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Abstract —

“Church’s thesis” is at the foundation of computer

science. We point out that with any particular set

of physical laws, Church’s thesis need not merely be

postulated, in fact it may be decidable. Trying to

do so is valuable. In Newton’s laws of physics with

point masses, we outline a proof that Church’s the-

sis is false; phsyics is unsimulable. But with certain

more realistic laws of motion, incorporating some rel-

ativistic effects, the Extended Church’s thesis is true.

Along the way we prove a useful theorem: a wide

class of ordinary differential equations may be inte-

grated with “polynomial slowdown.” Warning: we

cannot give careful definitions and caveats in this ab-

stract – you must read the full text – and interpreting

our results is not trivial.

Keywords — Newtonian N-body problem, Church’s thesis,

computability, numerical methods for ordinary differential equa-

tions.
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1 Background

You should know what a Universal Turing Machine is
and what the Church thesis is [mi67], and the basics
of Newtonian Mechanics (especially the 2-body problem
[co89]) and Special Relativity. The careful reader would
want to know a fair amount about numerical methods
for ordinary differential equations and their terminology
[bu87] [ha76], and would want to have carefully examined
Gerver’s paper [ge91].

See the appendix for explanations of some of our no-
tation.
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2 Introduction. Our results and their
interpretation.

“Church’s thesis,” or the “Church-Turing thesis”
[tu36] [mi67], states that the set of things commonly un-
derstood to be computation is identical with the set of
tasks that can be carried out by a Turing machine.

At first, Church’s thesis seems merely to be a defini-
tion of the word “computation” and thus content-free.
Indeed, it does have some of a character somewhere be-
tween that of a definition and an assertion, which is why
it is always stated in an intentionally slightly vague way.

However, it can also be interpreted as a profound claim
about the physical laws of our universe, i.e.: any physical
system that purports to be a “computer” is not capable
of any computational task that a Turing machine is in-
capable of.

Definition 1 If computer A will always complete a task
whose input is L bits long in time T (L), and computer B
always does the same task in time ≤ P (T (L), L) where
P is a polynomial, then B is said to have “polynomial
slowdown” relative to A.

The “extended” Church thesis states that a Tur-
ing machine can do anything any other kind of (physi-
cally realizable) computer can do, with at most polyno-
mial slowdown1.

Church’s thesis lies at the heart of theoretical com-
puter science and physics; if it were false, much of the
life’s work of most computer scientists and theoretical
physicists would become worthless, or at least, worth
less.

So an important question is now to try to formulate
certain sets of physical laws and to try to determine
whether Church’s thesis or the extended Church’s the-
sis would be valid in a universe with those physical laws.
A way to prove the (extended) Church’s thesis is to con-
struct an (efficient) algorithm for simulating any physical
system. A way to disprove Church’s thesis is to show how
to use the laws of physics to construct a “computer” that
can do something that Turing machines cannot do.

Let N be a fixed whole number. The “Newtonian
N -body problem” is to describe the motion of N point
masses whose initial locations and velocities are given,
assuming that Newton’s law of gravity F = Gm1m2/r2

and acceleration F = ma hold. We will sketch a proof (it
is based on J. Gerver’s proof of the “Painlevé conjecture”
in the plane) of theorem 4 that an uncountably infinite
number of topologically distinct trajectories are possible
in 1 second, among the planar N -body problems with
fixed masses and whose initial locations lie within certain

1In the event that the physical system is not deterministic, then
the Turing machine has to be given a random bit generator, and
the criteria for completion of a computational task would have
to become statistical. We will not concern ourselves with this in
the present paper. Also, it is naturally essential, in order to give
the physical universe any chance in the competition with a Turing
machine having an infinite tape, that the laws of physics consider
the universe to have infinite extent.

disjoint balls and whose velocities are bounded. Mean-
while, of course, Turing machines can only experience a
finite number of possible histories in a finite time. As
a consequence, it is impossible for a Turing machine to
compute a correct qualitative description of the motion
that N bodies can make in 1 second. (Here, of course, “1
second” could be replaced by any finite interval of time.)

This result can be interpreted as “the (unextended)
Church thesis would not be valid in a universe with point
masses and Newton’s laws of motion.” This interpre-
tation of our result is muddled by the fact that New-
tonian physics involves real numbers specified infinitely
precisely. However, the topological distinctness state-
ment that we prove is discrete. Let us be clearer.

2.1 First way to interpret theorem 4: N -bodies are un-
simulatable

A Turing machine could be given N real numbers as in-
put by simply providing it with N infinite tapes each
containing the binary representation of a number. This
is in fact the realistic model of input if the task is N -
body simulation. Such a Turing machine could, in in-
finite computational time, calculate the topology of the
trajectories of N bodies up to the point in time (if any)
where a singularity occurs. In fact, if the real numbers
specifying the initial locations and momenta of the bod-
ies were “usual,” the Turing machine would in fact suc-
ceed in completing this calculation (for any particular
desired amount of simulated time) in finite time. But,
if the real numbers happened to be “unusual,” in fact,
if they happened to correspond to one of our examples
whose trajectory topologies achieved singularity and in-
finite complexity in 1 second, then in finite computer
time it could only partially describe the topology of the
trajectory and would have to keep reading more input
bits forever. (Probably our examples truly are unusual,
in the sense that2 they are measure zero in the space of
real number tuples. However, we have not proven this.)
Thus, this way of looking at it makes it apparent that
the N -body system really can do something a Turing
machine cannot do.

2.2 Second way to interpret theorem 4 in which N -
bodies “solve” the general halting problem in 1.2
seconds.

2In which case, it could be argued that these unusual examples
correspond to a zero volume set in phase space. Compressing the
phase space volume of a physical system exponentially small (e−n)
seems to require (by the second law of thermodynamics) increasing
the entropy of the outside universe (outside this system, that is) by
at least nKB, which, assuming the outside universe was at temper-
ature T , would require dissipating energy ≥ nkBT . Thus, setting
up the initial conditions with infinite accuracy would require in-
finite energy expenditure, a conclusion which certainly must be
taken into account when evaluating my claim to have “disproved
Church’s thesis.” I still claim there is a sense in which N point
masses with Newton’s laws are more powerful than a Turing ma-
chine, but the present footnote exhibits a sense in which that is
not the case.
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Definition 2 The “halting problem” is the following
computational task. Input: a (finite length) description
of a Turing machine T and the non-blank part of its tape.
Output: would T eventually halt – yes or no?

As is well known [mi67] the halting problem is “un-
decidable,” that is, no Turing machine exists which can
decide the halting problem in finite time.

Definition 3 A “computable real number” is a real
number R such that some Turing machine T with finite
non-blank tape segment, and equipped with an “output,”
exists, that will output the digits of R in order. (Note:
we allow the use of real number representations such as
“5-digit binary” in which the digits ai, i ≥ −M , are in
{−2,−1, 0, +1, +2} and R =

∑

i≥−M ai2
−i. This per-

mits a certain amount of “correctability” of “numerical
errors.”)

Our unsimulatable N -body examples are computable
real numbers, in the sense that a Turing machine T1 ex-
ists that, given sequential access to a description of the
desired trajectory topology, will output the real numbers
R corresponding to an initial configuration that would
evolve according to that topology. (Strictly speaking,
these real numbers are computable if and only if the
trajectory topology is describable by a computable bit
string. Otherwise, they are only computable in an “ex-
tended sense” where the input to T1 in definition 3 is
allowed to be infinite. T1, of course, does not care, it will
happily output the bits of R forever regardless of the size
of its input.)

This view leads to a different way to interpret our re-
sults. (See figure 0.) Consider a Turing machine T2

which, given initial real number data in such a form
that it can access more bits on demand, by some ODE-
timestepping scheme (suitable good ones will be de-
scribed later in this paper) simulates the motion of the N
bodies, to sufficient accuracy to be confident it knows the
topology of the trajectory the bodies take in 1 second.
(It keeps restarting the simulation using more precision,
if necessary, to achieve such confidence.) Now, such a
Turing machine, if asked to compute said topology and
then halt, will halt iff and only if the N bodies do not
reach singularity in 1 second (and in our examples, they
will also physically reach infinite distance, in 1 second).
Hence, the N -bodies are solving a Turing machine halt-
ing problem in 1 second. Of course (the reader may and
should object) this is not the general halting problem,
but rather a particular halting problem. But in fact, I
claim, the general halting problem is not harder than
this halting problem. Because, the system “T0|T1|T2” in
which the output of T0 is piped into the input of T1 and
the output of T1 is piped into the input of T2 – the total
combination is equivalent to another Turing machine we
will call T3

3 – halts if and only if, T0 halts, and there is
no restriction whatever on T0.

3More details: T3 runs the UNIXTM operating system and
hence has no trouble with IO pipes... also, in the event that T2

halts, it sends “kill” signals to T1 and T0 so that T3 will halt

Hence, we have two machines, the N -body system, and
a Turing machine T3, and we may make a face-to-face
comparison. Given finite input, namely the computable
real number described by T0|T1, T2 either halts, or not,
iff the unrestricted halting problem for T0 halts, or not.
Meanwhile, given the “same” input but expressed in its
language (namely, actually as real numbers), the N -body
system either explodes to infinity in 1 second, no body
going within the unit circle, or it does not go infinitely
far in 2 seconds and a large number of “asteroids” hit
the unit circle (which contains, say, an unlucky cat) in
1.2 seconds4. This is about as fair a comparison as it
is possible to make. Each machine swallows input in its
own “language,” namely, the Turing machine swallows a
finite number of bits (the description of T0|T1) and the
N -bodies swallow computable real numbers. There is no
way to avoid feeding the N bodies infinitely long real
numbers. Had they been fed reals with terminating ex-
pansions, for example, they would not even “know” it,
since the infinite string of zeros at the end would matter.
Each machine has a ≤ 2-state output, readily recogniz-
able, the simplest we could ask for: the cat dies, or not.
The N -body machine can solve all such problems in 2
seconds, but no Turing machine can solve all such prob-
lems in any finite time bound per problem.

Thus (as a typical consequence; one could write any
number of statements of this kind) there exist initial con-
figurations of N bodies in the plane in which several of
the bodies will hit the unit circle within 1.2 seconds if
and only if the Riemann hypothesis is false5.

2.3 Church’s thesis as a statement about simulability
versus as a statement about buildability of super-
computers

The present paper demonstrates (I claim) that unsim-
ulable physical systems exist in Newton’s laws of grav-
ity and motion for point masses. However, it does not
appear to demonstrate, that, if we lived in a universe
governed by those laws, we could actually build a device
with super-Turing computational power. This is because
(conjecturally – this is an important open problem) the
set of initial conditions corresponding to unsimulable be-
havior, has measure zero. If so, then there is no way
to achieve such behavior if our placement accuracy is
non-infinitesimal. Indeed, there appear to be fundamen-
tal thermodynamic reasons why imprecision, in classical
mechanics, cannot be avoided. If we wish to compress
our initial conditions into a very small “ball of impreci-
sion” in phase space, of volume V , that would require

too... also, T0 is not completely unrestricted, since we will demand
that it output a character every state transition. This is of course
not a real restriction... finally, the set of “topological types” that
we allow T1 and T2 to think about happen to be in a simple 1-1
correspondence with finite and infinite bit strings (see §3.6) and
singularity occurs if and only if the bit string is infinite.

4In place of “1.2” one could have used any upper bound on
1 + 1/(2π).

5and the trajectories may be interpreted as a description of a
counterexample.
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increasing the entropy of something else (the rest of the
universe) by an additive amount proportional to lnV ,
which would require energy of order kBT lnV where T is
the temperature of the rest of the universe. As V → 0,
this would be infinite.

2.4 Einstein to the rescue

Next, we show (theorem 8) that if Newton’s laws of grav-
ity and motion are replaced by certain more Einsteinian
laws (which are basically intermediate between Newton’s
laws and General Relativity), then the number of topo-
logically distinct trajectories that can happen in finite
time, is finite, and indeed, efficient and accurate simula-
tion is possible by a Turing machine with only polyno-
mial slowdown.

