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Abstract — Two well known theorems in 3D vec-

tor calculus are Gauss’s divergence theorem (actu-

ally valid in n dimensions), and Stokes’ theorem. We

find new ones. They have interesting consequences

in elementary classical electromagnetism. There is a

natural way to classify possible theorems of this kind

and we have found every theorem the classification

admits. These theorems ought to be in the usual

undergraduate vector calculus and electromagnetism

textbooks, but aren’t.

Keywords — Stokes, Gauss, divergence theorem, Lorentz

force, current loop.

1 Recapitulation of the theorems of Gauss

and Stokes

In the following, let all functions, curves, and surfaces be
sufficiently smooth,1 and assume all integrals are finite
and exist. Assume a right-handed x, y, z coordinate sys-
tem. For standard vector notation (e.g. ~c = ~a ×~b and

ℓ = ~a · ~a = |~a|2) meanings see [1][2]; ~∇ denotes (in 3D)
the differential operator

~∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)

. (1)

Gauss’s divergence theorem states the equality of
these two scalars:

∫∫

V

· · ·

∫

︸ ︷︷ ︸

n integrals

~∇ · ~F dn~x =

∫∫

∂V

· · ·

∫

︸ ︷︷ ︸

n−1 integrals

~F · dÃ (2)

where V is some n-dimensional domain, ∂V is its (n−1)-

dimensional bounding surface, d ~A is the (outward point-
ing) vectorial element of surface (n− 1)-area, and dn~x =
dx1 dx2 dx3 . . . dxn is the vectorial element of n-volume.
Stokes’ theorem states the equality of these two
scalars: ∫∫

D

(~∇× ~F ) · d ~A =

∫

∂D

~F · d~ℓ (3)

where D is a topological disk in 3-space (i.e., a region
diffeomorphic to

{(x, y) such that x2 + y2 ≤ 1},

1It will suffice if all surfaces have piecewise continuous unit out-

ward normal vector, all curves have piecewise continuous unit tan-

gent vector, and all functions have continuous derivatives.

and ∂D is its bounding curve (homeomorphic to
{(x, y) such that x2 + y2 = 1}). The infinitesimal ele-
ment of arc length pointing in the tangent direction to
the curve (going clockwise as viewed looking in the d ~A

directions) is d~ℓ.
Both of these theorems have the form: a natural inte-

gral over a boundary equals the integral, over the region
itself, of some kind of derivative.

2 Classification of possible theorems

Generations of mathematicians have concluded that
there are two natural kinds of “products” of 3-vectors,
namely the scalar-valued dot product

~A · ~B = a1b1 + a2b2 + a3b3 (4)

and the vector-valued cross product

~A × ~B = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1). (5)

Consequently there are only three especially natural
kinds of “derivatives” for 3-vectors, namely grad, div and
curl: ~∇F , ~∇· ~F , and ~∇× ~F , where note grad is generally
applied to scalar F .

Furthermore, there are only two nontrivial natural
kinds of regions and boundaries in 3-space, namely: 3D
regions with 2D surfaces bounding them (as in Gauss’s
divergence theorem), and 2D surfaces with 1D curves
bounding them (as in Stokes’ theorem). This tells us
that there are only 4 = 2 × 2 possible thinkable kinds of
theorems of this general form concerning vector-valued
functions ~F .

If scalar -valued functions F are admitted, though,
there then would be 2 = 2 × 1 additional possible kinds
of theorems.2

3 The Third Theorem and its proof

The Third Theorem: These two 3-vectors are equal:

~B − ~C =

∫

∂D

~F × d~ℓ (6)

2Trying to go the other way by considering all natural inte-

grals of “derivatives” of F over regions R, and then trying to de-

vise equal integrals over ∂R, in general won’t work because most

derivatives will include information independent of any boundary

integral. The cases where it does work are already covered here.
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where

~B =

∫∫

D

TDD(~F ) d ~A (7)

and

~C =

∫∫

D

−−−→
TDG(~F ) dA. (8)

Here TDD(~F ) is the two-d imensional d ivergence of the

projected version of ~F (projected down into the 2D tan-
gent plane to the surface D) at the present point in 3-

space. Finally
−−−→
TDG(~F ) is the two-d imensional gradient

(as a 3-vector) of the normal component of ~F (normal to
the tangent plane to the surface D, and with the gradi-
ent taken in that tangent plane at the current point [of
tangency]). Just as in Stokes’ theroem, D is a topologi-
cal disk in 3-space and ∂D is its bounding curve (going
clockwise as seen looking along the directions of the nor-
mals ~a to the surface D). [See also EQs 9 and 10 below
and the slick reformulation in EQ 18.]

