) although she has no idea how Peter is accomplishing what he does.

Later, Shamir [144][145] achieved a complete understanding of just which languages have prover-verifier-interaction zero knowledge proof pro-
tocols (under the usual assumption that one-way functions exist). The answer is Theorem [Shamir]: IP=PSPACE. PSPACE is the set of
languages in which membership is confirmable by an algorithm that consumes at most a polynomial amount of memory. Shamir’s result shows
that membership in any PSPACE language may instead be proven by a zero knowledge interactive-proof protocol in which the verifier performs
only a polynomial amount of work. However (which makes this result less useful for our purposes) the prover may do much more work; again in
Shamir’s picture the prover is regarded as having infinite computational power.
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One-way version: This protocol may also be conducted
with only one-way communication from Peter to Vera by hav-
ing Peter compute c using a publically known secure hash
function, in step 3. The original two-way protocol is more
secure since Peter has no way of knowing which hash function
Vera will employ. But nevertheless, if the public hash func-
tion is believed by all to be too hard for Peter (or anybody) to
invert and unrelated to discrete logarithms, then this protocol
should still be secure.

This trick for converting two-way to one-way (non-interactive)
proofs by using the output of a secure hash function instead of
random-bit challenges, is often attributed to Fiat and Shamir
[61]. It is often employable.

Forgery: Observe that if Peter, not Vera, got to pick the
challenge c (and was allowed to use any value, not necessarily
given by a secure hash function), or if he merely was fore-
warned, before he started, what the c would be, then Peter
would trivially be able to produce a false Schnorr-proof, i.e.
even if Peter did not know ℓ. He would simply compute r and
t′ and announce t′ instead of announcing t.

Joint and generalized versions: More generally, Peter
may prove that he knows ℓ1, ℓ2,..., ℓk where gℓ1

1 gℓ2
2 . . . gℓk

k = h
and g1, g2,..., gk, h are public non-identity elements in some
large public EC group. Furthermore, if there are k ≥ 2 differ-
ent provers P1, P2, ... Pk with only the ith prover knowing
ℓi, then this too may be proven, with nobody revealing their
ℓi or gℓi

i to anybody else (and again this proof may be made
non-interactive).

Generalized Schnorr protocol I:

1. For each i = 1, 2, . . . , k: Proveri chooses vi randomly
mod G, computes ti = gvi

i , and announces ti to Vera.
2. Vera computes t = t1t2 . . . tk.
3. Vera computes the “challenge”

c = H(h, g1, g2, . . . , gk, t1, t2, . . . , tk)

and announces it to the provers.
4. For each i = 1, 2, . . . , k: Proveri computes and an-

nounces ri = vi − cℓi mod G.
5. Vera may now compute t′ = gr1

1 gr2

2 . . . grk

k hc and verify
that t = t′ and/or that H(h, . . . ) = c.

Note: if one of the provers gets to choose c, rather than Vera,
then again he trivially is capable of forging his proof, i.e. get-
ting away with not really knowing his ℓi. However, the other
provers will still have to know their ℓi’s in that circumstance,
unless the corrupt prover helpfully forewarns them of what
c is going to be. (All the forewarned provers can fake their
proofs.)

Another variant: suppose there are k ≥ 2 different provers P1,
P2, ... Pk with only the ith prover knowing ℓi where now the
goal os to prove joint knowledge of ℓ =

∑

i ℓi where gℓ = h,

with nobody revealing their ℓi or gℓi

i to anybody else (and
again this proof may be made non-interactive).

Generalized Schnorr protocol II:

1. For each i = 1, 2, . . . , k: Proveri chooses vi randomly
mod G, computes ti =

∏i
j=1 gvi , and announces ti to

the next-higher prover. Finally t = tk = gv1gv2 . . . gvk

is computed and announced to Vera.

2. Vera computes the “challenge” c = H(h, g, t) and an-
nounces it to the provers.

3. Provers compute and announce r =
∑

i ri where ri =
vi−cℓi mod G. They need to do this in a way that does
not reveal the individual ℓi’s to anybody else, which of
course is trivially accomplished by only having them re-
veal their individual summands ri to each other.

4. Vera may now compute t′ = grhc and verify that t = t′

and/or that H(h, g, t) = c.

4.16 Zero knowledge test of discrete log
equality

Suppose Peter Prover knows that two publically known quan-
tities x = gℓ and y = hℓ have the same discrete logarithms ℓ
(to publically known respective bases g and h) in some group
of large prime order P . He wishes to convince Vera Verifier
of this – but without revealing what ℓ is.

The procedure (due to D.Chaum & T.P.Pedersen in the early
1990s) is as follows:37

1. Peter chooses random r mod G (but keeps it private);
2. Peter computes and prints a = gr and b = hr;
3. Vera chooses random c mod G and tells it to Peter;
4. Peter computes and prints z = r + ℓc mod G;
5. Vera verifies that gz = axc and hz = byc.

after which (assuming the two tests in the final step both
succeeded) Vera has very high confidence.

This protocol can be made non-interactive by the usual trick:
make c be a standard secure hash function H(x, g, y, h, a, b).

Application to proving Bob encrypted Alice’s mes-
sage: The Schnorr and Chaum-Pedersen protocols may be
used to provide a digital version of the following story. Alice
supplies a message M to Bob. Bob encrypts it to get E, and
hands it back to Alice. Alice needs to be convinced that E
really is an encryption of M , but Bob does not wish to reveal
the encryption or decryption key.

To do this, Bob could Elgamal-encrypt M as in §4.8 to pro-
duce E = (gr, hrM). (All operations are in a large publically
known cyclic group of publically known order.) Here h = gK

where both r and K are random and known only to Bob,
while g and h are public. Alice could now divide hrM by M
to get hr, and could demand that Bob prove via Schnorr’s
protocol that he knows r is the discrete log of gr to base g
(or hr to base h) and that Bob prove by the present protocol
that these two discrete logs are equal. That would prove Bob
genuinely Elgamal encrypted M .

Extension. Optionally, Alice could also demand that Bob
Schnorr-prove he knows Kr, the discrete log of hr to base
g (and hence also that Bob knows K). That would further
prove, not only that Bob has encrypted Alice’s message cor-
rectly, but also that he knows the decryption key K.

Application to “plaintext equality test”: Suppose we
have two ECC Elgamal encryptions (a, b) = (gr, M1h

r) and
(c, d) = (gs, M2h

s) and somebody wishes to prove that M1 =

37Here g and h are elements of a public EC-group of large known prime order G, while r, c and ℓ are integers.
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M2, i.e. that they both encrypt the same message, but with-
out revealing M1 or M2.

In view of the multiplicativity property of Elgamal encryp-
tions (§4.8), this is the same question as deciding whether
(ac−1, bd−1) is an Elgamal encryption of 1. There are two
ways to answer that:

(i) anybody in possession of the decryption key could provide
a zero-knowledge proof of knowledge (§4.15) of the base-g dis-
crete log of ac−1 and a zero knowledge proof that it was equal
to the base-h discrete log of bd−1. (This solution is unsatisfac-
tory for some purposes because it does not prove M1 6= M2,
it only proves M1 = M2.)

(ii) If we exponentiate this to a random power t (nonzero
modulo the group order) to get

(
[ac−1]t, [bd−1]t

)
(13)

then we still have an Elgamal encryption of 1 (if M1 = M2)
or of (M1M

−1
2 )t (which is a completely random non-identity

group element if the group-order is prime and if M1 6= M2).

Now, anybody in possession of the decryption key (K so that
h = gK) may now simply decrypt this Elgamal encryption.
The result (1 or a random non-1 group element) provides a
zero-knowledge proof that M1 = M2 or M1 6= M2. Fur-
thermore if nobody knows K but instead we have a cabal of
decryptors each knowing part of K (as discussed in §4.8) then
we can get a distributed plaintext equality test without any
one person ever being capable of decrypting anything.

The “distributed decryption” schemes mentioned at the end
of §4.8 can be made immune to cheating by having each par-
tial decryptor provide a ZK-proof (using the method of this
section) that he is doing exactly the exponentations he should
be doing.

4.17 Zero knowledge proof of one of several
discrete logs; ORing and ANDing zero-
knowledge proofs

If we know how to prove knowledge of a discrete log ℓ (§4.15)
then we trivially know how to prove knowledge of both ℓ and
another discrete log m. But what if we want to prove knowl-
edge of ℓ or m (but perhaps not both)?

So. Suppose Peter Prover knows h = gℓ or i = fm (f, g, h, i
public) and wants to prove it without revealing either ℓ, m,
or the knowledge of which one he knows. Peter now does the
following (we assume m is Peter’s secret, otherwise proceed
with the same protocol with names appropriately swapped):

1. Peter chooses a, b, w randomly mod G and computes
s = hwga and t = f b;

2. Peter computes and announces c = H(f, g, h, i, s, t)
where H is a secure hash function. (In the two-way ver-
sion of this protocol s and t would have been publically
announced last step and now this challenge c would be
computed and announced by the verifier.)

3. d = w and e = c− d;
4. q = a mod G and r = b− ef ;
5. Peter announces the proof (d, e, q, r).

This proof may now be verified by reconstructing s′ = hdgq

and t′ = ief r (which if Peter were honest would be the same
as s and t respectively) and then checking that d + e =
H(f, g, h, i, s′, t′).

Why it works: Peter is “allowed to forge” one of the two
proofs because he can choose its “challenge”d before the com-
mitment c is computed; then the other challenge e is deter-
mined.38 The verifier does not know which challenge was
genuine and which forged. This same idea also will work to
allow Peter to prove knowledge of one among k discrete logs
– he’s not saying which – for any fixed k ≥ 2.

More generally, the same idea will enable producing a zero-
knowledge proof of A or B whenever we know zero knowledge
proof protocols for A and for B alone, and where those indi-
vidual proofs each depend upon random challenges from the
verifier. That is:

ZK-proofc(A∨B) ≡ ZK-proofd(A)∧ZK-proofe(B)∧{d+e = c}.
(14)

(The final “+” could instead be a bitwise XOR +̂ or a group-
multiplication – any of these would yield a valid proof – and
the subscripts denote the challenge-values.) If the “random”
challenges are in fact replaceable by hash functions (the Fiat-
Shamir trick [61] for converting interactive proofs to non-
interactive ones) then the ored proof can also be done non-
interactively by making the two subproof challenges d and e
be linearly dependent as above, i.e. really arising from only
one hash value and one forger-chosen value; then all three of
{c, d, e} are chosen by the prover, with c being a hash of the
union of everything the non-interactive version of the sub-
proofs had hashed.

4.18 ZK-proof of at least k-out-of-n state-
ments

Since it has not previously been observed, we point out that
the ORing technique of EQ 14 can in fact more generally be
used to produce a ZK-proof of k-out-of-n statements, for any
fixed integers k,n with 1 ≤ k ≤ n. (EQ 14 was merely the
special case k = 1, n = 2 of the following technique.)

We simply demand that the n challenges arising in each of the
individual ZK-proofs, obey k nondegenerate linear constraint
equations (over a fixed finite field). This allows the prover to
“forge”n− k of the proofs by choosing their challenges ahead
of time, but the remaining k challenges are then unforgeable
since their values then are determined by the k constraint
equations – whose right-hand sides were randomly chosen by
the verifier.

4.19 Designated-verifier ZK-proofs; deni-
able signatures

A truly brilliantly simple consequence of the or ing trick is the
“designated verifier” zero-knowledge proof [93].

Suppose Alice wants to prove some statement S to Bob, in
such a way that Bob is convinced, but Bob cannot then re-
use that proof to convince Carl of S. Alice, in that scenario,

38This whole “or ing” idea was discovered by both Cramer, Damg̊ard, Schoenmakers, and De Santis, Di Crescenzo, Persiano, Yung independently
in 1994.
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wants Carl to remain in doubt about whether S is really true,
or whether the “proof” is just a forgery created by Bob.

Brilliant idea: Instead of proving S, Alice will ZK-prove the
statement “Either S is true, OR my (i.e. the prover’s) name
is Bob.”

More precisely the ZK-proof that “my name is Bob” can be a
ZK proof of knowledge of Bob’s secret key K where Bob had
pre-publicized Y with Y = gK (as in §4.15).

Bob, upon seeing this “S or Bob” proof coming from Alice,
will be convinced S must be true, since he knows Alice 6=Bob!
(Or more precisely, Bob knows that Alice does not know Bob’s
private key K.) Meanwhile Carl, upon seeing this proof com-
ing from Bob, will have no more reason to believe S than
before he saw the proof. (Furthermore, Carl will also be un-
convinced of S if the proof comes from anybody who might
have gotten or been given Bob’s secret key.)

(Another tool for building designated-verifier ZK-proofs are
“deniable commitments” as in §4.21.)

Privacy requirement: The prover must be certain that his
transmission of his designated-verifier ZK proof to the desig-
nated verifier is private, i.e. over a genuinely untapped chan-
nel. (Mere cryptographic protection of the transmission is in-
adequate.) Otherwise, an eavesdropper could be certain who
authored the proof (in the case where encryption was used,
the eavesdropper would first require the cooperation of the
verifier to perform decryption) and thus could be convinced
by it – contrary to the prover’s intent.

Another thing to note: The fact that the prover’s proof is
only convincing to one person, in no way prevents that prover
from providing some other proof to some other person at some
other time.

Deniable signatures: One particular kind of designated-
verifier ZK-proof is “deniable signatures.” These allow Alice
to fulfil her romantic objectives in the following story:

Suppose Alice wants to sign a love letter to Bob in such a
way that Bob becomes convinced that it really was Alice that
signed it, thus reassuring him that Alice really does love him.
But Alice does not want to allow Bob to be able later to show
that signature to some third party Carl and thereby convince
him that Alice signed it. Alice, in that scenario, wants Carl
to remain in doubt about whether the love letter really orig-
inated from Alice, or was just a forgery produced by Bob:

1. Let g be a generator of a large EC group of prime order
P . Alice (the signer)’s secret key is K (random integer
mod P ). Her public key is Y = gK .

2. To sign a message m, Alice computes h = H(m) where
H is a publically known secure hash function returning
group elements, and returns the signature s = hK .

3. To verify: Alice provides Bob a ZK proof (optionally
non-interactive) of logg Y = logh s (as in §4.16) where
h = H(m).

Note: if anybody else, besides Bob, asks Alice for that ZK-
proof, she can refuse to provide one or pretend none exist.
Therefore, in this sense, Alice’s signature is “deniable” – she
can only allow the people she chooses to verify it because ver-
ification requires her cooperation. However, that is not really
satisfactory (especially in the non-interactive case) because

Bob can remember the proof, after Alice shows it to him,
and then use it to convince Carl. Fortunately for Alice, she
can get an even better kind of deniability if she makes this
ZK-proof be Bob-only designated-verifier by or ing it with a
proof of knowledge (§4.15) of Bob’s private key. This or ing is
allowed because both Schnorr’s protocol from §4.15 and the
proof of discrete log equality from §4.16 that we need in step
3, involve random “challenges.”

4.20 Zero knowledge proof of single bit
Let the large prime modulus P , and g and h (both generators
mod P with unknown discrete logs to each other as radix) be
public.

Suppose Peter Prover chooses r randomly mod (P − 1) then
computes and publicizes B = grh±1 mod P . He wishes to
convince Vera Verifier that he really does know r, and that
the exponent of h really is ±1, i.e. that in some sense B is
an encryption of a single bit ; but Peter does not want to re-
veal either the value of r or the sign bit. The procedure is as
follows:

1. Peter chooses random s, d, w mod (P − 1).
2. Peter computes and prints a = gs(Bh±1)−d and b = gw

both mod P .
3. If −1, then Peter swaps a↔ b;
4. Vera chooses random c mod P and tells it to Pe-

ter (there is also a one-way communication version of
this protocol in which Peter computes and announces
c = H(g, h, a, b) using a publically known secure hash
function H);

5. Peter computes e = c−d and then t = w+re both mod
P ;

6. If −1 then Peter swaps d↔ e and s↔ t;
7. Peter prints d, e, s, and t;
8. Vera verifies that e + d = c, gs = a(Bh)d, and gt =

b(Bh−1)e.

after which (assuming the three tests in the final step all suc-
ceeded) Vera has very high confidence.

Why this works I: It is straightforward to confirm that if
B really was given by one of the two formulas Peter claimed,
then Vera’s verifications will succeed. It is also easy to see
that Peter does not give away any information that would
allow Vera to deduce r (beyond the original information she
already had, which would only allow her to deduce it if she
could solve huge discrete logarithm problems), nor the sign
bit, because everything Peter says is “random.” Finally, why
does Vera become confident that Peter is not lying?

Why this works II – because it is an ORing: Essentially,
Peter is proving his knowledge of the discrete logarithm to the
base g of either B/h or Bh by or ing two Schnorr ZK-proofs
(§4.15) using the or ing method of §4.17 with the two sub-proof
challenge values being d and e. (We apologize for streamlin-
ing the proof, which has somewhat obscured this structure.)
The reason it is essential that ℓ be unknown where h = gℓ,
is that we need the or to be an exclusive or to get a bit,
or (equivalently but viewed differently) we need to prevent
proof-forgery.

0-1 versus ±1 view of bits: Of course instead of B = grh±1

we may instead treat B′ = gr(h2){0 or 1} via B′ = Bh.
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Joint version: If there are k ≥ 2 different provers P1, P2, ...
Pk with only the ith prover knowing ri, then this too may be
proven, with nobody revealing their ri or gri to anybody else,
and again this proof may be made non-interactive. The last
prover is special since he alone knows the ± sign and hence
the bit; and he wishes to avoid revealing it to anybody else.
The proof method is the same – an or of two Schnorr proofs
(§4.15) – except using the joint/generalized Schnorr protocol
II. In this proof, the special prover devises the two subproof
challenges (instead of Vera; but doing so in such a way that
the two subproof challenges sum to Vera’s overall challenge)
and informs the other provers what they are. This enables
him to forge one of his two Schnorr-proofs. All the other
provers act honestly.

4.21 Bit “commitments” and “oblivious
transfer”

We just showed how Peter may convince us that we have in
our hands, the encrypted version B = grhb of a single bit
b = ±1 – but in such a way that we have no idea what b is.
Peter could, in addition, provide us with H(r, g, h, b), where
H is a publically known secure hash function. Then later,
Peter could, if he desires, reveal b (by revealing g, h, and the
random value r) to us. After checking that H(r, g, h, b) and
B really agreed with our previously stored values, we would
then be convinced that Peter’s bit really was b.

This “bit commitment” scheme is the digital analogue of the
following story. We watch as Peter locks one bit (whose value
is unknown to us) in a safe. Later, if Peter wants, he can give
us the key to the safe.

Although this story may seem silly at first, bit commitment
has turned out to be very useful. Trial lawyers will readily un-
derstand how that can be: if a witness has previously stated
some alleged fact (“committing” himself) then he is unable
later to change his story without being revealed as a perjurer.
Committing single bits is the most flexible and highly con-
trollable form of information committal.

In fact, each round of our general purpose zero knowledge
proof of any NP statement (theorem 1 from §4.13) could be
viewed just a set of trit-commitments39 and revelations.

A faster (but less flexible) bit commitment due to
Torben Pedersen. Let g and h be public nontrivial ele-
ments of a public elliptic curve group of known large public
order G. Let h = gℓ where ℓ is unknown to Peter. Peter
may commit a bit b by sending gxhy to Vera, where b is the
least significant bit of the integer x and where Peter chooses
x and y otherwise-randomly mod G. Peter reveals the bit by
revealing x and y, whereupon Vera confirms by recomputing
gxhy.

Still faster bit commitment. The elliptic curve version of
the bit-commitment scheme we just described is the fastest
known bit commitment method for any given (sufficiently
high) level of security. However, it is possible to commit
bits faster by basing everything on secret-key cryptography
instead of public key, which as we remarked in §3.3, is far
faster. The price we pay for this speedup is that the prover
is now allowed to commit a nonbit, i.e. random garbage,

with that fact only being revealed later when we “open the
safe.” (In contrast, the above schemes only permit commit-
ting genuine bits, with attempts to submit random garbage
being rejected immediately.) This is not a tremendous loss,
since Peter could simply later refuse to open the safe even in
the usual scheme, which would have almost the same effect.

The faster method is this. To commit a bit b, Peter prepares a
2n-bit string consisting of n copies of b followed by n random
bits. He then encrypts it with a secret key cryptosystem. To
reveal b later, he reveals the secret key.

Far faster bit committing is possible if Peter is willing to com-
mit n different bits simultaneously, and is willing to guarantee
that later, when he reveals the bits, he will reveal all of them
at once. The method is: Peter prepares a (n + 2s)-bit string
consiting of his n bits, followed by s zero-bits, followed by s
random bits. He then encrypts it with a secret key cryptosys-
tem with later revelation by revealing the (s-bit) secret key.
Both of these methods work if we assume s is large enough
that Peter cannot afford to search ≈ 2s possibilities in an
effort to try to produce suitably miraculous fake crypto keys.

Deniable bit commitments [27]:
Bit commitment: Bob commits 0 by sending gr, and com-

mits 1 by sending αgr, to Alice, who knows a satisfying
α = ga. Nobody else (including Bob) knows a.

Revelation: Bob reveals r to Alice over truly-private chan-
nel (not just cryptographically protected, but truly un-
tapped). Alice computes gr and αgr to obtain commit-
ted bit.

Denial: Although Alice is convinced the bit Bob had com-
mitted was indeed the bit that was later revealed, she
is unable to convince anybody else (Cindy) of this. If
she tries, Bob denies it and argues that Alice could have
received r − a instead of r (in which case the bit would
have been reversed); there is no way for Cindy to tell
which of {Alice, Bob} is the liar.

Oblivious transfer. A different useful primitive operation
is “oblivious transfer” [58][100] This is the digital equivalent
of the following story: Peter puts bits b1 and b2 into two
envelopes, labeled 1 and 2. Vera picks one of the envelopes
(Peter does not know which) and opens it; the other envelope
is burned without opening it.

It is also possible to perform oblivious transfer of multibit
messages, where Vera gets to read either message 1 or mes-
sage 2, but not both. This is “1-out-of-2” oblivious transfer.
It is also possible to consider “A-out-of-B” oblivious transfer
for any 0 < A < B. In no case is Peter told which message(s)
Vera read and which were burned.

While again this story may seem silly, it again has turned out
to be very useful in the design of zero knowledge protocols.
Oblivious transfer is something like bit commitment, except
that Peter cannot be sure which of his bits Vera was able to
read. That forces him to be cautious later to avoid being re-
vealed as a perjurer. Meanwhile Vera was unable to read both
bits (and in the random-choice version is not sure which bit it
was either, and/or Vera does not get to control which bit she
reads) preventing her from gaining “too much” knowledge.

Here is Bellare & Micali’s protocol [15] for 1-out-of-2 message
transfer. We assume there is a large public cyclic group (e.g.

39Trits, not bits, since the argument was based on three-coloring; true bits could be used if we instead based the proof on 4-coloring.
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an elliptic curve group of prime order) of publically known or-
der G, in which a non-identity element g is publicized. There
are two parties: the “Sender” and the “Chooser.” The sender
initially has messages M0 and M1, and at the end the Chooser
has message Mµ (but no knowledge about M1−µ) where the
chooser chooses µ ∈ {0, 1} and the sender does not know µ.

1. Sender picks a random non-identity group element C
and announces it to Chooser.

2. Chooser chooses a random nontrivial r mod G, com-
putes Kµ = gr and K1−µ = C/gr, and sends K0 to
Sender.

3. Sender computes K1 = C/K0, chooses random s0, s1

mod G, computes e0 = g[s0], e1 = g[s1], E0 =
H(Ks

0)+̂M0, and E1 = H(Kt
1)+̂M1, then sends

(e0, E0, e1, E1) to Chooser, where H is a publically
known secure hash function and +̂ denotes bitwise
XORing.

4. Chooser computes message

Mµ = H((g[eµ])r)+̂Eµ = H(K
[sµ]
µ )+̂Eµ.

Note: in this protocol Sender, if he wanted to be uncoop-
erative, could have swapped M0 and M1 before using them.
In that case, the effect would be as if µ were being chosen
randomly and would be unknown to both parties.

Oblivious transfer is more powerful than bit commit-
ment. It is possible to perform bit commitment by using
oblivious transfer (but obviously the reverse is not possible).
Simply transmit n bits b1, b2,..., bn whose XOR is the desired
bit b (but they are otherwise random) via 2-to-1 oblivious
transfer in such a way that the choices are (1) the correct bk

and (2) a random bit. Then, tell the chooser (after he has
chosen) which of (1) and (2) were which, so that he knows
(but the Sender does not) which of the bits he received were
correct. Then, to reveal b later, retransmit all the bk in the
clear. (Warning: There is some probability that this scheme
will fail by either accidentally revealing b or by allowing the
Sender to make an undetected false revelation later. But these
probabilities are exponentially small as a function of n as n
is made large.)

Message commitment may also be done via oblivious transfer,
for example by simply doing one bit commitment for each bit
of the message. However, there is a much faster way which
often is acceptable: Peter can send a long message M to Vera
by 1-out-of-2 oblivious transfer of each of the bits of FK(M)
(with the other choice being a random bit), where FK(M) is
a secret-key encryption of M with publically known key K
Then Peter reveals to Vera which of the choices was genuine
in each case, so that Vera then knows (although Peter does
not) which bits of FK(M) she successfully received. Peter
later can reveal M .

Oblivious transfer is necessary and sufficient for two-
party equality testing. Suppose Alice has a number X and
Bob has a number Y , and they wish to test whether X = Y ,
but do not wish to reveal any information about X or Y (aside

from the fact that X = Y or X 6= Y ) to each other or anybody
else.

This problem is surprisingly difficult. Numerous unsatisfac-
tory solutions were considered in [59].40

One idea is for Alice and Bob to encrypt their numbers and
compare the encryptions, but if the numbers are known a pri-
ori to come from a small set of possibilities, then that would
be defeated by exhaustive search. Another idea is for Alice
and Bob to announce the encrypted numbers to Carl and ask
him whether they were identical. But Carl might lie.

When we say that oblivious transfer is necessary to solve this
problem, we mean, more precisely, that if the X = Y test were
possible in which only Alice learned the test-result, it could be
used to implement one form of oblivious trit-transfer. Specif-
ically, let Alice and Bob pick a sequence of random num-
bers from the set {1, 2, 3} and repeatedly perform equality
tests. If X = Y , then Alice knows Bob’s number. Otherwise,
she knows Bob’s number is one of two possibilities, i.e. she
“fails to receive” Bob’s number. Oblivious transfer as origi-
nally defined by Kilian [100] involved bits being transmitted
Bob→Alice and either being received (in which case Alice
knew she’d received them and knew their value) or not (in
which case Alice knows she failed to received the bit) with
Bob not knowing which bits were received and which were
not, and with the question of which being determined by ran-
domness, not by either party.

Here is how [59] do the equality test with the aid of oblivious
transfer. (The procedure will incur some probability 2−s of
error; we assume X and Y are both n-bit numbers.)

1. Choose s large enough that the error probability 2−s is
acceptably small.

2. Alice chooses n pairs (Ak0, Ak1) of random s-bit num-
bers, k = 1, 2, . . . n.

3. Bob chooses n pairs (Bk0, Bk1) of random s-bit num-
bers, k = 1, 2, . . . n.

4. Alice computes TA =
∑n

k=1 Akxk
where the

∑
denotes

a bitwise XOR and where xk is the kth bit of Alice’s
number X .

5. Bob computes TB =
∑n

k=1 Bkyk
where yk is the kth bit

of Bob’s number Y .
6. Alice chooses one number Bkσ from each of Bob’s pairs

by 1-out-of-2 oblivious transfer. She of course chooses
the correct σ = xk each time.

7. Bob chooses one number Akσ from each of Alice’s pairs
by 1-out-of-2 oblivious transfer. He of course chooses
the correct σ = yk each time.

8. Alice computes the XOR-sum of her new numbers and
XORs it with TA to get SA.

9. Bob computes the XOR-sum of his new numbers and
XORs it with TB to get SB.

10. Alice and Bob reveal SA and SB, and then X = Y if
and only if SA = SB.

This procedure is subject to the criticism that Alice and Bob
might not want to cooperate with each other. In particu-

40A humorous one is: hash the numbers into the set of valid telephone numbers. Alice phones her’s.
Guy on other end of phone: Hello?
Alice: Hi. This is Alice. I’d like to leave a message for Bob.
Guy: Huh? Who in hell are Alice and Bob? You must have the wrong n-
Alice: 〈click〉.
Then Bob phones his number. Bob: Hello, this is Bob. Did Alice leave me a message?
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lar Alice might cooperate up until the final step, and then
lie about the value of SA. In that case Bob would (almost
certainly) conclude X 6= Y while Alice would know the truth.