There are at least 3 ways to alter Newton’s laws so
that Church’s thesis is saved. The simplest is simply
to alter Newton’s laws so that there are short-range
repulsive forces, for example, the force between two
bodies of masses m1 and m2 at separation r could be

Gm1m2(r − [m
1/3
1 + m

1/3
2 ]K)/r3.

Another is the “special relativistic theory of gravity”
(SRTG).

~vi =
d~xi

dt
, ~pi = mi~vi

mi = (mrest)i/
√

1 − |~vi|2/c2

d~pi

dt
= G

∑

j 6=i

mim
′
j

~x′
j − ~xi

|~x′
j − ~xi|3

where primed quantities are understood to apply at a
retarded moment t′, i.e. 1

c |~xi − ~x′
j | = t − t′. (t′ depends

on i and j, a fact obscured by our notation.) SRTG
is an appealing theory of gravity, until one sees that it
must be incorrect by considering certain general rela-
tivistic gedanken experiments ([mi73] pp. 187-9). SRTG
is mathematically more complicated than Newton plus
repulsion, due to the “retarded potentials” (leading to a
“delay differential equation” instead of an ordinary dif-
ferential equation, and forcing the initial data to be pro-
vided by an “oracle” who can provide data about the
state of the system before t = 0) and also to the not-
time-reversible possibility of “coalescing black holes.”

The third and most complicated set of laws we discuss
(and the one we will concentrate on) is “modified lin-
earized general relativity,” which has all the mathemat-
ically annoying features of SRTG, and also has tensors.

Our result can be interpreted as “Church’s extended
thesis would be valid in a universe having only a finite
number of point masses, all obeying these laws of mo-
tion.” But this interpretation is again muddled by the
question of what initial conditions one is “allowed” to
specify. To prove our simulation result we must assume
that the initial rest masses and kinetic energies must be
given in unary, although their initial positions and direc-
tions are written in binary. This seems “fair;” it would
be ridiculous to allow you to have a mass-energy of 10100

grams for only 100 dollars and still desire that your power

(computational or any other kind!) be only polynomially
greater than mine.

While proving this result, we also prove an interme-
diate theorem (theorem 7) of general interest: a wide
class of ordinary differential equations is simulatable with
polynomial slowdown6. Besides infinite precision, the
two key facts about the Newtonian N body problem
which make it unsimulatable are (1) an infinite amount of
potential energy is available by moving two point masses
arbitrarily close together, (2) a body can move at arbi-
trarily high velocity by providing it with enough energy.
In the new more realistic laws of gravity and motion:
nothing can move faster than the speed of light, and if
any two masses get closer than half their Schwarzschild
radius R, the simulator is allowed to assume that they
instantly combine into one point mass.

A more precise description of one thing we can do
about Schwarzschild radii is as follows:

1. If masses approach within (R1 +R2)/2, always com-
bine.

2. If two masses never get closer than R1 + R2, never
combine.

3. If the closest approach is between these two values,
then the decision is at the discretion of the simula-
tor.

This is not as silly as it sounds, because “Kerr black
holes” have event horizons whose radius is in (R/2, R)
where R is the Schwarzschild radius, but these event
horizons are a function not only of the mass of the hole
(known to the simulator) but also of its angular momen-
tum (not known to the simulator; angular momentum
of a point mass not being a Newtonian concept). Also,
there is no simple theory of what the event horizons do
during near-collisions, especially nonbinary ones.

6 This is the first polytime result for ODEs. Previous papers
related to this one are Moore’s paper [mo90] showing that a point
particle bouncing between a finite number of perfect parabolic and
planar mirrors can simulate a Turing machine, and hence has unde-
cidable long term behavior. Moore then observed that the mirrors
could be “softened” so that the long term behavior of a particle
moving in a certain smooth and finitely describable potential in
3D, is undecidable. Brockett [br89] shows how to construct a finite
system of ODEs which will emulate a finite state machine or (with
the aid of the sine function) a counter. By putting these together
(which, for some reason, Brockett did not actually mention) one
obtains “counter machines” which [mi67] have the full power of a
Turing machine. Thus, once again, one has a small system of ODEs
with undecidable long term behavior. Brockett’s systems have the
advantage that they are “self correcting;” a bounded amount of
error in the real number initial data that specifies the counter ma-
chine that the ODE is simulating, will not matter. Also, since
Brockett’s systems are defined mathematically and not required to
have any connection to physics, one could also “speed up time”
so that Brockett’s machines will have undecidable behavior in fi-
nite “time.” Ko [ko83] showed various results, mostly negative,
about the abstract computational complexity of ODEs. For exam-
ple: The solution y(t) of ẏ = F (y, t), even if F is polynomial-time
computable, need not be computable. A different kind of undecid-
ability result for systems of ODEs may be found in chapter 9 of
[ma93].
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2.5 Apology

I apologize to the reader for the excessive number of foot-
notes and the length of the discussion of the interpreta-
tion of the results. The latter was necessary because
interpreting our results – as is often the case in the land
of uncomputability – really is quite difficult! The former
was felt to be necessary in view of the almost equally
excessive amount of flak that the author has had to put
up with. I feel that certainly any questioning of Church’s
thesis should be examined narrowly, but I feel that most
of the criticisms that have been directed at this paper
have been, while seemingly well motivated, actually un-
founded. (Of course, an additional footnote was then
required to refute each such criticism.) On the other
hand, I feel that a few such criticisms actually are well
founded, or at least worth discussing. For such discus-
sion, plus some more on interpreting our results, and also
a few open questions, go to the end of this paper.

3 The Newtonian N-body problem is
unsimulatable (even in the plane)

3.1 A little background

The Newtonian N -body problem is governed by the laws
of motion

~̈xi = G
∑

j 6=i

mj
~xj − ~xi

|~xj − ~xi|3
, (1)

where ~xi is the position of body i at time t, mj is the
mass of body j, G is Newton’s gravitational constant,
and dots denote time derivatives. Some elementary the-
orems are that the total momentum ~p =

∑

j mj~̇xj , total

angular momentum ~L =
∑

j mj~xj × ~̇xj , and total energy

K + P , where K = 1
2

∑

j mj |~̇xj |2 is the kinetic energy

and P = −G
∑

i

∑

j<i
mimj

|~xi−~xj |
is the potential energy,

are each conserved, and the virial theorem J̈ = 4K − 2P
where J =

∑

j mj |~xj |2 is the moment of inertia, holds.
The flow in 6N -dimensional momentum-position “phase
space” induced by Newton’s laws, is volume-preserving.
Saari ([sa73] and references therein) has shown that with
any fixed set of N masses, the subset of phase space
which will evolve to a collision singularity, is of measure
zero.

In the 2-body problem, the bodies follow trajectories
which in polar coordinates with the origin at the center
of mass are r = P/(1−E cos(θ− θ0)), i.e. conic sections
with focus at the origin, where E is the “eccentricity,”
namely E = 0 for a circle, E = 1 for a parabola (infinitely
long ellipse), 0 < E < 1 for an ellipse, and E > 1 for a
hyperbola. It is convenient to regard the eccentricity E
is a vector ~E so that | ~E| = E and arg(E) = θ0. P is
a constant, namely (for ellipses) P is the radius when
θ − θ0 = π/2.

The speeds of the bodies along these trajectories follow
from Kepler’s law of “equal areas (of the conic) are swept
out in equal times” which is really just conservation of

angular momentum, and the law of conservation of to-
tal energy. For a circular orbit (“Kepler’s third law”)
the orbital year is proportional to the 3/2 power of the
orbital radius. The total energy (which is negative) is
proportional to the reciprocal of the orbital radius.

We note that in a hyperbolic orbit with asymptote an-
gle bounded below π, the minimal separation r between
the two bodies will be of order r ≈ Gm2/v2

∞ where v∞ is
the speed of body 1 at ∞, and “all the action” (an arbi-
trarily large fixed fraction of the curvature of trajectory
1, that is) will take place during a time interval of order
t ≈ Gm2/v3

∞.

It is sometimes possible to treat the motion of two
bodies in an N -body problem as a small perturbation
of the solution of the 2-body problem. In particular, if
the forces exerted on the 2 bodies by the other N − 2
bodies have magnitude bounded above by a small con-
stant ǫ, then their final momenta will be perturbed
by at most O(ǫt) and their final positions by at most
O(ǫt2) after a duration t, in the limit ǫ → 0+ with
all other initial data remaining fixed. Thus, consider-
ing the previous paragraph, hyperbolic swingbys with
bend angle bounded within (0, π), executed by suffi-
ciently fast-moving objects, or near-circular orbits with
sufficiently small radius, will be essentially unaffected by
external forces during the characteristic time scales of
these swingbys/orbits.

3.2 Gerver’s example of a noncollision singularity in
the plane

In the Newtonian N -body problem, a “singularity” is a
moment of nonanalyticity of the motion. A “collision sin-
gularity” is a singularity in which there is a point of space
which is simultaneously approached, as t → tsingular, by
two or more bodies. A “noncollision singularity” is a mo-
ment of nonanalyticity of the motion, at which no such
point exists. In 1991, J. Gerver [ge91] proved that 3N
point masses in the plane, for N sufficiently large, but
fixed, could evolve under Newton’s laws in finite time
to a noncollision singularity7. Gerver’s 68-page paper,
and even Gerver’s key lemmas, whose statements alone
can take 3 pages, are too long to repeat, so we will con-
tent ourselves with a sketchy description of Gerver’s ar-
gument, enough to indicate why our modifications to it
will work.

Gerver’s example is illustrated in figure 1. Although
there are 3N bodies, there is exact N -way rotational
symmetry, so that there are “really” only 3 bodies, the
rest are just “images.” Of these three bodies, two are
“stars” each having unit mass. These two stars orbit
about their common center of mass roughly circularly
(or, to a better approximation, elliptically), forming a
“binary star,” with small orbital radius, located near a
vertex of a regular N -gon. (The images of this binary
lie near the other vertices of the N -gon, of course.) The

7A noncollision singularity for the 5-body problem in 3-space
had been shown slightly earlier by Xia [xi92].
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Figure 1. N asteroids move along
the edges of a regular N−gon. Binary
stars with near−circular orbits are
located at the vertices of the N−gon.

binary
star

The one true
     asteroid

An
image
asteroid

The asteroid is moving so fast that its
trajectory is almost polygonal. Do not
worry about long−range attractive forces
eventually causing the N−gon to contract.
Such effects will happen on time scales
much larger than those we will be
 concerned with. Due to exact N−way
   symmetry, there is only "one"
        asteroid and "one"
            binary, the rest
               are images.

The unit
  circle

A cat who
lives there

(orbit shown)

Figure 1:

third mass is an “asteroid” of mass µ2 (µ2 ≈ 0.001, say)
which travels between the binary and its images in se-
quence, roughly moving along the perimeter of the N -
gon. (Simultaneously, all the image asteroids are moving
along each other edge of the N -gon, of course.) In the
limit in which the radius of the binary went to zero while
the N -gon remained of constant size and µ2 went to zero,
the binary would of course travel in an exact elliptical
trajectory.

The binary may be said to have a “phase angle” in
[0, 2π] arising from Kepler’s “equal areas in equal times”
principle; that is, the area of the ellipse traversed so far,
divided by the area of the whole ellipse, times 2π, is the
“phase angle.”

Each time the asteroid gets near a binary, it interacts
with it in such a way that the following properties hold.

Property I. The asteroid winds up getting deflected
at precisely the right angle to start moving along the next
N -gon edge toward an eventual interaction with the next
binary. As a consequence, the binary’s center of mass
is slightly accelerated away from the center of the N -
gon, increasing the rate of expansion of the N -gon. The
N -gon expands between interactions by a factor of 1 +
2π2N−2µ + o(N−2µ). (We explain the o and O symbols
after property III.)