Forward pointer: This therem will be reformulated,
and re-proven, in §5. That other discussion is cleaner
and the reformulation is better for some, but worse for
other, purposes.
Proof sketch: Let ~x = (x, y, z). It suffices to prove it

for linear functions ~F (~x) only. Also it suffices to prove it
merely in the case when D is a triangle in 3-space. [The
rest will then follow by using the fact that all smooth
functions are locally linear; subdividing our arbitrary
smooth topological disk into tiny triangles, proof it is
OK (in limit of tinyness) to neglect quadratic terms aris-
ing from non-flatness of the triangles, non-straightness of
the triangle edges, and non-linearity of ~F ; and cancella-
tion of the 1D integrals on interior triangle edges going
both ways to get a − sign cancelling a + sign due to the
bilinearity of the vector cross product × operation.]

Further, due to linearity of all three integrals with re-
spect to ~F , it suffices if we prove it only for a suitable
set of basis functions ~F . There are 12 obvious basis func-
tions for the arbitrary linear functions mapping 3-vectors
to 3-vectors, namely (0, 0, 1), (0, 1, 0), (1, 0, 0), (x, 0, 0),
(y, 0, 0),..., (0, 0, z). Finally, by rotational invariance, it
suffices if our triangle lies in a plane parallel to the xy
plane. We now proceed to the details.
(1) If ~F is any constant vector the statement is obviously
just 0 = 0 due to the fact the vector sides of a triangle
sum to ~0 since the triangle is a closed curve.
From now on by considering adding a constant offset in
the z direction we may assume without loss of generality
that our triangle lies in the xy plane itself, not just some
parallel translate of it.
(2) If ~F = (0, 0, x) then the statement comes down
to −

∫

D
(1, 0, 0)dA =

∫

∂D
(−xdy, xdx, 0) = (−A, 0, 0)

where A is the area of our triangle D (which lies in the

xy plane). Similarly if ~F = (0, 0, y) and the triangle
lies in the xy plane then the statement comes down to
−
∫
(0, 1, 0)× d ~A =

∫

∂D(−ydy, ydx, 0) = (0,−A, 0).

(3) If ~F = (0, 0, z) then the statement comes down to
0 = 0 (the integrals of zdx and of zdy round a closed

curve in an xy-parallel plane are both 0).

(4) If ~F = (z, 0, 0) and the triangle lies in the xy plane
then the statement comes down to 0 = 0. The right hand
0 is since

∫

∂D
(0,−zdz, zdy) = (0, 0, 0) if ∂D is a closed

curve bounding a topological disk in the xy plane.
(5) If ~F = (y, 0, 0) then the statement comes down to
(0, 0, 0) =

∫

∂D
(0,−ydz, ydy) = (0, 0, 0) since dz = 0 and

integrating ydy leads to ± cancellation.
(6) If ~F = (x, 0, 0) then the statement comes down to
(0, 0, A) =

∫

∂D(0,−xdz, xdy) and since dz = 0 the first
two coordinates are both 0. The integral of xdy is the
area by a slabs argument (slabs dy wide and x2 − x1 in
width). These 6 cases are the only ones that arise (any
others are equivalent) so, Q.E.D.
Clearer formulation: How can the Third Theorem
be formulated purely as math (instead of using English

words in the description of the integrals ~B and ~C)?
Here’s one way: Let the surface of a topological disk
D be parameterized (x, y, z) = ~W (p, q). Let ~t = ∂ ~W/∂p

and ~u = ∂ ~W/∂q. Let ~a = ±~t × ~u be a normal 3-vector

to the surface D in 3-space so that d ~A = ~adpdq. is the
infinitesimal element of surface area. (The sign is chosen
to make ~a have the correct orientation.) Then the first
integral in the Theorem is