To defeat that criticism, the revelations could proceed bit by
bit in order, terminating as soon as a disagreement was seen.
(See also §4.24.) That would still permit one party to lie or
cease cooperating at some point, but that person could only
have 1 bit more information than the other, i.e. at best half
the error probability of the other, which is a far smaller ad-
vantage.41

A different (but very similar) solution to this X = Y problem
was given much later by [26], who seemed unaware of [59].
That solution also has a 1-bit asymmetry. The authors of [26]
then remarked that the question of designing an efficient sim-
ilar protocol to settle the “millionaire’s problem42”of deciding
whether X > Y , remains unsolved. We shall solve it in §4.27.

4.22 Zero knowledge proof number is in in-
terval

We can use the single-bit proof of §4.20 to prove that an
encrypted number z is k bits long, i.e. to prove that z ∈
{0, 1, 2, . . . , 2k − 1}.
Specifically, let the large prime modulus P , and let g and h
(both random fixed generators mod P ) be public.

Suppose Peter Prover chooses r randomly mod (P − 1) then
computes and publicizes B = grhz mod P . He wishes to con-
vince Vera Verifier that he really does know r, and that the
exponent z of h really is k bits long. But Peter does not want
to reveal the values of r or z.

The procedure: Let the binary representation of z be
z =

∑ℓ−1
j=0 zj with zj ∈ {0, 2j}. Peter now simply sends Vera

the values of Bj = grj hzj mod P for each j = 0, 1, 2, . . . , ℓ−1

and uses appropriate 1-bit proofs (albeit based on h2j

rather
than h, and on {0, 1} rather than {±1} bits, see §4.20) to
convince Vera that each Bj encodes a single bit. Here Pe-
ter chooses the rj randomly subject to the constraint that
∑ℓ−1

j=0 rj = r. Finally, Vera checks that B =
∏ℓ−1

j=0 Bj mod P .

It is also possible to prove (without revealing ℓ) that a discrete
logarithm ℓ lies in any particular public finite set, not required
to be a contiguous interval, using the method of §4.17. This
requires a number of modular exponentiations growing lin-
early with the cardinality of the set.

Extension to arbitrary interval sizes. By proving that
x = x1 + x2 + ... + xℓ where xi is proven to be in [0, 2i − 1],
(where only the subscripts that correspond to the locations
of the 1-bits in the binary expansion of B are used) we can
prove in zero knowledge that x lies in the interval [0, B − 1].

4.22.1 A flawed procedure by Fabrice Boudot

Fabrice Boudot was unhappy with the fact that the first proce-
dure only permits intervals of cardinality 2ℓ (the extension to

arbitrary interval sizes seems onerous) and also was unhappy
with the fact that the work (as measured, e.g. by the number
of modular exponentiations required) grows proportionally to
ℓ for large ℓ; he would prefer slower growth.43 Boudot, in
a seemingly excellent paper [25], was able to devise a more
complicated zero knowledge proof of membership in any ar-
bitrary integer interval z ∈ [a, b], and in which the number
of modular exponentations ultimately apparently grows only
like O(1 + log ℓ) when ℓ = lg(b− a + 1) is large.44

But unfortunately, Boudot’s “improvement” is not an im-
provement! That is because Boudot depends for his security
both on the hardness of discrete logarithms (in elliptic curve
groups, if desired) and on the hardness of factoring large com-
posite integers. Therefore, really, to get the same security as
our ECC-based scheme involving O(ℓ) modular exponentia-
tions each with N -bit numbers, Boudot must use modular
exponentiations with ≈ N3-bit numbers (to be more precise
see footnotes 13 and 15). So when N is large, just one of
Boudot’s exponentiations requires more runtime than our en-
tire “worse” procedure even if ℓ ≈ N .

4.22.2 A new procedure that repairs Boudot’s flaws

It would be better to alter Boudot’s techniques so that they
(1) depend only on the hardness of discrete logarithms (in
elliptic curve groups, if desired) and not on the hardness of
factoring, (2) thus then represent a true speedup.

We shall now show how to accomplish that.

Boudot’s work involved 3 main ingredients: (a) the O(ℓ)-step
zero knowledge proof described above that some integer is in
the interval [0, 2ℓ−1]; (b) a zero knowledge proof that a num-
ber is a square; (c) a zero knowledge proof that a number
that the prover knows is in some interval, is in some (signif-
icantly larger) interval. (This is proving something weaker
than what the prover knows, but this weakness allows the
proof to be done fast.) Boudot’s plan, roughly, was to ex-
press x as the sum of a square s2 and a small number (of
size O(

√
x)), prove the small number small-enough using (c),

prove s2 square using (b), and prove s small using (c) or a
recursive proof.

A simpler plan would involve ingredients (b) and (c) only.
It is to prove membership of x in an interval L ≤ x ≤ U
by proving the nonnegativity of x − L and U − x. To prove
nonnegativity we can use Lagrange’s theorem that any num-
ber is the sum of 4 squares (for a fast algorithm to find 4
such squares see [132]). But Groth [79] saved work with the
more clever suggestion45 of proving 4y + 1 is the sum of three
squares to prove an integer y nonnegative.

Boudot’s ingredients (b) and (c) both depended on the hard-
ness of integer factoring and thus Boudot’s methods remain
of no real interest. We now show how to replace both ingredi-
ents by with new ZK-proofs not dependent on the hardness of
integer factoring and only dependent on the hardness of the
discrete logarithm problem in elliptic curve groups.

41 Note also that Alice could consistently lie about X and act as though it were X′. This would cause her to learn whether X′ = Y , which would
be useless information for Bob but somewhat useful for her. Also, either Alice or Bob coul simply cease cooperating at any point and then neither
would learn anything. These problems are inescapable.

42Alice and Bob are both millionaires and wish to determine who is richer, but without revealing their wealth.
43And of course, the runtime growth of the more general procedure that can handle membership in any finite set, is far worse still.
44Actually, this estimate oversimplifies the situation, i.e. is not strictly true.
45Any nonnegative integer of the form 4y + 1 is a sum of three squares.
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ZK-proof for a sum of squares. Given that a2 + b2 + c2 =
4y + 1, how do we ZK-prove this? I suggest we prove

(T a)a(T b)b(T c)c = (T y)4T 1 (15)

where T is a generator in an elliptic-curve group. More
precisely, one should instead use a homomorphic ECC-
cryptosystem because T x does not actually hide x if x is
a small integer, but the ElGamal-like cryptosystem x →
(gr, hrmx) where g, h, m are public constant EC elements with
h = gℓ and ℓ is the secret key, does hide x from any body ig-
norant of the secret random integer r. Equation 15 above
gives our idea in a simplified notation; the real idea is to use
the full tuple T = (gr, hrmx) instead of T x everywhere T x

(for x ∈ {a, b, c, y, 1}) occurs in that equation, where tuple
exponentation and multiplication is elementwise.

A ZK-proof may now be produced by the usual tools for proofs
of discrete log equalities, etc.; we omit details.

ZK-proof of smallness. We also need to ZK-prove that
a, b, c are small enough so that |a|, |b|, |c| ≪

√
P where P is

the (enormous) known cardinality of the elliptic curve group
(which in applications is going to be far larger than y). That
assures there is no modular “wraparound” when computing
a2 + b2 + c2 so that then y must be nonnegative. The small-
ness proof may be accomplished with the aid of this new

ZK-proof of membership in a much-widened inter-
val. Let b and t be public positive integers and let g and
h be independent random fixed nonidentity public group ele-
ments in some large public elliptic curve group of large known
public prime order G. Peter Prover knows an integer x and
knows 0 ≤ x ≤ b for some public integer constant b. He
wishes to convince Vera Verifier of the weaker statement that
|x| ≤ B

def
= 2tb but does not wish to reveal x.

1. Peter chooses random r mod G.
2. Peter computes and announces F = gxhr mod N (thus

publically “committing” to x).
3. Peter: repeat

(a) Pick random w with 0 ≤ w ≤ B− 1 and random n
mod G.

(b) Peter computes W = gwhn and announces it to
Vera.

(c) Peter asks Vera for a random secret t-bit integer c,
and Vera obligingly generates and supplies one.

(d) Peter computes D = w + xc and E = n + rc.

until cb ≤ D ≤ B − 1.
4. Peter computes i = hE .
5. Peter sends (D, i) to Vera.
6. Vera verifies cb ≤ D ≤ B − 1 and W = gDiF−c.
7. Peter proves knowledge of the discrete log (which is E)

of i to the base h, but without revealing E, by using
Schnorr’s protocol from §4.15.

Why it works. Vera reasons that Peter had to be prepared
to receive almost any t-bit random challenge number c. Ad-
mittedly, there are a few c’s which Peter will not handle, in
which case he performs another iteration of the repeat-until

loop. But if Peter performs too many iterations, Vera will
become suspicious: the probability that any particular iter-
ation of the loop will fail (i.e. require another go) is ≤ 2−t.
(If we add to the protocol, as we really should, that Vera
refuses to believe Peter if he employs more than S loop itera-
tions, then there is an acceptably small probability≈ 2−St

that the whole protocol will fail even if Peter is honest.)
Note that W = gDiF−c = gD−xchE−rc = gwhn. If |x|
had been too large, namely if x had disobeyed Peter’s claim

|x| ≤ B
def
= 2tb, then there usually would not have existed any

D with cb ≤ D ≤ B−1 with D−xc = w where we know that
Peter had to choose w (since he publically committed to it via
announcing W ) before knowing what c was going to be. So
Vera is fairly confident that Peter’s claim must be correct (or
else Peter simply got very lucky – the probability he was the
recipient of such luck is ≤ 2−t – but by repeating the proof R
times the probability of such luck decreases to 2−Rt).

Why does Vera have zero knowledge about x? It is not hard to
see that D is precisely uniformly randomly distributed within
its allowed range cb ≤ D ≤ B− 1 and hence there is no infor-
mation available from D alone. If Vera knew both D and E
she perhaps could then use the 2 linear equations D = w +xc
and E = n + rc to constrain the 4 unknowns w, x, n, r and
thus gain partial knowledge. However, she does not know E.
With only one equation she gains no knowledge about x or w
because r and n are completely random.

Finding sums of squares: Finally: how hard is it to find
3 squares that sum to a given number (which is something
our prover must do)? Rabin and Shallit [132] gave a fast
algorithm.

Groth [79] noted that if the number x = 4y+1 is small enough
so that comparable-size numbers can easily be factored into
primes (this is often true in applications) then the following
simple method works:

1. Choose a random even integer a with a2 ≤ x.
2. Factor x− a2 into primes.
3. If not all the primes are of the form 4m + 1, then go

back to step 1.
4. Each prime p of the form 4m+1 in the factorization has

a representation as a sum of two squares p = A2 + B2,
and the representation is unique up to the signs of A
and B. Find it using Cornacchia’s algorithm ([37] sec-
tion 1.5.2) and randomize the signs.

5. If p = A2+B2 and q = C2+D2 then pq = (AC+BD)2+
(AD − BC)2 can be used to build up a 2-square repre-
sentation of the prime-product x−a2 = b2 + c2. We are
now done: x = a2 + b2 + c2 is a random representation
of x as a sum of three squares.

Heuristic arguments46 indicate that the loop in steps 1-3 will
iterate O(log x) times in expectation. Hence this procedure
should run quickly.

46The “probability” that a number N has all prime factors of form 4m + 1 is, assuming each prime factor “decides” to be of form 4m + 1 or not
by flipping a coin, about 2−F where F is the number of distinct prime factors of N . But 2F ≤ d(N) where d(N) is the number of divisors of N .
And a theorem of Dirichlet says that d(N) = ln N + O(1) on average. So the rough “probability” random N has all prime factors of form 4m + 1
should be ≥ 1/ lnN .
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4.23 Proof of El Gamal encryption of a sin-
gle bit and of a number in an interval

The previous “proof of knowledge of a single bit,” “proof of
knowledge of one of two discrete logarithms,” and “proof of
equality of two discrete logs” will not be quite good enough
by themselves for our later needs for homomorphism-based
voting.

What we shall need for that purpose is a proof of one of two
Elgamal encryptions. That is, Peter Prover knows the 2-tuple

(gα, hαi±1) (16)

(and in fact knows the value of every letter g, h, i, α in it)
which is an Elgamal encryption (§4.8) of the message i±1.
Here g, h, i are public group elements in a public elliptic
curve group of large prime order G and α is a random integer
mod G. Note this is the Elgamal encryption of a single bit
(the ± sign).

Peter wishes to prove to Vera that this 2-tuple (s, t) is the
Elgamal encryption of either i or i−1 but without revealing
which, and without revealing the random (mod G) integer α.

This comes down to proving that logg s = logh(t/i) or =
logh(ti). We’ve already seen in §4.16 how to prove the equal-
ity of two discrete logs without revealing either, and we’ve
already seen how to prove knowledge of one OR the other
among two discrete logs – it is just that we now need to do
both at the same time.

Here is the proof protocol [42]:

1. Peter announces the 2-tuple (s, t) = (gα, hαi±1).
2. Peter chooses w, r, d at random mod G;
3. Peter computes a1 ← grsd; b1 ← hr(ti±1)d;
4. Peter computes a2 ← gw; b2 ← hw;
5. If −1 then Peter swaps (a1, b1)↔ (a2, b2);
6. Peter sends (a1, b1, a2, b2) to Vera;
7. Vera selects a challenge integer c mod G at random and

sends it to Peter;
8. Peter computes e← c− d; q ← w − αe;
9. If −1 then Peter swaps (d, r)↔ (e, q);

10. Peter sends (d, e, r, q) to Vera;
11. Vera verifies c = d + e, a1 = grsd, b1 = hr(ti)d,

a2 = gqse, and b2 = hq(y/i)e.

If Peter instead wished to prove (gα, hαiv) was an Elgamal
encryption of an exponentiated number v lying in the inter-
val [0, 2ℓ − 1] then he could now proceed similarly to §4.22
by proving that this 2-tuple to be the elementwise product of
the Elgamal encryptions of ℓ single bits based on i, i2, i4,...,
iℓ but using {0, 1} rather than ±1 bits.

4.24 Co-signing, dating, and “bit-by-bit re-
lease” technique

Cosigning problem. Suppose Alice and Bob both have a
document M they both want to sign, but neither can counte-
nance the horrible possibility that the other could get ahold
of a copy of that document signed only by themself and not

by that other (which would allow them to misuse that once-
signed document later).

The solution is for Alice and Bob to each compute their
signatures and then release them to one another one bit at a
time in alternation. Each bit comes accompanied by a zero
knowledge proof of its correctness. That way, if at any point
one of them ceases to cooperate, then they are at best “1 bit
ahead” in the race to compute the remaining unrevealed bits
by exhaustive search (and hence can expect at best a factor-2
speedup).47

We can provide a concrete implementation of this idea using
the Nyberg-Rueppel signature scheme IIIE of §4.9. Alice be-
gins by releasing r in her signature (r, s) in its entirety. Since
r is just a random group element this reveals nothing by itself.
Then, to release s one bit at a time, she proceeds as follows.

1. Alice publishes gs (and/or g−s) thus publically “com-
mitting” to s and also allowing Bob to verify (by check-
ing that M = g−sh(rx)r) that she indeed has a valid
signature in mind. Suppose s is N bits long.

2. Alice releases the most significant bit b of s. She proves
this bit valid by showing that gt (where t = s−B where
B = 2N−1b, i.e. where gt = gs/gB) represents the
discrete exponential of an (N − 1)-bit number t. She
does this using the interval-containment zero-knowledge
proof for t given in §4.22.

3. Alice can now proceed similarly for the next most sig-
nificant bit (only using t and N − 2 instead of s and
N − 1), and so on.

By reusing the single-bit proofs inside the procedure of §4.22
this runs in O(1+N) modular exponentiations total (without
reuse it would have been O(N2)).

More precise explanation of bit-by-bit-revelation: Let
g and h be random (but fixed) public nonidentity elements
in a large public elliptic curve group of known large prime
order G. Here is how Alice may reveal an ℓ-bit secret integer
s bit-by-bit to Bob.

1. Alice chooses a random r mod G (but keeps it secret)48.
2. Alice begins by revealing B = gshr. (This publically

commits her to s.)

3. Let the binary representation of s be s =
∑ℓ−1

j=0 zj with

zj ∈ {0, 2j}. Alice sends Bob the values of Bj = grjhzj

mod P for each j = 0, 1, 2, . . . , ℓ− 1 and uses appropri-
ate 1-bit proofs (albeit based on h2j

rather than h, and
on {0, 1} rather than {±1} bits) to convince Bob that
each Bj encodes a single bit. Here Alice chooses the rj

randomly subject to the constraint that
∑ℓ−1

j=0 rj = r.
4. Alice proves each of the Bj encodes a single bit using the

protocol of §4.20 but for {0, 2j} bits rather than {0, 1}
or {±1} bits.

5. Bob checks that B =
∏ℓ−1

j=0 Bj mod P . He is then con-
vinced that the Bj encode each of the ℓ bits of s.

6. Alice also provides H(rj , g, h, zj) for j = 0, 1, . . . , ℓ − 1
where H is a publically known secure hash function.

47This also allows Alice and Bob to date the document they are signing, by simply including the date – which they must agree on – as part of
the document before they begin.

48This is not the same r as in the above signature scheme. We here are disregarding any applications to signatures or anything else, and just
considering here how to reveal s bit-by-bit.
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7. Now Alice may reveal these bits one by one. To reveal
Bj as in §4.21, she simply announces zj and rj . Bob

may then verify the hash values and that Bg−zj

is the
product of the other Bj ’s.

This requires Alice to compute 2+4ℓ modular exponentiations
while Bob computes 4ℓ.

Blindness. This all also works for blind signatures using the
blindness-by-hashing idea at the end of §4.10.

4.25 Other zero knowledge proofs
Here is a zero knowledge proof that Peter Prover knows the
prime factorization of some composite number N .

1. Vera chooses a random x mod N and sends x2 mod N
to Peter.

2. Peter uses his knowledge of N ’s prme factorization to
compute a random square root r (mod N) of x2.

3. Peter chooses a random y mod N .
4. Peter computes s = y2 mod N and announces it to Vera.
5. Peter sends a secret-key encryption of y and a secret-key

encryption of yr to Vera (using randomly chosen secret
keys).

6. Vera chooses which one she wants revealed.
7. Peter reveals either y or yr by sending Vera the appro-

priate one of the secret keys.
8. Vera decrypts and checks that y2 = s or that (yr)2 =

sx2.

After t repetitions of this protocol (with different randomness
each time) Vera has confidence 1−2−t that Peter really knows
the factorization of N . This works because it is known that
the ability to find square roots mod N is equivalent to being
able to factor N . It is zero knowledge because Peter does
not reveal r =

√
x2, but only a random residue or random

multiple of r.

A zero knowledge proof that a given number N is a product
N = pq of two safeprimes, is presented in [31]. This is useful
for convincing somebody that an RSA modulus is safe to use,
but without revealing the decryption key. (This reference also
shows how to ZK-prove a number is a “pseudoprime.”)

Damg̊ard and Fujisaki [45] advanced a scheme in which in-
tegers i may be “committed” in the form gihr mod N where
N is a fixed public product of two large unknown safeprimes,
and efficient zero knowledge schemes are given for checking
that a = b + c or that a = bc where a, b, c are committed
integers. For methods for performing finite field arithmetic
in zero knowledge, see [39]. Some of these ideas were used
in a voting scheme [46]. Lipmaa [108] then proposed zero
knowledge proofs for arbitrary diophantine equation state-
ments. We shall not discuss all these proofs. They all are
less desirable than ours because they depend on the hardness
of factoring and hence are 50 times slower (cf. §3.2) than
same-security proofs which depend only on the hardness of
the discrete logarithm problem in elliptic curve groups.49

Although these references make it possible to do finite field
and exact-integer ring operations in zero knowledge (and see
§4.27 for multiparty finite field ring-operations) reasonably

efficiently, real arithmetic using inexact representations of re-
als (such as IEEE-754 arithmetic) is a complete nightmare.
It is precisely this problem which presently prevents the bet-
ter multiwinner voting schemes from being implemented in a
secure and efficient way.

Fundamental open question (approximate arith-
metic): Can you invent an efficient scheme for perform-
ing some reasonable kind of inexact real arithmetic (such as
IEEE-754) in zero knowledge or via secure multiparty com-
putation?

4.26 Faster general purpose zero knowledge
proofs

Theorem 2 (NP⊆linear time zero knowledge). An oper-
ation of any publically known forward-flow logical circuit with
W “wires” (including inputs and outputs) and G “logic gates”
(each either a 2-input NAND or 1-input NOT gates) may be
verified in zero knowledge (i.e. without revealing the boolean
logical states of either its input or output bits (or of any in-
ternal bits) by a procedure involving ≤ 1W +6G (prover) plus
≤ 8G (verifier) modular exponentiations or (to get more se-
curity with less work and fewer stored bits) exponentiations in
an elliptic curve group of prime order. If desired, the commu-
nication in this protocol can be made entirely “one way” (from
the prover to the verifier).

Proof: The Prover encrypts each bit b = {0 or 1} on each
“wire” inside the circuit as grhb where r is randomly chosen
and secret (and different for each wire), and prints out a pic-
ture of the circuit diagram, with each wire labeled with the
encrypted value of its logical-state bit. Each such encryption
may be proven legitimate via the method of §4.20.

The fact that a NOT gate works may be proven as follows.
Suppose its input bit b has encryption e = grhb, and its out-
put bit 1 − b has encryption f = gsh1−b; then the product
m = ef2 is m = gr+2sh2−b. The Prover now proves that the
exponent 2−b of h inside the formula for m lies in the interval
[1, 2] – or equivalently that the exponent 1− b of h inside the
formula for m/h lies in the interval [0, 1]. This may be done
using the protocol of §4.20.

The fact that a NAND gate works may be proven as follows.
Suppose its input bits b, c have encryptions x = grhb and
y = gshc, and its output bit d has encryption z = gthd;
then the product m = bc2d4 is m = gr+2s+4thb+2c+4d. The
Prover now proves that the exponent b + 2c + 4d of h in-
side the formula for m lies in the interval [1, 4], i.e. in the
set dcb = {001, 010, 011, 100} of binary representations. (Or
equivalently that the exponent b + 2c + 4d − 1 of h inside
the formula for m/h lies in [0, 3].) This is a cardinality-2ℓ

interval-membership proof and may be performed using the
protocol of §4.22. Q.E.D.

Remark. The prover sometimes finds it desirable to reveal
the output bit (e.g. to prove it is 1, to prove “satisfiability”).
Such bit-revelations are possible as described in §4.20.

This scheme is new. It is a substantial speed improvement
over theorem 1: Using Zmodexp to perform 4.66msec 512-bit
modular exponentiations, a 1000-gate circuit would be verified

49One interesting application of these was Lipmaa et al. [109]’s proposed cryptographic scheme for performing Vickrey auctions [163]. We shall
discuss our own solution to that in §4.27.
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in ≤ 8000 modular exponentiations, plus a smaller number of
secure hash function computations. This would require about
40 seconds on Pentium-II/350MHz (as opposed to 2 hours as
in §4.14). Even more importantly, the runtime now grows
only linearly (not quadratically) with the number of gates in
the circuit being simulated; hence a 106-times larger circuit
could be handled in 1.3 Pentium-years.

Despite this improvement, this must still be regarded as very
slow, so slow that this technique must be employed only a
few times (if at all) during any election, and certainly not,
e.g. once per vote.

The next theorem will show how to go faster by using secret
key cryptography in place of public key, and by allowing a
some exponentially small probability 2−s of error or unde-
tected malfeasance and by allowing many rounds of interac-
tion. By combining ideas of Kilian, Micali & Ostrovsky [101]
with those of Brassard, Chaum, Crepeau [28]50 we get the
fastest method known, and it is also quite simple. It is highly
recommended.

Theorem 3 (Fast ZKP for NP). Any operation of a G-
gate publically known flow-forward logical circuit (all nontriv-
ial kinds of 2-input gates are permitted) may be proven in
zero knowledge, i.e. without revealing knowledge of any in-
put or intermediate bit. (The output bit may be revealed, or
not, whichever the prover wishes.) The ZK-proof consists of
(1) prover commits two strings of 12G bits each, (2) verifier
transmits information to prover, (3) prover replies, (4) one of
the two committed bit-strings (chosen by the Verifier) is re-
vealed. The whole 4-step proof is then repeated s times, after
which the probability that the verifier has failed to spot a flaw
in any non-proof is ≤ (3/4)s. If the bit-string committals are
performed using AES-like secret key cryptography with a K-
bit key (as in §4.21) then the entire proof & verify procedure
requires O(GsK) work.

Proof: The first lemma [101] is that any ZK proof which is
of the following “subset revealing” form:

1. Prover sends verifier some bit commitments;
2. Prover and verifier communicate;
3. Verifier selects a subset S of the bit committments;
4. Prover reveals those bits;
5. Prover and verifier communicate some more.

may be converted to an equivalent “two-envelope” ZK proof
of the following form:

1. Prover sends verifier two bit-string commitments;
2. Prover and verifier communicate;
3. Verifier selects one of the two bit strings and verifier

reveals it in its entirety;
4. Prover and verifier communicate some more.

The only price paid is that the probability that the Verifier
will successfully reject a flawed proof, may halve. However,
by repeating the whole proof O(s) times, the chance of unde-
tected bogusness is reduced to ≤ 2−s.

The proof of this lemma is astonishingly simple. The prover’s
two bitstrings are M+̂R and R, where M were the bits com-
mitted in the original proof, and R is a random bitstring of

the same length (and +̂ denotes bitwise XOR). When, in the
original proof, the verifier asks that a subset S of the commit-
ted bits be revealed – in the new proof, the prover replies with
the alleged values of those bits of M and of the corresponding
bits of R. If the prover is lying about any bit, then the cor-
responding bit in either R or M+̂R must disagree with the
Prover’s claim. The verifier now chooses which of these two
strings he wants revealed. After its revelation, the probability
the prover’s lie is revealed by a disagreement is ≥ 50%. In
other words, if the prover had to lie, the original proof would
have revealed that lie, but the new proof will only reveal it
with ≥ 50% probability. Hence, as claimed, the probabil-
ity that the Verifier will successfully reject a flawed proof, at
worst halves. Q.E.D.1

The second lemma [28] is that there is a subset-revealing
ZK proof of operation of any G-gate, W -wire flow-forward
logical circuit with 2-input gates. The proof works as follows.
The Prover first computes the bit-values present on every wire
in his circuit. He then randomly independently “scrambles”
the truth tables defining each of his logic gates by randomly
taking one of the 24 = 4! possible permutations of its 4 rows,
and randomly choosing to complement each of its 3 columns
(total of 24 · 23 = 192 possible scrambled forms).

a b c = a ∧ b a′ b′ c′

0 0 1 1 1 1
0 1 1 1 0 1
1 0 1 0 0 0
1 1 0 0 1 1

Figure 4.1. The truth table defining a NAND gate (on left);
and a scrambled form of it, got by swapping the last two rows
and then complementing the first two columns (on right). N

The scramblings must be consistent: all truth table columns
corresponding to the same wire in the circuit must all be com-
plemented or all left uncomplemented. This is achieved by
randomly and independently choosing to complement (or not)
each wire. (The final output wires, however, are never com-
plemented, at least those whose logic states the prover wishes
to reveal.) The new circuit is then equivalent to the old one.

After producing this circuit, the Prover commits to it by com-
mitting all bits in all truth tables and all bits on all wires.

The Verifier now challenges the prover to either

1. Reveal every committed bit in every truth table.
2. Reveal only the one row in each truth table that actually

got used. (This also, automatically, reveals the states of
all input and output wires to all gates.)

If the challenge is successfully met, then the prover either
knows that a genuinely-equivalent circuit was described, or
that its operation worked – and yielded the claimed output
(if the prover is claiming a certain output value). It is im-
possible for both to be true unless the circuit actually does
work with some input to yield the claimed output. Therefore
the verifier would spot a bogus proof with probability≥ 1/2.

50Nobody seems to have pointed out the fact that these two methods may trivially be combined. The Kilian et al. idea [101] is brilliantly simple
but seems insufficiently well known, which is perhaps because it only appeared in two conferences, not a journal, and only in an abbreviated form
containing many minor errors and self-contradictions (although readers might not have realized the minorness of those errors).
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This proof is zero knowledge since the scramblings make all
wire logical values equally likely, i.e. the revelations give no
information whatever away. Q.E.D.2

Now by combining these two lemmas we get a zero knowl-
edge proof in which two 12G-bit strings are committed and in
which any attempt to provide a bogus proof would be detected
with probability≥ 1/4. Each bitstring may be committed via
an AES encryption of 36G bits as described in §4.21 and one
may be later revealed by an AES decryption (with a key pro-
vided by the Prover).