Property II. The asteroid extracts enough energy
from the binary so that its speed is increased by a roughly
constant factor 1+µ+ o(µ). Consequently, the radius of
the binary contracts slightly to 1 − 2µ + o(µ) times its
former value, and its orbital speed increases by a factor

1 + µ + o(µ), so that its orbital “year” is multiplied by a
factor 1− 3µ + o(µ). Considering property I, the transit
time of the asteroid along an N -gon edge is multiplied
by a factor of 1 − µ + o(µ), so that these transit times
are decreasing, but measured in binary-star years, they
are actually increasing by a factor of 1 +2µ + o(µ) every
interaction.

Property III. The asteroid’s speed and deflection an-
gle are in fact carefully adjusted so that it will intercept
the next binary at precisely the right phase angle and
position so that I, II, and III will also happen next time.

In the above, the uses of the symbols “o” and “O” are
to be interpreted as pertaining to a hypothetical limiting
process in which N → ∞ and N20µ → 1. Of course, N
and µ are actually fixed, the O’s and o’s are merely a
convenient labor saving device for proving the existence
of suitable N and µ values.

As a consequence of properties I-III, the entire N -gon
expands in roughly geometric progression to infinite size,
but the asteroid traverses the N -gon edges in durations
of time which shrink roughly geometrically toward zero.
In consequence, the asteroid travels an infinite number
of circuits around the N -gon (and this is an infinite dis-
tance), as the N -gon grows to infinite size, in a finite
time tsingular, bounded by

tsingular < 2µ−1τ0 (2)

where τ0 is the initial time required for the asteroid to
traverse an N -gon edge. But as t → tsingular there is no
point of space approached by any body (much less by
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more than one of them simultaneously!) so this singu-
larity is not a collision.

Furthermore, Gerver shows, during this process, we
may require that the binary star’s elliptical orbit never
becomes very noncircular. Specifically, its “instanta-
neous eccentricity” E is always bounded by 0 ≤ E <
10µ. Also, the quotient of the speed of the asteroid
by the binary star’s orbital speed (i.e. with respect
to its center of mass) remains roughly constant; it is√

2µ−1(1 + O(N−2)). Call these two statements Prop-
erty IV.

3.3 Crude justification of Gerver’s properties and proof

It seems to me that the two key ideas that Gerver re-
quired to make properties I-IV, and hence his proof, hold,
are: (1) estimates, many of which in fact may be made by
crude “dimensionality arguments,” justifying properties
I and II although not some of the unimportant specific
constants in them, and an “expansion argument” justi-
fying property III.

We now outline the main crude dimensionality argu-
ments required. We will not work carefully enough to get
Gerver’s specific constants, such as

√
2, but this will not

matter; it seems to me the results we will obtain are good
enough for our purposes despite the fact that the analysis
is much simpler than, and sloppier than, Gerver’s.

Since the asteroid is deflected an angle ≈ 2π/N dur-
ing an interaction, and its mass is of order µ2 times the
mass of binary, it follows from conservation of momen-
tum that the binary will be accelerated outward to obtain
a velocity increment ∆v corresponding to the expansion
rate needed to cause the N -gon to expand by a factor 1
plus order µ2N−2 during the time it takes the asteroid to
traverse the next N -gon edge. (The gravitational attrac-
tion between the binaries, causing N -gon shrinkage, is
asymptotically negligible.) This leads to a linear differ-
ence equation among the N -gon radii and expansion ve-
locities during the kth time interval whose solution grows
exponentially as a function of k with growth rate 1 plus
order µN−2 as claimed in property I. The fact that the
asteroid’s speed is increased by a factor of 1 plus order
µ during an interaction, is apparent by conservation of
momentum and the shape of the trajectories round each
individual star – each time such an individual “slingshot”
event occurs, the star is given a total impulse on the or-
der of µ2v where v is the speed of the asteroid when it is
out of the immediate neighborhood of the star, namely
v is of order µ−1 times larger than the star’s own orbital
speed. A fraction of order 1 of this impulse is directed in
opposition to the star’s motion, and a fraction of order
1 is traverse to it. Since |~w + ~∆|2 − |~w|2 = 2~∆ · ~w + |~∆|2
where ~w is the orbital velocity of the star and ~∆ is the
increment to it, where |~∆|/|~w| is of (small) order µ, only
the nontraverse part matters as far as the energy of the
star’s orbit is concerned, and this shows that the star
indeed loses a fraction of its energy and orbital mo-
mentum of order µ. The fact that the eccentricity of
the binary star’s orbit stays small is one of the trick-

ier arguments8. Because the stars’s orbital velocities get
changed, during an interaction, by a fraction of order µ,
the change ~∆ in ~E during an interaction is also of order
µ (in fact, Gerver shows its magnitude is bounded by
(7 +

√
8 + o(1))µ). It turns out that by choosing the or-

bital phase correctly (i.e. as the correct function of ~E) at
the beginning of the interaction, one may always assure
that ~∆ · ~E < 0, in fact that the angle between ~∆ and ~E
is bounded inside (100, 260) degrees. Choosing the ini-
tial phase angle anywhere within an interval of width
almost π/2 will always suffice to assure this, in fact,
that is, approximately half of the possible reasonable ini-
tial phase angles are eccentricity-accentuating, and ap-
proximately half are eccentricity-opposing9 (and if the
initial eccentricity is large enough, in fact eccentricity-
decreasing). If a damping-type choice is always chosen,

| ~E| will never get larger than order µ (in fact, Gerver
shows the bound 10µ). In our alternative scenario in fig-
ure 2, the same sort of eccentricity behavior must hap-
pen, since the total momentum-transfer properties of the
two swingbys of each star are the same, except for slight
changes in the constants which do not affect the key sign
– in other words, again, approximately half the possible
initial phase angles have the good eccentricity-limiting
behavior. Finally, the fact that the ratio of the aster-
oid’s speed to the binary’s orbital speed, stays roughly
constant, arises from conservation of energy over the long
term, since the decrease in the star’s orbital energy has
to balance the increase in the asteroid’s kinetic energy
(all other energy terms being negligible in comparison)
their speeds must stay in constant ratio.

The parts of properties I, II, and IV that are needed,
have now been justified.

We now outline the “expansion argument” that proves
that initial conditions exist, that will force property III to
keep holding an infinite number of times. The idea is that
small changes in the phase angle of the binary and the

8Actually, there is probably a simpler proof than the one
Gerver gave. With G = 4, the following initial data
~xstar1 = −~xstar2 = (0.18268833855, 0.98317087577), ~vstar1 =
−~vstar2 = (−0.99682983499, 0.07956305716), mstar1 = mstar2 =
1; ~xasteroid = (−90.9402646668, 0.28622819645), ~vasteroid =
(6.32455532034, 0), mstar2 = 1/20; causes the asteroid to swing
past the binary with an asymptotic deflection angle of 20.000006◦

(note, 360/18 = 20). The eccentricity of the binary changes from
0.10388522 to 0.10388549 during this process. The asteroid speeds
up from 6.32 to 6.97. The binary’s ellipse, whose long axis was
oriented at 175.437738◦ above the x-axis, ends up at 175.437766◦ .
In other words, up to errors in the 6th significant figure, this pro-
cess causes the shape and orientation of the binary’s orbit to be
preserved and only its size to change, the resulting energy being im-
parted to the asteroid. This, together with arguments concerning
the locally linear behavior of small perturbations, is a numerical
“proof” that Gerver’s construction works when N = 18, and it also
simplifies his proof, since we now do not need to keep correcting
the eccentricity to keep the binary near-circular; instead the binary
stays elliptical, but the ellipse is exactly preserved.

9This “half one way, half the other way” behavior of course is
plausible abstractly from the time-reversibility of Newton’s laws.
Eccentricity increase tends to happen if the swingby, which siphons
off some of the orbital angular momentum of the stars, happens
during the “high point” of their elliptical orbits, but decrease tends
to happen if the swingby occurs at a “low point.”
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A

B

C

C (later)

B (later)

Figure 2. Detailed behavior during "type 1" interaction of
asteroid with binary. Stars B and C are rotating happily in
the roughly circular orbit shown. Asteroid A swings past
star B then past star C, then B again (later in its orbit)
and then finally C (again) and then begins the long trek
along the N−gon edge toward the next binary. During the
4 hyperbolic swingbys, 4 momentum transfers from the asteroid
to the star occur, roughly as shown by the vectors.
The total effect of these momentum transfers has a component
in opposition to the orbital velocity of the stars.
Note: some distances have been exaggerated for clarity.
In fact, the angular separation between B and B(later)
or between C and C(later), is O( µ) (that is, small), and
the separation between the asteroid and any star at the
point of closest approach, is extremely small, so that
the trajectory should in fact look much more like
a chain of 5 line segments, than it does.

Figure 2:

deflection angle of the asteroid just prior to interaction
number k, will cause large changes in these quantities
just prior to interaction number k+1. This implies that a
single fine tuning before interaction number 1 will suffice
to adjust the infinite number of parameters controlling
future interactions.

Firstly, since the behavior during a “slingshot event” is
locally approximately hyperbolic, and since the asymp-
totes of the hyperbola may be adjusted to any angle in
(0, π) by fine adjustments in the initial trajectory of the
asteroid, it is intuitively clear that any sequence of sling-
shot events you want can be forced by correct choice of
conditions at the first one – so long as all the required
hyperbola angles are bounded within (0, π) and the as-
teroid has sufficiently tiny mass compared to the stellar
mass and sufficiently large speed compared to the stellar
speeds (both are assured by making µ small). There-
fore, making trajectories, during a single asteroid-binary
interaction, of the right qualitative type is no problem.
Secondly, we observe that we have a very long “lever
arm” (namely, an N -gon edge) so that it is obvious that
a tiny change in initial data will cause a huge change
at the next asteroid binary interaction. The only thing
which is not tremendously obvious is that a infinitesi-
mal change in the phase angle will cause a much larger
infinitesimal change in the next phase angle. This is
because changes in the phase angle affect the angles of
momentum-transfers during slingshot events, relative to
the direction of the star’s orbital speed, in the first order,
so that the number of star-years during the asteroid’s
trek to the next binary, which, recall, is a large num-

ber which grows geometrically, is affected fractionally in
the first order. Thus, the expansion in the (phase angle,
incoming trajectory location) 2-space between interac-
tions, can be assured to be large in all directions. This is
still the case even if the phase angles need to be chosen
so that the change in the eccentricity vector ~E contains a
decent component that is opposed to ~E, since the size of
the range of permissible phase angles is bounded above
zero (indeed is ≈ π/2).

Again, the preceding argument has not been nearly as
careful or detailed as Gerver’s (Gerver analyzed all 64
elements of the 8 × 8 Jacobian matrix of the recurrence
map), but it seems to me, is adequate.

3.4 Side remark: a problem about baseball pitchers

Thor Johnson and Jade Vinson (students in lectures I
gave at Princeton) suggested to me that there is a simpler
problem whose analysis will give you some understanding
of how it can be that Gerver’s scenario will explode to
infinite speed and radius in finite time, and also how it
can be that the exponential growth rate for radius is not
the same as for velocity.

Their problem, and a sketch of its solution, is as fol-
lows. A baseball pitcher on a frictionless plane surface
flings a ball against a wall repeatedly (and catches it on
the rebound). Each throw, he employs K times larger
arm speed than on the previous throw.

Let M be the pitcher’s mass, m be the ball’s mass, and
let v1 be the velocity of the first fling. After F fling-catch
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Figure 3.  Detailed behavior of "type 2" interaction
of asteroid with binary. this simple trajectory was the
one originally proposed by Gerver and it has the same sort
of energy transfer properties as our alternate proposal
in figure 2, in the limit when µ is small. Incidentally,
in figures 2 and 3, the range of initial phase angles is
quite flexible (there is a range of size nearly π), as is
shown in the two smaller alternative versions of the present
figure that are off to the right. This flexibility is
essential to keep control of the eccentricity of the
(slightly elliptical) orbit.