~B =

∫∫

D

[

~t ·
∂ ~F

∂p
|~t|−2 + ~u ·

∂ ~F

∂q
|~u|−2

]

d ~A. (9)

The second integral is

~C =

∫∫

D

(

~a ·
∂ ~F

∂p
|~t|−2~t + ~a ·

∂ ~F

∂q
|~u|−2~u

)

dpdq. (10)

Remark: Stokes’ and Gauss’s theorems may be proven
in much the same manner “subdivide into triangles and
consider a basis set of linear functions” manner as our
new Theorem (only proving them is easier).

4 Confirmatory Examples

Example #1. Let the surface D be the disk x2+y2 < 1,
z = 0 and its bounding curve ∂D be the unit circle x2 +
y2 = 1, z = 0. Let ~F = (x2yz2, xyz+3z+9, 5x+y2z+7).
Then we have

~F × (dx, dy, dz) = ([(xy + 3)z + 9]dz − (5x + 7 + y2z)dy, (11)

(5x + 7 + y2z)dx − x2yz2dz, x2yz2dy − [(xy + 3)z + 9]dx)

The integral of this around the unit circle (which is
∫

∂D
~F × d~ℓ) is

(0 − 5π, 0 − 0, 0 − 0) (12)

since everything cancels out (by symmetry or dz = 0)
except for

∫

∂D
−5xdy = −5area(D) = −5π. Meanwhile

the first surface integral (using as parameters p, q just
p = x and q = y) is

~B =

∫∫

D

[2xyz2 + xz] (0, 0, 1) dxdy (13)
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which is (0, 0, 0) by odd symmetry. The second surface
integral is

~C =

∫∫

D

(5, 2yz, 0) dxdy = (5π, 0, 0). (14)

Result: −(5π, 0, 0) = (0−5π, 0−0, 0−0). The Theorem
worked.
Example #2. Let ~F = (x, y, z), let the curve be the
unit circle x2 + y2 = 1, z = 0, and let the surface D
be the hemisphere x2 + y2 + z2 = 1, z > 0. Then the
curve integral is 2π~1z. The surface integrals are ~B =
∫∫

2d ~A = 2 · 2π · 1
2
~1z = 2π~1z and ~C =

∫∫
~0dA = ~0

respectively. (In computing ~B we have used the fact

that the TDD of ~F is 2, as opposed to ~∇ · ~F = 3, we
have used the fact the surface area of the hemisphere
is 2π, and we have used the fact (due to Archimedes’
correspondence between the surface area of a sphere and
the cylinder enclosing it) that the average height of the

surface of a hemisphere is half its radius. ~C = ~0 is since
the integrand is everywhere 0 since ~F (~x) is normal to
the sphere surface and of constant length on it.) The
Theorem worked: ~0 = ~0.
Example #3. Let ~F = (0, 0, 1), let the curve be the
unit circle x2 + y2 = 1, z = 0, and let the surface be
the hemisphere x2 + y2 + z2 = 1, z > 0. Then the
curve integral is ~0 by symmetry. The surface integrals are
~B =

∫∫
0d ~A = ~0 (since the TDD of a constant vector is

0) and ~C =
∫∫

~0dA = ~0 (since the gradient of a constant

vector is 0) respectively, proving once again that ~0 = ~0.
Example #3 reveals a subtlety: The 2D divergence

of ~F ’s projection into the tangent plane to our surface
(TDD(~F )), is generally not the same as the 2D diver-

gence of ~F ’s projection onto the surface itself. Similarly,
the 2D gradient of the normal-to-plane component of ~F
(within that plane, i.e. TDG(~F )) is generally not the

same as the 2D gradient of ~F ’s normal component to
the surface, on that surface. (The former, plane-based
quantities are the ones my Theorem wants; the latter
surface-based quantities are not. In example #3 the for-
mer both are ~0, but the latter are both nonzero.)
Example #4. The computer-algebra package MAPLE

has confirmed the Theorem for a fully general

nonhomogeneous-quadratic polynomial map ~F (x, y, z)
from R3 → R3 in two cases:

1. where D is the hemisphere x2 + y2 + z2 = 1, z ≥ 0,

2. where D is the flat disk x2 + y2 ≤ 1, z = 0.