By redoing this proof s times consecutively, the probability
of an undetected flaw becomes ≤ (3/4)s. The total amount
of work is O(GKs) assuming we are using AES with a K-bit
secret key. Q.E.D.

This is a far faster protocol. Consider again the case of a
1000-gate circuit. To get probability< 10−20 of any unde-
tected flaw in a proof, we need to perform 160 rounds. Each
round requires two AES encryptions of 36000-bit strings and
then one decryption. The total time required for all that
on a Pentium-II/200MHz using 128-bit AES is 1/4 second,
i.e. 160 times faster than the preceding theorem. If a much
larger probability (≈ 0.1) of having an undetected flaw in the
proof were regarded as acceptable, then an additional factor-
20 speedup would be attainable (total proof time now 1/80
second).

Zero knowledge simulations of fairly large computations now
become possible, e.g. a sequence of 106 computer instruc-
tions, each equivalent to 1000 gate operations, would be ZK-
provable with probability≈ 0.1 of having an undetected flaw
in the proof, in 3.5 hours on the Pentium-II/200MHz. Thus
in a sense theorem 3 shows that any sequence of computer
instructions may be simulated in zero knowledge (with confi-
dence 0.9) with a slowdown factor of about 2.5 million.

Interaction. The protocol in theorem 3 is still subject to the
criticism that it involves many rounds of interaction between
the prover and verifier. Kilian and Petrank [102] overcame
that criticism by showing how to make a noninteractive ZK
proof for a G-gate circuit consisting of O(G log G) committed
bits, with probability of undetected flaw in the proof being
≤ G−c for some positive constant c. This is the same speed
as theorem 3 if log G ≤ O(s), but now without interaction.
Unfortunately the constants hidden in Kilian and Petrank’s O
and c are incredibly enormous and hence that accomplishment
is presently of purely theoretical interest.51

4.27 Secure general multiparty computation
Suppose there are some number Q ≥ 2 of mutually distrustful
parties. Their goal is to compute the output of an arbitrary
publically known forward-flow circuit made of G logic gates
(possibly including “randomizing gates”) from its boolean in-
puts, and to do so in such a way that

1. Both the input bits, the output bits, and all interme-
diate logical states are “shared secrets” never known by
any of the parties individually, and indeed never know-
able by any (≤ T )-element subset of the parties acting
collusively, and

2. External observers viewing the communications among
the parties can become convinced that they are per-
forming the computation correctly, (even though these
observers also will be unable to know any of these bits),

3. The total computational work is equivalent to some
polynomial(G, Q) number of exponentiations in some
large public group (preferably small), and

4. The total number of bits communicated is equivalent
to some polynomial(G, Q) number of group elements
(preferably small), and

5. Preferably, the parties share out the work and commu-
nication roughly equally.

6. Nevertheless any subset of > T of the parties, by coop-
erating, may easily deduce and reveal any desired subset
of these bits, in particular the output bit.

This is called secure general multiparty computation
(SGMPC).

Theorem 4 (Secure verifiable multiparty computa-
tion). Secure general multiparty computation is possible.

Similarly to the way the original proof of theorem 1 could
be viewed (as we remarked in §4.21) as simply some bit-
commitments and revelations, it is possible to do arbitrary
secure multiparty computations instead with the aid of obliv-
ious transfer [100]. However, that is not the way we are going
to prove it. We are going to discuss several proofs which
achieve better and better performance (smaller polynomial
bounds).

First proof (sketch): secret sharing. The input bits are
each shared out, initially, using Shamir’s integer secret shar-
ing scheme from §4.11 (use the “instant verification” version
and with the “integers” in the present case being just 1 or 0).
As we remarked there, it is possible to add, subtract, or multi-
ply two shared-secret integers, so that we may perform logical
ANDing via multiplication, and logical NOT by subtracting:
y = 1− x.

Caveat: when I first wrote this proof, I was under the im-
pression that [73] was a valid paper; that would have led to a
bound of order O(Q3G) on the number of exponentiations and
the number of communicated group-elements. But in fact, as
we mentioned in §4.11, their secure multiplication primitive is
insecure [87]. Although it is known to be possible [18][76][40]
to repair this error and create a genuine secure multiplication
primitive, the ways I am aware of are baroque and have large
complexities. That makes this proof far less algorithmically
attractive than I had originally thought. Q.E.D.

Second proof (sketch): Beaver’s multiplication trick

Donald Beaver in 1991 invented a brilliantly simple idea for
avoiding the difficulty of multiplying shared secrets. In a
preparatory phase, he first generates and distributes a pool of
triples (a, b, c) of random constants with c = ab to all secret
sharers.

Whenever, in the proof above, the protocol calls for multiply-
ing two shared secrets F and G to get FG (also in shared-
secret form), we proceed as follows.

51Kilian told me “we could have improved them from ‘incredibly enormous’ to merely ‘awful,’ but it would have taken too much space in the
journal.” He also added re theorem 1 that “using PCPs there are ways to make graphs such that either you can 3-color it or you have to miscolor
a constant fraction of the edges.”
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1. Parties agree on a particular as-yet-unused shared triple
(a, b, c).

2. All compute d = a + F and e = b + G.
3. The parties un-share the resulting shared secrets d and

e, to get their (random) decrypted values.
4. The sharers compute eF − db + c. Note: (i) this is al-

gebraically the same thing as FG. (ii) because e and d
are publically known integers, the sharers can do these
“multiplications”by doublings and addings only, i.e. us-
ing the linearity property that adding two shared secrets
yields the shared version of the sum of the secrets. (This
dodges the problem that multiplying two shared secrets
does not yield the shared version of the product of the
secrets.)

We have omitted some details, such as how to generate and
zero-knowledge prove (in a distributed fashion) the validity
of the initial triples. (E.g. see section 3.2.4.2 of [86] and
section 3.3 of [88].) This scheme may be implemented to re-
quire O(GQ2) exponentiations and group-element transmit-
tals, plus O(Q3) in the preparatory phase [88].

Third proof (and the one leading to the fastest algo-
rithm): “mix and match” [91] The idea of this proof is
inspired by the proof of theorem 3, the fastest method known
for proving general NP statements in zero knowledge.

First, just as in theorem 3, the parties produce a random
equivalent circuit by randomly independently “scrambling”
the truth tables defining each of the logic gates by randomly
taking one of the 24 = 4! possible permutations of its 4 rows,
much as in table 4.1. However, the particular permutations
are chosen by use of a mixnet and hence are not known to
any party individually. After this is done, the circuit is de-
scribed by a set of “blinded truth tables” describing which
encrypted-input-bit combinations to each logic gate result in
which encrypted-output-bits.

Second, we need to match the input-bit of one logic gate
with the output-bit of its predecessor gate, or (if there is no
predecessor-gate) with the initial (Elgamal encrypted) input-
bits to the circuit – although all these bits are Elgamal en-
crypted with different randomness. These matches are ac-
complished by distributed “plaintext equality tests” (§4.16)
performed in gate forward-flow order. Finally, the last gate
produces the output bit in encrypted form; the players jointly
decrypt it. The joint decryptions need to be accompanied by
ZK-proofs by each player that they are correctly doing their
part in each; those are readily provided by using the tech-
niques of §4.15 and §4.16.

The whole mix and match protocol requires O(QG) exponen-
tiations to produce a verification of circuit operation on one
input-bit word, assuming nobody cheats. If anybody cheats,
the cheater is immediately spotted and the procedure is termi-
nated. (It can be restarted with the corrupt party excluded.)
Q.E.D.

Warning about security models [87][88]: Several secu-
rity models have been proposed in the SGMPC literature,
with the most conservative one assuming at most T out of
the Q parties may cheat at any stage of the protocol, with

the identities of the cheater-set possibly continually changing,
and the protocol still grinds through to successful comple-
tion while guaranteeing information-theoreticy (rather than
merely computational) security under the assumption that
untappable private communication channels are available be-
tween any pair of parties, in addition to a broadcast channel.
But we here have only addressed the simplest model (which
seems sufficient for our voting purposes), in which there are
corrupt and honest parties, and it suffices to publically ex-
pose the corrupt ones if and when they cheat, and to pre-
vent (too few) corrupt parties from accomplishing anything
nasty, and everything depends on computational complexity
assumptions such as the difficulty of solving discrete logarithm
problems and cracking cryptosystems, and the only available
communication method is broadcasting.

Fault tolerance: It is also possible to pre-transform the cir-
cuit, using standard methods, into a equivalent (but larger)
fault-tolerant circuit, and then simulate it. That can give
extra immunity against malfeasance.

Millionaire’s problem: Alice and Bob know two numbers
X and Y respectively and want to know whether X < Y
but do not wish to reveal any information about their num-
bers. In 2001 it was claimed [26] that this problem still lacked
any efficient and fair solution, where by “efficient” we mean
“with work polynomially bounded in terms of the number of
bits in X and Y ” and by “fair” we mean that neither Alice
nor Bob can gain a significant knowledge-advantage over the
other even if by cheating.

We now provide such a solution. In fact, we show how Alice
and Bob can compute any function f(X, Y ) in an amount of
work polynomial in the number of bit-operations that would
normally have been required to compute f(X, Y ) if there were
no zero-knowledge requirements.

1. Alice takes the bits of X and shares each of them out
among herself and Bob using [73] using the “instant
verifiable” secret sharing scheme there with “no partial
knowledge” of our §4.11 and [73].

2. Bob takes the bits of Y and similarly shares each of
them out among himself and Alice. Note these proto-
cols involve commitments to X and Y and are based
on the hardness of inverting secure hash function and
of solving discrete logarithm problems (optionally: in
elliptic curve groups). So neither Alice nor Bob can lie
without detection52 once they commit to X and Y .

3. Now using the procedures of §4.11 and [73] to per-
form ab (AND) and 1− a (NOT) operations on shared-
secret bits, we simulate a comparator circuit for decid-
ing if X > Y ; eventually ending up with the shared-
secret bit B saying whether X > Y (or more generally,
B = f(X, Y )). This is exactly as in the proof of theorem
4 using T + 1 = Q = 2.

4. Finally, Alice and Bob “unshare” B i.e. combine their
partial information about B to deduce B. (They have
no motivation to unshare any other shared information
they have, hence they will not release any knowledge
about X and Y aside from that inherent in the value

52Nothing stops Alice from lying all along about X though, in which case she learns something about Y but reveals nothing about the true
X. Also at any point either party could cease to cooperate in which case the protocol would shut down. If any party tried to lie after the initial
committal stage they would be detected by the other, who would then stop cooperating. These limitations are inescapable. Compare footnote 41.
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of B.) This reconstruction has to be done with a little
care: if Bob simply reveals his secret share, Alice could
then lie about hers, learning the truth while Bob learns
garbage. So therefore, Alice and Bob each reveal 1 bit
at a time of their secret-shares. Each bit is accompanied
by a zero knowledge proof that bit is accurate. (Since in
§4.11 all the shares are publically committed using Elga-
mal, proving bits of them may be accomplished with the
aid of the techniques of §4.22 for proving membership
of discrete logs in integer intervals.) See the “bit-by-bit-
release” technique of §4.24. If anybody quits cooperat-
ing or lies, then the other immediately terminates their
role in the protocol and is only “1 bit behind” in the
task of trying to find out B by exhaustive search of the
remaining bits. That search is therefore only a factor of
two larger.

5. Finally with the shared secret reconstructed, they both
know B and the job is done.

The runtime is O(N +K +1) exponentiations, where N is the
number of bit-operations to compute f(X, Y ) – in the case of
the millionaire’s problem we may just take N as the number
of bits in the numbers representing the millionaire’s wealths
– and K is a security parameter (bit width of the numbers
involved in modular exponentations)53

Although it might seem at first that the “millionaire’s prob-
lem” is a joke problem of no real-world importance, that im-
pression is incorrect. Here is a very similar important real
world problem: auctions.

In a Vickrey auction to buy some object, the winner is the
bidder whose bid is highest, but he only pays the price bid by
the second -highest bidder. [More generally, if there are to be
w ≥ 1 co-winners, then they each pay the (w + 1)th-highest

bid price.] The brilliant point of this kind of auction is that it
has the property that bidders are motivated to provide hon-
est assessments of their valuation of the object as their bids
[163]. But that is only true if those bids are secret and if the
seller is honest. (If some bidder were to know what the high-
est competing bid was, he then could take advantage of the
knowledge; a cheating seller could also announce a false value
of the second highest bid to get more money, or collude with
a bidder to provide an artificially high second-highest bid.)

The cryptographic question then is: how to provide that se-
crecy and prevent that dishonesty while still allowing the auc-
tion to proceed. Specifically, we want all bidders to submit
bids, but for nobody to know anything about what any of
those bids are (complete privacy for maximum prevention of
bid-rigging), with the sole exception that the value of the
second-highest bid and the name of the highest bidder are
announced. Even if bidders want to reveal their bids, they
should be unable to do so in any convincing manner. And fi-
nally, we want verifiability – all are convinced these announce-
ments were correct.

This is achieveable as follows. All players secret-share each
bit of their (binary integer) bids among the other bidders.
They run a multiparty protocol to compute the output of
an appropriate circuit.54 They then un-share this output to
find the result of the auction. As long as the majority of
the bidders are not corrupt, all privacy is protected. Note:
each secret share, in the sharing scheme of §4.11, are random
numbers providing no information about the bid, and the ac-
companying secure-hash values provide no aid either – they
merely proevent sharers from lying about the share they re-
ceived, or secret-distributors from lying about the shares they
distributed.

53Also, Alice and Bob can communicate encrypted in their final stage in which case they can learn f but external eavesdroppers cannot.
54To find the highest bidder, the circuit makes a single-elimination tournament between the bidders, with only the higher bidder in each pairoff

continuing on to the next round; and to find also the second highest bidder we make also a “consolation tournament” among the losers. Each
pairoff is accomplished via a binary comparison circuit. At the end we can make the circuit computes the identity of the top bidder (but discard
his bid) and the second-top bidder’s bid (but discard his name).
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Modular multiplication (mul): O(N log N) work [138][19].
Modular exponentiation (modexp): ≤ min{2N − 2, N + (1 + o(1))N/ lg N} muls.
Inversion x−1: ≤ 1 modexp in general groups; trivial in EC groups.

Find discrete-log ℓ so gℓ = h, given 0 ≤ ℓ ≤ b: O(
√

b) muls.
Secret key crypto (AES): KN work for either encrypt or decrypt.
RSA public key crypto: encrypt=decrypt=1 modexp.
Elgamal public key crypto: encrypt=decrypt=2 modexps.
RSA digital signature: sign=verify=1 modexp.
Elgamal or Nyberg-Rueppel digital signature: sign=1, verify=2 modexps.
Blinded Nyberg-R signature: sign=3, verify=2 modexps.
Our simpler blind signature: same as plain signature.
Schnorr ZKP that know discrete log: proof=verify=1 modexp.
Neff [116] ZK verifiable shuffle of n numbers: shuffle&prove= 8n + 4, verify= 12n + 4 modexps.
Groth [78] ZK verifiable shuffle of n numbers: prove≈ 6n, verify≈ 6n modexps.
Our ZK verifiable shuffle of n numbers: shuffle&prove= (1 + s)n, verify= sn modexps, prob≤ 2−s of proof’s undetected falsity.
ZKP that loga b = logc d: prove=verify=2 modexps.
ZKP have a single bit: prove=3, verify=4, create-the-bit=1 modexp.
Bit-commitment: commit=1 modexp by the committer, reveal=1 modexp by the receiver.
Fast n-bit string-commitment: commit=1 AES(of max{3n, K} bits) by committer, reveal=1 AES by receiver.
2-message-to-1 oblivious transfer: sender=3, chooser=2 modexps.
ZKP Bob has Elgamal encrypted Alice’s message (§4.16): prove=verify=3 modexp. (And encrypt=2).
ZKP 0 ≤ x < 2ℓ: prove≤ 3ℓ, verify≤ 4ℓ, x-creation=1 modexp.
ZKP that |x| < 2tb (if 0 ≤ x < b with t, b public positive numbers): O(s) modexps, 2−ts probability of failure.
ZKP of Elgamal encryption of single bit: initial encrypt=2, proof=5, verify=8 modexps.
ZKP of Elgaml encryption of ix with 0 ≤ x < 2ℓ: prove≤ 5ℓ, verify≤ 8ℓ, initial encrypt=3 modexp.
Bit-by-bit revelation of N -bit secret: Revealer= 2 + 4N modexps, Watcher= 4N modexps.
ZKP for any G-gate W -wire NAND/NOT logical circuit: prove≤ 1W + 6G, verify≤ 8G modexps.
Fast ZKP for any G-gate logical circuit: prove= 2AES(of max{36G, K} bits), verify=1 AES,

prob≤ 3/4 of undetected flaw in proof.

Figure 4.2. Summarizes cryptographic algorithms discussed in §4 and their costs (except for multiparty protocols – see table
4.3). All numbers and messages are assumed to be N bits long except that the key-lengths in secret key cryptography are K
bits. “Modexp” means a modular exponentation (computing ab mod c, or if we are doing elliptic curve cryptography, then
this means an exponentiation inside an elliptic curve group); “AES” means an AES-like secret key encryption or decryption
(of a variable-length message §4.5); “mul”means a modular multiplication ab mod c (or group operation a⊗b inside an elliptic
curve group); “ZKP” means “zero knowledge proof”; and lg x = log2 x. N

Deal out shared secret: O(T 2 + TQ) arithmetic operations mod P .
Same but verifiable: same but also compute S hash functions twice.
Same but instant-verification: 4S + 2T + 2 modexps.
Reconstruct secret: O(T 2) arithmetic operations mod P .
Add two shared secrets (in verifiable shared-secret form without reconstructing): O(S) arithmetic ops mod P .
Multiply two shared secrets (ditto): poly(T, S) modexps.
ZK verifiable multiparty computation of logical circuit: O(GS) modexps (or spot dishonest party).

Figure 4.3. Summary of multiparty “shared secret” cryptographic algorithms discussed in §4 and their costs. (We do not
count prover-verifier interactions in ZKPs as “multiparty.”) Same conventions as table 4.2 and also: there are S sharers,
among whom > T must collude in order to get enough information to know any secret. The “logical circuit” being simulated
has G logic gates (each 2-input AND or 1-input NOT) and W wires (including inputs and outputs). N

5 Voting – realization of possibility

With the zero-knowledge and secure multiparty computation
technology of §4, wondrous feats become, in principle at least,
possible. In particular, we can now see almost instantly that
election schemes exist satisfying (almost) all our desiderata.

We’ll now make that existence argument, without trying (for
now) to produce practical schemes. We are going to show how

to run an election as follows:

1. Before the election starts, there is a pre-posted publi-
cally readable list of all legitimately-eligible voters.

2. During the election, voters provide their votes to the
election authority EA. We assume these voting-and-
communication processes are private, i.e. not seen,
heard, nor recorded by anybody else.55

55A voter who videotaped himself during the act of simultaneously voting and exhibiting a copy of a message he had one minute ago received
from a vote-buyer might immediately afterwards be able to sell his vote to that buyer. A vote-coercer could similarly have planted a hidden camera
inside the voting booth, or could simply be physically present in the booth at the time... We shall regard all these possibilities as collusions between
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3. Afterwards, the EA combines the votes (it does not mat-
ter which vote-combining method we use, so long as it is
a publically known polynomial-time algorithm) to pro-
duce the election results, and announces them.

in such a way that unless there is a 3-way collusion between
voters, the EA, and vote-buyers/coercers, then

1. Anybody can verify that only legitimate voters voted,
and each voted at most once, and that no votes were
faked or altered, and no votes were destroyed.

2. Anybody can verify that the correct election results were
announced.

3. The whole election and verification procedure involves
only a polynomially large total amount of computational
work, i.e. both are “feasible.”

4. No vote-buyer can know (with any amount of confi-
dence beyond their unsupported assertion) what any
voter’s vote was, since no voter can prove how he voted
unless an exponentially large amount of computing is
done (“infeasible”) or unless such widely-regarded-as-
hard problems as large discrete logarithm problems, are
somehow actually soluble in subexponential time. (I.e.:
both vote-buying and vote-coercion are “impossible.”)

This is accomplishable almost entirely with zero-knowledge
proof technology. If, further, heavy use is made of secure
multiparty computation, even stronger security guarantees
become possible.

How to do it: To vote: Each voter encrypts his vote us-
ing a public key cryptosystem, so that the resulting vote is
decryptable only by the election authority EA. Then he trans-
mits the encrypted vote M to the EA, which encrypts it again
and sends it back to the voter. Both use randomized Elgamal
encryption and the method of §4.16 to allow the voter to be
confident the EA really has re-encyrpted M , but without the
EA revealing its encryption or decryption key. Finally the
voter dates and signs this vote, proving that only he could
have created it (remember, all can verify any signature using
that voter’s public verification key available on the pre-posted
legitimate-voter list), and transmits it back to the EA, which
then immediately signs it itself and posts it on the bulletin
board – next to that voter’s name on the pre-posted list. Both
the EA and the voter must agree on the date and the time
of day, which is incorporated into the doubly-signed vote (if
not, one or the other will refuse to sign).

The EA’s voting machine can then print out a receipt (con-
taining the same information it is posting to the bulletin
board, printed as “bar code”) which the voter can scan to
confirm its validity and then take with him as he leaves. The
voter can confirm his vote has been received by inspecting the
bulletin board immediately afterwards; if the vote was not
posted, the voter can come forward with his receipt (which,
since the EA signed it, must represent a legitimate vote) and

complain, demanding that his vote be posted (which could
then be done by scanning that receipt). These paper receipts
would allow a later “recount”even if the entire electronic part
of the voting system were destroyed (after rebuilding it).

The task of decrypting those votes, verifying that each voter
signed them, verifying that no voter double-voted (or anyhow,
discarding all but the last-dated one among multiple votes
having the same signature), and that only legitimate voters
voted (i.e. only those whose signatures are on a prepublished
list of “valid” voters), then using the decrypted votes to com-
pute the election result obviously is56 in the class NP, indeed
as far as the EA is concerned in the subclass P, since the EA
knows all the required decryption keys. Therefore, by theo-
rem 4.13, it is possible for some Prover (namely EA) to do
them, thus computing the election result, while at the same
time producing a zero knowledge proof of validity. Then any-
body57 can run the verification protocol to verify that the
Prover really did compute that result correctly – although
without thereby gaining any knowledge of what those votes
were (aside from the knowledge inherent in everyone’s knowl-
edge of the announced election result)!

Why it works: Because everything is a zero knowledge
proof protocol, everyone is confident that the EA has cor-
rectly transformed the input (the publically posted encrypted
votes) to the output (election results).58 Because the input
is encrypted and only the EA has the decryption (and one of
the encryption) keys, nobody but the EA knows what that
input is. A voter wishing to prove to a vote-buyer or vote-
coercer that he voted in some way, is unable to demonstrate
regeneration of his publically posted vote because he has only
some of the info (pad bits and encryption key #1) required
to do it, not the rest (encryption key #2). (Also, no two
posted votes will be identical – even if the voters voted iden-
tically and agreed to use the same encryption procedure and
same random bits – unless the EA’s re-encryption employed
the same random bits for both voters, which would not hap-
pen except with a 3-way EA-involving collusion.) So unless
the voter and vote-buyer can get key #2 from the EA (3-way
collusion), the vote cannot be revealed. (Actually the EA
could simply reveal the decryption of the vote to the vote-
buyer/coercer alone – 2-way collusion – but since any buying
or coercing also requires the participation of the seller/victim,
this could be regarded as a 3-way collusion.)

Even in the event of such 3-way collusive vote-
selling/coercing, those votes, whether bought, coerced, or
honest, still will verifiably be combined correctly, and it will
still be impossible for anybody to vote more than once, nor
for any vote to be produced by a illegitimate “voter” not in
possession of a valid signing-key. It is for this reason we refer
to the EA as “semi-trusted”; even if it is completely corrupt
it still is not capable of faking the election, although it is
capable of allowing (or participating in) vote-buying, vote-

the EA and either the voter or buyer.
56With all commonly used voting systems, anyhow.
57In practice, just one, or a few, agencies should do this, but do it fully publically and do it with input about their random choices got from

many members of the public and/or via a clearly-random source such as those machines which produce winning lottery numbers.
58Or confident the EA lied. If the EA is going to lie despite knowing that lie will be detected, they equally well could simply refuse to perform

the election at all, or refuse to use our protocol, and/or just kill everybody they dislike and declare the “election” over. Or the EA could refuse
to pre-register voters they dislike, or refuse to let voters they dislike vote at all (and instead jail them), or preregister a large number of artificial
“voters,” or jail all verifiers. So a certain amount of trust in the EA is unavoidable.
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coercing, and all sorts of general mayhem, and is capable of
refusing to hold the election at all.59

Verdict: We shall not bother to describe how to make this
scheme efficient enough to make it practical (although we
could). That is because semi-trusted election authorities are
just not good enough. An EA with the capability of know-
ing everybody’s vote is just too powerful.60 The only reason
we’ve described this scheme is to make the reader appreciate
the power of zero knowledge techniques and their usefulness
for election schemes. So we now instead shall devote our-
selves to considering how to prevent the EA from knowing
anybody’s vote, while still forcing it to produce the correct
election results – with proof it has done so. (Or, the EA can
refuse, in which case everyone will know it.) We shall call
such elections “fully secure.”

In particular, §7.3 shall describe a version of the present
scheme but now upgraded to full security, and how to make
it efficient.

5.1 Election hashes
In the scheme above, and also in those of §7.1-7.3, where all
votes are posted on a public bulletin board, and also where
a list of all eligible voters (with their public signature keys)
is pre-posted, there is a simple way to prevent alteration of
these lists. It is also useful for allowing those downloading
copies of the list to be sure they have done so without error.

The hash. Sort the list of votes (or voters) into lexicographic
order and then run it through a secure hash function. The
result is a fairly short bit string (32 bytes) that serves as a
fingerprint for the entire list.

It is effectively impossible to alter the list by even one bit
without destroying the validity of this fingerprint. (By com-
puting many fingerprints, one after each time new informa-
tion is added to the list, it becomes possible for somebody
who keeps receiving those fingerprints to become confident
that the list never shrunk.)

6 Where are we now?

We have made it clear that secure voting is possible in prin-
ciple, and in a purely theoretical sense it solves the problem.
(At least if a semitrusted election authority were considered
good enough.) However, in a practical sense, merely the fact
that a polynomial-time algorithm for something can be writ-
ten down, is not good enough. We apparently would also need:

1. The verification protocols must be efficient in practice,

2. We need all computer code to be clearly bug-free,
3. We need all computer hardware these codes run on, also

to be clearly bug-free.

Those standards are very difficult to achieve, especially simul-
taneously. In fact, considering the need to certify the hard-
ware, and to certify the certifiers, and the compiler used to
help create the software, and the operating system, et cetera,
the latter two tasks seem essentially unachievable! Further-
more, even if they were achieveable, the common man in the
street would be unwilling or unable to go through these cer-
tifications himself, in which case their effect would largely be
moot.

But actually, we do not need those 3 things. Before
giving up in disgust, consider this: really, it is not necessary
to be sure the prover’s software and hardware work – because
the verifiers will verify that it produced the right result! And
it is not really necessary to be sure the verifier’s software and
hardware work, because many different watchdog groups, all
with independently created verifier hardware and software,
can choose to be verifiers. As long as enough of them can
be got to work, we are happy. (Further, it is easy to create
artificial right and wrong “provers” to use to test the verifiers
during their development, allowing a high degree of practi-
cal confidence to be attained. Again, if enough independent
groups succeed in creating such test-provers, we are happy.)

So the only requirement we really need is efficiency in practice,
and that is an achieveable goal.

At that point we would have a truly remarkable and unprece-
dented level of voting system security. In the entire history
of humanity, nobody has ever been able to solve any inte-
ger factoring problem for a product of two randomly chosen
300-digit primes, or to solve any random discrete logarithm
problem based on a 300-digit prime. In contrast, all present-
day attempts intended to increase voting system security, such
as bipartisan election observers, locks on cabinets containing
votes, hiring trustworthy people to run the elections, and so
forth, have many times been subverted, undoubtably often
without detection.

7 The four main approaches to effi-
cient and fully-secure elections

The four known approaches are

1. Schemes based on homomorphic encyrption (§7.2).
2. Schemes based on mixnets (§7.1).
3. Heterodox schemes (§7.4).

59 One interesting means of doing so would be for somebody at the EA, and a group of anarchist voters, working in collusion, to produce many
legitimately signed voting receipts corresponding to unposted votes. The anarchists could then use these receipts to “prove” the EA corrupt and
thus invalidate the election.