Figure 3:

cycles, I find the pitcher is receding at speed

VF = 2v1
m

M

KF − 1

K − 1
. (3)

This grows at the same growth ratio as the ball speed.
But the pitcher’s distance DF from the wall after F cy-
cles does not grow at the same exponential growth ratio,
due to the fact that the fling-catch cycles do not take con-
stant time (which would have implied this) but in fact
happen faster and faster (indeed exponentially so, ex-
plaining the different exponential growth rates), so that
an infinite number of fling-catch cycles happen in finite
time10.

3.5 Modifications of Gerver’s example

We propose the alternative detailed behavior during an
asteroid-binary interaction in figure 2. This contrasts
with Gerver’s original proposal in figure 3. All the ar-
guments of the preceding simplified version of Gerver’s
proof, still hold with this alternate type of interaction,
only the constants possibly differ. (Note: since the
asteroid now slingshots past each star two times, one
must figure the total momentum transfer in the crude
momentum-conservation arguments. The essential fact
is that the angle this asteroid-to-star impulse transfer
makes with the star’s orbital velocity, is bounded above
90◦. The quadruple swingby is essentially the same, from
the standpoint of all momentum transfers, as a double
swingby at a different initial orbital phase angle. The
fact that the quadruple swingby is much more sensitive
to initial conditions actually makes all the expansion ar-
guments in the proof work better.)

10Can the difference equation for DF be solved in closed form?
We are not sure.

Therefore, we claim, initial conditions must exist in
which each successive interaction will be11 of type 1 or
type 2, for any desired infinite sequence of 1’s and 2’s.

Furthermore, should we so desire, we can make one in-
teraction be of a new “type 3” – causing the asteroid to
be deflected not along the next N -gon edge, as usual, but
instead toward the center of the N -gon. Naturally, if ever
an interaction of type-3 occurred, the geometric expan-
sion process would then cease and no further asteroid-
binary interactions, nor any singularity, need occur. Fur-
thermore, the N asteroids would in this case pass near
the N -gon’s center (intersect the unit circle, say, killing
an N -way symmetric 2-dimensional cat who lives there)
after < 1

2π tsingular more seconds, although in the case
where interactions of types 1 and 2 only occurred, this
would not happen.

Next, we observe that by walking backward through
simulated time, say using rigorous bounds and interval
arithmetic, we can actually perform the “fine adjust-
ments” in the parameter values occurring just prior to
previous interactions, computationally, restricting them
to smaller and smaller sets every time we backstep one
more collision. Thus our existence argument is not
merely nonconstructive; arbitrarily good approximations
to the real numbers involved are in fact computable.

11A different way to distinguish 1’s and 2’s would be, to make
the asteroids, instead of going to the cyclically next binary star,
instead skip one binary star and go to the one cyclically 2 ahead
mod N . This would allow just using Gerver’s original interaction,
from figure 3, alone, making the validity of our argument especially
clearly equivalent to the validity of his.
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3.6 Conclusion

In an appropriate moving and rotating coordinate system
(a, b) the two stars may be regarded as fixed at (0,−1)
and (0, 1). The asteroid’s trajectory than winds around
these two fixed points and the “topological type” just
means the homology of this path with respect to these
points12. By simply recording whether each asteroid-
binary interaction was of type 1 or type 2, we see that
the topological types of the trajectories which arise in
our examples are in 1-to-1 correspondence with the finite
strings of ‘1’s and ‘2’s, ending with a ‘3’, unioned with
the set of infinite strings of ‘1’s and ‘2’s.

We then have proved13

Theorem 4 For some finite fixed value of N , N point
masses in the plane, whose initial positions and velocities
lie inside a cube in R4N , can describe an uncountably
infinite number of topologically distinct trajectories in 1
second. The initial locations and velocities of the bodies
required to force a future trajectory of desired topological
type, are computable (or extended sense computable) real
numbers.

4 With more realistic physical laws, the
extended Church thesis is saved

The plan of this section is as follows. First, we will prove
a general result (theorem 7) saying that a wide class (cf.
“Assumptions II”) of systems of ODEs (ordinary differ-
ential equations) are “simulatable on a Turing machine,
with polynomial slowdown.” Next, we will apply this re-
sult to the N -body problem with suitably modified laws

12It will be necessary, if the path is finite, to adjoin an infinite
ray to its end, in order to clarify the homology. Should anyone
object that our notion of “topology” is inherently 2-dimensional
and thus not relevant to the 3D behavior of the bodies (restricted
to a plane though they may be), we point out that the bodies could
be emitting “laser beams” in the directions normal to the plane,
which impinge on a sheet of photographic paper parallel to it...

13Sci-fi fans may enjoy the following scheme, related to our proof,
for making a spaceship approach the speed c of light. Find a tight-
binary B, one of whose members is a black hole (the other is some
other compact object), orbiting at mild relativistic speeds, e.g.
0.01c. Nearby (but much further away than the orbital radius of
B) should be another black hole A. (Probably such a configuration
exists somewhere in the universe; mildly relativistic neutron star
binaries are known to exist [kl93].) Repeatedly make round trips
between A and B, and arrange that each slingshot through B in-
creases your speed by about 0.02c. After 50 round trips one should
near lightspeed and, with a final slingshot, one may fly off into the
universe in any desired direction. The only energy input needed
is tiny midcourse corrections performed while approximately mid-
way between A and B. Note that although slingshot trajectories
around A in Newtonian mechanics are hyperbolas with asymptote
opening angle θ always obeying 0 < θ < π, in general relativistic
gravity, “self-crossing” trajectories with θ < 0 also are possible.
That gives us enough control to make this work. There will be
enormous accelerations during swingbys (e.g. from +.9c to −.9c in
only 10 kilometers) but this by itself presents no difficulty because
we are always in free fall. The difficulty arises from tidal forces
during the swingbys, whose effects should be roughly equivalent to
a large bomb exploding nearby. By minimizing the physical size
and maximizing the strength of the spaceship (“brilliant pebble?”)
perhaps the tides could be survived.

of motion. We will also provide auxiliary discussions of
which numerical schemes have the right behavior to make
some version of theorem 7 hold (§4.3), and also of which
Newton-like laws of motion are reasonably compatible
with general relativity (§4.4-4.8). These auxiliary dis-
cussions hardly need to be read if you don’t want to
know.

Consider any N -dimensional system of ordinary differ-
ential equations of the form

~̇x = ~F (~x). (4)

Apparently more general equations, such as allowing
higher order than 1, allowing F to depend explicitly on
time t or on time derivatives of elements of ~x, and so on,
in fact are easily put into the form above by adding a
linear number of extra variables14.

4.1 Euler’s numerical method isn’t good enough

Assumptions I: Suppose ~F is differentiable and com-
putable to B bits of precision in time polynomial in B
and N . Suppose also that the initial data ~x at t = 0 is
specified as binary fixed point numbers. Also, suppose it
is known that in the time interval 0 < t < T , the abso-
lute value of each component of ~F , ~x, and ~̇x, are bounded
and that the absolute value of each partial derivative of
~F with respect to any one of its N arguments is similarly
bounded (and consequently, the same is true for ~̈x), by
bounds that are polynomial functions of T , B, and N .
Then

Theorem 5 Under “assumptions I” above, the system
(4) may be solved numerically on a Turing machine, so
that the values of ~x at any desired time t with 0 ≤ t ≤
T , may be calculated, accurate to ±ǫ, for any desired
ǫ > 0, by using “Euler” time stepping. The computation
required during any time step is only polynomially large,
but an exponentially large number of time steps (but not
more) may be required.

Proof Sketch. “Euler” time stepping, the simplest nu-
merical scheme for solving ODEs, will suffice to show this
rather weak theorem. If enough bits B of precision are
used so that 2−B ≪ δ and if ~x were exactly correct at
the beginning of a time step, then the error made by a
single iteration of simulated time δ, will be of order δ2

times some bound P1 polynomial in B, N . However, if
the initial data were itself in error by an amount ǫprev,
then the error at the end of the time step will be

ǫnew = δ2P1 + δP2ǫprev. (5)

The difficulty is the second term, which causes errors
to accumulate potentially exponentially from time step
to time step. The growth ratio of the exponential is
bounded by 1+δP3. Hence, after T/δ time steps, the to-
tal numerical error is bounded by (1+δP3)

T/δδ2P4, which
is less than (but of the same order as) exp(P3T )δ2P4.

14For example ẍ = F (x) would be rewritten as ẏ = F (x), ẋ = y.
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Thus, if we choose δ to be exponentially small, the sim-
ulation is performed to the desired accuracy and each
iteration only requires polynomial compute time – but
an exponentially large number of iterations are required.
2

The theorem above is of course a rather weak result
since the simulation involves exponential slowdown. (On
the other hand, it does suffice to place the problem of
simulating ODEs satisfying assumptions I in the com-
plexity case PSPACE, and this is true even if we make ǫ
exponentially small.)

If we widen “assumptions I” to state that F is (k+1)-
time differentiable and that any partial derivative of F
and any time derivative of ~x, having degree ≤ k + 1,
is bounded, then we could use some other timestepping
method (instead of the Euler method) of fixed degree k,
where k > 1. (The Euler method has degree k = 1.)
Any such method would also require an exponentially
large number of iterations to make our error analysis as-
sure a fixed accuracy ǫ (such as ǫ = 0.1) after time T .
However the growth constant of the exponential may be
decreased. Using a kth degree method would tend to re-
place the expression exp(P3T )δ2P4 for the total numer-
ical error, by exp(P3T )δk+1P4 so that you could choose
δ = (ǫ/P4)

1/(k+1) exp(−P3T/(k +1)), thus cutting down
the growth factor of the exponential to its (k + 1)/2th
root (if P3 and P4 remained the same – which they prob-
ably would not).

So it should now be clear that this exponential error
buildup, and consequent need for exponential time slow-
down, is in fact unavoidable with bounded degree time
stepping methods with fixed accuracy goal, since it will
tend to happen for virtually any system of ODEs having
positive Liapunov exponent15.

Note: This subsection has been essentially the same
as Henrici’s error analysis of the Euler method [he62].
The observation that integrating (EQ 4) with Lipshitzian
polytime F is in PSPACE, was apparently first stated
by Ko [ko83], and in fact Ko went beyond this by show-
ing PSPACE-completeness, i.e. his PSPACE result was
best possible. The present subsection has been included
merely to set the stage for the next subsection.

4.2 But a scheme involving Runge-Kutta methods of
unboundedly large degree, is good enough

Since bounded degree timestepping schemes are not good
enough, we will use schemes of unboundedly large de-
gree. Specifically, we will use the Implicit “Gaussian”
Runge-Kutta methods devised by J.C. Butcher [bu64],
and choose their degree to grow linearly with T .

Butcher’s schemes have a number of pleasant prop-
erties. One of the ones most touted in the literature
is “A-stability,” described in [bu87]. In fact, Butcher’s

15And in particular, virtually any Hamiltonian system, in par-
ticular the Newtonian N-body problem with N ≥ 3, will almost
always have a positive Liapunov exponent (since phase space vol-
ume is preserved).

book defines a large variety of possible stability proper-
ties. The implications among them are pictured in figure
4. Note that “algebraic stability” and “L-stability” to-
gether imply all the other kinds of stability defined by
Butcher. The “Gaussian” methods we use here are alge-
braically stable but are not weakened-L stable16. How-
ever, we will not need these stability properties.