In both cases ∂D is the unit circle x2 + y2 = 1, z = 0.
Also, I tried adding in some (not fully general) cubic

terms, and the Theorem still passed the resulting tests.
In these cases all the integrals are of trigonometric poly-
nomials (if we employ spherical, or polar, coordinates,
respectively) hence expressible in closed form.

The full details are too messy to include here,
but the MAPLE scripts that confirm this are available
electronically3 and we’ll now sketch how it goes for the

3http://math.temple.edu/∼wds/homepage/works.html

hemisphere-quadratic. First we define

~F (~x) = (15)

(c
(1)
11 x2 + c

(1)
12 xy + c

(1)
13 xz + c

(1)
22 y2 + · · · + c

(1)
3 z + c(1),

c
(2)
11 x2 + c

(2)
12 xy + · · · + c(2), c

(3)
11 x2 + c

(3)
12 xy + · · · + c(3))

The curve integral ~I =
∫

∂D
~F × d~x may be done by

computing ~F × d~x and then making the substitutions
x = cos θ, y = sin θ, z = 0, dx = − sin θdθ, dy = cos θdθ,
dz = 0 and integrating from θ = 0 to 2π. The param-
eterized hemisphere is ~x = (sin φ cos θ, sin φ sin θ, cos φ)
for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/2. We then compute
~v = ∂

∂θ~x, ~w = ∂
∂φ~x, ~a = ~w×~v. We now compute the two

surface integrals (using EQs 9 and 10 where we are here
using φ and θ as the parameters, not p and q):

~B =

∫ π/2

0

∫ 2π

0

[

~v ·
∂ ~F

∂φ
|~v|−2 + ~w ·

∂ ~F

∂θ
|~w|−2

]

~adθdφ

(16)

~C =

∫ π/2

0

∫ 2π

0

(

~a ·
∂ ~F

∂φ
|~v|−2~v + ~a ·

∂ ~F

∂θ
|~w|−2 ~w

)

dθdφ.

(17)

Finally, we confirm that ~I = ~B − ~C.

5 3D-only reformulation of Third Theorem

Adding ~Q to both ~B and ~C leaves the difference ~B − ~C
unaltered. Choose ~Q to be the directional derivative of
the component of ~F normal to the tangent plane to D
(in the normal direction to that plane) to get this
Slick Reformulation of the Third Theorem:

∫∫

D

(~∇ · ~F )d ~A − (~∇ ~F )d ~A =

∫

∂D

~F × d~ℓ. (18)

Here ~∇~F means the 3× 3 matrix whose i-down j-across
entry is ∂

∂xi

Fj . (This is the transpose of F ’s Jacobian.)

It multiplies the column-vector d ~A.
EQ 18 has the advantage that it is formulated purely in

terms of the usual 3D differential operator ~∇ rather than

our invented 2D-inside-3D operators TDD and
−−−→
TDG.

[On the other hand, in some applications, the origi-
nal 2D-in-3D formulation might be more advantageous.
MAPLE has also tested example #4 (extended with cubic
terms) for the reformulated theorem.]

6 How to view it as Stokes in disguise

At first I suspected the Third Theorem was only a tiny
consequence of an ultra-general theorem of Poincare [3]
about differential forms on manifolds. Poincare’s theo-
rem subsumes both Stokes’ theorem and the divergence
theorem on n-manifolds as special cases. But that cannot
be directly true because (on our 2-manifold D) it involves
3-vectors rather than 2-vectors; and any differential form
on an n-manifold has some power of n components, but
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3 is not a power of 2. By that reasoning the Third The-
orem really is “new.”