60 David Chaum’s election scheme [35] is an example of a method involving a merely semi-trusted EA (although Chaum seemed to believe
otherwise); hence it in our view is unacceptable. That is because Chaum’s method involves a voter, as he votes, getting two receipts from a printer
attached to the voting machine, one of which then is destroyed in a publically visible shredding machine. Unfortunately, there is nothing stopping
the EA’s voting machine from remembering Chaum’s “destroyed” information, in which case the EA would know everybody’s vote. Chaum’s scheme
is also vulnerable to voters who refuse to destroy one of their receipts (if they keep both, they can use them to sell their vote); although Chaum
suggests a way on his pp.39-40 for the EA to discourage that by causing those receipts to be invalid for the purpose of later use in proving their
vote, we respond that (1) Chaum’s discouragement-method would not affect voters uninterested in confirming their vote was truly accepted/posted
by the EA, but instead only interested in selling their votes, and (2) his discouragement method anyway could be defeated by a voter armed with
either a scissor or a camera, (3) or by any voter colluding with the EA. Chaum’s scheme also is based on a mixnet (for criticism of mixnet schemes
see §7.1) and is vulnerable to the same “anarchists” as in footnote 59.
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4. Schemes based on secret sharing among several mutu-
ally distrustful election authorities (§7.5).

We’ll discuss exactly what these ideas are, later. For now, let
us briefly point out serious deficiencies in all of these ideas –
not all of which had been pointed out by the cryptographers
who invented and developed them!

1. While homomorphic encyrption schemes are excellent if
votes combine additively, they simply cannot be used if the
election results arise from a non-additive method of combin-
ing the votes, such as Hare/Droop STV (single transferable
vote) schemes [110][161] or my own“reweighted range voting”
[150].61

2. Many mixnet schemes depend on the idea that if all the
votes are somehow posted in random order, with that order
being unknown to anybody, then that means that nobody can
deduce from that posting which voters produced which votes.
While that is a pretty good assumption if the only possible
votes are “yes” and “no,” it unfortunately is flat wrong if we
are using an election method such as range voting [149] or
asset voting [151] in which each vote involves many real num-
bers. By altering low-significance bits in those real numbers
a voter may effectively uniquify his vote, enabling him (af-
ter the posting of the scrambled vote list) to sell his vote to
a buyer who had pre-chosen it.62 Even in all-integer elec-
tion schemes such as STV, in which each vote is a preference
ordering (permutation) of the n candidates, and these per-
mutations are combined in a nonadditive way to determine
election winners, there can be a considerable amount of free-
dom in each vote, since there are n! possible permutations.
A voter could permute the hopeless candidates who are be-
lieved to have no chance of winning, in an attempt to uniquify
his vote.63 This rules out mixnet-based schemes for use with
all of (what I consider to be) the best available multiwinner
election methods!

Another problem with mixnets is that, as they operate, they
necessarily perform an enormous amount of communication
(1000s of bits per voter) between the different parties running
the mixnet. That could make them undesirably expensive,
unreliable, vulnerable to “denial of service” attacks, or simply
infeasible.64

3. On the other hand, a possible advantage of mixnet schemes
it that they can prevent us from knowing whether somebody
voted (see 2c in §2) thus preventing the problem of “coerced

abstentions.” (Actually the usual mixnet schemes do not hide
that information, but the possibility at least is there.) Mean-
while the usual homomorphism-based schemes make it obvi-
ous who voted and who didn’t.

4. Many schemes based on secret sharing among several mu-
tually distrustful election authorities may not be politically
realistic. Is it really realistic to expect there to be several,
independent, mutually mistrusting noncolluding election au-
thorities when we consider the fact that in practice, all will
involve many bribeable employees – and that there is only one
government? Perhaps political parties could do the job – but
would that not create a severe disadvantage for unaffiliated
candidates? And is it really realistic to expect each voter to
communicate his vote to all those authorities?

If the “authorities” were the candidates themselves (on the
view that they would be mutually mistrustful): then (a) it
seems unreasonable to suppose that each candidate (especially
ones not affiliated with a political party) would have enough
computational and comunications resources to handle the job,
and (b) suppose one political party decided to sponsor a large
number of “competing” candidates to run – who would then
all collude during the vote-counting process?

The idea of secret sharing is a good one, but in practice, to
be maximally acceptable and realistic, such a scheme should
involve a highly asymmetric role being played by the sharers.
One “big” sharer (“the” election authority) should do almost
all the work and all the communication with voters. The
others should do almost nothing and store almost no infor-
mation and consequently should require very few employees
and hence be both difficult to corrupt and truly likely to be
mutually independent and mistrustful.

What we shall do. First, we explain and disparage mixnet
schemes in §7.1.

Second, in the event that an additive vote-combination
method is being used65 we propose in §7.3 an excellent scheme
based on a combination of homomorphic encryption and se-
cret sharing. It may be regarded as a fully-secure version
of the semi-trust scheme of §5. It allows recounts based on
paper ballots if the internet should fail and the algorithms
are both efficient and highly (and trivially) parallelizable with
tiny communication needs. The secret sharing is highly asym-
metric in precisely the fashion we just said was desirable.

Third, suppose a nonadditive vote-combining method is to be
used, such as Hare/Droop STV [110][161], reweighted range

61Many election schemes which initially may seem non-additive, such as Condorcet and Dodgson, may be reinterpreted as additive. However,
I see no way to do that for RRV except by working in a possibly ultra-high dimensional space in which the voter, essentially, provides weighted
copies of his vote for all of an enormous set of possible weight factors. In an election with 135 candidates (such as the 2002 California gubernatorial
election) and 6 winners (many 6-winner districts occur in contemporary democracies) this would mean providing 360,343,288 copies, while if there
were 60 winners then about 1039 copies would be needed. In STV this situation would be even worse because the weight factors are not predictable
in advance in the sense that, if the number of voters were not known in advance, then there would be an infinite set of possible future weights for
any given vote.

62In plain 1-winner range voting, the kth coordinates of each vote-vector could be permuted via a different permutation from those used for
the other coordinates, which reduces the magnitude of this problem but certainly does not eliminate it because a voter could still point out to a
buyer the amazing coincidence that each of his preselected reals appeared somewhere in each list. Because 1-winner range voting is an additive

vote-combining method, bit-splitting schemes (see §7.1) and perhaps some kind of “glorified” mixnets which also transfer some random fractions of
each real randomly to other reals (i.e., not merely performing a permutation) might be useable to defeat this objection, but those ripostes would
not be available if a nonadditive vote-combining method such as RRV were used, because then a true permutation would be required and all real
coordinates of the vote-vector would have to be permuted by the same permutation.

63Since 13! ≈ 62 × 108, almost all most voters could expect to succeed at this attempt in a 16-candidate election with 108 voters where only 3
candidates were regarded as having good chances to win.

64Also, if a truly random permutation is desired, then all the votes must be available before starting the mixnet, which could lead either to
serious delays or to the possibility of “late” voters of various kinds selling their votes.

65 These include plurality, Borda, Dabagh, Condorcet, approval, range, asset, Dodgson, and eigenvector voting [107][149].
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voting [150], or sar-range [153]. Then we shall demonstrate
how, in principle, these too may be made fully secure with
the aid of secret-sharing and secure general multiparty com-
putation. Unfortunately this scheme involves a fairly sym-
metric role for the sharers and requires an enormous amount
of communication both between them and the verifiers; each
voter must communicate with each sharer; and there is an
enormous amount of total computation. These problems are
severe enough to render this method infeasible with present
technology.

7.1 Mixnets
A mixnet is a multiparty computation-and-communication
protocol that causes a large number of input messages to get
shuffled into a random order in such a way that every party
(as well as external verifiers) becomes confident that a shuf-
fling was performed, but no party (nor even any t-element
subset of corrupt colluding parties, provided that t is not too
large) has any idea what the shuffle-permutation was.

In the original proposal by Chaum [34], the mixnet was the
net effect of a sequences of individual permutations, or mixes.
The individual messages remain in various encrypted chang-
ing forms throughout mixnet operation, only becoming de-
crypted at the final stage, and hence there is in general no
way for anybody to know which output message arose from
which input message. Chaum achieved that by initially mul-
tiply encrypting each message with the public keys of all the
mixers it later will traverse (in reverse order); each mix then
decrypts the messages it permutes, with the final mix restor-
ing the original cleartexts. By making each mixer perform a
verifiable shuffle (§4.12) observers can become confident that
each mix really is working as advertised.

If the mixers are operated by mutually distrustful and hence
noncolluding parties, then although some parties may know
some of the component permutations, nobody can know the
final product permutation. Several proposals have been ad-
vanced to allow this to be reasonably efficient [1][2][67][78][92].
66

We now give our own mixnet proposal, which is some-
what similar to a proposal of Abe [2] and which sacrifices
perfectly-uniform provable randomness of the permutation to
achieve high speed, simplicity, and to allow it to provide non-
interactive validity proofs (to reduce communication require-
ments). This sacrifice seems not to matter for the purposes
of voting schemes in large elections.67

New, maximally-practical, mixnet scheme: Suppose
there are N items to permute. Each individual mixer will
send (after re-encrypting it) input-item i to one of three out-
put positions according to some fixed, public, N + N -vertex

3-valent bipartite expanding graph. Note: this causes at most
3N permutations to be possible per stage, which is consider-
ably less than the full N !. But it nevertheless seems entirely
adequate.68 Specifically, let us say that input i is routed to
either output Ai, Bi, or Ci for some public known disjoint
N -permutations A, B, C.

Each mixer’s job is to provide a simple non-interactive zero
knowledge proof that it did that. For that, it must, for each
i = 1, 2, . . . , N , ZK-prove that output Ai is a re-encryption
of input i, or Bi is, or Ci is. This may be done by or ing to-
gether (using the or ing technique of §4.17) three re-encryption
ZK-proofs of the sort in §4.16. (These proofs are all non-
interactive.)

The net effect of many consecutive such mixers, each choos-
ing a random accessible permutation, is that each input is
routed to a random output. (Note: because of eigenvalue
bounds, a random walk on an expander graph is known to
“rapidly mix” toward the uniform distribution.) Since corre-
lations among the random walkers plainly seem small if the
graph is expanding, the conjectural net effect should be a ran-
dom permutation, with quite close approach to the uniform
distribution after O(log N) random mix stages. Assuming we
were planning on using that many mix stages anyhow, this
amount of computation is optimal. N

Incidentally, in the above scheme the graph need not be
the same each mix-round. Instead, each mixer could choose
(and announce) its own graph randomly each time (3 ran-
dom permutations are disjoint – and expand – with proba-
bility bounded above a constant, so simple trial suffices as
a graph-construction method) which would have the advan-
tage that each mixer could produce an exactly uniformly ran-
dom shuffle-permutation, albeit with somewhat greater proof-
length.

A typical voting scheme based on blind signatures and mix
nets [94] proceeds as follows.

1. Voter gets ballot from Manager.
2. Voter fills in the ballot with his vote in a legitimate way.
3. Voter gets it blind-signed by > T out of S total Admin-

istrators. In order to convince them to provide their
signature, the voter will have to zero knowledge prove
that his ballot is legitimately filled in, and will have to
provide proof of his identity (e.g. by proving knowl-
edge of a discrete log posted under his name on the pre-
published list of eligible voters). Each administrator,
whenever she signs a ballot, will also post, under that
voter’s name on the publically-viewable eligible voter
list, a note, signed by both the administrator and voter,
saying “I blind-signed this voter’s ballot.” (This pre-
vents the voter from voting twice.)

66It might conceivably also be possible to shuffle the votes using some trusted physical mechanism instead of a multiparty proof protocol.
67Abe’s schemes as corrected in his second publication [2] can be used to generate an exactly-uniformly random distrituion of shuffle permuta-

tions. Abe employs a Benes “telephone network” to shuffle N items via 2 log2 N stages, each stage consisting of N/2 “crossover boxes” which can
either swap its two data A ↔ B or not (while re-encrypting all the data in both cases). His shuffler chooses the permutation at random, determines
(using a standard routing algorithm) how to achieve it using the Benes network, performs it using the Benes network, and finally provides ZK
proofs that each Benes crossover box did perform as advertised (but without revealing which choice was made by each box). These Benes-box ZK
proofs can be made from an OR of two ANDs each of two re-encryption ZK proofs. This all is somewhat more complicated than our scheme since
Benes networks and routing algorithms are involved and there are further adjustments if N is not an exact power of 2.

68The exact count of accessible permutations is the permanent of the N ×N adjacency matrix of the graph. By choosing a graph such that this
matrix’s determinant is exponentially large, we get an exponentially large lower bound on this count. Random 3-valent graphs will usually both be
expanding, as may be confirmed by an eigenvalue test, and have determinant of order 3N/2; and explicit graph constructions should be creatable
to do these jobs, avoiding any explicit necessity for eigenvalue or determinant checks.
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4. Both the mixnet and the voter post a co-signed note to
the bulletin board saying “I have submitted my blind-
signed vote to the mixnet,” and simultaneously voter
submits that multiply-encrypted69 ballot to an input of
the Mixnet.

5. After all votes have been input and the polls close, the
mixnet operates to permute the encrypted votes, thus
anonymizing them.

6. If the number of mixnet outputs differs from its num-
ber of inputs, of if the mixnet produced a bogus validity
proof for its operation, everybody knows it cheated.

7. Counter decrypts the outputs of the mixnet and posts
the shuffled and blind-signed cleartext votes on a bul-
letin board for public view.

8. Now Counter (or anybody else) may combine them (dis-
carding the ones with invalid blind signatures) to deter-
mine the election result, which therefore is seen by all
to be correct.

The point of requiring > T out of S administrators to sign
each ballot, is that hopefully, although some administrators
may be corrupt, at most T of them are. There are two ways
administrators could be corrupt: they could refuse to sign a
legitimate ballot of a voter they dislike, or agree to sign an
illegitimate ballot. That implies that the largest we can make
T is to have S = 2T + 1. Administrators could also try to
create fake ballots, and, acting in collusion with an input-
accepting part of the mixnet, substitute them for legitimate
votes – but this would be impossible if ≤ T of them colluded.

We disparage mix nets, for several reasons. They cannot
be used with any of the best multiwinner voting systems, be-
cause those systems permit uniquifying votes, in which case
mixing cannot satisfactorily anonymize them.

It actually is possible for mixnets to handle range voting –
despite the ability of voters to uniquify their range votes by
encoding information in low-significance bits – by having the
range-voter actually produce many 1-bit subvotes, one for
each bit of the complete vote (and labeled with a descrip-
tion of which bit-position it is). These subvotes are highly
likely not to be unique in any large election, which effectively
would prevent vote buying, albeit at the cost of requiring a
large increase in the amount of mixnetting and blind signing
work. However, in nonadditive schemes such as reweighted
range voting, votes have to be delivered at the mixnet output
as a complete package and not as separated and unassociated
bits. For this reason mixnets cannot handle either reweighted
range voting or STV voting.

Another annoyance is that (at least if we are not willing to
sacrifice perfect anonymity) mixnets require all votes to be
available before they start. That could cause large delays.

In fact, mixnets seem to handle a no-larger set of allowed
voting systems (at least among the commonly known ones
[107][149][151][150]) than the homomorphic schemes of §7.3,
and pay a very large performance penalty in cases where bit-
splitting is required. These cases include range voting [149],
the best 1-winner election system!

If bit splitting is not required, then mixnet schemes are per-
haps 5 times worse from an efficiency standpoint than ho-

momorphic cryptography based schemes (§7.3). Indeed, it is
conceivable that they might become almost competitive in
efficiency if certain compromises are made (such as only re-
quiring shufflers to prove that they have shuffled all but a few
of the votes, see [92] or §4.12). The devastating problem with
mixnets is not their overall amount of work, but rather their
immense interprocessor communication needs.

Short diatribe about parallel computer programs. To
explain that: Parallel computer programs generally are a bad
thing. They tend to be nonportable, and are usually hard to
debug and unreliable because they can exhibit irreproducible
behavior. They are vulnerable to attacks on the interpro-
cessor communication system. The only good kind of parallel
program is a sequential (i.e. nonparallel) program that is sim-
ply run many times! These are easy to debug, run robustly,
and their interprocessor comminucation needs are almost zero.

Three examples:
1. Consider adding up 1012 numbers. This is trivial to paral-
lelize: 103 processors could each add up 109 of the numbers,
and then report their subtotals to a final processor for final
tallying.

2. Another example is a Monte-Carlo randomized search for
snarks.70 Many processors each search using same program
but with different random seeds; whenever a processor finds
a new better snark improving on the current snark-quality
record, it reports it to a central record-keeper.

These were examples of the good kind of parallelism. They
have simple programs, tiny communications needs, and the
precise timing and sequencing of each communication is al-
most irrelevant.

3. A perfect example of the worst kind of parallelism is
a mixnet – in which there is a vast amount of interproces-
sor (and processor↔external-verifier) communication, all of
which must be precisely sequenced and all of which is cen-
trally important to obtaining the final result.

Mixnets would unfortunately have to be heavily parallelized
in large elections, both because of current technological limi-
tations on computer speeds (cf. §3), and also because of the
fact that they need to be run by several mutually distrustful
physically isolated parties (if all parties colluded, then they
could perform a known permutation and all authors of all
votes would be known to them).

In an national election, i.e. an adversarial environment pos-
sibly featuring well-equipped and heavily funded attackers,
this amount of parallelism combined with the need for a huge
amount of long-distance communications, becomes a complete
nightmare.

The requirement in this system for the voter to contact many
different independent Administrators, each of whom must
perform a large amount of communication and computation,
seems unrealistic, impractical, or undesirable. The require-
ment for verifiers to conduct a many rounds of heavy interac-
tion with the (heavily parallelized) mixnets also seems unre-
alistic, impractical, too-easily attackable, or undesirable.

Finally, the mixnet scheme we have just outlined is subject
to the criticism that the precise subset of administrators that

69The encryption is undoable by the net effect of each mixer’s individual decryption followed finally by the Counter’s decryption
70Rare, high-quality objects of some sort.
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sign your vote, can go a long way toward identifying the voter.
If there are 31 Administrators and each voter must have 16
sign his ballot, then since

(
31
16

)
= 300540195 that would be

more than enough to uniquify ballots in a 108-voter election.
A cabal of colluding adminstrators could thus go a long way
toward enabling vote-selling and/or coercion; and even with-
out precisely identifying voters, they could still identify cer-
tain statistical trends they could use later to punish entire
voter groups.

7.2 Homomorphic cryptography and its uses
An encryption function F (M) is said to be homomorphic if
F (M1)F (M2) = F (M1 + M2), that is, if multiplying two en-
crypted messages is the same as encrypting the sum of the
messages, for some appropriate notions of “sum” and “prod-
uct.”

The “one way communication” version of Elgamal public key
cryptosystem from §4.8 can easily be made homomorphic as
follows.

To encrypt a small nonnegative integer v, let M = gv mod
P . Then its encryption is (k, c) = (gr, gvyr) mod P . The
elementwise product (mod P ) of two such encryptions is
(k1k2, c1c2) = (gr1+r2 , gv1+v2yr1+r2) mod P which is an Elga-
mal encryption of v1 + v2.

All this also may be readily transplanted into the elliptic curve
group framework instead – and please do, since ECC systems
provide superior security (§3.2).71

It is also possible to devise homomorphic public key systems
based on RSA or generalizations thereof [47][4],72 but the se-
curity of those ideas are worse since they depend on the hard-
ness of factoring rather than the hardness of the discrete log
problem in elliptic curve groups. Therefore we shall not dis-
cuss them.

Since in many voting schemes (see footnote 65) the method
of combining all votes can be regarded (essentially) simply as
addition, homomorphic encryption permits us to add up all
the votes without ever decrypting them (indeed, this adding
can be done by somebody who does not even know the decryp-
tion key) until at the end we decrypt the vote total [41][42].
Unfortunately, anybody with the power to decrypt the vote
totals would (at least in this Elgamal scheme) also have the
power to decrypt the individual votes. Furthermore, when the
vote total T is “decrypted,” we actually get gT mod P , which
is not quite the same thing as T itself. The only way to get T
itself is then to solve a discrete logarithm problem, which for-
tunately is not difficult if we know that T is small (e.g. since
all votes are small integers and there are a small number of
voters) since we may try all possible T exhaustively.

Because range [149] and asset [151] voting involve the addi-
tion of real numbers rather than small integers, they might
be thought incapable of being handled by homomorphic en-
cryption. However, they actually can be handled if we employ
fixed-point reals (i.e. integers), provided P is much greater
than the number of voters times the maximum integer we

would permit in any vote – a requirement certainly satis-
fied by a 300-digit-long prime P . The only problem is that
with fine enough “grain sizes” for our discretized reals, the
search for the solution of the discrete log problem might be a
much larger search! Fortunately that difficulty seems soluble
in practice using the “baby step giant step” or Pollard-lambda
methods (§4.3) of solving discrete-log problems in sublinear
time. Specifically, if there were 1010 voters (greater than
present world population!) each using 5-digit reals, then we
would need to find a discrete logarithm between 0 and 1015.
Exhaustive search of 1015 possibilities is not feasible, but ei-
ther the baby/giant or the Pollard method would solve the
problem in ≈ 108 steps, each “step” involving a modular mul-
tiplication or inversion, and perhaps a table lookup. That
would be entirely feasible in less than a day on one standard
personal computer.

A different approach (which also would work) would be to
add up the single bits in each range vote real number in sep-
arate “elections,” i.e. one for the most significant bit, one
for the next most significant, and so on. The bit-splitting
method would usually be less efficient because it requires a
large number of modular exponentiations per vote to encrypt
all the bits in that vote separately, whereas the work in the
Pollard/baby/giant approach is sublinear in the number of
votes (and also enjoys a smaller constant factor since the op-
erations in its inner loop are modular multipications rather
than exponentiations), and also if any zero knowledge proofs
of interval-membership were devised that were sublinear in
the number of bits (see §4.22).

Unfortunately, homomorphic encryption methods seem un-
suitable for running elections in which the vote combina-
tion method is not, at its core, merely addition. The fol-
lowing seem (if there are achievably large numbers of candi-
dates and/or winners) to be unhandleable: Hare/Droop STV
[110][161], reweighted range voting [150], and sar-range [153].

7.3 A practical secure election: Homomor-
phic repair to §5’s semi-trusted scheme

We now can make a few alterations to the semi-trusted elec-
tion scheme of §5 to make it fully secure. As before, paper
vote-receipts allow recounts if the internet fails. First, let us
make all encryptions be homomorphic Elgamal and have the
election authority EA not know its own decryption keys.

Thanks to homomorphism, this in no way prevents EA from
adding up the votes, or proving to each voter it has correctly
re-encrypted her vote. (Furthermore, anybody else is free to
carry out exactly the same computation as the EA, hopefully
reproducing exactly the same result, and by having many
different processors, each computing a subtotal of the total
sum, we trivially can parallelize this computation as much as
we want – although that would not even be necessary since
no modular exponentiations – only plain group operations –
are required to do a homomorphic addition causing the en-
tire summation to be rapid73.) But it does prevent EA from

71Notice also that taking the pth power of an Elgamal homomorphic encryption is the same as encrypting p times the original number.
72Acquisti’s scheme [4] employs both the Paillier public key encryption, which depends on the hardness of integer factoring and homomorphism

and mixnets. We would therefore not recommend it on efficiency grounds.
73“Adding” up 1010 votes (more than present world population) where each addition is really a modular multiplication with a 512-bit modulus,

would require 25 hours on a single Pentium-II/200MHz processor.
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revealing any of the votes, causing the election to be fully
secure (since we already saw that the EA’s collusion in re-
vealing votes or decryption keys was required to compromise
the system – this collusion is now impossible).

In the original scheme, since EA could decrypt all the votes,
EA had no difficulty in assuring itself that every submit-
ted vote was correctly and legitimately formatted. It can no
longer do that. Therefore, it is now necessary for each voter to
provide, in addition to merely her vote, also a zero knowledge
proof that the vote was correctly and legitimately formatted.
Such proofs can be based on the methods of §4.17 and §4.22.

With only these minor alterations, we now have a fully-secure
verifiable election scheme. There is only one problem: the
sum of the votes (ready for use to produce the election re-
sult) is only output by EA in encrypted form – and while
everybody can convince themselves that is the encryption of
the correct sum, neither EA (nor anybody else) knows the
decryption key!

The solution to that is to have the decryption key K be
known, not by any one entity, but in fact partially by sev-
eral mutually mistrusting entities: Each entity i knows Ki

where
∏

i Ki = K mod G (where G is the publically known
order of the group g and h are from). The entities can work
together to decrypt an Elgamal 2-tuple (gr, hrM) to find M
from the publically known g and h = gK . (Here r is random
and not known to anybody.) The objective is to compute
hr from gr by raising it to the power K. That may be ac-
complished by having each entity i raise it to the power Ki,
successively, after the election is over.

The initial generation (before the election starts) of h = gK

is similarly accomplished by the entities successively raising g
to powers Ki that they choose randomly at that time. Dur-
ing the second go, the entities must provide zero knowledge
proofs (via the method of §4.16) that they are using the same
power Ki that they used on the first go!

In this way, nobody ever knows the Elgamal decryption key
K – but we may still decrypt the election result!

Unless all the keyholding entities (and EA) collude, all votes
will remain forever private. Since these entities are assumed
to be mutually mistrustful (e.g. they might be: the major par-
ties and citizen’s “watchdog” groups), at least some of them
will not collude. Note that the vast bulk of the computational
and communication work is done by EA in this scheme. The

keyholding entities only act once at the very beginning, and
once at the very end, to perform a few modular exponenti-
ations each, i.e. a small amount of work independent of the
number of voters.74

Because the EA does not know decryption keys, only
encryption keys, it can distribute those encryption keys far
and wide to its many voting machines without fear that any
important secret will be compromised. In fact these keys can
and should be publicized.

Because of this, all communication between the voter and the
EA during voting can really be a communication between the
voter and the EA-owned voting machine sitting next to him
– there is no need for any voter to communicate with anyone
over any long, tappable wire.

Summary of entire proposed election procedure.

1. The s keyholders randomly generate their secret partial-
decryption keys K1, K2,..., Ks and use them to produce
public encryption keys g and hK where k =

∏s
j=1 Kj .

2. Voter generates his vote as guided by publically posted
ballot. Vote consists of integers v.

3. Voter homomorphic-Elgamal-encrypts (§4.8) his v’s
with public key K.

4. Voter transmits encrypted vote M to EA.
5. EA re-homomorphic-Elgamal-encrypts vote using pub-

lic key KE. That is, if the original encrypted vote V was
M = (gr, hriV ) with r randomly chosen by the voter
and where i is a public constant fixed random group el-
ement, then the new one is M = (gs, hsiV ) where s is
random and is the sum of the voter’s r and the EA’s
different r (call the latter q).

6. Voter and EA jointly produce zero-knowledge non-
interactive proof of the validity of the re-encrypted vote
(e.g. using methods of §4.23 in a joint version as in the
end of §4.20). Then EA adjoins the date to get M ′,
which is sent back to voter.

7. EA alerts voter if this ZK-proof was not valid, in which
case refuses to accept vote.75

8. EA privately supplies voter with zero knowledge proof of
discrete log equality as in §4.16 to show q = q, i.e. that
it has produced a valid Elgamal re-encryption, and this
proof should be a “designated-verifier” ZK-proof, as in
§4.19 designed to convince that particular voter only.76

74It might be objected that our system would be vulnerable to attacks on the keyholders. Killing even a single keyholder – or anything that
caused him to refuse to cooperate – would force the entire election to be called off. The keyholders are the one irreplaceable element in our scheme.
We can respond to that objection. First of all, keyholders, since they have so few responsibilities beyond remembering their keys, can be well
protected. Second, the ith “keyholder” could in reality be a group who collectively generate and share Ki as a shared secret as in §4.11. As long as
the majority of this group survived in a noncorrupted form, the Ki would be regenerable, and no minority-subset of the group would be capable
of revealing Ki. Note that the techniques of §4.11 permit the group to raise a number to the power Ki (actually, to a power that is a fixed public
constant multiple of the secret, but this makes no difference; this is due to the distinction between the quantities we call Ik and Lk in §4.11) in
spite of the fact that no individual member ever knows Ki; and this is the only purpose for which they employ Ki.

75EA could always refuse to accept that voter’s vote (based on a general prejudice against him) regardless, there is nothing that can be done
about that; but it is entirely possible to have several EAs, all simultaneously collecting votes, in which case hopefully one will not be prejudiced
against that voter; and a stiffed voter would be able prove to all that his vote never appeared on the bulletin board, and then demand redress. It
is probably best that different EAs use different signature keys so that a cheating EA can be detected; this results in a (small) reduction in voter
privacy.