In the below, let k = 2v be even. (The degree of
the scheme will be k − 1.) We will use the following
properties:

Property I. The v2 + v coefficients in Butcher’s kth
degree scheme may be computed numerically to B bits of
precision, since they arise from zeros of Legendre polyno-
mials Pv of degree v as described on page 58 of [bu64], in
computational time polynomial in k and B. Specifically,
if k = 2v, let c1, c2, ..., cv be the v roots of Pv(2c−1) = 0
in increasing order. Then find aij , i, j ∈ {1, 2, ..., v} as
solutions to the v2 linear equations (but only the v equa-
tions with i fixed need be considered at a time)

v
∑

j=1

aijc
k−1
j =

1

k
ck
i (6)

for i, k ∈ {1, 2, ..., v}. Similarly find bj , j ∈ {1, 2, ..., v},
as solutions to the v linear equations

v
∑

j=1

bjc
k−1
j =

1

k
, k ∈ {1, 2, ..., v}. (7)

Then Butcher’s Runge-Kutta scheme for numerically
solving (4) is

~gi = ~F



~xold + δ

v
∑

j=1

aij ~gj



 , i ∈ {1, 2, ..., v}, (8)

~xnew = ~xold + δ

v
∑

i=1

bi~gi (9)

where ~xnew is ~x at a time t which is δ larger than the
value of t yielding ~xold, and ~g1, ..., ~gv are defined implic-
itly by (8). (One has to know how to compute zeros
of Legendre polynomials Pv efficiently. Just using their
zero-dovetailing property and interval bisection is good
enough for our purposes.)

Property II. The fact that the coefficients aij do not
grow very large, is assured by the following new

Lemma 6 The coefficients aij in Butcher’s degree 2v
Runge-Kutta scheme, v ∈ {1, 2, 3, . . .}, always obey aij ≤

16The very similar “Lobatto” and “Radau” Runge-Kutta meth-
ods are both algebraically stable and L-stable, but it is not clear to
me that this makes them preferable to the Gaussian methods. It
could be argued that it is a great virtue for the boundary between
the stable and unstable region to be precisely the imaginary line,
and this “symmetry” property is incompatible with weakened-L
stability and apparently is uniquely enjoyed by the Gaussian RK
methods. In any case, the theorems of this paper still hold if you
use Butcher’s Radau or Lobatto RK methods in place of his Gaus-
sian RK methods throughout.
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1. Also, the matrix A of these coefficients has maxi-
mum eigenvalue 1, minimum eigenvalue 1/v, and the
Euclidean length, or the sum, of any row (or column)
of A is < 1.

Proof.17 Actually the statement about row sums is im-
mediate from equation (EQ 6) with k = 1, which shows
that the ith row sum is ci and clearly 0 < c1 < c2 <
. . . < cv < 1.

The other statements of the lemma are slightly less
elementary. Equation (6) defining the aij may be written
as a matrix equation among v × v matrices as follows:

A = DCRC−1 (11)

where the i-down, j-across entry of A is aij , and of C is

cj−1
i , and D and R are diagonal matrices whose ith diag-

onal entries are ci and 1/i respectively. Observe that the
minimum eigenvalue of D is c1, c1 > 1/v2, and the mini-
mum eigenvalue of CRC−1 (which of course has the same
eigenvalues as does R) is 1/v, and the maximum eigen-
value of D is cv, cv < 1, and the maximum eigenvalue
of R is 1. Since D−1/2AD1/2 is symmetric, A has only
real eigenvalues, and in fact, its eigenvalues are identical
to those of R. As a consequence, the maximum eigen-
value of A is 1 and the minimum eigenvalue of A is 1/v.
Using the maximum principle for eigenvalues now allows

17Numerical evidence suggests some conjectures which would be
even stronger than this lemma. Namely, it would appear mini,j aij

is a monotone increasing function of v, and maxi,j aij is a mono-
tone decreasing function of v, when v ≥ 2. These would imply
that

−0.0387 ≈ 1

4
−

√
3

6
≤ aij ≤ 1

4
+

√
3

6
≈ 0.5387, (10)

for 1 ≤ i, j ≤ v, with strict inequality when v > 2. It also appears
minaij behaves like −c/v where 0.13 < c < 0.14, and max aij like
c/v where 1.6 < c < 1.7, for v large. It appears maxj bj and minj bj

are both monotone decreasing functions of v and maxj bj ≤ 1,
with equality only when v = 1, and minj bj > 0. Min bj seems to
behave like c/v2 where 3.4 < c < 3.7, and max bj like c/v where
1.4 < c < 1.7, for v large.

one to deduce that maxi,j |aij | < 1 (= 1 would only be
possible if Aii = 1 and the other elements of row i were
0, but since the row sum is ci, this is impossible, so 1 is
a strict upper bound.) and that the Euclidean length, or
the sum, of any row (or column) of A is < 1. 2

Remark. Lemma 6 implies a “generalized inte-
rior point property” of Butcher’s degree-k Runge-Kutta
schemes. Specifically, an “interior point property” would
assert that all the “intermediate points” xold+δ

∑

j aijgj

lie “inside the time step interval” [xold, xnew]. Of course,
when we are in more than 1 dimension so that these x and
g values are vectors, the word “interval” no longer makes
sense (hence the word “generalized” in the preceding sen-
tence) but if we are in 1 dimension and F (δ + xold) =
F0 + F ′

0δ + O(δ2), then the lemma above shows that for
all sufficiently small δ, |gi −F0| < cδ where the constant
c does not depend on k = 2v, the degree of the scheme,
but only upon F ′

0. Hence all the intermediate points
lie inside the interval [xold, xold + QδF0 + O(δ2)], where
Q is the maximum row sum of the A-matrix. Since by
the lemma, Q is bounded below 1 for each v, and since
xnew = xold + δF0 + O(δ2), we conclude that: If F is lo-
cally linear at xold, then each of Butcher’s schemes obey
the interior point property for all sufficiently small δ.

The interior point property is obviously a very desir-
able property for numerical ODE-solving schemes to pos-
sess, but, surprisingly, it has not been previously proven
for any nontrivial class of Runge-Kutta methods, nor is
it even mentioned in Butcher’s book [bu87] or similar
books. Of course, for any particular RK-scheme, the in-
terior point property (or its falsity) is generally readily
apparent.

Property III. With these coefficients known, and as-
suming that F obeys “assumptions II” below, one can
actually use the Runge-Kutta scheme (8) (9) to perform
a time step, in time polynomial in N , k, and B. This is
actually not immediately clear, since (8) involves solving
some nonlinear equations and the solution is only defined
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implicitly. However, as Butcher [bu64] shows in his ap-
pendix, and also as is shown in his later book ([bu87] sec-
tion 341) in more generality, so long as F is Lipshitzian:
|F (~x) − F (~y)| < |~x − ~y| · K, where K is a constant such
that

|δ| · |A| · K < 1, (12)

(here the symbol |x| denotes absolute value if x is a
scalar, Euclidean length if x is a vector, and Euclidean
operator norm [largest eigenvalue] if x is a matrix) then
the solution of equations (8) exists and is unique and the
explicit iterative process (where the superscript denotes
the iteration number s)

g
(s)
i = F



~xold + δ

i−1
∑

j=1

aijg
(s)
j + δ

v
∑

j=i

aijg
(s−1)
j



 (13)

will converge to it geometrically in the Euclidean norm.
In fact, due to lemma 6, we see that |A| < 1, so that
|Kδ| < 1 suffices for convergence.

Property IV. The error ǫstep incurred by using
Butcher’s degree-(k−1) process, k = 2v, v ∈ {1, 2, 3, ...},
to perform a time step with simulated duration δ, may
be bounded by using the bounds on the “principal error
term” given on pages 58-59 of [bu64], the bound 3k on
the number of “elementary differentials” [bu63] of degree
k, and Taylor’s theorem with remainder. The resulting
bound18 is ǫstep < δk+1Bk+13

k+1(v!)4 where Bk is some
bound on the maximum magnitude of the kth derivative
of ~x.

Assumptions II: Suppose ~F is infinitely differen-
tiable and computable to B bits of precision in time
polynomial in B and N . Suppose also that the initial
data ~x at t = 0 is specified as binary fixed point num-
bers. Also, suppose it is known that in the time interval
0 < t < T , the absolute value of each component of ~F ,
~x(k), and the absolute value of each partial derivative of
~F with respect to any of its N arguments, having total
differentiation-degree k, is similarly bounded, by bounds
that are (NkTB)O(k). Then

Theorem 7 Under “assumptions II” above, the system
(4) may be solved numerically on a Turing machine, so
that the values of ~x at any desired time t with 0 ≤ t ≤ T ,
may be calculated, accurate to ±ǫ, for any desired ǫ > 0,
by using Butcher’s implicit Runge-Kutta schemes for
time stepping. The computation required during any time
step is only polynomially large and the number of time
steps that will be required depends only polynomially on
T ,N ,B, and min(ǫ, 1)−1/ max(1,TP3), where P3 is a poly-
nomial function of T ,N ,B.

Proof sketch. Similarly to the previous proof, but now
using Butcher’s Runge-Kutta scheme of degree k instead
of Euler’s method, we have, using property IV,

ǫnew = δk+1(kP1)
O(k) + δP2ǫprev (14)

18This bound is very conservative. In fact, the term 3k+1(v!)4

almost certainly could be replaced by a rapidly decreasing function.

where P1 and P2 are polynomial functions of N, B, T .
We use this to see that after T/δ time steps, the total
numerical error is bounded by (1+P3δ)

T/δδk+1(kP4)
O(k),

which is less than but of the same order as
exp(P3T )δk+1(kP4)

O(k). Thus, if we choose δ so that

δ < ǫ1/(k+1)(kP4)
−O(1) exp(−P3T/k + 1) (15)

the desired simulation is performed with final error
bounded by ǫ, and each iteration only requires polyno-
mial compute time by properties I, III. But if k is chosen,
not to be constant, but instead to be a linear function of
TP3, then in fact 1/δ will be only as large, at most,
as some polynomial in T ,B,N ,min(ǫ, 1)−1/ max(1,TP3).
(Also, by lemma 6 and property III, a polynomially small
δ suffices to ensure the quick geometric convergence of
the iteration performed at each Runge Kutta step.) In-
cidentally, we need the result that B (the number of bits
of precision we need to carry, see assumptions II) may
also be chosen only polynomially large, which requires
such standard observations [pa98] as the fact that the
exact inversion of a matrix with integer entries, may be
performed with precision only polynomially large in the
total number of bits in all the (integer ratio) entries of
the matrix. Conclusion: The total “slowdown” is only
polynomial. 2

In other words, the numerical integration of an N -
dimensional ODE system (4) obeying assumptions II,
over a time interval of duration T , is performable to accu-
racy ǫ, by a Turing machine, in compute time polynomial
in N ,T ,B and min(ǫ, 1)−1/ max(1,TP3).

This result would seem to be of considerable general
interest, aside from the specific use we will put it to in
this paper.

4.3 Read the Numerical Analysis literature, and be sur-
prised

Most previous workers, for example we mention C.W.
Gear’s high quality DIFSUB algorithm [ge71] as a
canonical example, advocated time stepping schemes of
bounded degree to solve ODEs. DIFSUB uses “implicit
multistep” schemes of degrees 1-6 having a certain “stiff
stability” property and attempts to choose the degree
and the step length sensibly at each step. But, like all
schemes of bounded degree, DIFSUB cannot integrate
the vast bulk of ODEs of the sort we care about, to fixed
accuracy, without incurring exponential slowdown.

It is possible that somebody has advocated schemes of
unbounded degree before, but certainly that has never
been the view of the mainstream numerical ODE litera-
ture.

Since the gap between exponential and polynomial is
rather severe (!), the question is, why?

Probable answers: (A1) the numerical analysis com-
munity was never particularly concerned about bit com-
plexity and polynomial time. (A2) there is little point
to using schemes of unbounded degree if your machine
represents numbers with bounded word length.
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Re (A2), one of the things that we now understand
is that to achieve fixed accuracy at fixed time, the first
time step has to be made extremely (exponentially) accu-
rately, since its error will later be amplified exponentially.
Of course, this requires a polynomially large number of
bits and is incompatible with bounded word length.