But the slick reformulation in §5 suggested that the
new Theorem is really just Stokes’ theorem used 3 times
with results linearly combined, with various altered func-
tions employed inside the different Stokes invocations.
This turns out indeed to be true; in a conversation with
Yury Grabovsky (Temple Univ. Math. dept.) we were
able to produce such a second proof:

Consider the jth component of EQ 18, i.e. (letting ~ej

denote the unit vector in the xj direction)

∫

∂D

~ej · (~F × d~ℓ). (19)

Using the vector identity ~a · (~b × ~c) = (~a ×~b) · ~c this is

=

∫

∂D

(~ej × ~F ) · d~ℓ. (20)

Applying Stokes’ theorem this is

=

∫∫

D

~∇× (~ej × ~F ) · d ~A. (21)

Now employing the vector identity ([1] 10.31#7)

~∇× ( ~A× ~B) = ~A(~∇· ~B)− ~B(~∇· ~A)+( ~B · ~∇) ~A− ( ~A · ~∇) ~B
(22)

and taking advantage of the facts that ~∇ · ~ej = 0 and
~∇× ~ej = ~0 since ~ej is a constant vector, this is

=

∫∫

D

[

~ej(~∇ · ~F ) − (~ej · ~∇)~F
]

· d ~A (23)

= ~ej ·

∫∫

D

(~∇ · ~F )d ~A − (~∇ ~F )d ~A (24)

Q.E.D.

So by this reasoning, the new theorem really is not

“new:” it is merely a disguised form of Stokes’ theorem.
However, the disguise is fairly heavy, and in the original
form involving 2-dimensional differential operators it is
even heavier.

I think the question of whether this all qualifies as
“new” is subjective.4 But I am quite confident that these
theorems both ought to be mentioned in the usual un-
dergraduate vector calculus textbooks, and aren’t, so in
that sense, it is definitely new.

We can now continue by finding additional theorems.
That turns out to be quite easy because the fourth and
fifth theorems are quite lightly disguised forms of Gauss’s
divergence theorem.

4Of course all results in real analysis depend on the same set of

Axioms of real numbers, hence are not independent except in the

extremely rare cases that they depend on disjoint axiom subsets.

So the question of “newness” is always subjective.

7 The Fourth Theorem

The Fourth Theorem: The following two 3-vectors

are equal:

−

∫∫∫

V

(~∇× ~F ) dxdy dz =

∫∫

∂V

~F × d ~A. (25)

Proof. Consider the jth component of the right hand
side of EQ 25 (got by taking its dot product with ~ej , the
vector with a 1 in the jth coordinate and 0s elsewhere):

∫∫

∂V

~ej · (~F × d ~A). (26)

Use the vector identity ~a · (~b × ~c) = (~a×~b) · ~c to see this
is

=

∫∫

∂V

(~ej × ~F ) · d ~A. (27)

Apply Gauss’s divergence theorem to get

=

∫∫∫

V

~∇ · (~ej × ~F ) dxdy dz (28)

Now employing the vector identity ([1] 10.31#5)

~∇ · ( ~A × ~B) = ~B · (~∇× ~A) − ~A · (~∇× ~B) (29)

and taking advantage of the fact that ~∇ × ~ej = ~0 since
~ej is a constant vector, this is

= −

∫∫∫

V

~ej · (~∇× ~F ) dxdy dz (30)

Q.E.D.

Example: Let ~F (x, y, z) = (y,−x, k) where k is any
constant. Let V be the radius-R height-2h cylinder

|z| < h, x2 + y2 ≤ R2. (31)

Then the surface integral over the curved part (|z| < h,
x2 + y2 = R2) of the cylinder is 4πhR2~1z. To see that,
use the fact that the area of this surface is 4πhR and the
fact that

(y,−x, k) ×
(x, y, 0)

R
=

(−ky, kx, x2 + y2)

R
, (32)

which on our surface is (−ky/R, kx/R, R). The first two
coordinates integrate to 0 by axial symmetry; the last
coordinate integrates to 4πhR2. The surface integrals
over each of the two flat endcaps (z = ±h, x2 +y2 ≤ R2)
of the cylinder are ~0 by axial symmetry. The volume
integral of −~∇× ~F = (0, 0, 2) over the volume (which is
2πhR2) of the cylinder is (0, 0, 4πhR2). The theorem is
confirmed: 4πhR2~1z = (0, 0, 4πhR2).