76This idea of using a designated-verifier ZK-proof of re-encryption in this way – so that the voter knows his unaltered vote was posted on the
bulletin board, but is unable to convince any would-be vote-buyer of any information about the contents of that vote – may be new. The EA could
refuse to provide this proof, in which case the voter then would refuse to sign the vote (and again since the EA could always refuse to accept that
voter’s vote, there is nothing that can be done about that standoff). Further, the EA could collaborate with both the voter and a vote buyer to
allow that voter to prove the value of his vote to the buyer and hence sell his vote. However, that would be impossible if only two of these 3 parties
collaborated. This flaw also seems inherently unavoidable since if the EA wanted to collaborate with a vote buyer it could, more simply, just allow
that buyer to be (tele)present in the voting booth with the voter.
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9. Voter confirms date and re-encryption validity, then
signs M ′ and sends back to EA.

10. EA alerts voter if his signature was not valid.
11. EA signs it also.
12. EA posts resulting twice-signed, validity-self-proving,

and dated Elgamal-doubly-encrypted vote to world-
readable bulletin board next to that voter’s name on
pre-posted list of all eligible voters.77 EA also prints
two paper copies of the post (as “bar code”) giving one
to the voter and keeping one for backup records.

13. Voter may scan his paper receipt and check EA-
signature to verify its validity.

14. (Voters can vote multiple times but only their last-dated
posted vote will be used. Voter can examine the bulletin
board to verify their vote was posted.)

15. Once all votes have been acquired and posted, EA (or
any other external totaller) uses the most-recently dated
posted versions of each voter’s vote (among those with
valid voter- and EA-signatures and valid dates) and
homomorphically-adds them up (simply by elementwise
multiplication of the Elgamal 2-tuples) to get Elgamal-
encrypted version (with public key K) of election totals.

16. The s keyholders successively partially Elgamal-decrypt
the election totals using keys K1, K2,..., Ks (zero-
knowledge-proving as they do so, that they are using
the same Kj ’s as exponents as they did at the begin-
ning, see §4.16 for the proof technique), and broadcast
the resulting exponentiated forms iT of the election to-
tals T .

17. Somebody uses Shanks baby/giant method or Pollard-
lambda method (§4.3) to determine the plaintext elec-
tion totals T and then broadcast them. (These final
broadcasts may be immediately confirmed by anybody.)

This is a very elegant solution. The total amount of work
involved by the voters and EA amounts to about 25 + 11ℓ
modular exponentiations per voter-supplied-number assum-
ing the naive interval-membership ZK-proof of §4.22 (in the
Elgamal version of §4.23) is used and that each number sup-
plied by the voter in his vote is ℓ bits long. (Better interval-
membership ZK proofs, if they became available, could speed
things up by replacing the ℓ by some much smaller quantity
for large ℓ, such as O(1 + log ℓ). Note this reckoning has not
counted work done by the external verifiers.) This should re-
quire less than 1 second of processing per voter-number, even
on slow computers. Assuming each voter is entering his vote
into a machine which itself is a (low speed) computer, the
voter will be unable to enter his vote as quickly as it will be
processed. Almost all the work is involved in generating, en-
crypting, signing, and zero-knowledge-proving the votes (and
verifying those signatures and proofs); once this is done the
task of actually homomorphically adding up the votes is com-
paratively trivial.

The total cost of enough computer power to perform 1 second
worth of processing per voter (and get it all done in 1 day) is
(assuming $1000 per computer) about 1 penny per voter. So,
obviously, this system is buildable now with currently avail-
able technology.

7.4 Heterodox voting schemes

In this section we’ll discuss schemes which do not fit neatly
into the “homomorphic” or “mix-net” camps, either because
they use both ideas, or other ideas.

Kiayias & Yung [99] suggested a very interesting and ele-
gant, but ultimately unacceptable, voting method achieving

Perfect ballot secrecy: A voter’s vote can never be re-
vealed against his will unless all the other voters con-
spire against him.

Dispute-freeness: It is trivially apparent to any casual
third party that all voters and the EA followed the
protocol (or: if they did not, then it is apparent who
cheated).

Self-tallying: Determining the election results from the pub-
lically posted data is fairly easy and can be done by
anybody.

However, the Kiayaisis-Yung scheme suffers from three major
disadvantages:

Quadratic storage: The amount of data generated and
then stored on a public bulletin board is 5N2 + O(N)
data items for N voters. Each voter posts 5N + O(1)
encrypted items. Even more posts are required if some
voters later drop out. With 108 voters each voter would
have to post about 108 data items, with over 5 × 1016

data items posted in all. With current technology, this
is infeasible, so that their scheme could only be used for
small elections (< 104 voters).

Vote buying: The scheme permits voters to intentionally re-
veal, and prove, their vote, thus permitting “vote buy-
ing.”

Intolerable delays...: Their scheme involves a“preparatory
phase” followed by a “vote-casting phase,” and they al-
low voters to drop out between the two phases. But un-
fortunately, they require explicit identification of exactly
which voters plan to drop out, before voting commences,
so that the remaining parties may make appopriate ad-
justments (fairly expensively) to the quantities that had
been published during the preparatory phase. That is
unrealistic in large elections (e.g. some voters might die
during their trip to the polling-place). Further, if some
voters then cast illegal ballots (i.e. with false ZK valid-
ity proofs) then they have effectively dropped out, which
would require the entire election to be restarted, with re-
adjustments made each time that happened. The result-
ing amount of labor and time would still be bounded, be-
cause each time this happens, we have one fewer voter.
But instead of requiring O(N) work and communication
per voter (which is already outrageously large), O(N2)
could be required (and in fact would be required, if a
constant fraction of votes were illegal) during order N
different voting-again phases. This seems entirely unac-
ceptable in practice.

It is possible to reduce their quadratic storage and work to
linear by having only a sparse subset of their sij values be

77Consequently is is publically known who voted, disappointing advocates of “invisible abstention” property 2c from §2. However, we reply that
in many election-tallying systems, such as “range voting,” it is possible for voters to cast “null votes,” functionally equivalent to not voting.
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nonzero. This would come at the partial sacrifice of “per-
fect ballot secrecy” since now a much smaller set of voters
could conspire to reveal i’s vote, namely the voters j such that
sij 6= 0 and who did not drop out. Indeed if all these were
to drop out, then no conspiracy whatever would be required
– voter i’s vote would simply be revealed. This perhaps is an
acceptable risk if the sparsity pattern is well chosen. It might
also be possible to prevent vote-buying by use of re-encryption
and designated-verifier validity-proving techniques, but that
would come at the cost of eliminating “dispute-freeness” and
“ballot secrecy” since disputes could now occur between the
voter and EA. (Also a 3-way collusion between the buyer,
seller, and EA would still enable vote selling as usual.)

But, I see no way to solve the “intolerable” problem, at least
without a great deal of additional property-sacrifice, and un-
less and until it can be solved, the Kiayias-Yung scheme must
be dismissed from practical consideration.

They have some nice ideas, however, and hopefully somebody
will find a way to resuscitate them for some other purpose.

“Coercion-resistant” scheme by Juels, Catalano, and
Jakobsson [96] as improved by Smith [152]:

In this scheme the identity of the voter remains hidden during
the voting process. Each ballot contains inside it a “concealed
credential” in the form of an encryption of a secret value σ
known only to that voter, and an encryption of the vote it-
self, and a ZK validity proof. The tallier discards all votes
with bogus validity proofs. To ensure that ballots are cast by
legitimate voters, the tallier performs a blind comparison be-
tween the hidden credentials on the (scrambled-order and re-
encrypted) list of votes, and each member of a pre-scrambled
and pre-encrypted list (both scramblings and re-encryptions
are got by putting the lists through a mixnet) of genuine also-
encrypted credentials generated from the pre-posted list of le-
gitimate voters. This comparison may be done with the aid
of a “plaintext equality test” (§4.16). Of course validity proofs
of all the mixing and plaintext-equality-testing are broadcast
to all verifiers.

This allows the tallier to determine each vote’s legality, and
to prevent double voting, but without knowing any vote’s au-
thor and indeed without it ever being revealed who voted.
If several votes by the same voter are detected during tally-
ing, then all but one of them is arbitrarily discarded (perhaps
according to some predetermined policy such as keeping the
chronologically last vote cast).

Finally, the votes in the final weeded list are decrypted and
totalled.

JCJ employ several mutually distrustful talliers who cooper-
atively decrypt the final weeded votes (no one can do this de-
cryption individually) and who cooperatively perform plain-
text equality tests.

Vote-coercion attempts will not work because the coerced-
voter could simply provide a vote with an invalid credential.
Because plaintext equality tests are not performable by indi-
viduals but only by a threshold set of vote tallying authorities
working in cooperation, the coercer cannot check the creden-
tial’s validity. The official validity checks are only performed
after mixing, so the coercer cannot know which votes passed
the validity tests. Duplicate votes can be removed by self-
comparison of the votes before re-mixing and re-encrypting

and performing the comaprison to the official credentil list,
so that nobody knows how many votes any authorized voter
cast.

Finally, although a voter could provide the plaintext form
of his credential σ to anybody, that would not help them to
identify a vote containing an encryption of it, because no indi-
vidual knows the decryption key, and the encryption method
is ElGamal randomized, and there is no way for them to verify
that the “credential” is not merely some random bits.

JCJ is usable with any vote-method in which votes are
anonymizable, i.e. in which it is usaully infeasible or use-
less to produce a unique vote. It is not necessary that the
votes be additive and indeed anonymizable-vote systems are
a strict superset of additive ones since we can bit-split votes in
any additive scheme into “single-bit” votes. The JCJ scheme
is unuseable with voting systems such as reweighted range
voting [150] in which it is feasible for voters to uniquify their
votes.

The main defect of the original JCJ scheme was that pro-
cessing V votes by N voters required O(NV ) steps to perform
all the cross checks, i.e. at least N2 steps. With 108 voters,
the huge number of proofs of failed plaintext-equality-tests
that need to be provided to all verifiers to justify discarding
the bogus votes would be absolutely unacceptably huge. For-
tunaely Smith [152] was able to show how to reformulate the
JCJ scheme to allow the cross checks to be done via “hashing”
in only ≈ 100(N + V ) modexp steps.

7.5 Voting via secret sharing and secure gen-
eral multiparty computations

At first, the election desiderata of §2 seemed irreconcilable.
But then we saw that, at least for many popular vote-
combining methods, both mixnets and homomorphic encryp-
tion could do it.

Both these approaches relied (although in the homomorphic
case only in a minor way at the very end) on having distinct,
independent, and mutually mistrustful entities performing dif-
ferent parts of the computation, as opposed to just having the
election authority do everything. That was not a coincidence:

Theorem 5 (Impossibility). The election desiderata of §2
are irreconcilable if the election is performed by a single en-
tity which does everything in polynomial time, and if the vote
combining method is sufficiently general.

Proof: One“vote combining method”once suggested by Gib-
bard [75] (it is one of the two“strategyproof”nondeterministic
voting methods) is simply to pick a random voter i and do
whatever he wants (the “random dictator” method)! In order
to be able to carry out a maximally general vote combining-
method, therefore, the election authority would have to be
able to know the vote of voter i, for each and every i, after at
most a polynomial amount of thinking. But that contradicts
the desire for ballot secrecy. Q.E.D.

The way to avoid this impossibility theorem is seen once we
recognize that “single” is its key word.

Considering theorem 4, we see that it is possible for a set of
several sharers to, in combination, perform any polynomial-
time vote combining method on votes which are “shared se-
crets.” Each voter would initially publically zero-knowledge
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prove the validity of his vote, and then would share his vote
among the sharers using the methods of §4.11. Those shar-
ers then would not know any votes (except if > T of them
colluded, but we assume they are sufficiently mistrustful that
that will not happen). But they could by using theorem 4
perform any polynomial-time vote combining procedure to
deduce the election result (in shared-secret form). This com-
putation would be performed in a way that produced a zero
knowledge proof of its correctness. Finally, the sharers could
cooperatively determine what that election result was.

The problem with this approach is its immense communica-
tion and computational needs. Let us suppose there are 3
sharers, since that would seem to be the minimum arguably-
acceptable number. Each logical AND-gate operation in the
vote-combining algorithm (regarded as split into the indi-
vidual bit-operations it performs) is simulated with the aid
of 51 modular exponentiations. Assuming we are holding a
reweighted range voting election among 108 voters, the to-
tal number of logic-gate operations needed would be ≈ 1013.
So the total amount of computing required to make this all
work would be equivalent to, say, 5× 1014 modular exponen-
tiations, each of which (using Zmodexp) takes 4.66msec on a
Pentium-II/350MHz. The total amount of Pentium-time re-
quired for all that computing, then, would be 75,000 years.
This could be achieved in 1 computing-day if 27 million Pen-
tiums were assigned to the task (if massive parallelism were
possible, which for fully general vote-combination methods is
doubtful, but seems plausible for reweighted range voting), at
a hardware cost (assuming $1000 per Pentium) of $27× 109,
or $270 per voter. These computers would require their own
2-gigawatt power plant. This cost seems too high to be justi-
fiable, but certainly is not impossible.

But now consider the communication requirements. The 3
sharers would necessarily have to be in physically well-isolated
locations. Each bit operation requires the communication of
somewhere around 1kbit of information from each sharer to
the others. The total amount of information transmitted,
then, would be 3 × 1016 bits. Assuming 1 Gbit/sec commu-
nications links, this would require 116 days to transmit over
3 lines. This is outrageous. But now if we also consider the
communication and computational requirements on the veri-
fiers (who are supposed to be small groups without enormous
finincial and computational resources) then it becomes com-
pletely unacceptable.

So while secure general multiparty computations solves the
problem in principle, with current computer and communica-
tion speeds and costs this solution is not acceptable.

8 We trade fire with electronic vot-

ing opponent Rebecca Mercuri

Rebecca Mercuri is the author of a Computer Science PhD
thesis on voting, a professional voting consultant, founder
of her own software company, often appears in the popular
press, and also has years of experience as a poll-worker in
elections. She also advocates the “Mercuri method,” (which
others have called the “TruVote” system and attributed to
Athan Gibbs), of having electronic voting machines produce
paper vote-records as follows:

1. Voter votes.
2. Machine prints out a description of that vote, which

voter views through glass.
3. Voter, if satisfied, indicates approval by pushing a

switch.
4. Votes are recorded and paper ballot drops into a box to

be stored for possible later use in a recount.

Mercuri begins her“statement on electronic voting”[111] with
words to warm the heart of any Luddite:

I am adamantly opposed to the use of any fully electronic or
Internet-based systems for use in anonymous balloting and
vote tabulation applications.

She then lists many reasons for this stance“based on a decade
of research.” Unfortunately, it will soon become clear that
Mercuri knows little about the cryptographic voting methods
we have discussed here. Consequently, some of her statements
are simply false. However, there is much to be learned by con-
sidering them, and that is what we shall do here, in the form
of an artificial dialogue between Mercuri and ourselves. Our
statements pertain to the homomorphic system of §7.3; hers
are extracted from [111] (nearly the entirety of [111] is dupli-
cated below in pieces).

Mercuri [111]: Fully electronic systems do not provide any
way that the voter can truly verify that the ballot cast cor-
responds to that being recorded, transmitted, or tabulated.
Any programmer can write code that displays one thing on a
screen, records something else, and prints yet another result.
There is no known way to ensure that this is not happening
inside of a voting system.

Reply 1: Our model assumes that the voter is casting votes
from his own machine, whose software is written by somebody
he approves of (there would be many competing vendors). In
our systems the voter is capable of verifying that his vote was
transmitted and recorded (in the system of §7.3 it is posted
on a public bulletin board under than voter’s name in signed
and encrypted form). The voter is capable of verifying it is
bitwise identical with the vote he produced. Anyone is capa-
ble of verifying that that vote could not have been produced
by anybody other than that voter, and it could not have been
altered in even a single bit. Anyone is capable of verifying
– and these verifications can be done entirely on their own
machines, using software written by anybody they please –
(and in fact these verifications will be performed by many)
that the “tabulation” included exactly all votes posted on the
bulletin board.

So Mercuri is wrong. But she is correct that “spoofing” soft-
ware or hardware acquired by gullible voters could be a prob-
lem. Spoofed smart cards that always voted Republican could
in principle be manufactured and distributed to voters. They
would be detectable by using them in 1-voter test “elections”;
such test elections could be provided as a service by many
independent groups. (Those test groups again could be lying,
but there could be many of them, presumably not all lying.)

Mercuri: Electronic balloting systems without individual
print-outs for examination by the voters, do not provide an
independent audit trail (despite manufacturer claims to the
contrary). As all voting systems (especially electronic) are
prone to error, the ability to also perform a manual hand-
count of the ballots is essential.
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Reply 2: We have demonstrated how to produce paper print-
outs (of the exact same information posted on the “bulletin
board”). These would be capable of being scanned in and
would allow a recount, with the same verifiability properties,
to be done at any time, even if the entire internet was de-
stroyed. It would not matter if the election authority’s vote-
counting software or hardware was erroneous, cheating, or
compromised – i.e. it would still be impossible for a wrong
election result to be computed without detection. For this,
the only thing that matters is that somebody somewhere has
valid verification software with which to check the election au-
thority. Such verification programs could be written by many
independent programmers and run on many independent ma-
chines by different verification groups in different countries,
etc.

Mercuri: No electronic voting system has been certified to
even the lowest level of the U.S. government or international
computer security standards (such as the ISO Common Cri-
teria or its predecessor, TCSEC/ITSEC), nor has any been
required to comply with such. No commercially available e-
voting system has been verified as secure.

Reply 3: Most or all commercially available voting systems
are indeed, as of 2004, crap. (See §9.) However, we repeat
that the procedures we have described here achieve a vastly
greater degree of security than any previous election scheme
ever used. We repeat that nobody, ever, in the entire his-
tory of humanity, despite great effort by many very talented
people, has ever solved a 500-digit hard integer factoring prob-
lem. Ever. Presently known methods would not succeed in
doing so even if all the computers in the entire world were
devoted to the task for 100,000 years. We have shown how
to link the job of defeating our voting system’s mathemati-
cal guarantees to the solution of harder problems than that.
Meanwhile every voting system Mercuri likes has been com-
promised many times by unskilled adversaries. In short, it
is quite likely that our voting system’s mathematical guaran-
tees will never be broken; the only fruitful avenue of attack is
therefore on something else (e.g., physically preventing voters
from producing the input to our system, or physically pre-
venting our system from being used at all, or falsifying the
assumptions about the world that the mathematics rests on,
all are far easier ways to attack it than trying to break the
system itself).

Mercuri: There are no required standards for voting dis-
plays, so computer ballots can be constructed to be as con-
fusing (or more) than the butterfly used in Florida, giving
advantage to some candidates over others.

Reply 4: This issue has nothing to do with whether the elec-
tion is electronic or not. We agree with Mercuri that this
lack of standardization is an easily-repaired outrage. In the
event electronic voting became prevalent, such standardiza-
tion would be more, not less, likely to happen.

Mercuri: Electronic balloting and tabulation makes the
tasks performed by poll workers, challengers, and election
officials purely procedural, and removes any opportunity to
perform bipartisan checks.

Reply 5: The part about “removing opportunity for check-
ing” is totally false. (The part about “procedural” is true, but
that is not a problem, but rather a desirable goal.)

Mercuri: Any computerized election process is thus en-
trusted to the small group of individuals who program, con-
struct and maintain the machines.

Reply 6: On the contrary: there can be an arbitrarily large
number of independent verifying groups. Mercuri here has
the wrong mindset – she imagines that there is just one elec-
tion authority, running software which the rest of us have to
trust. The right mindset is: that software has to provide
proofs of success, checkable by anyone anywhere using inde-
pendent software and hardware. Any false proofs can and will
be detected.

Mercuri: Although convicted felons and foreign citizens are
prohibited from voting in U.S. elections (in many states),
there are no such laws regarding voting system manufactur-
ers, programmers and administrative personnel. Felons and
foreigners can (and do!) work at and even own some of the
voting machine companies providing equipment to U.S. mu-
nicipalities.

Reply 7: Interesting. (And true, see §9.) But the systems of
the sort we are discussing are in no way hurt by internation-
alization or felons...

Mercuri: Encryption provides no assurance of privacy or
accuracy of ballots cast.

Reply 8: Completely false. It totally protects privacy. “Ac-
curacy” (by which I assume she here means “legitimate for-
matting”) is ensured by the fact that each voter must provide
a zero knowledge proof of his vote’s legitimate formatting, ac-
companying that vote. Thus our system would in fact provide
far superior voter privacy and formatting guarantees versus
old-style voting.

Mercuri: Cryptographic systems, even strong ones, can be
cracked or hacked, thus leaving the ballot contents along with
the identity of the voter open to perusal.

Reply 9: On the contrary, we have linked“cracking”our sys-
tems to solving large discrete logarithm problems. Nobody
has ever succeeded in doing that, so until and unless that day
comes, cracking is not feasible and ballot contents are un-
perusable. “Hacking” is not relevant to the issue of whether
the election can be verified, unless the hackers also manage
to hack the independent systems of every verification group
worldwide.

Mercuri: One of the nation’s top cryptographers, Bruce
Schneier, has recently expressed his concerns on this mat-
ter, and has recommended that no computer voting system
be adopted unless it also provides a physical paper ballot pe-
rused by the voter and used for recount and verification.

Reply 10: Such recountable and verifiable paper ballots are
produced by the system we have discussed here, and they
are far more verifiable than any old-style voting system, since
they are unforgeable.

Mercuri: Internet voting (whether at polling places or off-
site) provides avenues of system attack to the entire planet. If
a major software manufacturer in the USA could not protect
their own company from an Internet attack, one must under-
stand that voting systems (created by this firm or others) will
be no better (and probably worse) in terms of vulnerability.

Reply 11: True to this extent: “denial of service” attacks
would be possible, i.e. preventing the election from being held,
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but undetectable election-faking attacks would be impossible.
The election system we propose is capable of of working with-
out needing the internet while the votes are collected – except
for one thing: if voters want to see their votes instantly posted
to a world-viewable electronic“bulletin board,”then this is not
possible if communications are shut down, and such postings
will be delayed until the communications are restored. (Even
then postings to a local sub-bulletin board would still be pos-
sible.) Even if so, the situation still would be far superior to
pre-electronic systems.

Mercuri: Off-site Internet voting creates unresolvable prob-
lems with authentication, leading to possible loss of voter pri-
vacy, vote-selling, and coercion. Furthermore this form of
voting does not provide equal access for convenient balloting
by all citizens, especially the poor, those in rural areas not
well served by Internet service providers, the elderly, and cer-
tain disabled populations... off-site Internet voting systems
should not be used for any government election.

Reply 12: She’s right. More precisely, authentication is not
“unresolvable” – digital signatures work if voters are capable
of and willing to keep their keys private – the problem is vot-
ers who want to sell votes. Vote selling and coercion would be
possible in most schemes if voters were voting in a non-private
setting.78 So we recommend that voters be required to vote
in private voting booths rather than from arbitrary internet
sites. Disabled people have always had, and if off-site voting
is forbidden will always have, lesser access. Our system re-
quires each voter to own their own personal“digital assistant”
(smart card?) to use in the voting booth. If these were avail-
able for free, then poor people would not be disadvantaged.
The possibility of voters selling their cards would have to be
defeated by making each card only useable by their owner
(e.g. because of photo and finger- or toe-print indelibly im-
printed on the card; fingerprints could be taken at the polling
place to try to prevent anyone voting twice with two different
cards, one with forged prints) and this separability of voters
from their digital assistants is among the weakest aspects of
our proposed system – the mathematical model regards voters
and their digital assistants as the same entity.

Mercuri: It is a known fact that the computer industry does
not have the capability, at present, to assure a safe, reliable
election using only electronic devices.

Reply 13: Our scheme is feasible with today’s technology.
On a cost-per-voter basis, it is not even expensive (well under
1 dollar per voter to adopt, excluding the cost of the “smart
cards”).

Mercuri: Investigation of vendor claims (such as those per-
formed by New York City on DRE products), and failures of
performance in actual elections, have demonstrated the exis-
tence of major flaws.

Reply 14: Flawed voting machines would be far more, not
less, detectable under our system, since each voter could im-
mediately verify the fact that his vote was (or was not!)
posted on the world-viewable bulletin board. Most flawed
voting machines would be detected that same day. Voting
machines failing to obey the protocol for communicating with
the voter’s digital assistant would be detected immediately.
Any voters whose votes did not get posted, would be fully ca-

pable of trying again to vote, until eventually they succeeded.
There would be no penalty for multiple voting (although only
the most recent vote would actually be used).

I have corresponded with Mercuri over the years and at-
tempted to point these things out to her, but she would not
modify her“statement”[111]. However, she did try to indicate
that her “statement”had been intended to be directed toward
currently commercially available voting machines, not toward
theoretical developments. They are far more acceptable if
viewed in that light.

9 Examples of real world voting

frauds, errors, deceptions, suspi-
cious events, and stupidities

The following stories have mainly been extracted from [14]
[32] [33] [36] [68] [81] [84] [90] [103] [113] [122] [104] [158] to
illustrate the variety of known kinds of election fraud and
manipulation techniques, as well as unintentional errors.

9.1 Voter registration and eligibility
Closeup on Duval County, Florida:

The Washington Post [14] found that Duval’s rejected regis-
trations to vote in the 2004 election were 35% black, although
only 20% of accepted registrations were by blacks. Some reg-
istrations were not rejected but instead merely “flagged” as
incomplete. There were nearly 3 times the number of flagged
Democratic registrations as Republican. Broken down by
race, no group had more flagged registrations than blacks.

Secretary of State Glenda E. Hood (appointed by Gov. Jeb
Bush) ruled that for registrations to be deemed complete, new
voters must not only sign an oath attesting to their citizen-
ship, but also check a box that states the same. Unlike many
counties, which have chosen to ignore that directive, Duval
County chose to enforce it. (There are also other boxes that
“must” be checked.)

Duval County used punched card voting machines. Accord-
ing to Harris [84]: “One way to rig a punch card system is
to consolidate ballot-counting in one area so that precincts
are mish-mashed together; Then, the scoundrel team picks
someone to quietly add punches to the votes... The double-
punched cards become ‘overvotes’ and are thrown out.” In
2000 in Duval County 21,942 overvoted punch cards appeared
(equivalent to 1 overvoted card per 10 cards) with most of the
overvoted cards coming from just 5, all heavily black, out of
the 268 precincts in Duval. No one was allowed to look at
them. Duval had the highest ballot rejection and overvote
rates among all Florida counties.

A statistical analysis of the Duval precinct totals was made
by the statistics consulting firm netrinsics.com [53]. One
hypothesis that had been advanced in the press [23] to “ex-
plain”this without the existence of any skullduggery, was that
many hastily mobilized democratic first-time voters had been
confused by instructions to “punch every card.” However, the
Netrinsics statistical analysis nixed that hypothesis. Netrin-
sics’ point was that only the presidential ballot was spread

78But see lesson 6 of §11.1.
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over more than 1 card (because there were 10 presidential
candidates).

One would expect, in consequence, that the
missing vote rate for non-presidential races in Du-
val County would be similar to comparable coun-
ties. However, by comparing these races with the
plots in figure 3, one notices that Duval County
missing vote rates in the senatorial, and treasurer
races also show an anomolous trend upward with
increased Democratic participation... This hy-
pothesis does not explain how the missing votes
in the presidential race are proportionate [to the
Gore vote] regardless of precinct party composi-
tion, where the education race shows significant
variation depending on party balance. The hy-
pothesis also does not explain the very large num-
ber of missing votes for the senatorial and trea-
surer races found in Democratic precincts in Duval
County, but not other counties.

Approximately 20,000 presidential votes have
gone missing in Duval County (above and beyond
what would normally be expected).

Netrinsics also compared Duval to Lee County [117], noting
that both employ the same sort of centrally tabulated punch
card voting machines and have about the same population.
But Lee County had 1/4 of Duval’s rate of invalid punch-card
ballots. Unlike Lee, which is a fairly homogenous county with-
out any extremes, Duval has a large number of predominantly
Republican precincts, with a smaller number of extremely
Democratic precincts. The highest rate (22%) of invalid bal-
lots in Duval occurred in those precincts voting ≤ 10% for
Bush, with the invalid-ballots rate showing an excellent (neg-
ative slope) linear fit to the Bush-voting rate countywide (the
precincts voting ≥ 80% for Bush had 3% invalid ballots). See
fig. 11.1. Netrinsics concluded:

One explanation that fits all the evidence is
that some aspect of the tabulating process in Du-
val County is biased against Democratic votes.
Another explanation is that 20% of all Democratic
voters throughout Duval County, and only in Du-
val County, suffer from an unexplained voting im-
pediment which is not evident in other counties
around Florida, such as Lee County.