Finally, we point out that our choice of Butcher’s Im-
plicit Runge-Kutta methods may not be the only way, or
the best way, to solve ODEs in polynomial time. We now
mention some other numerical methods of unbounded de-
gree for ODEs, the “bad” ones first.

(1) Taylor series methods are conceptually simpler
than, and might well be more efficient than, the meth-
ods of the present paper. However, the resulting theorem
would be of less wide utility, since Taylor series methods
can’t be used if you don’t know how to take derivatives.

(2) Richardsonian methods (involving “extrapolation
to the limit” of zero step size) will only achieve degree k
with ≈ 2k substeps, if step size halving is used; generally
this is not good enough for polynomial time.

(3) At the present time, all known explicit RK schemes

of unbounded degree k involve
>∼ 3k2/8 stages, and

are thus much less efficient than Butcher’s implicit RK
schemes of comparable degrees, at least as far as func-
tion evaluation count is concerned. (Also, no explicit
scheme can be A-stable.) On the other hand, with ex-
plicit methods the linear algebra work is smaller. This
area needs more investigation; especially one would like
to know what number of stages truly are required as a
function of k.

While the preceding three ideas look more or less un-
promising, the next two may be quite promising. The
reader should recall that only the crudest stability state-
ments were needed in our proof of polynomial slow-
down, and exponentially growing (as a function of the
degree k of the ODE timestepping scheme) error con-
stants turn out not to be a problem – they cannot kill
the proof. When I started this research I chose to in-
vestigate Butcher’s Runge-Kutta schemes because they
had all sorts of pleasant theoretical properties, but most
of these properties were not used in my analysis, and
perhaps it would be better if I had chosen a timestep-
ping scheme less oriented toward good stability and er-
ror properties, and more oriented toward computational
efficiency. But be careful: good stability properties and
slowly growing error constants may matter in a more
careful analysis in which one attempts to say something
precise about the polynomial governing the slowdown.
The question of what the best such polynomial is and
how to get it, is open.

(4) Multistep methods have the attractive feature
that you need only ≈ 1 more function evaluation per
timestep (except for the annoying problem of getting
them started) regardless of the degree of the method. For
this reason they may dominate all Runge-Kutta meth-
ods. Multistep methods of high degree do have unattrac-
tive stability properties. The only multistep method
that is A-stable is the implicit trapezoidal rule of de-

gree 2. The “Dahlquist barrier” [da56] [da59], which
forces stable multistep methods to have only about half
the accuracy-degree one might have hoped for, does not
bother us, since that is only a constant factor. The mul-
tistep methods of “Adams type,” which are highly touted
in many numerical analysis books, both implicit and ex-
plicit, have finite stability regions, and indeed the width
of these regions, as a function of the degree k, is ex-
ponentially decreasing toward zero. (For example, the
widths w of the stability interval [−w, 0] of the implicit
Adams methods of degree k with k = 1, 2, 10, 20, are
w = ∞, 6, 0.115, 0.00034 respectively [ha74].) Thus the
Adams methods of high degree are actually quite bad.
Still, results of R. Jeltsch [je81] assure the existence of
certain infinite families of multistep formulae with non-
shrinking stability regions and only exponentially grow-
ing error constants. These, or something like them, are
probably suitable.

(5) “General linear” methods [bu87] have the poten-
tial to combine the best features of both Runge-Kutta
methods and multistep methods, but so far are little ex-
plored.

4.4 General Relativity*

For the reader’s conventience, we present an essen-
tially complete description of general relativity con-
densed down to two pages.

In general relativity, spacetime is a (3+1)-dimensional
manifold. (The 4th dimension is customarily ct where t
is time19.) “Position” on this manifold is specified by
4 “coordinates,” that is, a unique real 4-tuple is associ-
ated to each point on the manifold by a diffeomorphism
to R3+1. Because the manifold and R3+1 may not have
the same topology, it may not be possible to handle the
entire manifold at once with a single coordinate system,
in which case one needs a finite or countable number
of overlapping “coordinate patches.” The “metric ten-
sor” is a function of position denoted by gαβ. This is a
4 × 4 symmetric matrix whose indices (taking values in
{1,2,3,4}) are α and β. The element ds of infinitesimal
“length” on the manifold is gαβdxαdxβ , where we are us-
ing the Einstein summation convention in which repeated
indices are summed over (“QαZα” means

∑4
α=1 QαZα).

This is not really a “metric,” as the word is commonly
understood, since the distance between two points can
be negative. Positive distances are called “spacelike” and
negative ones are “timelike.”

In a coordinate system which is locally Euclidean at a
particular point (and one always exists) gαβ = ηαβ ≡
diag(1, 1, 1,−1) there. We use gαβ to denote the in-
verse matrix to gαβ , and more generally, a quantity Q
with an index that is a subscript is related to a quan-
tity Q with a corresponding index that is a superscript

19Beware! A vast multitude of differing notational conventions
are used by different authors in general relativity, including the use
of “imaginary time,” different overall signs for the metric and the
Riemann tensor, and different summation conventions for Greek
and Latin indices.
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by gαβQα = Qβ, gαβQα = Qβ . This somewhat strange-
looking, and at first confusing, notational convention is
actually convenient, especially for “tensors.” Tensors are
(usually indexed) quantities which depend only on posi-
tion in the manifold and not on coordinate system, in
the sense that they transform in the obvious ways

Qα
new = cα

βQβ
old, Qnew

α = cβ
αQold

β , (16)

where cβ
α = dxβ

old/∂xα
new, when one changes coordinate

systems from xµ
old to xµ

new.
The “Christoffel symbols,” which are 3-indexed non-

tensor functions of position x, are defined by

Γα
γβ = Γα

βγ =
1

2
gαµ(

∂gµβ

∂xγ
+

∂gµγ

∂xβ
− ∂gβγ

∂xµ
). (17)

Interpretation: Γµ
αβ is the µ-component of change in eα

(an infinitesimal unit vector in the xα direction) caused
by parallel transport along eβ.

The “Riemann curvature tensor” is a 4-indexed func-
tion of position defined by

Rµ
αβη = Γµ

αη,β − Γµ
αβ,η + Γµ

νβΓν
ηα − Γµ

νηΓν
βα. (18)

Interpretation: parallel transport of a vector Aµ around
an infinitesimal quadrilateral, close to being a “parallel-
ogram,” with legs uγ and wδ, will cause a change in Aµ

of ∆Aα = Rα
βγδA

βuγwδ. Space is flat iff all elements of
the Riemann curvature tensor are zero.

The “Ricci curvature tensor” is a 2-indexed function
of position got by “contracting” the Riemann tensor:

Rνµ = Rµν = Rα
µαν (19)

and the “curvature scalar” is

R = gαβRαβ (20)

(The “Gaussian curvature” is −R/2.) Now we are ready
to state “Einstein’s field equations”

Rαγ =
8πG

c4
(Tαγ − 1

2
gαγT β

β ) (21)

where G is Newton’s gravitational constant. Here the
2-indexed function of position “Tαβ” describes the mass-
energy density and momentum density at that point in
spacetime, specifically

T αβ =
pαpβ

E/c2
δ(~x − ~x(t)) (22)

for a point particle located at ~x(t) whose momentum-
energy 4-vector is pα. (The spatial coordinates α = 1, 2, 3
of pα are momentum and its time coordinate α = 4
is mass-energy E/c2 times c. To be precise, the 4-
momentum pµ of a particle with velocity ~v and rest mass
m0 is

pµ =
m0

√

1 − |~v|2/c2
(~v, c) (23)

where the common factor outside of the 4-vector in
parentheses is the “(non-rest) mass.” This expression

makes it clear that in Lorentz-invariant laws of motion
no body can ever exceed the speed c of light. Note that
Tαβ is zero in empty space free of electromagnetic fields.
We are assuming the point particle has no multipole mo-
ments, nor any angular momentum. δ is an appropriate
kind of spatial Dirac delta function.

These field equations, which are a second degree non-
linear system of 10 partial differential equations (al-
though the derivatives are hidden in the notation!) de-
scribe how matter (mass-energy) affects the metric of
spacetime.

The second equation that one needs describes the
laws of motion of matter in such spacetime; specifically
(assuming the matter is unaffected by nongravitational
forces) matter moves along “geodesics” of the manifold,
i.e. those curves xµ(λ) which obey the geodesic20 equa-
tion

d2xα

dλ2
+ Γα

µν

dxµ

dλ

dxν

dλ
= 0. (24)

Strictly speaking, these laws of motion may not be
needed, since Einstein and Infeld [ei49] [ke59] have shown
that the vacuum field equations alone (plus some smooth-
ness assumptions) suffice to force singularities of the met-
ric (such as point masses) to move along geodesics.

Finally, gauge freedom allows us to specify 4 of the
10 entries (due to symmetry of gαβ, there were 10 and
not 16 free parameters in it) of the metric. Four gauge
conditions which are often imposed are the “harmonic
gauge”

gµνΓα
µν = 0. (25)

4.5 Why we haven’t tried to simulate full GR

There are many difficulties involved in the numerical sim-
ulation of general relativity. First, we no longer have
ODEs to simulate, as with Newton’s laws, but PDEs.
Since these PDEs are inherently nonlinear, there is pre-
sumably no way to remove the fields, similarly to the
use of Lienard-Wiechert retarded potentials in Maxwell’s
linear electrodynamics, and only consider the particles.
(The fact that, according to Einstein-Infeld [ei49], in GR
we may remove the particles, is little consolation.) So
it seems that one requires 10∞3 numbers to specify the
metric at any “time.” Singularities of the metric seem
to be virtually generic and so the simulator cannot gen-
erally hope to avoid them. Penrose’s “cosmic censorship
hypothesis” which would force any singularities and pos-
sible violations of “causality” to be forever hidden be-
hind “event horizons,” and thus invisible to any outside
observer, but this hypothesis – this would seem to be
rather important for simulators of GR! – has never been
proven. Even if Penrose’s hypothesis is true, the fact
that light from an external source can wind unbound-
edly many times around a Schwarzschild black hole be-

20Note: these are not the same thing as “shortest paths,” due to
the fact that the “metric” is not a metric. Rather, they are curves
which locally are like lines in flat (3+ 1)-space, and “keep going in
the same direction.”
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fore escaping ([mi73] page 674), for example, leads one
to suspect that very complicated behavior is possible21.

A method of splitting Einstein’s field equations (EQ
21) into timelike and spacelike parts was devised by
Arnowitt, Deser, and Misner [ar62]. In this formulation
of GR, the manifold is sliced into hypersurfaces contain-
ing only spacelike distances, and the time-evolution from
one such surface to the next is determined by the field
equations. In the event that “causality” holds, data on
one such surface will suffice to determine the metric at
all future times. In the event that one could then prove a
theorem that a sufficiently wide class of PDEs are simu-
latable with polynomial slowdown (the initial data would
have to be provided in the form of an oracle) – where
simulation has to continue despite the appearance of sin-
gularities and despite possibly being forced to change
coordinate systems on the manifold! – then one could
prove the Extended Church Thesis in general relativity.
We are not prepared to undertake this task in the present
paper22 and do not know whether the Extended Church
Thesis is true under GR.