8 The fifth Theorem

The Fifth Theorem: These two n-vectors are equal:
∫∫

V

· · ·

∫

︸ ︷︷ ︸

n integrals

~∇F dn~x =

∫∫

∂V

· · ·

∫

︸ ︷︷ ︸

n−1 integrals

Fd ~A. (33)
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Proof. Consider the jth component of the right hand
side of EQ 33 (got by taking its dot product with ~ej):

∫∫

∂V

~ej · (Fd ~A). (34)

By Gauss’s divergence theorem this is

=

∫∫∫

V

∂F

∂xj
dn~x. (35)

Q.E.D.

If V is an axis-aligned hypercube, this fifth theorem
is just the Fundamental Theorem of Calculus (FToC).
Thus EQ 33 is a pleasant n-dimensional generalization
of the FToC.

Example: Let n = 2 and let F (x, y) = x. Let V be the

unit disc x2 + y2 ≤ 1. Then
∮

Fd~ℓ around the unit circle
is

∫ 2π

0

cos θ (cos θ,− sin θ) dθ = (π, 0). (36)

Meanwhile double-integrating ~∇F = (1, 0) over the unit
disc (of area π) yields (π, 0). The theorem is confirmed.

9 The sixth Theorem

The Sixth Theorem: These two 3-vectors are equal:

−

∫∫

D

(~∇F ) × d ~A =

∫

∂D

Fd~ℓ. (37)

Proof. Upon writing

−(~∇F ) × d ~A =





0 ∂F
∂z

−∂F
∂y

−∂F
∂z 0 ∂F

∂x
∂F
∂y

−∂F
∂x 0



d ~A (38)

we see that EQ 37 is merely Stokes’ theorem repeated
three times, the first Stokes case

∫∫

D

[~∇× (F, 0, 0)] · d ~A =

∫

∂D

(F, 0, 0) · d~ℓ (39)

accounting for the first row of the matrix, and the others
are analogous.

10 Electromagnetic Consequences

The right hand side of the Third Theorem is of course a
very natural vector quantity, which arises in electromag-
netism when computing the Lorentz force exerted by
a magnetic field ~F (~x) on a loop of wire ∂D circulating
an electric current.

One immediate corollary of our Theorem’s 3D-only
reformulation in §5, is the following. Suppose a magnetic
field ~F (~x) obeys the Maxwell equation

~∇ · ~F = 0 (no magnetic monopoles) (40)

Suppose D is a 2-dimensional topological disk surface in
R3 which is such that, at all points ~x ∈ D, the compo-
nent of ~F (~x) normal to D is constant. Then the Lorentz

force on the current loop ∂D is zero:
∫

∂D
~F × d~ℓ = ~0.

The Fourth Theorem also has application to electro-
magnetism. EQ 25 combined with the Maxwell equation
~∇ × ~E = −∂

∂t
~B shows that the rate of change of the in-

tegrated (over a volume V ) magnetic field ~B is the same

thing as the surface integral
∫∫

∂V
~E×d ~A, where ~E is the

electric field, and also the same thing as −∂
∂t

∫∫

∂V
~P ×d ~A,

where ~P is the vector potential (~∇ × ~P = ~B) and t is
time.

Finally, here is an electrostatic application of the Fifth
Theorem. Let F be the scalar potential (~∇F = ~E),
also known as the “voltage.” Then we conclude that
the integrated electric field ~E in some region is the same
as the surface integral of the voltage F around that re-
gion’s boundary (times the infinitesimal outward-vector
element of area).

There may be uses of these theorems when construct-
ing “finite element” computer software for numerical so-
lution of Maxwell’s equations. I.e., by using these the-
orems, it would be possible to guarantee that the com-
puter’s approximate solution obeyed certain conservation
laws exactly.
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