Some counties provide “early voting” locations. Orange
County, which has approximately the same number of reg-
istered voters as Duval, chose to open nine for the 2004 elec-
tions, but Duval only one – even though Jacksonville is geo-
graphically the largest U.S. city, covering 840 square miles. It
was miles from most of the black precincts.

Florida 2004: 58,000 absentee ballots which were supposed
to have been mailed out on Oct. 7-8 mysteriously vanished
in Broward County (the Florida county which had voted
against Bush by the largest margin in 2000; Gore got 67%
of Broward’s votes) with the county blaming the post office
but the post office blaming the county [8]. Assuming all those
voters have been disenfranchised by this development and as-
suming the same voting ratios occur in 2004, this alone ac-
counted for 19,000 extra votes worth of Bush-Kerry margin.

Students at Florida State and Florida A&M universities, some
of whom signed petitions to legalize medical marijuana or
impose stiffer penalties for child molesters, unknowingly had
their party registration switched to Republican and their ad-
dresses changed [13]. (The address change invalidated their
votes.)

Ohio 2004: Voter registrations were being rejected if they
were printed on an insufficiently heavy grade of paper.
J.Kenneth Blackwell, the Ohio Secretary of State (in charge
of elections) was, in a reprise of Florida 2000, simultaneously
the Bush-Cheney state campaign co-chair. He wanted “white,
uncoated paper of not less than 80 lb. text weight.” (Even-
tually Blackwell relented on this policy, but only after using
it for thousands of registration rejections. According to the
League of Women Voters, this was the only policy of its kind
in the country.)

Ohio 2004: The Ohio Republican Party performed “caging”
[147]. That is, it sent registered letters to newly registered
voters in minority and urban areas, then tried to challenge
35,000 people who did not sign for the letters (or if the mail
otherwise came back as undeliverable – including voters who
were homeless, serving abroad, or simply did not want to
sign a delivery from the Republican Party). Notice of the
Republican-intended challenge hearing was sent to the 35,000
voters far too late to be of any use to those challenged, indeed
some received it after the election was over. These moves were
eventually struck down by 3 separate court decisions.

Michigan 200?: Michigan found 1 million duplicate registra-
tions throughout the state when it created a unified statewide
registration system.

Israel 2004: Non-Jews have always been extremely unrepre-
sented both in the Knesset and in the voting population.

USA, 1880-1950: “Jim Crow” refers to policies systemat-
ically preventing blacks from voting, as well as a pattern
of other kinds of segregationist policies and laws. It oper-
ated throughout the country, especially in Southern states.
Various pseudo-legal disenfranshisement measures were em-
ployed, including tests of “literacy” administered at polling
places which conveniently varied from extremely easy to ex-
tremely difficult, “poll taxes,” and “grandfather clauses” and
“good conduct clauses” which conveniently exempted whites
from having to pass these hurdles. (One common “literacy
test”was to require the black would-be voter to recite the en-
tire U.S. Constitution and Declaration of Independence from
memory.) Such laws proliferated after the Supreme Court
1896 ruling in Plessy v. Ferguson that segregation was le-
gal and in Williams v. Mississippi in 1898 that the following
Mississippi literacy-test stipulation in its constitution, was le-
gal: “On and after the first day of January, A. D. 1892, every
elector shall, in addition to the foregoing qualifications, be
able to read any section of the constitution of this state; or
he shall be able to understand the same when read to him, or
give a reasonable interpretation thereof.” (Power was granted
to registrars – all white political appointees – to interpret the
test.)

James Kimble Vardaman (later Governor of Miss.), boasted
of the constitutional convention that created this: “There is
no use to equivocate or lie about the matter. Mississippi’s
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constitutional convention was held for no other purpose than
to eliminate the nigger from politics; not the ignorant – but
the nigger.”

How effective were these measures? Over 130,000 blacks were
registered to vote in Louisiana in 1896, but there were only
1342 on the rolls in 1904.

But probably the most effective barrier to black political
power was the Democratic party primary. Since the Demo-
cratic Party dominated the South, its candidates always won;
primaries were the real election. Beginning in the 1890s
Democrats were able to bar blacks from voting in the pri-
mary on the pretext that the party was a private club not
subject to federal anti-discrimination laws.

California 1999: CBS’s 60 Minutes found people in Califor-
nia using mail-in forms to register pets and fictitious people,
then obtaining absentee ballots in their names. This included
an elephant at the San Diego Zoo (Republican?).

Meanwhile in St. Louis Missouri, it was discovered that voter
rolls included 13,000 more names than the U.S. Census listed
as the total number of adults in the city.

Pittsburgh Pennsylvania 2004: Fliers were handed out at
a Pittsburgh area mall, and mailed to an unknown number
of homes. The flier, on bogus but official-looking stationary
with a county letterhead, told voters that “due to immense
voter turnout expected on Tuesday,” the election had been
extended: Republicans should vote Tuesday, Nov. 2, it said –
and Democrats on Wednesday [13].

Nevada 2004: [103] Private voter-registration company Vot-
ers Outreach of America (paid $488,000 by the Republican
National Committee) employed up to 300 part-time workers
to collect hundreds of voter registrations per day in Las Vegas,
Nevada. But, its former employees said, Voters Outreach only
wanted Republican registrations. Two told George Knapp
of KLAS TV they personally witnessed company supervisors
rip up registration forms signed by Democrats. Employee
Eric Russell managed grab some shredded forms, all signed
by Democrats, from the garbage and KLAS TV took them to
the Clark County Election Department and confirmed that
they had not been filed with the county as required by law.
Russell also left some with the FBI. Many who thought they
would be able to vote on Election Day were therefore sadly
mistaken.

Voters Outreach then vanished from Nevada, leaving their
landlord complaining about nonpayment of rent.

Voters Outreach also operated in Portland, Oregon under the
name “America Votes,” which is in fact the name of a Demo-
cratic organization. Employees in Las Vegas say they too were
told that the name of the company was America Votes. “They
confused us with the name. They told us one thing and told
the temp force something else. They told us America Votes,”
Russell said.

USA versus other countries, 2000: In 33 out of the 50 US
states, voters need not present identification either to register
or to vote. This is quite odd considering that a Rasmussen
poll found that 82% of Americans believe that “people should
be required to show a driver’s license or some other form of
photo ID before they are allowed to vote.”

Mexico and many other countries have far more secure elec-
tion systems than the USA’s. Citizens must provide a photo,
a signature, and a thumbprint to register. The voter card
includes a picture with a hologram covering it, a magnetic
strip and a serial number. To vote, you must present the card
and be certified by a thumbprint scanner. This system was
instrumental in allowing the 2000 election of Vicente Fox, the
first opposition party president in 70 years.

9.2 Vote collecting

Oregon 2000 [84]: “Scoundrels stood on street corners with
official-looking boxes to ‘collect’ absentee ballots.”

9.3 The story of the Ukraine election in 2004

Reporters witnessed groups of 30 thugs in masks invading
polling places and beating voters and officials, and the de-
struction of ballot papers en masse by pouring acid into bal-
lot boxes [123]; there was also“carousel”voting, in which bus-
loads of Yanukovych supporters simply drove from one polling
station to another casting multiple false absentee ballots.

Observers from OSCE (Organisation for Security and Co-
operation in Europe) saw voters given pens filled with dis-
appearing ink, leaving ballots unmarked and invalid. Free-
dom House [105] reported “massive voter fraud” while EN-
EMO (European Network of Election Monitoring) “identified
a systematic pattern of violations that seem to have been
planned to influence the elections... the blatant and carefully
targeted violations ensured the election does not reflect the
will of the Ukrainian people.”

Monitors confirmed: intimidation and expulsion of election
monitors, ballot stuffing, multiple voting, and government
pressure on voters.

Opposition presidential candidate Viktor Yushchenko was de-
nied media access via media temnyks (theme directives from
the government guiding television news presentation), disrup-
tions of public rallies, official harassment, beatings and ar-
rests of hundreds (including journalists), and searches of civic
group offices. Yushchenko was also poisoned with dioxin. De-
spite this most Ukrainian voters appear to have voted for
Yushchenko, according to two separate exit polls (one show-
ing a 4% and the other an 11% margin).79 But the official re-
sults released by Ukraine’s Central Election Commission on 23
Nov. showed incumbent Prime Minister Viktor Yanukovych
had won by 3%. These included counts showing that most
districts of Donestk (in East Ukraine) gave Yanukovych 97%
of their votes, with 98.5% turnout, among about 1 million
extra voters beyond those registered for the original election
(this, crucial, election was a runoff).

In public institutions, such as prisons, hospitals, and psychi-
atric institutions, Yanukovich won by massive margins that
were often contrary to the prevailing trends in their localities.
(OSCE mentioned evidence students, government employees
and private sector workers were forced by their deans and
supervisors to vote for one candidate over another.)

79Why the large discrepancy between the two polls? Both polls have been criticized as flawed: One relied on face-to-face interviews, so that the
pollees had to worry they might face retribution; the other inadequately sampled precincts in Yanukovych strongholds.
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The Ukrainian Supreme Court annulled the results and or-
dered a repeat of the Yuschenko-Yanukovych runoff. The
re-run was held on December 26. Observers reported a
much fairer vote, and Yushchenko won by 52%-44% over
Yanukovych.

9.4 The USA 2004 presidential election,
with focus on Ohio

When Bush beat Kerry in 2004 to win his second US pres-
idency, the wide perception was that, unlike the ultra-close
2000 election, this one was not close and therefore could not
have been tipped by electoral fraud and fraud-like develop-
ments.

Examining the situation more closely reveals disturbing
facts.80

We shall consider the hypothesis that extensive fraud and
fraud-like events aided the Bush side in the 2004 election.
From that hypothesis would follow two predictions:

1. We would expect most states to have systematically
larger pro-Bush official vote totals than those predicted
by unofficial exit polls, with the largest discrepancies oc-
curring in the 11 consensus “battleground” states,81 be-
cause the same amount of fraud in a battleground state
yields a greater impact on the election. Nevertheless
because the battleground states are battlegrounds and
are heavily scrutinized by the opposition, we would not
expect vastly greater fraud would be achieveable within
them, in general.

2. We also would expect that a larger amount of the fraud
would occur in pro-Bush “stronghold” precincts, since
that is where it would be easiest to accomplish without
detection.

Consider the CNN (Cable News Network) exit polls, con-
ducted in all states nationwide plus DC (except Oregon) by
the Edison-Mitofsky polling organization. As table 9.1 shows,
82 the official counts were more in Bush’s favor than the exit
polls, in 10 out of 11 battleground states, with the 11th stay-
ing the same. In fact, the exit polls predicted a Kerry victory,
while the official counts yielded a Bush victory. If CNN’s exit

polls were unbiased, then the a priori probability of this one-
sided discrepancy would be 1/1024 – the same as the proba-
bility that if 11 coin flips were performed and then the first
10 were examined (the 11th remaining undetermined) those
10 all would yield heads.

State sample B −Kpoll B −Kofficial discrep WPEEM

CO 2515 +1.8% +4.7% +2.9 −6.1
FL* 2846 +0.1% +5.0% +4.9 −7.6
IA 2502 −1.3% +0.7% +2.0 −3.0
MI 2452 −5.0% −3.4% +1.6 −6.3
MN 2178 −9.0% −3.5% +5.5 −9.3
NV 2116 −1.3% +2.6% +3.9 −10.1
NH 1849 −10.8% −1.4% +9.4 −13.6
NM 1951 −2.6% +0.8% +3.4 −7.8
OH* 1963 −4.2% +2.1% +6.3 −10.9
PA* 1930 −8.7% −2.5% +6.2 −8.8
WI 2223 −0.4% −0.4% 0 −4.7
avg 2229 −3.8% +0.6% +4.19% −8.02

Figure 9.1. CNN’s exit poll results at 12:21-12:24am EST on
3 November 2004 (recorded by Jonathan Simon – as well as by
others independently in at least 17 cases) versus official results
in the 11 battleground states for 2004 Bush-vs-Kerry presiden-
tial election. CNN gave four results, rounded to the nearest
integer percent, for both male and female voters and for both
Bush and Kerry in each state polled; and also reported the
total respondent count and the male and female percentages
rounded to the nearest integer percent. Both genders have
been combined here and reported accurate to ±0.05%, and
with the resulting Kerry number subtracted from the Bush
number. The three “critical” battleground states (which the
candidates visited the most and spent the most money in) are
starred (*). The poll results are compared with the official
results from the Federal Election Commission. (The “WPE”
column is from [55] and is explained later.)

After about 1am, the CNN exit poll results changed. CNN’s
final exit poll figures are not reported here because they were
“adjusted”by incorporation of official totals and therefore are
useless for our purposes (a little-known and little-reported
fact83). N

80Important sources for this section include: Official Ohio vote totals were from the Ohio Secretary of State’s office. Figures about uncounted
votes in Ohio counties are from Dr. Richard Hays Phillips, who testified before the Ohio Supreme Court about them. Some ideas are from Steven
F. Freeman [65] but all my calculations are independent of his and I do not endorse much of what he says. The following errors and deceptive
statements appear in [65]: Freeman makes exit polls appear typically to be extremely accurate by tabulating German exit poll data. (His point is
that it is astonishing that the exit polls in the USA in 2004 were so far off.) He leaves unmentioned two exit polls in the Ukraine 2004 and all the
Edison-Mitofsky polls for the last five US presidential elections (I know he was aware of both since he mentions them in his other writings) – all 7
of which were far less accurate than his German data. Freeman also gives a version of our table 9.1 but in which 7 of his 11 “official state election
totals” are in error. In every single case, Freeman’s error just happened to be of the right sign to exaggerate his case. To use a similar statistical
analysis to Freeman’s own, the probability that 14 independent figures all should be deceptive or off in the right direction to exaggerate his case,
would be, in the absence of intention, 2−14 = 1/16384.

81There were exactly 11 states mentioned as “battlegrounds” by at least 2 of these 3 lists: Zogby, MSNBC, and Washington Post, namely CO,
FL, IA, MI, MN, NV, NH, NM, OH, PA, WI. Also OR was sometimes mentioned as a battleground but cannot be studied since it had voting by
mail and hence exit polls were inapplicable to it. These 12 were the only states with margins below 7%.

82Note the “+” signs in the “discrep” column.
83It was widely reported [166] that the Caltech/MIT voting project had “debunked” this “exit poll discrepancy.” However, that report [29] was

based on the “final” CNN exit poll numbers – which had already been adjusted to conform with the official results! – and therefore their finding
of no great discrepancy is meaningless. This report also attacked the earlier non-final CNN poll data as “too female” as a result of time-of-day
bias. (Females in the absence of males would have elected Kerry.) These data are from CNN’s web page at 12:21am on election night. If the CNN
data (which came broken down by gender) were renormalized to 52/48 female/male ratio (commonly accepted), then the nationwide pro-Bush
margin-shift would have been reduced by an additive amount of 0.4%, and with 50-50 sex ratio by 0.8% (according to Simon). These changes are
tiny in comparison to the magnitude 4.19% here (or 6.5% as later stated by [55]) for that shift. Without trusting Simon, you still can easily see the
“too-female” effect had to be small since females were only overrepresented by order 2% in the early day, so the correction to the shift, if it were
due to gender sample bias, had to be only of order 4% multiplicatively ; the Caltech/MIT report should have been able to realize this but never
performed this simple calculation.
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The 35 “safe” states also showed a discrepancy between exit
polls and official results – but a smaller one, amounting to an
average ≈ +2.8% margin-shift toward Bush. Meanwhile the
11 “battleground” states in table 9.1 showed an average shift
of +4.19%. This is despite the fact that the exit poll sample
sizes were nearly twice as large in battleground states (2200)
as in the other states (1150), which theoretically should have
resulted in smaller polling errors.

The one-sided error nature of all this was completely compat-
ible with prediction #1.

Edison-Mitofsky released a 77-page study of their exit poll
discrepancy [55]. Its summary stated:

The exit poll estimates in the 2004 general
election overstated John Kerry nationally and in
many states. There were 26 states [more than
half] in which the estimates produced by the exit
poll data overstated the vote for John Kerry by
more than one standard error, and there were four
states in which the exit poll estimates overstated
the vote for George W. Bush by more than one
standard error...

The inaccuracies in the exit poll estimates were
not due to the sample selection of the polling lo-
cations.

We have not discovered any systematic prob-
lem in how the exit poll data were collected and
processed.

Exit polls do not support the allegations of
fraud due to rigging of voting equipment... [We]
found no systematic differences for precincts us-
ing touch screen and optical scan voting equip-
ment. [Unfortunately they did find a very large
systematic difference between old-fashioned paper
ballots and every other kind of voting equipment
([55] p40).]

Edison-Mitofsky noted that their WPE (w ithin precinct
error) averaged −6.5% (their negative sign means the polls
overestimated the Kerry−Bush difference) averaged over all
1460 precincts for which they had official results, which was
“the largest WPE that we have observed on a national level
in the last five presidential elections.” The WPE was positive
in only 6 states and negative in the remaining 44.

Edison-Mitofsky simply ignored the possibilities that either
the official election results were fraudulent, that Kerry voters
who thought they had voted were in fact less likely to have
their votes recorded and counted, or that their own polls were
fraudulent or somehow intentionally skewed by some external
agency e.g. by bribing or contributing pollsters. They con-
cluded that, due to some unknown reason, “Kerry voters were
more likely to participate in the exit polls than Bush voters.”

This Edison-Mitofsky “explanation” could indeed explain the
overall nationwide pro-Bush shift. However,

1. It cannot explain the fact (with which they agree [55]
p.42) that there was a larger pro-Bush shift in the bat-
tleground than in the other states: according to [55]
their average WPE was −6.5% nationwide, −8.02% in

the 11 battleground states, and −9.10% in the three
critical battleground states.

2. It cannot explain the fact that in the 2000 Bush-Gore
election, Edison-Mitofsky polls ([55] p34) had unbiased
errors, with 394 precincts with WPE< −5 and 315 with
WPE > +5 and 374 with −5 <WPE< +5, while
in 2004 there were drastically biased errors with 767
precincts with WPE< −5 and 352 with WPE > +5
and 341 with −5 <WPE< +5.

3. On the top of page 37 of the Edison-Mitofsky report
is data indicating that in more pro-Bush precincts, a
higher percentage of people agreed to participate in the
polls than in pro-Kerry precincts. (E.g. in precincts
voting ≥ 80% for Bush, 56% of those asked agreed to
be in the exit poll. In precincts voting ≤ 20% for Bush,
only 53% agreed.) This indicates a sampling bias oppo-
site in sign and with about half the magnitude required
to make the Edison-Mitofsky “explanation” work. (On
the other hand, this does support the notion that sam-
pling biases can occur of roughly the right magnitude
to explain a discrepancy this large.)

Next, let us consider prediction #2. In their 40 Bush
“stronghold” precincts, i.e. those that voted < 20% for
Kerry, Edison-Mitofsky ([55] bottom of p36) found a huge
mean WPE of −10.0%. On the other hand, in the 90 Kerry
strongholds (≥ 80% Kerry votes) the mean WPE was +0.3%,
while in the remaining 1110 (non-stronghold) precincts the
WPE averaged −7.3%. This is despite the fact that theoret-
ically (without fraud) there simply is “less room” for polls to
overstate Bush in high-Bush areas, so one would theoretically
expect the WPE to be less negative in the Bush strongholds.
So this finding again is entirely compatible with our fraud
hypothesis.

Let us now take an in-depth look at the crucial state of Ohio,
which, if it had chosen Kerry, would have elected him Presi-
dent.

The CNN exit poll screenshot at 1:05am showed 1963 respon-
dents:

females (53%): Bush 47% Kerry 53%

males (47%): Bush 49% Kerry 51%

and after 1:41am showed 2020 respondents:

females (53%): Bush 50% Kerry 50%

males (47%): Bush 52% Kerry 47%.

This sudden and drastic change is interpreted as caused by a
“correction” made by the pollsters to incorporate the official
election results, because it was almost impossible for the 57
additional respondents to cause this large a shift in the re-
sults.84 The ultimate official Ohio totals were 50.82% Bush
and 48.70% Kerry, and among Bush and Kerry voters only,
they were 51.06% Bush and 48.94% Kerry.

Under pessimal-for-Bush integer-rounding assumptions max-
imally intended to hurt our fraud hypothesis, the 1963-
respondent Ohio poll really was

84It was just barely possible if all 57 voted Bush and if all CNN’s roundings-to-integers were maximally favorable for this.
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females (52.5%): Bush 47.5% Kerry 52.5%

males (47.5%): Bush 49.5% Kerry 50.5%

total 100.0%: Bush 48.45% Kerry 51.55%.

Now, under the model that the 1963 respondents were truly
a random sample among the 5625631 official votes, and those
respondents told the truth to the pollsters, and these poll
numbers are unadjusted, and that all 1963 were Bush or Kerry
voters, then the probability that those 1963 would have split
≤ 951 for Bush and ≥ 1012 for Kerry (as the pollsters re-
ported) would be at most

951∑

k=0

(
1963

951− k

)

0.5106074951−k0.48939261012+k = 0.01089.

(17)
In reality, a true random sample was not achieved because
the pollsters were located at random locations, as opposed
to selecting random voters. Therefore there were intervoter
dependencies. Merkle & Edelman ([112] p72) claim that in
practice, that effect multiplies the standard error by 1.3. So
regarding the 0.01089 as a point in the tail of a normal dis-
tribution and using a 30% larger standard deviation for that
distribution, this probability rises85 to 0.0502.

We conclude that the a priori probability that the true Ohio
election results would have differed this much in Bush’s favor
versus the exit poll results (in the absence of fraud) was at
most 5%.

This is enough to make us suspicious of Ohio. Evidently the
actual vote counts did not correspond to the votes that the
voters thought they had cast, or the voters lied to the exit
pollsters (or the pollsters themselves lied), or were a nonrep-
resentative sample, or this was just a 5%-chance statistical
fluke.

There are numerous indications suggesting that the Ohio vote
was intentionally distorted heavily in Bush’s favor as part of
a conspiracy orchestrated by J.Kenneth Blackwell, the Ohio
Secretary of State. In a reprise of the Florida 2000 scandal,
Blackwell, like his Florida analogue Katherine Harris, was si-
multaneously the Bush-Cheney Ohio campaign co-chair, and
could therefore be expected to be maximally biased. Under
Ohio election law, the members, directors and deputy direc-
tors of all boards of elections are assigned by the Secretary of
State. They hold these paying jobs at his discretion regardless
of whether they are Democrat or Republican.

Blackwell certified a 98.6% turnout in the Concord Southwest
precinct of Ohio’s Miami County, meaning all but 10 among
the 689 registered voters in that precinct voted. These 679
votes contained 520 for Bush and 157 for Kerry. (In the 2000
Bush-Gore election, the same precinct had voted Bush 378,
Gore 132 for 74% turnout.) The Columbus Free Press then
found 25 registered voters in this district who said they had
not voted. Unless at least 15 of them were lying, then the
official tally was fraudulent [125][63].86

Many other distressing claimed Ohio vote anomalies and
events are described in [64]. In Warren County (official total:

Bush 68035, Kerry 26043) the Board of Elections claimed a
“Homeland Security alert” authorized them to throw out all
independent and media observers and lock the building, both
during the count and a later recount. County officials said
this was due to a terrorist threat “that ranked a 10 on a scale
of 1 to 10” received from the FBI. But the FBI denied to a
later congressional investigation that it had issued any such
warning or had any information about a terror threat in War-
ren County – and the county officials refused to name their
FBI source.

Over 106000 provisional and machine-rejected ballots were
never counted nor examined in either the original or recount
election in Ohio. As we shall see this was done in an ex-
tremely Bush-favoring manner by discarding votes in pro-
Kerry precincts at a higher rate than in pro-Bush precincts.

Bush won Hamilton county (which includes Cincinnati) with
222616 votes to Kerry’s 199679. There were exactly 26
precincts countywide with more than 8% of the votes left un-
counted. Kerry won all 26 of them overwhelmingly, by an
aggregate margin of 10 to 1.

In Cuyahoga county (containing Cleveland) the net score was
Kerry 448503, Bush 221600. There were exactly 84 precincts
in that county with ≥ 4.0% uncounted ballots. Kerry won 82
of these, by an aggregate margin of about 10 to 1.

In Montgomery County there were exactly 588 precincts, and
exactly 47 of them had more than 4.0% of the regular ballots
uncounted. Kerry won every one of those 47 precincts, by an
aggregate margin of 7 to 1. The countywide official vote to-
tals, meanwhile, were 142997 for Kerry and 138371 for Bush.
In these 47 precincts the rate of ballot “spoilage” was 5.16%,
compared to 1.31% for the rest of the county.

In Summit County: there were exactly 71 precincts with more
than 3.0% of the ballots uncounted. Kerry won 70 of these
71, by an aggregate ratio of about 4 to 1. Meanwhile the
countywide totals were Kerry 156587, Bush 118558.

In Stark County there were exactly 28 precincts with ≥ 3.33%
of the regular ballots uncounted. Kerry won all 28 precincts,
by an aggregate margin of 2.7 to 1. Meanwhile the countywide
totals were Kerry 95337, Bush 92215.

In Franklin County (Bush 237253, Kerry 285801), there were
exactly 146 wards. Of these 69 were won by Bush and 77
by Kerry. Of the 73 wards with < 300 registered voters per
voting machine, 54 were won by Bush. The median turnout
in these 73 wards was 62.33%. Of the 73 wards with ≥ 300
registered voters per voting machine, only 15 were won by
Bush. The median turnout in these 73 wards was 51.99%. The
Columbus Free Press and Columbus Dispatch suggested there
was an intentional strategy of unequal distribution of voting
machines – designed to make Kerry voters wait in long lines
and to reduce Kerry turnout – overseen by Franklin County
Board of Elections Director Matt Damschroder, former Ex-
ecutive Director of the Franklin County Republican Party.
Sources told the Free Press that Damschroder and Blackwell

85In the sense that erfc(1.8)=0.0109 and erfc(1.8/1.3)=0.0502.
86Historically, the usual official response to small discrepancies such as this one has been to ignore them. – as is precisely what happened in

this case. However, Di Franco et al [52] pointed out that altering just one vote per US voting machine would have been enough to swing the 2000
US presidential election. So if electronic voting machines susceptible to that kind of manipulation became prevalent, the historical record would
provide considerable confidence to fraudsters that such fraud could succeed.
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met with President George W. Bush in Columbus on Election
Day.87

Waits to vote in several areas in Ohio were notorious in the
2004 election, with multihour waits, in some cases as much
as 12 hours, reported in numerous media [131]. Thousands
of Republican lawyers were mobilized to “challenge” voters
in democrat-dominated precincts with the apparent goal of
slowing down voting and increasing the length of queues.

In (Democrat-dominated) Cincinnati, 150000 voters were
moved from active to inactive status for not voting in the
last two federal elections within the last four years. This is
not required under Ohio law, but is an option allowed and ex-
ercised by the Republican-dominated Hamilton County Board
of Elections.

Other suggestions which accusers have raised are these: Re-
publicans redrew the boundaries of democrat-dominated vot-
ing precincts and then voters showing up at the wrong lo-
cation to vote, were disenfranchised. Deceptive letters were
sent out by Damschroder’s county election board notifying
“felons” of termination of their voting rights, whereas in fact,
some were not felons and most still had the right to vote. I do
not know how true these accusations are, and mention them
solely to provide the reader with an idea of the possibilities
for subtle election manipulation.

Whether or not the above developments legally constitute
“fraud,” they are certainly deplorable and certainly heavily
distorted the Ohio vote totals in Bush’s favor. The total dis-
tortion caused by these methods is evidently of the same order
of magnitude as both Bush’s victory margin and Ohio’s exit
poll discrepancy. I do not know whether it was enough to
swing the election.

As was widely reported, Ohio later, after funding was raised
by the Green and Libertarian parties, conducted a recount
of the 2004 election, confirming the first election’s claim that
Bush had won. Officially, it awarded 734 additional votes to
Kerry and 449 additional votes to Bush. The final official
Bush-over-Kerry margin was 118775 votes.

What was not so widely reported was: (This included two
precincts in Montgomery county where over 25% of the vot-
ers supposedly chose not to vote for a presidential candidate.)
Only 3% of the votes were tested in this “recount.”??? And
after the official termination of the “recount”on 28 December,
over 92672 machine-rejected ballots remained uninspected, as
did at least 14000 provisional ballots.

The tested votes were not a random sample,88 contrary to the
law under which the recounted precincts were to be selected at
random. Further, many of them refused to permit observers
of the recount. As was (again) not so widely reported, the
Greens and Libertarians declared the recount unacceptably
incomplete and unreliable and asked for another. They did
not get it.