21Still, it doesn’t seem possible to kill the Extended Church The-
sis, at least by naive use of relativistic effects. For example, sup-
pose you program your computer to solve a problem and report its
answer to you by laser, then you jump into a black hole. You ar-
gue that from the viewpoint of the computer, you will take infinite
time to fall into the black hole, whereas from your own viewpoint,
you will take finite time. Thus you hope to get the answer to the
halting problem by laser in a finite amount of your time. (Admit-
tedly, you will die.) But actually, if the laser signal is emitted too
late, it can never catch up to you before you have been crushed
into a point ([mi73] page 835-6). You could also go into near orbit
exponentially close to a black hole and emerge much later to hear
your computer’s answer. Unfortunately, this would only work if
your physical dimensions were exponentially small, and also the
“photon orbit” is located at r = 3M which is well above the event
horizon at r = 2M so that no circular orbit this close to the hole ac-
tually exists without artificial forcing. You could get exponentially
large computational speedup by waiting out the computation while
traveling in a very fast rocket, thus taking advantage of special rel-
ativistic time dilation; but this seems to require an exponentially
large expenditure of energy. Generally if two observers’s energy
supplies and the reciprocal of their linear dimensions are polyno-
mially bounded, then superpolynomial time dilation between them
is impossible.

22In general relativity with a “cosmical constant,” it is in prin-
ciple possible for the global structure of space to be essentially
time invariant and of constant negative curvature, i.e. “hyperbolic
nonEuclidean geometry.” There is a natural embedding of an in-
finite tree, each of whose nodes has valence 3 and each of whose
edges had fixed length, in the hyperbolic plane, because, e.g. the
area and perimeter of a circle of radius r grows exponentially, not
polynomially, with r in such a geometry. (No nice embedding of
such a tree is possible in Euclidean geometry.) In the event that
our universe actually was of this sort and static (which it isn’t),
and infinite, and if there were an infinite number of alien civiliza-
tions scattered throughout the cosmos one in each ball of radius
1000 light years, then we could send a radio message telling any
civilization within 1000 light years to build a computer and send
its own similar radio message. The result would be an exponential
number of computers being built, and communicating by radio,
after time t, resulting in a fairly clear violation of the Extended
Church Thesis. However, our universe is expanding, not static.
For an analysis of whether GR permits an infinite Turing machine,
see [sm03].

4.6 Linearized general relativity

These difficulties are almost all avoided by a theory of
gravity intermediate between GR and Newton, namely
“linearized GR,” also called “weak field GR.” It involves
a 4 × 4 matrix-valued gravitational field. This theory is
what happens to GR when one formally pretends that
the gravitational constant G is infinitesimal, so that all
terms of order G2 may be dropped23.

In linearized GR, the metric is gαβ = ηαβ +hαβ where
h is a small (order G) perturbation to the flat-spacetime
metric ηαβ . The field equations are then linear in hαβ

since all nonlinear terms are dropped, and under the
adoption of harmonic gauge, it turns out that they re-
duce to a matrix D’Alembertian equation with solution

hαβ(~x, t) = 4G

N
∑

i=1

Sαβ (~x′
i, t − dist(~x, ~x′

i)/c)

dist(~x, ~x′
i)

. (26)

Here the quantity in parenthesis to the right of Sαβ is
its argument, i.e. the 4-vector of coordinates at which
we evaluate Sαβ , and ~x′

i refers to the spatial position of
particle i at a retarded moment, namely the moment t′i
when

dist(~x, ~x′
i)

c
= t − t′i, i.e. (xα − xα

i
′)ηαβ(xβ − xβ

i

′
) = 0.

(27)
There is a unique such retarded moment since no particle
can exceed c. Here

Sαβ =

∫

(Tαβ − 1

2
ηαβT ν

ν )dspatial

=
(m0)i

√

−vδvδ
(vαvβ − 1

2
ηαβvδv

δ) (28)

(where vδv
δ = |~v|2 − c2 and vδ is the velocity 4-vector

with components (~v, c)); the spatial integration in a
neighborhood of ~x′

i merely serves to convert it into
an energy-momentum tensor (but with a slightly al-
tered definition) for a point particle instead of a energy-
momentum density tensor. Since the particles are points
and the T -tensor is a delta function, this integration is
trivial. The dist(~x, ~y) function in (EQ 26) refers to spa-
tial distance and might at first be thought to be a diffi-
cult thing to get ahold of, considering we are living on a
curved manifold. However, using the Euclidean distance
function |~x − ~y| is entirely satisfactory since it differs by

23Keeping all terms up to some power Gk, k ≥ 2, is also pos-
sible; the resulting theories have been called “Post-Minkowskian
expansions” [be56] [be60] [sc86] [ke59] [da82] [de97]. An alterna-
tive expansion in which the speed of light c is assumed to be near-
infinite, so that only terms of order c−k or larger are retained, is
also possible; it is called “Post-Newtonian expansion” [ch65] [ed38]
[ei38] [lo17] [da85] [sc85] [wi72]. The post-Minkowskian expansions
have the advantage over post-Newtonian expansions that they are
Lorentz-invariant. One may also linearize the Einstein-Maxwell
equations of gravity and electromagnetism. It is not clear to me
whether these expansion processes can be continued indefinitely
(larger and larger k) or whether they must eventually break down
(nor whether, even if they can be so continued, that they will con-
verge). We will not be concerned with these issues in this paper.
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terms of order G from the true distance, and thus intro-
duces negligible errors of order G2 into (EQ 26).

This observation also legitimizes our use of an absolute
time coordinate t. The coordinates ~x, t really refer to
spatial position and time in the flat space metric ηαβ

before the perturbation by hαβ , which may be thought
of as a matrix-valued gravitational field at each point
xµ = (~x, ct) of flat spacetime.

The solution (EQ 26) combined with the geodesic
equations of motion (EQ 24) (and in which it is under-
stood, when one is computing the motion of particle j,
that the sum in (EQ 26) should not include the term
i = j, since we are only interested in the field produced
by the other N − 1 particles) are a Newton-like system
of almost-ODEs for solving the N -body problem in lin-
earized general relativity – we say “almost” since they
involve retarded times, i.e. the evolution of the system
now depends not only upon the present state of the sys-
tem, but also upon its state in the past.

The equations of motion (EQ 24) involve first deriva-
tives of the h-field (inside the Christoffel symbol) namely,
we may take (accurate to order G)

Γµ
αβ =

1

2
ηνµ

(

∂hβν

∂xα
+

∂hαν

∂xβ
− ∂hβα

∂xν

)

. (29)

These derivatives are easily got in closed form from (EQ
26) and (EQ 27) and will depend on the retarded veloc-
ities of the bodies, but not on their accelerations, since
these accelerations are O(G) so that their effect is O(G2).

Carrying out the differentiation explicitly is made eas-
ier with the aid of the following formula for the differen-
tial of the retarded time

dt′ =
|~x′

i − ~x|
~v′i · (~x′

i − ~x)
(
(~x′

i − ~x) · d~x

|~x′
i − ~x|

−cdt)/(1− c|~x′
i − ~x|

~v′i · (~x′
i − ~x)

).

(30)
Then, within errors of order O(G2), the components of
∂hαβ are given by

−4G

N
∑

i=1

Sαβ(~x′
i, t

′)

(t − t′)2c
dt′. (31)

To summarize: linearized GR obeys Newton-like, but
retarded, equations of motion (EQ 24), where (EQ 29),
(EQ 26), (EQ 27), (EQ 28) hold. The explicit differen-
tiations called for in (EQ 29) may be carried out as in
(EQ 30),(EQ 31).

4.7 Non-collision singularities are impossible in lin-
earized GR

This is because the speeds of all bodies are bounded
above by a constant, namely c. Hence, the position of any
body as a function of time is Lipshitzian, which makes
it obvious that as t → t∗, each body must approach a
particular point of space, so that any singularity must be
a collision.

Now, considering the results of Saari and Hulkower
[sa81] that in the Newtonian N -body problem, any col-
lision singularity, as it is approached, has velocity vec-
tors for each particle which have limiting orientations,
i.e. “infinite spins” on the approach to a collision are
impossible24, one might therefore be led to suspect that
the same is true in linearized GR, so that no singularity
of the motion, in linearized GR, could exhibit complex
behavior.

Whether or not this is true is not relevant to the real
world, since, while linearized GR may be an acceptable
approximation to GR in some regimes (weak fields, small
masses) it is certainly not a good approximation to GR
when a singularity is approached. In particular, GR ex-
hibits “black holes.” If ever a body gets within a dis-
tance Gm/c2 (half the “Schwarzschild radius”) of a body
of mass m, it is within an “event horizon” about that
body25. Once within the event horizon, paths toward
the body become timelike and, since nothing can exceed
c, the two bodies will inevitably combine into a single
black hole, indeed in a short finite time. The linearized
theory is unaware of such “never get out again” behavior
which would appear to it to violate conservation of en-
ergy. (In full GR, one realizes that the necessary energy
loss is provided by gravitational radiation.) We wish to
modify linearized GR to make its treatment of close en-
counters a little more realistic, or at least, to confess its
inadequacy.

4.8 Modified linearized GR

Is the same as linearized GR, except that if ever two
bodies approach each other more closely than the sum of
their Schwarzschild radii, then the simulator is allowed,
at his discretion, to pretend that they instantly combine
into a single body with summed momentum and energy
and located at the center of mass of the original bodies26.

24This remark proves that noncollision singularities are the only

way in which the Newtonian N-body problem can exhibit infinitely
complicated computer-like behavior in finite time.

25The event horizon of a Kerr-Newman black hole, essentially the
most general possible stationary solution of the Einstein-Maxwell
equations, has a radius which can range from 1/2 to 1 times the
Schwarzschild radius, depending on the angular momentum and
charge of the hole. Nonstatic solutions can have event horizons
which behave in a complex manner, but it is a theorem of Hawking
[ha72] that once two event horizons have merged into a connected
component, they can never un-merge.

26The “at his discretion” was required to prevent a discontinuity
and consequent problems for the simulator, when a body is very
close to the critical radius, with deciding whether it ever got inside
it. If the reader prefers, we can change the rules so that (1) if closest
separation > R, they escape, (2) if < R · (1− ǫ) they coalesce, and
(3) if in between, it is at the simulator’s discretion, where ǫ is
polynomially small.

This is of course a crude approximation to what is actually go-
ing on, since (for example) the resulting black holes would prob-
ably have angular momentum and thus generate a Kerr and not
a Schwarzschild metric, some mass-energy would have been lost
to gravitational waves, and so on. Nevertheless, it is better than
nothing.
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4.9 The N -body problem in modified linearized GR is
simulatable with polynomial slowdown by a Turing
machine

The fact that the laws of motion in modified linearized
GR obey delay-ODEs is no great obstacle since by binary
search and interpolation in the stored past-time solution,
we may make a efficient subroutine that accurately eval-
uates the retarded fields at any time, and with the aid
of this subroutine, the simulator feels exactly as though
he/she27 is simulating a system of genuine ODEs.

There is a slight difficulty with the initial data, how-
ever; it must be specified not just at one particular time
(“t = 0”) but in fact also at all times during the past, far
enough back into the past so that the outgoing h-waves,
propagating at c, which originated before history began
at time t = −τ , will never be able to affect the future mo-
tion. We will assume that our Turing machine is provided
with an oracle who will answer any such question about
the state of the N bodies at time t where −τ ≤ t ≤ 0, to
as many decimals of accuracy as it desires.

Finally, to make our general-purpose ODE-simulation
theorem 7 apply, we need bounds on the magnitudes
of the kth time derivatives of the solution which grow
at most like polynomial(L, k)k where L is the length of
the input in bits. Because the bodies are always sepa-
rated by at least their Schwarzschild radii, and because
(consequently) mass-energies are always bounded above
by a constant at all times, and because (consequently)
these Schwarzschild radii never can get very small, and
(also consequently) all body’s speeds are bounded be-
low c so that retarded distances are within a not-large
factor of unretarded distances, and finally because we de-
mand that all the initial masses and energies have to be
described in unary... one easily verifies that we in fact
have such bounds so long as no two bodies get closer
than their Schwarzschild radius at any time during the
simulation28.