Offically Bush won 50.8% to 48.7% over Kerry in the Ohio
votes counted on election night (mainly by Diebold electronic
machines). But among the 147400 provisional and absen-

tee ballots (mostly the former) counted (by hand) after elec-
tion night, Kerry received 54.46% of the vote. That very
significant discrepancy (20σ) indicates that Kerry votes were
shunted into provisional ballots at a higher rate than Bush
votes.

9.5 Vote buying
How much are votes worth? As of 2004, reportedly the
largest amount of money spent by any candidate in a large
election was $44 per vote in the successful 2000 campaign by
now-NJ-Senator Jon Corzine. Corzine spent $65 million to get
1,479,988 votes (51%), beating his Republican opponent Bob
Franks’ 1,383,474 votes (47%; Franks only spent $5 million)
as well as some independent candidates with ≈ 1% each.

One might therefore imagine that vote-selling would be very
rare, considering the small amount of money available ver-
sus the large criminal penalty if the seller (or buyer) gets
caught. But on the other hand: a $44 payment on election
day would exceed the average daily income of about 20% of
all households in the USA’s 100 largest cities, and criminal
prosecutions for vote selling are extremely rare: “The number
of people who have spent time in jail as a result of a conviction
for voter fraud in the last dozen years can be counted on the
fingers of one hand” [68]. So then one might instead imagine
that, in the right circumstances, vote selling is common.

The advent of the internet has opened up new opportu-
nities. In September 2002 a Kiel-based firm called Fortschritt
had a web site at cashvote.com offering to deliver packages
of 1,000 and 10,000 votes, for 6,250 and 59,000 Euros; the
company claims to have acted as an intermediary in the sale
of over 15,000 votes [90]. This is all despite German laws that
make actual or attempted vote trading punishable by a fine
or jail sentence of up to 5 years. On 1 Nov. 2002, Massachus-
setts Attorney General Tom Reilly filed suit to shut down
VoteAuction.com; 1116 Massachusetts voters had registered
on it to sell their votes, with the highest bid for those 1116
votes being $12,000.

Vote-pair/swap/trade schemes: Also in 2002, California
ordered voteswap2000.com to be shut down, but a similar
site http://votepair.org/ remains in operation as of 2004.
Both were set up as permit vote “pairing”where somebody in
state #1 agrees to vote one way if somebody else in state #2
agrees to vote another. Non-secret postal ballots in the USA
can make it possible to sell and swap votes with some degree
of confidence.

Florida 1999: The Miami Herald ’s 1999 Pulitzer Prize was
for uncovering how “vote brokers” employed by candidate
Xavier Suarez stole the 1998 mayoral election by tampering
with 4740 absentee ballots. Many were cast by homeless peo-
ple who didn’t live in the city and were paid $10 apiece and
shuttled to the elections office in vans. “I had no choice. I
was hungry that day,” Thomas Felder told the Miami Herald.
“You wanted the money, you were told who to vote for.” All of
the absentee ballots were thrown out by a court four months
later and Suarez’s opponent installed as mayor.

87The official story, e.g, reported in the Chicago Tribune was that Bush had flown to Columbus that morning from his home in Crawford Texas,
in order that he could join phone bank members by making a single phone call with them to a voter; then Bush went back to the airport and flew
to Washington DC.

88This was admitted by Allen, Clermont, Cuyahoga, Hocking, Medina, and Vinton Counties, and discussions of what they claimed to have done
are in the Conyers report [38].
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9.6 Electronic voting machines

Georgia 1998 & 2000: Dozens of memory cartridges were
“misplaced,” representing tens of thousands of votes. There
was no documented chain of custody during the time they
were missing [84].

A software programming error caused votes for Sharon
Cooper to vanish. According to news reports in the Atlanta
Constitution, the problem was fixed by on-the-spot repro-
gramming. (Such reprogramming, however, is illegal.)

Diebold Inc. 2004: Diebold is one if the largest manufac-
turers of the voting machines used in the USA. 80% of all
year-2004 votes in America were counted by only two compa-
nies: Diebold and ES&S. The vice-president of Diebold and
the president of ES&S are brothers (Bob and Todd Urose-
vich).

Diebold’s managers include at least 5 convicted felons
(Cooper, Lee, Graye, Elder, and Dean) involved with the man-
agement and development of Diebold’s systems. Senior Vice
President Jeff Dean tops the list with twenty-three counts of
felony Theft in the First Degree. According to the findings of
fact in case no. 89-1-04034-1 (Washington State, King County
District Court; Dean served prison time): Dean’s thefts oc-
curred over a 2 1

2 -year period of time, there were multiple in-
cidents, the actual monetary loss was substantially greater
than typical for the offense, the crimes and their cover-up in-
volved “a high degree of sophistication” in planning, using,
and altering records in the computerized accounting system
that defendant maintained for the victim, and the defendant
“used his position of trust and fiduciary responsibility as a
computer systems and accounting consultant for the victim
to facilitate the commission of the offenses” [84]. Dean’s rea-
son for his embezzlement was that he needed the money be-
cause “he was embezzling in order to pay blackmail over a
fight he was involved in, in which a person died.” The other
felons included a cocaine trafficker and a man who conducted
fraudulent stock transactions. Diebold’s CEO Walden O’Dell
has done fundraising for Pres. G.W.Bush, including raising
$600,000 for Vice President Dick Cheney at a single party
on 30 June 2003, and noted in a fall 2003 letter that “I am
committed to helping Ohio deliver its electoral votes to the
president.”

Diebold Corp. donated over $170,000 to the Republican party
during 2000-2002 and its directors and chief officers donated
$240,000, all to Republican candidates or party funds.

Two unencrypted copies of the C++ source code for Diebold’s
AccuVote TS system were found on the Diebold web site, one
dating from around 2000, and one dating from late 2002, avail-
able to anybody who wanted to download them. (This was
despite the fact that Diebold and all other US voting machine
manufacturers refuse to release their code for public inspec-
tion.) These codes were then inspected by several computer
science professors [104].

One of their discoveries was that the Accuvote system used
DES encryption to transmit votes (advertised as “world class
cryptography”89). Every machine used the same secret key,
and that key was “hardwired” into the source code, i.e. avail-
able for public view on the Diebold web site, i.e. not secret at
all. (Also, it could be discovered by simply scanning through
the memory of any Diebold machine, which would take 1 sec-
ond. Supposedly, DES is tremendously computationally ex-
pensive to break – but not if the secret key is publicized!) In
other words, anybody who wanted could fake the votes of any
Accuvote TS machine anywhere.

Diebold then claimed this software was only experimental and
was not the version used on produced and certified machines.
That claim was a lie.

A December 2003 audit showed that Diebold illegally em-
ployed uncertified software on all the voting machines they
sold to California counties. Even changing merely a few lines
of code could of course cause completely different behavior
of a computerized voting machine, so such code changes are
illegal unless certified.90 This audit makes it clear that law is
almost entirely disregarded.

Voting activist Bev Harris [84] also discovered that Accuvote
vote files could trivially be altered to any total values you like,
by somebody without computer programming skills, using a
program called “Microsoft Access” which activated automat-
ically by clicking on the file’s icon. The machine provides
no paper audit trail and hence such changes would not be
detectable.

Harris continued investigating and reported on 26 August
2004:

The Diebold GEMS central tabulator contains
a stunning security hole. Manipulation technique
found... 1000 of these systems are in place, and
they count up to two million votes at a time. By
entering a 2-digit code in a hidden location, a sec-
ond set of votes is created. This set of votes can be
changed, so that it no longer matches the correct
votes. The voting system will then read the totals
from the bogus vote set. It takes only seconds to
change the votes... This program is not ‘stupidity’
or sloppiness. It was designed and tested over a
series of a dozen version adjustments.

This problem appears to demonstrate intent to
manipulate elections, and was installed in the pro-
gram under the watch of a programmer who is a
convicted embezzler.

According to election industry officials, the
central tabulator is secure, because it is protected
by passwords and audit logs. But it turns out that
the GEMS passwords can easily be bypassed, and
the audit logs can be altered and erased. Worse,

89Actually, DES has not been secure for years. Typical delay to crack DES nowadays is under 22 hours, as indicated by
www.rsasecurity.com/rsalabs’s “DES challenge III” which was cracked in 22 hours by the Electronic Frontier Foundation to earn a $10,000
prize in 1999.

90However, frankly, I dispute the entire idea of code “certification.” In fact I do not believe that large code can be certified at a cost smaller
than the cost of writing that software in the first place. Given that that is the case, the whole idea that a government should buy machines from
a manufacturer and then certify their code (which they both keep secret), is ludicrous. It is especially ludicrous to imagine that individual US
counties, acting in isolation, have what it takes to “certify” code. The only course that makes sense is for the government to develop the code itself,
and make it public for certification by everyone.
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the votes can be changed without anyone knowing,
including the officials who run the election.

The MS Access database is not passworded
and can be accessed illicitly through the back door
simply by double-clicking the vote file. After we
published this report, we observed unpassworded
access on the very latest, GEMS 1.18.19 system in
a county elections office.

Some locations removed the Microsoft Access
software from their GEMS computer, leaving the
back door intact but, essentially, removing the
ability to easily view and edit the file.

However, you can easily edit the election,
with or without Microsoft Access installed on the
GEMS computer. As computer security expert
Hugh Thompson demonstrated at the Aug. 18
California Secretary of State meeting, you simply
open any text editor, like “Notepad,” and type a
six-line Visual Basic Script, and you own the elec-
tion.

Florida 2004: In a special election held in early January
2004 in Broward County, Florida, with margin of victory 12
votes, the electronic voting machines used in that election
failed to register any vote for 134 voters, even though there
was only a single item on the ballot. In such a single-issue
election, while it is certainly possible that a voter could go to
the polling place, sign the log book, go to the touch screen ma-
chine, and choose not to cast any vote, it is somewhat hard to
imagine that 134 voters would do so. “It’s incomprehensible
that 134 people went to the polls and didn’t cast votes,” said
Broward County Mayor Ilene Lieberman. Since the voting
machines in Broward County did not produce a voter-verified
paper ballot, there is no way for elections officials to determine
what really happened. Those 134 votes, if cast, are irrevoca-
bly lost. Such paperless electronic voting machines fail to
comply with Florida Election Law which requires a manual
recount of the ballots in small-margin elections, but that law
is evidently disregarded.

Union county, Florida Sept. 2002: Machines read 2642
Democratic and Republican votes as 100% Republican. ES&S
then paid for a hand recount, which fortunately was possible
since Union County retained paper copies of ballots.

Allamakee County, Iowa 2000: (Reported in the Wall
Street Journal.) An optical-scan machine was fed 300 bal-
lots and reported 4 million votes for G.W.Bush (this exceeds
Iowa’s population all by itself). Retrying yielded the same
result.

Comal County, Texas 2002: An election tabulated by
ES&S machines gave 3 winning Republican candidates in a
row each exactly 18,181 votes. This coincidence was not seen
as reason to audit the election.

Conroe, Texas 2002: Congressional candidate Van Brook-
shire ran unopposed in the district 2 primary. He got zero
votes. (Hadn’t he voted for himself?) The ES&S computer
had given all of his votes to U.S. Rep. Kevin Brady, who was
unopposed for the nomination for another term in District 8.

Wayne County, North Carolina 2002: Computerized
machines skipped 5500 party-line votes, both Republican and

Democratic. Fixing the error reversed the election for state
representative from House district 11.

New Orleans, Louisiana 1994: Susan Barnecker lost an
election, then demonstrated on a widely circulated videotape
that on one touchscreen machine, votes for her were electron-
ically recorded for her opponent. (This test was repeated
several times.) Her protests were unavailing.

Fairfax, Virginia, November 2003: Testing ordered by a
judge revealed that several voting machines subtracted one in
every hundred votes for the candidate who lost her seat on
the School Board. (This kind of error is very insidious.)

Maryland 2004: Michael A. Wertheimer, a consultant hired
by the Maryland state legislature, found in January 2004 that
“it is possible to vote multiple times, break into machines and
disrupt results or get voters to select the wrong candidates.
It’s also possible to dial in to election headquarters and alter
results or wipe out all of them.” His team of hackers con-
ducted an exercise Jan. 19 to simulate an attack on Mary-
land’s Diebold touch-screen voting machines.

They found that individual machines could be disabled by
jamming a voter card into a terminal or lifting it up and
pulling out wires. The team guessed passwords on the cards
that were needed to access the machines, and also found the
passwords were contained in the source code of the comput-
ers. The computer server that tabulates election results did
not have security updates from Microsoft Corp. Hence team
members were able to break into the server remotely via dial-
up modem.

He found each of Maryland’s machines had two identical locks,
which could be opened by any one of 32,000 keys. But this
was not necessary since team members picked the lock in “ap-
proximately 12 seconds.” They suggested that each voting
machine have a different password. But Linda Lamone, ad-
ministrator of the State Board of Elections, said that would
be too risky and also said it was too late to equip all 16,000
Diebold machines with printers to provide paper copies of
ballots.

Bottom line: Wertheimer’s team broke into the computer at
the State Board of Elections, changed the outcome of the
(practice) election, left, and erased their electronic trail all in
minutes.

Bob Urosevich, president of Diebold Election Systems,
summed up Wertheimer’s report as confirming “the accuracy
and security of Maryland’s voting procedures and our voting
systems as they exist today” [156].

Dallas Texas 2002: 18 machines were pulled out of ac-
tion in Dallas because they registered Republican when voters
pushed Democrat. Republican judge Karen Johnson quashed
audit attempts.

Florida 2000: In Volusia County, during the 2000 presiden-
tial election, the Socialist Workers Party candidate received
almost 10,000 votes, about half the number he received na-
tionwide; 4,000 erroneous votes appeared for G.W. Bush while
at the same time, Presidential candidate Al Gore received neg-
ative 16,022 votes. This shot Bush, who appeared at the time
to be losing Florida, to the front and was the direct cause
of several television networks calling the election for Bush,
which then caused Gore to concede nationwide defeat (a con-
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cession he later retracted).91 But obviously, negative vote
counts are not possible. This error was only spotted by alert
Democratic poll-watcher Deborah Tannenbaum, who noticed
Gore’s vote total actually decrease by 16,000 votes – all due
to precinct 216, which contained only 600 voters! This hap-
pened at 2am due to an upload of a second memory card (the
results from the earlier upload of a first memory card were
automatically and silently overwritten). So quite probably
there were many other such errors which were not detected.
(Possibly relevant: “We have a sordid history of election fraud
in this [Volusia] county,” Circuit Judge John Doyle wrote in
a 1997 ruling [113].)

Observe that the Diebold tabulator had no problem with ac-
cepting an input of a negative number of votes, nor did it flag
the discrepancy between the two memory cards.

Diebold Corp. emails discussing the problem surfaced and
were posted by Swarthmore college students [158].92

From: Lana Hires [mailto:lhires@co.volusia.fl.us]

Sent: Wednesday, January 17, 2001 8:07 AM

Subject: 2000 November Election

...I need some answers! Our department is being

audited by the County. I have been waiting for

someone to give me an explanation as to why Precinct

216 gave Al Gore a minus 16022 when it was uploaded.

please explain this so that I have the information

to give the auditor instead of standing here "looking

dumb". ...Any explantations you all can give me

will be greatly appreciated. Thanks bunches,

Lana

What caused the problem? Here was the final emailed reply
from from “Tab” (Talbot) Iredale, Vice President of Research
& Development at Global/Diebold:

...The error could only occur in one of four ways:

1.Corrupt memory card. This is the most likely

explanation for the problem but since I know nothing

about the ’second’ memory card I have no ability

to confirm the probability of this.

2.Invalid read from good memory card. This is

unlikely since the candidates’ results for the

race are not all read at the same time and the

corruption was limited to a single race. There is

a possibty that a section of the memory card was

bad but since I do not know anything more about

the ’second’ memory card I cannot validate this.

3.Corruption of memory, whether on the host or

Accu-Vote. Again this is unlikely due to the

localization of the problem to a single race.

4.Invalid memory card (i.e., one that should not

have been uploaded). There is always the possiblity

that the ’second memory card’ or ’second upload’

came from an unauthorised source.

The official explanation released to the press [113] was “dam-

aged memory card” and the error supposedly was eventually
corrected by re-uploading the first card and so all was well.

But, according to Diebold, an error due to a corrupt memory
card should have been prevented by automated techniques
involving 16 parity check bits, designed to make the proba-
bility that a damaged memory card could be used success-
fully, be 1/65536 (assuming it was still operating; otherwise
the probability would be even lower). However, if the card’s
contents had been intentionally written onto the card, rather
than caused by damage, then the probability of passing the
checks would have been 100%. We also remark that, amaz-
ingly enough, Volusia’s total number of votes was exactly pre-
served by the error because the negative Gore count was pre-
cisely compensated by the huge positive number of votes for
independent/minor-party candidates (the largest such count
in Volusia’s history). For these reasons, I do not believe the
official explanation.

I believe there are only two plausible explanations:

1. intentional fraud and
2. a machine crash caused writing to random memory loca-

tions. But, in this latter case it seems implausible that
the total number of votes would be exactly preserved.

So the only remaining possibility seems to be (1). Notice that
the Diebold manager (final line of his email) also agreed with
me that it was a reasonable possibility that the second card
was part of deliberate election-rigging conspiracy.

Nevada 2005: Nevada became the first state with e-voting
machines with a voter-verified paper trail. Dean Heller,
Nevada’s Secretary of State: “otherwise it’s a trust-me sce-
nario, and I don’t think that works today.”

Hart-Intercivic and ES&S Inc. 2004: Hart-Intercivic
and ES&S are also among the USA’s largest voting machine
manufacturers. The former was recently accused by one of
its technicians of faking numerous test results and lying to
numerous county elections officials.

Chuck Hagel, Republican senator of Nebraska, was the head of
the company that owns ES&S, which installed, programmed,
and largely ran the voting machines that were used by most of
the citizens of Nebraska. (As of 2004, Hagel still has part own-
ership.) When Hagel ran there for the U.S. Senate in 1996,
the Washington Post (13 Jan. 1997) said Hagel’s “Senate
victory against an incumbent Democratic governor was the
major Republican upset in the November election.” (Hagel’s
GOP primary victory was also an upset.) Hagel won virtu-
ally every demographic group, including many largely Black
communities that had never before voted Republican, becom-
ing the first Republican in 24 years to win a Senate seat in
Nebraska. 80% of those votes came from his company’s ma-
chines.

On 2 Feb. 2002, the Baton Rouge Advocate reported,
“Arkansas Secretary of State Bill McCuen pleaded guilty to
felony charges that he took bribes, evaded taxes and accepted

91In its internal investigation, CBS’s inquiry team found the two Diebold County-level errors, Volusia and Brevard, were conclusive in their
network’s decision to call the race to Bush: “The mistakes, both of which originated with the counties, were critical, since there were only about
3% of the state’s precincts outstanding at this time. They incorrectly increased Bush’s lead in the tabulated vote from about 27,000 to more than
51,000. Had it not been for these errors, the CBS News call for Bush at 2:17:52 AM would not have been made.”

92Swarthmore and the students were then threatened by Diebold lawyers who claimed they were violating “copyright.” The Swarthmore students
sued and won – Diebold was found by the judge to have knowingly falsely claimed copyright protection. It is now liable for up to $5 million in
penalties.

Sep 2004; revised Jan 2005 52 9. 6. 0



Smith typeset 12:13 10 Sep 2005 crypto vote

kickbacks. Part of the case involved Business Records Corp.
[now merged into ES&S]... Arkansas officials said the scheme
involved ... then-BRC employee Tom Eschberger .... Es-
chberger got immunity from prosecution for his cooperation.”
Eschberger later became vice president of ES&S.

Sequoia voting machines. In 1999, two Sequoia execu-
tives, Phil Foster and Pasquale Ricci, were indicted for paying
Louisiana Commissioner of Elections Jerry Fowler an $8 mil-
lion bribe to buy their voting machines. Fowler is currently
serving five years in prison.

“Secret” Sequoia voting machine code was found on an open
web site [84].

Election.com: Was a US voting machines company; a con-
trolling interest in it was owned by Saudi Arabians.

Washington DC, August 2004: “A four-day conference
for election officials was held, co-sponsored by voting machine
vendors who want their business...

The plans for the event included women in evening dresses
and men in tuxedos carrying a six foot-long check made out
to ’election officials’ for ’parties, cruises, wining and dining’
and signed by voting machine manufacturers Diebold Elec-
tions System, Sequoia Voting Systems, and Elections Systems
and Software. ” [126]

9.7 Vote counting
Iraq 2002: Iraq headman Saddam Hussein claimed to have
won a 100 percent “Yes” vote in an October 2002 referendum
on a new term.

San Fransciso, California 2001: Bright red ballot box
lids were found floating in the bay and washing up on ocean
beaches for several months after the November 2001 election.

New Mexico 2000: GOP activist Shelley Hayner and 11
volunteers audited the votes in Dona Ana County, New Mex-
ico [68]. They found that 5509 absentee ballots had been sub-
mitted with signatures, yet 6456 were counted in the Novem-
ber 2000 final, official tally. When journalist Federico Almarez
asked Denise Lamb in the secretary of State’s office to explain
the 947 phantom votes, she blamed “administrative lapses.”

The Washington Post examined Rio Arriba county [98] and
found that 678 of the county’s 2300 voters did “not” cast a
vote for any Presidential candidate. In one district, official
totals showed 203 votes, but 0 votes recorded for either Gore
or Bush. These problems were caused by electronic voting
machines.

Al Gore “won” New Mexico by 366 votes.

North Carolina 2004 [120]: The state was unable to swear
in an agriculture commissioner because Steve Troxler and
Britt Cobb were 2287 votes apart while an electronic vot-
ing machine in Carteret County lost 4438 votes. “The ma-
chine had mistakenly been set to keep roughly 3000 votes
in memory, which was not enough, and in a spectacularly
bad design decision it was programmed to let people keep
‘voting’ even when their votes were not being saved.” This
“prompted North Carolina to reconsider its use of paperless
electronic voting.” The 3000-vote memory limit had been in-
correctly claimed by the voting machine manufacturer to be
10000. After this election, a re-election was held in Carteret
County just for agriculture commissioner, but that re-election

was thrown out in a court decision. Then a statewide agricul-
ture commissioner re-election was held but also thrown out in
a court decision. Finally the matter was resolved by collect-
ing 1352 affadavits from voters who claimed to have voted on
that machine.

USA, 2000: US House member John Conyers compiled re-
ports from 31 states and the District of Columbia and found
that 1,276,916 voters had had their votes discarded (i.e. un-
used in the 2000 Bush-Gore presidential contest). This ex-
ceeded the nationwide difference in the popular vote between
Gore and Bush. Conyers recommended, at a minimum, that
voting machines notify voters immediately if their ballot is
invalid (due to undervotes, overvotes, or stray pencil marks).
As of 2004, this recommendation remains merely that.

9.8 Three fraud-aided US Presidents

George W. Bush, 2000: Bush won the presidency over Al
Gore despite winning 543,895 fewer popular votes. This was
thanks to the electoral college and in particular thanks to the
decisive state of Florida which he won by an official margin
of 537 votes over Gore.

We have several comments to make on this. First of all, it
was completely impossible for Florida to count votes accurate
to ±537. The Miami Herald found thousands of known ille-
gal votes (by felons, dead people, out of state residents, etc.)
and (thanks to ballot secrecy) it is unknown for whom they
were cast. Therefore, if the “true” margin was 537, then it
was mathematically impossible to determine the winner.

Second, it is now clear that an illegal tactic was employed
which artificially swung the vote in Bush’s favor by at least
20,000. Bush was aided by the facts that (1) Jeb Bush,
his brother, was governor of Florida. (2) Katherine Harris,
his Florida campaign manager, was the Florida Secretary of
State, i.e. the top elections-supervising official in the state.

Before the 2000 election, Harris ordered county elections offi-
cials to purge 57,000 citizens from voter registries as “felons”
not allowed to vote in Florida. But actually about 95% of
them were innocent of crimes – but 54% were guilty of be-
ing black. (Statewide, blacks supported Gore by a 9:1 ra-
tio, according to The Washington Post 31 May 2001.) DBT
On-Line, the company which had been paid over 400 times
the previous company’s rate to prepare the list (and was
awarded the contract with no competitive bidding), after be-
ing sued by the NAACP, turned over to the NAACP’s lawyers
a report indicating that the state ordered a purge of 94,000
“felons” specifically requesting not performing rudimentary
checks such as social security number matching (although
checks on the voters’ race were to be employed) despite the
fact that according to the company’s data, no more than 3000
were likely illegal voters [122].

If only the actual felons on that list had been excluded from
voting, then there would have been about 32,000 additional
Gore votes and about 12,000 additional Bush votes. (Contrast
this with Bush’s official 537-vote margin.)

Third, tactics which perhaps were not illegal, but certainly
were reprehensible, gave Bush an additional artificial 70,000-
vote advantage.
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In the 4 blackest counties in Florida, 7-12% of all ballots were
rejected as invalid (due to stray marks, overvoting, or under-
voting) and not incorporated into the count in the Bush-Gore
contest. In the 4 whitest counties, the rejection rate was 0.5-
2%, i.e. 5 times smaller [122].

This was largely due to the fact that the voting machines in
the blackest counties were set to reject invalid ballots silently,
with no indication to the voter that anything was wrong; the
opposite was true in the whitest counties. (Sample voting
machines from the counties were on display outside governor
Jeb Bush’s office for some time before the election so that the
higher-ups could be sure they were adjusted right.)

This disparity occurred not only on a county level, but also
on a neighborhood level [14]: ballots cast from black neigh-
borhoods throughout Florida were four times as likely to go
uncounted as those from white neighborhoods. Nowhere was
the disparity more apparent than in Duval County, where
42% of the 27,000 ballots thrown out came from four heav-
ily Democratic black precincts. (That alone represented a
≈ 5000-vote boost for Bush over Gore. Keep remembering:
Bush won Florida over Gore by 537 votes.)

Countervailing pro-Gore fraud? We have explained how
Bush gained 20,000 votes versus Gore in Florida due to the
fraudulent Felon’s list and 70,000 due to systematic suppres-
sion of black votes. However, some Republicans believe there
was also pro-Gore fraud. The two main hypotheses that have
been advanced are that (a) about 1443 extra votes for Gore
over Bush were “found” during recounts by Democrat-biased
county election committees, (b) Massive fraud by punching of
Gore holes through entire reams of “butterfly ballots” in Palm
Beach County (which would have no effect on Gore votes, but
would invalidate all non-Gore votes as ‘double’ votes) gener-
ated 50,000 extra Gore-over-Bush margin. (Observe that this
fraud technique would not work with most other kinds of bal-
lots.)

To this we reply: (a) If so this was evidently not enough to
tip the election and was picayune in comparison. (b) This is
a more serious charge. It was raised by Robert A. Cook (a
“Nuclear Engineer with an M.S. in statistical quality control”)
in numerous internet postings. Palm Beach County had the
second highest percentage of invalid ballots (a 4.2% overvote
rate) behind Duval County, and, Cook claimed, it was the
only Florida county with fewer Bush votes (152,954) than reg-
istered Republican voters (231,626). Suspicious. But, Cook’s
charges fall to the ground when one considers the following
facts [7].

1. The total number of overvotes in Palm Beach County
was 19,235.

2. The Palm Beach Post inspected them all and found
Gore appeared on 15,371 (80%), Buchanan on 8689,
McReynolds on 4567, Browne on 4218, and Bush on
3751.

This data is totally incompatible with Cook’s theory and ev-
idently could have cost Bush at most 3751 votes. In fact,
the obvious explanation of Palm Beach’s high overvote rate
was its notoriously poorly designed “butterfly ballot” which
caused a large number of elderly voters to mistakenly vote

for Buchanan instead of Gore. Palm Beach County gener-
ated 3411 Buchanan votes, exceeding the next highest Florida
county by a factor of more than 3. Meanwhile absentee voters
(who used a different ballot) in Palm Beach voted Buchanan
at a 4-times smaller rate, although the Buchanan proportion
did not differ appreciably between election-day and absentee
ballots in any Florida county besides Palm Beach. This makes
it clear that about 2500 of Buchanan’s votes actually were
intended for Gore. The butterfly ballot also engendered mis-
votes for McReynolds. And indeed McReynolds received 302
Palm Beach votes, about 10 times what would be expected
based on his statewide totals. So really, the truth is probably
that Gore deserved an extra 13,000 margin over Bush from
Palm Beach.93

The Miami Herald and other newspapers analysed 111,000
overvotes Florida-wide and found that Gore was marked on
84,197 and Bush on 37,731, which strongly suggests that any
overvoting fraud hurt Gore far more than Bush. In short:
Cook is completely wrong; any pro-Gore fraud in Florida was
tiny in comparison to pro-Bush fraud.

Postscript: K.Harris and Florida in 2002 admitted that tens
of thousands of black voters had been wronged, and agreed
to return them to the voter rolls at the beginning of 2003, i.e.
after counting the ballots in Jeb Bush’s re-election race.

In 2004, the news organization CNN requested to examine
Florida’s new felons list before the 2004 election, but that re-
quest was denied. After they won that permission on 1 July
2004 in a lawsuit, the list – again with every one of the over
47,000 voters on it identified by race – was found, amazingly,
to contain fewer than 0.1% Hispanics, in a state where nearly
1 in 5 residents is Hispanic. (Florida Hispanics predominantly
vote Republican. Remember, over 50% on the 2000 list had
been black, in a state with 12% blacks. Black voted 9:1 for
Gore.) The Miami Herald then reported on July 2 that it
found more than 2100 names erroneously included on the list
because they had received clemency. According to Jeb Bush,
these things were “an oversight and mistake.” Nine days after
the list’s release, state officials decided to scrap it entirely, say-
ing it was too flawed to be trusted. However, Florida intends
to use the list again in 2006.

Lyndon Johnson and J.F.Kennedy, USA 1948-1960:
Then-congressman Lyndon B. Johnson, later to become US
president, won his Senate seat from Texas in 1948 by 87 votes
over former Gov. Coke R. Stevenson, the closest senatorial
election in history.

Stevenson had bested Johnson in the Democratic primary, but
received only a plurality, so a run-off was required. Since there
was no chance that a Republican could be elected statewide at
the time, the winner of the primary would be assured the Sen-
ate. An unofficial tabulation showed Stevenson in the lead by
114 votes out of nearly 1 million. But then, suddenly, 6 days
late Precinct 13 of Jim Wells County, part of an 11-county re-
gion in South Texas controlled by pro-Johnson political boss
George B. Parr (1901-1975), mysteriously“found”a ballot box
containing an additional 203 votes – 201 for Johnson and 2
for Stevenson – giving Johnson his 87-vote statewide lead and
the victory 494191-to-494104. J. Evetts Haley [81] noted that
the 202 who voted for LBJ “had been added [to the recount

93Also, if entire reams of ballots were punched through – then why did nobody find an example ream that had been entirely punched through?
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list] alphabetically in blue ink, whereas the original list was in
black.” All of the 203 names were in “the same handwriting.”
Other voters didn’t live in the county anymore or were dead.
(The list eventually was mysteriously “lost.”)

The Precinct 13 election judge, Luis Salas, had absolute say
over the vote counts in the Hispanic South Texas precinct.
In 1977, Salas, then 76, sought “peace of mind” by admitting
that he had certified enough fictitious ballots to steal the elec-
tion. The Toledo (Ohio) Blade for 31 July 1977 quoted Salas
as saying: “Johnson did not win that election; it was stolen
for him. And I know exactly how it was done.”

99.6% of the eligible voters in Texas’s Duval County (Parr’s
headquarters) voted, and they voted for Johnson by a 100:1
ratio.

All these things were not a coincidence. The story of how
Johnson, with heavy financing from the Brown and Root To-
bacco company, paid off Parr to create votes for him, is re-
counted in detail in Johnson’s biography [33]. (Another good
account of all this is in [60].) Parr and his wholy-owned
election-judges and sheriffs would march Mexicans into the
polls, pay their poll taxes for them, hand them their pre-filled-
in ballots, and tell them to drop them in the box, afterwards
rewarding them with a drink of tequila. Too-inquisitive elec-
tion inspectors and observers would be jailed and ordered out
of the county at submachine gun point; the homes and busi-
nesses of those insufficiently loyal to Parr would be burned.
Three prominent critics of Parr were assassinated by unknown
assailants. On the 1948 election, Parr’s counties simply kept
“finding”more votes each day after the election was over until,
a week afterward, Johnson finally was in the “lead.”

In 1954, Johnson re-won his Senate seat, this time by a com-
fortable 500,000 votes.

In 1960, J.F.Kennedy (with LBJ his running mate) won the
presidency from R.M.Nixon by 118574 votes out of more than
68.8 million cast [32]. JFK had 303 electoral votes to Nixon’s
219 (269 needed to win). Had Nixon carried both Illinois
(which JFK carried by 8858 out of more than 4.7 million votes
cast) and Texas (46,242 votes out of over 2.3 million cast), he
would have won with 270 electoral votes94.

There is strong reason to suspect that both the Texas and
the Illinois victory – and perhaps Kennedy’s national popular
vote plurality too – were due to fraud. Chicago was controlled
by its notorious political boss – the longest serving mayor in
US history – Richard J. Daley. (Daley was also the father
of Gore’s 2000 campaign manager William Daley.) Texas too
was controlled by Democrats.

The turnout in Chicago was a spectacular 89%. This con-

trasts with the nationwide turnout of 63%. It also contrasts
with the fact [62] that in the 11 presidential elections during
1960-2000, totalling 550 statewide contests, not once did any
state ever exceed 78.4% turnout (Utah 1964), and the states
with the largest-% turnout were always rural (namely North
and South Dakota, Utah, Minnesota, and Maine), not urban.

Despite losing 93 of the 102 counties in Illinois, Kennedy won
the state by 8858 votes thanks to his 456,312-vote advantage
in Chicago, whose precincts reported their totals remarkably
late. (Compare this with Kennedy’s nationwide plurality of
118,574.)

Mayor Daley defended Chicago by claiming Democratic fraud
there was no worse than Republican fraud in downstate Illi-
nois [36]: “You look at some of those downstate counties,”
he said, “and it’s just as fantastic as some of those precincts
they’re pointing at in Chicago.”

In 1962, after an election judge confessed to witnessing vote
tampering in Chicago’s 28th ward, three precinct workers
pled guilty and served short jail terms95; 677 others were in-
dicted before being acquitted by Judge John M. Karns, a
Daley crony. Many of the allegations involved practices un-
correctable by a recount, leading the Chicago Tribune to con-
clude that “once an election has been stolen in Cook County,
it stays stolen.”

Earl Mazo was the Washington-based national political cor-
respondent for the New York Herald Tribune and wrote a
series of articles on election frauds. Mazo went to Chicago,
got lists of voters in suspicious precincts, and started check-
ing their addresses. “There was a cemetery where the names
on the tombstones were registered and voted,” Mazo recalls.
“I remember a house. It was completely gutted. There was
nobody there. But there were 56 votes for Kennedy in that
house.” In Ward 27, Precinct 27, 397 votes were recorded from
376 voters. Mazo then went to Republican areas downstate
and looked for fraud there. (Practices there included voting
by telephone and bulk voting by political leaders.)

“In downstate Illinois, there was definitely fraud,” he says.
“The Republicans were having a good time, too. But they
didn’t have the votes to counterbalance Chicago. There was
no purity on either side, except that the Republicans didn’t
have Daley in their corner – or Lyndon Johnson.”

The Chicago Tribune stated “the election of November 8 was
characterized by such gross and palpable fraud as to justify
the conclusion that [Nixon] was deprived of victory.” (As
quoted by the Washington Republican National Committee,
who filed a lawsuit challenging the Chicago results.) The case

94We shall argue that Nixon probably would have won Illinois and perhaps Texas with honest voting and counting. However, this does not
necessarily mean Nixon should have won the presidency, because if any of Nixon’s state-victories were also due to fraud (or mistakes) – which
is not implausible and which is an issue that has essentially not been studied – then correcting them would have given the presidency back to
Kennedy. And indeed Hawaii, after a court decision ordering a recount, changed its victor from Nixon to Kennedy on 28 December. Judge Ronald
B. Jamieson ruled that Kennedy had won by 115 votes out of about 185,000 cast; the original official tally had said Nixon won by 141. One of
the discrepancies that turned up in the early stages of the recount and encouraged the judge to continue it was precinct 17 of district 15 of Manoa
Valley, where 69 more votes had been tallied than the number of voters; 68 of these 69 phantom votes were for Nixon. There is no doubt that both
Democratic and Republican vote fraud occurred; it is just that in Illinois and Texas the Democrats were far more successful at it.

95Seymour Hersh further claims in his book The dark side of Camelot that the Kennedys enlisted crime boss Sam Giancana to acquire more
votes as part of a deal in which it was agreed to “cut the heat” on him from law enforcement. Giancana’s own view, expressed to Judith Campbell
Exner, the mistress he shared with JFK, was “Listen baby, if it wasn’t for me your boyfriend wouldn’t even be in the White House” ([133] p.214).
in 1992 Giancana’s nephew and brother wrote a book [74] again recounting how Giancana had rigged the Cook county vote for Kennedy as part of
a deal, and further stating that when Kennedy reneged on the deal, Giancana had him assassinated. (They claimed they had heard this directly
from Giancana himself who also noted “Richard Nixon and Lyndon Johnson knew about the whole damn thing.” The book also linked Giancana
to a total of 7 US Presidents.)
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was assigned to Circuit Court Judge Thomas Kluczynski, a
Daley machine loyalist. On Dec. 13, Kluczynski dismissed
the Republican suit. Less than a year later, on Mayor Da-
ley’s recommendation, Kennedy appointed Kluczynski to the
federal bench.

After Kennedy took office, he appointed his brother Robert
F. Kennedy Attorney General, i.e. head of the Justice De-
partment and thus indirectly of the FBI. This appointment
was quite odd considering RFK’s limited lawyerly experience.
(He never tried a case in a courtroom in his life.) The Jus-
tice Department then advised the FBI to cease investigating
election fraud charges.

Meanwhile, Fannin County in Texas had only 4895 registered
voters, but 6138 votes were cast (125% turnout!), 75% for
Kennedy. In Angelina County, in one precinct, only 86 peo-
ple voted yet the final tally was Kennedy 147, Nixon 24.
And so on. The population of the 11 Parr-controlled counties
was about 280,000, which alone would have been enough to
explain about 34,000 votes worth of Kennedy-Nixon margin
(based on the 2.3 million votes in Texas versus its 9.6 million
population, and assuming a 50:50 vote split was converted by
Parr into 99:1; compare this 34,000 with the official 46,242-
vote margin).96 The Republicans demanded a recount, claim-
ing that it would give them 100,000 votes and victory. John
Connally, the state Democratic chairman, said the Republi-
cans were just “haggling for headlines” and predicted that a
recount would give Kennedy another 50,000 votes. (Observe
that both of these estimates exceeded the official margin.)
But there was no recount. The Texas Election Board, com-
posed entirely of Democrats, had already certified Kennedy
as the winner.

9.9 Election fraud as a government-toppling
or democracy-destroying event

Indira Gandhi, India 1975: After a court ordered Prime
Minister Indira Gandhi removed from office because she was
elected with the aid of election fraud, Gandhi responded by
refusing to step down, jailing thousands of both her political
rivals and journalists she disliked, dissolving many state gov-
ernments, and terminating Indian democracy in favor of rule
by decree. Fortunately the resulting period of authoritarian
rule only lasted for 19 months. But the larger point is: elec-
tion fraud, or even just perceptions of it, has the power to put
an end to democracy.

Costa Rica 1948; Nigeria 1965: Costa Rica’s Civil War
(1948), which led to a new government in 1949 (with a new
constitution, and awarding the vote to Blacks and women)
started with allegations of election fraud and with the sitting
government refusing to accept the election result. Although
both the Indian and Costa Rican examples led to an ulti-
mately happy conclusion, that was not the case in Nigeria
where this same scenario led to a civil war in 1965 followed
by military rule interspersed with brief periods of pseudo-
democracy for the next 34 years.

9.10 Conclusions
Election frauds and/or allegations thereof have toppled
democracies. In the US, three presidents during 1950-2000
arguably got there with the aid of vote fraud comparable to
or greatly exceeding winning margins.

Gore’s concession (later retracted) in the 2000 race was caused
by CBS News’ assessment that Bush won Florida, which in
turn was directly caused by an electronic voting machine “er-
ror” which (a) was outrageous – a negative “vote count” was
accepted automatically without any flag being raised – and
(b) whose most likely explanation was intentional fraud.

Australia has adopted nationwide standards for electronic vot-
ing machines and their computer code is open-source.97 The
USA in contrast has many competing voting machine vendors
whose code is a legally protected trade secret, and usually, in
practice, changes illegally during and before elections with-
out any certification. Many electronic voting machines permit
magic alteration of vote totals with no trace.

10 Will quantum computers destroy

cryptographic election protocols?

If quantum computers ever are built, then it will become pos-
sible to factor N -digit integers and solve N -bit elliptic curve
(or mod P ) discrete logarithmic problems in polynomial(N)
time [143]. That in turn would destroy all the usual public-
key cryptosystems and would crack most of the cryptographic
tools and protocols we discuss in this survey.

We have several reassurances to those who fear this horrfying
possibility:

1. I doubt that quantum computers ever will be built, and
regard all claims of partial success in that duirection as
consisting mainly of hype.

2. I feel certain that progress toward build a quantum com-
puter will be very slow, and so we would be forewarned
many years in advance that big progress is finally be-
ginning to become a worry.

3. It will still be possible (albeit more painfully) to per-
form cryptographic voting protocols even when quan-
tum cryptography comes – and we will now explain how.

First, our general purpose theorem 3 about ZK-proofs of
NP-statements is based entirely on bitstring “commitments,”
which may be implemented entirely by means of AES-type
cryptography, without need of either public-key cryptogra-
phy or any assumptions that discrete logarithms are hard.
These cryptosystems are (as far as anybody knows) immune
to quantum computers, except possibly for a need to dou-
ble the keylength to avoid succumbing to Grover’s quantum-
speedup of brute-force search [165].

Therefore, all zero knowledge proofs can still be implemented
(perhaps more painfully, but it can be done) to be secure
against enemies with quantum computers.

Second, all known schemes for secure multiparty computation
(SGMPC, see §4.27) unfortunately depend on the assumption

96Parr, facing jail on federal tax-evasion charges, committed suicide in 1975, whereupon his political machine’s power finally began to wane.
97We hasten to remark, however, that open-source code is not a panacea, since Ken Thompson [160] has demonstrated language-redefinition

techniques that allow software to do anything despite the source code looking completely innocent.
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that discrete logarithms are hard. However, it is known [?][?]
that Shamir secret sharing and hence SGMPC can be imple-
mented in such as way as to be secure unconditionally, i.e.
information-theoretically without need of any unproved com-
putational complexity assumption, provided that the distrust-
ful computing parties are allowed to communicate, not only
via a broadcast channel, but also via untappable channels be-
tween any pair of the parties. And it is possible to create
an untappable communication channel by use of “quantum
channels” based on transmission of bits via single photons –
this has also been called “quantum cryptography” [16][17] –
Indeed, such channels both have been built98 for communica-
tion over optical fibers over distances of ≤ 100km, and found
to perform quite well. Free-space quantum bit transmission
has also been demonstrated, e.g. via telescope and laser be-
tween the Max Planck Institute and the Zugspitze 21km away
[157].99

Essentially everything else we have discussed is just a special
case of one or both of these two general purpose theorems
(albeit often a much faster special case). We conclude that,
aside from a possible slowdown by a possibly-large constant
factor, everything in this paper could be transmuted into some
form which will survive even after the hypothetical day when
quantum computers become a threat.

Third, any public-key cryptography used for, e.g. key-
exchange, could be dispensed with if the parties involved could
simply communicate via untappable quantum communication
channels.

The task of designing good, i.e. work-efficient, quantum-
computer-immune protocols (as opposed to merely proving
that ones exist without striving for efficiency) will be left to
future authors!

11 Conclusions

11.1 Ten lessons

1. Good methods exist. We have demonstrated that elec-
tion methods can be constructed which simultaneously obey
all of the desiderata of §2, despite the naive impression, even
among experts such as Rebecca Mercuri, that many of these
desiderata conflict.

2. Forget mixnets. Although both are good enough
to reach engineering feasibility, secure voting schemes based
on homomorphic encryption are inherently superior to those
based on mixnets. The latter idea should be dropped.

3. Use elliptic curve cryptosystems. Elliptic curve based
public key systems are far superior to non-elliptic ones.

4. Forget Chaum’s “secret ballot receipts” scheme.
Chaum’s “secret ballot receipts”voting scheme [35] (criticized

in footnote 60) permits vote selling and does not yield ballot
secrecy (despite his claims) and hence should be discarded.

5. Voters must have inseparable personal “digital as-
sistants.” It is inherently impossible to achieve the election
desiderata of §2 if voters are forced to vote on computerized
voting machines provided by the election authority. (This
was, in fact, the problem with Chaum’s [35] scheme.) That
is because the voter would (1) have to provide his identity so
that his name could be “crossed off the list” of eligible voters
who have not yet voted100 (2) have to enter his vote in some
human-readable (as opposed to encrypted) form, and the vot-
ing machine then would be free to remember that vote, thus
violating the secret ballot principle. For this reason (and since
the necessary cryptographic calculations are far too great for
voters to perform manually, and since 300-digit crypto keys
are too much for voters to be expected to memorize) it will
always be necessary for the voter to interact with the voting
machine solely through the intermediary of his own “digital
assistant” (personal computer or “smart card”) and it will al-
ways be necessary for that assistant to be physically protected
(our mathematical treatment regards the assistant as a “part
of the voter”).

A few remarks on smart cards. The fact that every voter
must have such a smart card is a major hurdle faced by secure
voting schemes. Would such cards be cheap enough, reliable
enough, and not too-heavily “spoofed”? Would there be con-
siderable card-theft motivated by the desire to deny votes?
Voting machines in districts containing a lot of opposition-
voters could “accidentally” fry people’s smart cards by a high
voltage as soon as they were plugged into the machine. To
prevent that the cards instead would have to interface opti-
cally. The card’s optics could also double as a barcode scan-
ner, useful for reading the voter’s printed receipt and verifying
its validity immediately. Each voter could download standard
ballots and then preprogram his card with his vote before en-
tering the voting booth, speeding matters up.

6. Privacy is required? It seems inherently impossible to
achieve the election desiderata of §2 if voters can vote over
the internet from locations of their choice. That is because
voters would then be free to have others witness them in the
act of voting, and hence could sell their votes. If so: to pre-
vent that, it will always be necessary for each voter, at some
stage, to communicate with the election authority in a secure
and private location, e.g. a voting booth.

However: there are two methods which can evade this im-
possibility argument to a considerable extent. First, we can
set up ways for voters to cast fake votes, so that the vote-
buyer or vote-coercers could not know if the voter they were
witnessing was casting a genuine or fake vote. However, the
voter would have to prepare to make that choice, and the
vote-buyer could witness the voter during that preparation.

98In May 2005 in Cambridge England, Toshiba gave a public demonstration of an untappable quantum communication channel capable of
transmitting bits for distances of over 100km over an optical fiber, and indeed demonstrated secure video and voice transmission over that channel.
Dr. Andrew Shields led the Toshiba group developing the system.

99Incredibly, as R.J.Hughes showed in pioneering experiments near Los Alamos, by transmitting the single photon in a very narrow time window
and over a narrow beam from a telescope, it is possible to receive it fairly reliably even in broad daylight (although fog and rain can eliminate
transmission). Lost single photons, even if they all are received by an eavesdropper, do not matter; thanks to an overarching algorithmic protocol
which also involves bits transmitted in both directions over a nonquantum broadcast channel [16], the security of the transmission is not affected.
The Toshiba team introduced the technique of delineating that time window via a bright “guide” laser flash.
100To see that deduction of the voter’s identity is necessarily possible, consider the last voter to vote, after all other eligible voters already have.

Or consider the sole voter at some remote voting location.
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So at some point – either the voting or the preparation – voter
privacy is required. More simply, it is possible to allow vot-
ers to vote multiple times, with only the last vote counting.
This arguably would prevent vote selling and coercion unless
the buyer/coercer could be sure his bought/coerced vote was
absolutely the last one that voter would issue. So it would
suffice for the voter to get private access at some later occa-
sion before voting ended. Either of these ideas is possible in
the JCJ scheme [96] (see §7.4). These two ideas might not
prevent vote buying and coercion, but certainly would reduce
it. Nevertheless, because off-site voters could simply sell their
entire computer system to a buyer, who could then use it to
vote in their name, or use his possession of it to deny them
the ability to vote (or at least to make it more difficult), vote
buying or coercion would still be possible to a considerable
extent.

7. Multiparty computation schemes: great in princi-
ple, but presently impractical. Although we have demon-
strated that, in principle, secure general multiparty computa-
tion schemes can render any vote-combination method secure,
just the brute force use of that plan requires too much com-
putation and communication to achieve engineering feasibility
with present technology. Therefore no feasible secure election
methods are presently known for Hare/Droop-STV [161][110]
and reweighted range voting [149] – two of the three best vot-
ing methods currently known for multiwinner elections. This
perhaps is an argument in favor of asset voting [151], an un-
conventional, but nevertheless perhaps also good, multiwinner
election method. (Asset voting is additive and hence can be
handled by homomorphic encryption.)

8. Multiparty schemes are necessary with fully gen-
eral vote-combination methods. It is inherently impos-
sible to achieve the election desiderata of §2 if fully general
vote combining methods are allowed and if a single election
authority carries out all the computations. Secure general
multiparty computations using “shared-secrets” in principle
can do it, but with present technology that seems infeasible.

9. Bogus registrations. The usual crypto-secure schemes
do not protect against the State creating a ton of fake voters,
registering them, and then having them “vote.” That whole
cheat process could be automated and is one of the larger
weaknesses of the present scheme. It also does not protect
against the state declaring a ton of voters “ineligible.” Both
have been popular forms of cheating throughout American
history including recent years.

Nevertheless, the system we advocate would be far superior to
present ones, since there would be a world-readable posted list
of registered voters. it would therefore be easy for anyone to
check the list to try to find fake ones (such as dead ones, ones
not at the claimed address, etc) and if the percentage of such
were large enough, then they could not escape detection. (If
the percentage were too small, then they could not affect the
election much.) Further, any large number of voters denied

registration could easily prove that. In the scheme of §7.3 any
voters proven to be bogus could easily be deleted along with
their votes, and the election then rerun ex post facto – vastly
superior correctability to present methods.

10. Biased election officials. In both the 2000 Bush-Gore
and 2004 Bush-Kerry presidential contests, the supreme elec-
tion official in the crucial state was Bush’s state campaign
chair! This should be illegal.101

11.2 What we can and cannot do

It is important to understand what secure election schemes
do and what they do not do.

What they do. They start with a publically posted list
A of eligible voters and a publically posted list B of (en-
crypted signed dated) votes gotten from voters. They combine
these votes to produce the election result, which they then an-
nounce. If the election authority and associated entities follow
the protocol, then it will also produce a proof that102

1. Only those voters who know the private keys corre-
sponding to the voter public keys listed in A could have
produced votes on B,

2. nobody successfully double-voted,
3. every vote on B would be (once decrypted) legitimately

formatted, i.e. valid,
4. the election result was correctly calculated from B, and

the scheme also has the properties that:
5. every voter can confirm that his vote appears on B,
6. everyone can determine which voter’s votes appear on

B,
7. nobody can determine anything about what (plaintext)

vote any voter produced (except of course that the voter
himself knows it, and except insofar as that information
is deducible from the election result itself).

If, on the other hand, they do not follow the protocol, then no
such proof will be produced and it will be publically apparent
who first violated the protocol.

What they do not do. The above guarantees are essentially
of the form“if the input is right, and the protocol is followed,
then the output will be right, and this will be proven with-
out revealing anything about the input that is supposed to be
kept private. And if the protocol isn’t followed, we’ll all know
it.” While wonderful, these guarantees are not omnipotent.

They are not of the form“the input is right.” That is a human
rather than a mathematical problem.

Thus if the original list A of “eligible” voters was obtained
by some unfair or illegal process (for example, refusing to let
anyone with dark skin register, cf. §9) or if black voters were
physically prevented from contributing their vote to B, or if
some class of gullible voters (where in practice, by “‘voter”we
mean “the entity consisting of both the voter and his ‘digital

101The Columbus Free Press reported that (according to their anonymous sources) US President G.W.Bush had met with Ohio election com-
missioner K.Blackwell on the 2004 election day. Not only that, Blackwell was openly simultaneously serving as the Bush-Cheney Ohio campaign
co-chair. Contrast this with the situation in the Phillipines in 2005 [134]: President Gloria Arroyo admitted talking on the telephone to an election
official during vote-counting of the close May 2004 election; she later said this was a “lapse in judgement.” That caused a scandal, calls for her
resignation including from her own cabinet, and the initiation of impeachment proceedings.
102Subject to assumptions about the infeasibly great computational difficulty of certain problems related to discrete logarithms, and assumptions

that certain sets of entities will refuse to collude, and assumptions that the votes in B were input from each voter under private unrecorded
unwitnessed circumstances
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assistant’ pocket computer”) provided votes they did not in-
tend to provide because they were fooled, then the procedure
will still produce the “correct” election result, with proof, for
the input that was received. (Eligible voters who did not vote
could, however, prove that fact.)

Furthermore, they are not of the form “the protocol will be
followed.” The election authority could willfully refuse to fol-
low the protocol, or might be prevented from doing so by some
kind of attack. In that case, the best we can say is that we
would know it – it would not be possible to not follow the
protocol and pretend it did. We can and have constructed
systems with a certain amount of robustness against attacks,
in the sense that there is recountability from paper records,
that the system can survive a temporary breakdown of com-
munications, and that voters whose vote does not appear on
B can try voting again with no penalty until it does appear.
(Voters also could refuse to follow their protocols, in which
case they would be unable to vote.)

Speaking purely as a computer programmer, though, the
problem is solved, in the sense that we have a procedure for
converting inputs (alleged votes) into outputs (election re-
sults) in a way verifiable by anybody and which satisfies the
desiderata about voter privacy, nonmanipulability, etc. The
problems we’ve mentioned are not the concern of the com-
puter programmer – they are merely human problems about
obtaining the inputs. The computer programmer’s job begins
once those inputs have been obtained.

Furthermore, it seems as though any election authority try-
ing to be unfair in the ways we have mentioned, on any scale
large enough to be useful, in any sufficiently open society to
be having elections and using this sort of secure system in
the first place, would necessarily be detected (cf. “lesson 9”
in §11.1) and the error would then be correctable. For exam-
ple, anybody trying to manufacture and distribute many fake
smart cards, would run a big risk of detection (cf. “reply 1”
in §8); so would any attempts to create or delete any large
percentage of voters from the publically posted registration
rolls.
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[94] Rui Joaquim, André Zúquete, Paolo Ferreira: REVS – a robust
electronic voting system, IADIS (Int’l Assoc. for Development of
Information) Conference on e-society 2003.

[95] A. Joux & R. Lercier: Improvements to the general number field
sieve for discrete logarithms in prime fields, Math. of Comput.
72,242 (2003) 953-967.

[96] Ari Juels, Dario Catalano, Markus Jakobsson: Coercion-resistant
electronic elections, Cryptology ePrint Archive: Report 2002/165
http://eprint.iacr.org/.

[97] Adam Kalai: Generating random factored numbers, easily, Pro-
ceedings 13th ACM-SIAM Symposium on Discrete algorithms (6-
8 Jan. 2000) 412 (1 page long) San Francisco, California. Also
http://people.cs.uchicago.edu/∼kalai/factor/factor.html.

[98] Dan Keating: Lost Votes in N.M. a Cautionary Tale Washington
Post, Sunday, 22 August 2004, page A5.

[99] Aggelos Kiayias & Moti Yung: Self-tallying elections and perfect
ballot secrecy, Public Key Cryptography 5 (2002) 141-158.

[100] Joe Kilian: Founding cryptography on oblivious transfer, ACM
Symposium on Theory of Computing STOC 20 (1988) 20-31.

[101] J. Kilian, S. Micali, R. Ostrovsky. Minimum Resource Zero-
knowledge Proofs, Proceedings, 30th Annual IEEE Symposium on
the Foundations of Computer Science (FOCS 1989) 474-479. Also
abstracted in Crypto 1989 pp. 545-546 (Springer LNCS #435).
Also, these ideas are supposed to have been discussed in the
following (but I have never seen it): Joan F. Boyar, Carsten
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nite fields, J.Théorie de Nombres Bordeaux 7 91995) 219-254.
Both are available electronically with an errata sheet for the for-
mer at http://www.mat.uniroma2.it/∼schoof/papers.html.
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Figure 11.1. [117] How the 268 precincts in Duval County, Florida, voted in the 2000 Bush-Gore presidential race. Observe
the remarkably linear negative-slope fit between the percentage of missing votes in that precinct (ruled invalid by the election
authority and not counted) and its percentage of votes for Bush. N
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