In the event that such a close approach does happen,
and is detected (and since we may take 1/ǫ at least poly-
nomially large, for any desired polynomial, we will de-
tect any such close approach except possibly for those
that approach the Schwarzschild radius very closely – we
can’t decide whether inside or outside it – which doesn’t
matter since the combining-holes decision has been left
to the simulator’s discretion) we instantly combine the
two colliding holes and restart the simulation from there.
We conclude:

Theorem 8 The N -body problem in modified linearized
general relativity, as described above (in particular, es-
sential assumptions include

1. initial rest masses and kinetic energies specified in
unary, although directions and positions may be bi-
nary fixed point numbers

27from now on: “he!”
28Basically, the essential fact is that the kth derivitives of

Newton-like potentials 1/x, are ±k!/xk+1, so that if |x| is bounded
below (by a Schwarzchild radius) then these values grow like kO(k)

as required.

2. combining bodies within Schwarzschild radius sep-
aration into a single black hole at the simulator’s
discretion

3. the input includes a record of the past, i.e. at nega-
tive times,

is simulatable by a Turing machine with at most polyno-
mial slowdown.

The “oracle” who tells us about the past on demand,
could in fact be replaced by a polynomially large amount
of data stored in tables with high degree interpolation
(of degree of order τ) between tabulated points, by an
analysis exactly similar to the analysis in the proof of
theorem 7, with the provision that the needed duration
τ of the historical record of the past, before the onset of
simulation, would then be an additional argument of this
polynomial. Since the needed τ might be rather large,
one could argue that perhaps the oracle really cannot be
replaced by a small lookup table and is inherently a large
lookup table. In any case, the “polynomial slowdown”
claim in theorem 8 does not require any knowledge of the
size of the oracle; it refers to the runtime of the simulator
(a Turing machine) being bounded by a polynomial in T ,
L, N , where L is the number of bits in a description of
the state of the N bodies at time t = 0 only, and T is
the duration of simulated time that is selected.

5 Final remarks

5.1 Where I stand

It is not the intent of this paper to undermine Church’s
thesis and thus to render much of computer science (in
particular, most work on “polynomial time”) and theo-
retical physics irrelevant.

I am in fact rooting for Church’s thesis to be true in
whatever laws of physics actually hold in our universe.

I am, however, pointing out that

1. Church’s thesis need not merely be stated and then
taken on “faith” or justified merely by heuristic ar-
guments such as those found in [tu36]29 – An at-
tempt can and should be made to prove or disprove
it. Not only is this task of great philosophical impor-
tance, it will also shed light on physics by elucidat-
ing which parts of physics are simulable, and which
parts are not, and how to go about simulating the
simulable parts.

2. Care is necessary! There may be more “gotchas”
such as theorem 4 lurking.

29Turing’s two main commonsense arguments for the universal
power of a Turing machine involved (1) the idea that any computor
must have only a finite number of possible “states of mind” or
possible fundamental “symbols” he can write, since otherwise he
might become “confused,” and (2) the idea that one computational
step (reading and writing a symbol, and changing mental state)
must take one time unit. Both of these ideas are undermined,
especially the second, in theorem 4.
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3. There seems to be a distinction between unsimula-
bility and buildability of super-Turing computers, see
§2.3.

5.2 Movie

With the aid of Henry Cejtin, computer graphics, and a
numerical ODE solver, I produced a short movie showing
some of the essential elements of Gerver’s proof, and my
modification of it needed for theorem 4, in action.

5.3 Infinite energy source

One criticism of this paper is that an essential ingredient
of theorem 4 was the use of an infinite source of energy,
namely, the possibility of moving two point masses arbi-
trarily close together.

If that is your trick (the criticizers continue) why not
just build a mechanically driven Turing machine and
power it with an infinite energy source so that it will
go faster and faster and do an infinite amount of compu-
tation in finite time? One suggested energy source was a
pair of orbiting classical point charges, which will radiate
infinite energy in finite time.

To reply to this, I agree with the first paragraph, but
the suggestion of the second paragraph I find aesthet-
ically displeasing, since it requires postulating laws of
physics in which infinitely strong rigid objects (such as
gears and driveshafts) which could withstand infinitely
high energy fluxes without melting, were available. I pre-
fer to make as few assumptions about the laws of physics
as possible...

Naturally, it is easy to construct made-up laws of
physics in which one can easily obtain immense com-
putational power, but such claims are only of interest
if the laws of physics seem realistic. One might argue
that the fact the Newton’s laws can provide an infinite
energy source, makes them unrealistic. True – and this
illustrates why it is important and valuable to investigate
Church’s thesis: attempts to refute it tend to focus on,
and throw into sharp relief, the unrealistic or inconsistent
features of a physical theory.

5.4 Water world

We will now mention a different set of made-up physi-
cal laws in which Church’s thesis is false, namely “water
world.” This world consists of three ingredients, namely
(1) “water,” an infinitely subdividable continuous fluid
which supports pressure waves obeying the wave equa-
tion, (2) “steel” which is infinitely strong, rigid, continu-
ous stuff which perfectly reflects pressure waves imping-
ing on it from outside, and (3) you can cut up the steel
with plane cuts by use of a “laser” and you can weld the
steel using “glue.”

By making N plane cuts and welds, we can create a
set of (nonconvex) polyhedral steel obstacles in a pond
of water. Then to determine the length of the short-
est obstacle-avoiding path from A to B, “flick your fin-

ger” (create a delta function impulse) at A and mea-
sure the time before B “hears anything.” This cal-
culation took only O(N) “operations” plus O(1) time.
However, Canny and Reif [ca87] have shown that decid-
ing whether the shortest obstacle-avoiding A-to-B path
is shorter than any given rational number “L” is NP-
complete. Thus the extended Church’s thesis is false in
water world, or else P=NP.

The unrealistic aspect of water world’s laws of physics,
which permitted us to derive this, was perhaps not so
much the huge computational parallelism implied by the
fact that each “water molecule” is doing some “data pro-
cessing,” but rather the fact that Canny and Reif’s NP-
completeness proof required the use of polyhedra with
some exponentially small edges. In the real world, atoms
are not exponentially small and the shortest path would
only be determined to an accuracy no better than the
size of an atom. The determination of L to within a
fixed error ǫ, in compute time polynomial in (L/ǫ), is
not an NP-hard problem, indeed it is easy.

5.5 Real numbers

My critics also argue that the key feature of Newton’s
laws which made them unsimulable was that they in-
volved real numbers, and it is somehow unfair to compare
Turing machines, which can only input a finite number
of bits in unit time, with laws of physics with real num-
bers. Real numbers make these modern-day Kroneckers
very uncomfortable.

Well, I disagree! Face it, physics does involve real num-
bers, and real numbers perhaps can be used to do things
Turing machines cannot! But if you think my entire pa-
per is resting on the preceding sentence, you are very
mistaken; the truth is deeper. For example, the laws
of physics in §4 also involve real numbers, but Church’s
thesis, indeed even its extension, is, I argue, true in those
laws of physics. (Better work this one out before com-
plaining to me!)

What matters is not that real numbers are involved.
As we’ve shown, this by itself need not prevent a Turing
machine from simulating physics to superb accuracy (e.g.
exponentially more accurate than any physical length
scale) with only polynomial slowdown. There is nothing
preventing a Turing machine from having real number in-
puts. What matters is whether the laws of physics permit
the abuse of real numbers. Or, stated differently, whether
the computational power of real numbers is physically ac-
cessible. Thus a very important question is whether the
laws of physics permit one to build an “infinite ampli-
fier with finite delay30.” The fact that this is possible in
Newton’s laws and impossible in the “repaired” laws is
certainly an important reason, and, some might argue,
possibly the only reason, for our results.

30An important related question is whether the geometric time-
mean of the Liapunov exponent (ℓ, where close phase-space trajec-
tories can diverge proportionally to exp(ℓt)) of the physical system
is necessarily polynomially bounded. If it is not, then certainly
Church’s extended thesis cannot hold.
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Nevertheless, some people have also demanded that in
any comparison between physics and a Turing machine,
that my initial data for physics had to be integers, or
perhaps rationals. I regard it as unlikely (although I have
not proven this) that the Newtonian N-body problem will
ever do anything uncomputable in finite time (or even in
infinite time) if all initial data is rational. Hence, my
critics would argue, theorem 4 shows nothing.

I reply that this criticism is in fact ludicrous. The
physical system does not know that you have granted it
the “boon” that all initial data were integers. As far as
the physical system is concerned, you had to input an
infinite number of zeros after the decimal point. The
“boon” exists only in the finite mind of my critic. Also,
why are rationals OK for my critics? Surely even my
honorable critic cannot do an infinite long division in
finite time? This point makes it apparent that what
my critic really wants is not so much real numbers with
terminating decimal expansions, but in fact he wants real
numbers that are finitely describable – real numbers that
he feels he can understand. Perhaps the critic feels he can
understand numbers like 3+21/4 which are constructible
with ruler and compass. Or perhaps he has advanced
beyond the ancient Greeks and will accept numbers such
as 21/3, or even γ and e. And once we have advanced to
this point, we see that what is really wanted is the field
of “computable real numbers” – the real numbers with
finite algorithmic descriptions – and that is exactly what
was accomplished by the argument of §2.2!

Now, one of my most fire-breathing critics was unde-
terred by this logical setback and demanded that in any
comparison between physics and a Turing machine in
which one purports to refute Church’s thesis, the initial
data for physics ought to come with error bounds (which
are also part of the “input”) and the physical system
would then proceed to do the same uncomputable thing
no matter what the actual initial data was, so long as it
was within the error bounds. In other words, he wanted
the physical machine to be “self correcting.” Imposing
these demands certainly kills my theorem 4, or anything
like it, provided it is the case (which I suspect, but have
not proven) that the set of initial data for the N-body
problem which will evolve to a singularity, is of measure
zero.

But in fact, I now argue (heuristically) that, if those
are the demands, then Church’s thesis is presumably
true... but, the argument should also make it clear that
such demands were inadmissible in the first place. Be-
cause: in any laws of physics (such as Newton’s laws)
which are time-reversible, or, more generally, which pre-
serve phase-space volume, self-correcting behavior is im-
possible! This is because any such behavior has to in-
volve “attraction” and thus “dissipation” or “friction”
– phenomena incompatible with the assumptions. (In-
cidentally, Brockett’s ODEs, cf. footnote 6, which sim-
ulate a Turing machine, are self-correcting and do in-
volve dissipative behavior – but they do not correspond
to fundamental-sounding physics.)

Now, to dramatically illustrate a final facet of the real
number issue, consider the following satirical compari-
son of a “physical” computer with a Turing machine,
intended to make the present author look silly. The Tur-
ing machine T is given a tape on which is pre-written
an infinite number of ‘1’s and ‘0’s. It is clearly impos-
sible for T to always determine, in finite time, whether
there is a ‘1’ on the tape. Meanwhile, the physical sys-
tem P is two unit masses at (0,0) and (0,1), both with
velocity vectors having vx = 0, but body #1 has vy = 0
while body #2 has vy = R, where R is the real number
.0010100 (or whatever) corresponding to what is written
on the tape. A collision of the bodies occurs in finite
time if and only if R = 0. This “comparison” of two
“computers” demonstrates Smith’s essential silliness in
the starkest possible manner... right?

Well, no. First, realize that, binary collisions are “reg-
ularizable” by elastic bounces, that is, if the motion is
continued after the collision in this way, then the {final
state} will be a continuous function of the {initial data}.
In other words, binary collisions, are, in some sense, not
“really” singularities at all!31 Thus as the impact pa-
rameter is decreased, the bodies will swing by each other
in an ellipse or hyperbola that gets more and more like
a 180◦ bounce-back. Indeed, if the motion of the bodies
were observed through “eyes” which were not infinitely
acute, there would be no way to tell whether a collision
had occurred. Meanwhile, the physical computer in the
scenario of §2.2 makes two easily distinguished choices in-
volving a cat living or dying, and does so with the aid of
a complicated process which certainly seems much more
like genuine “computation” and in which each successive
swingby is known to go either to the left or right after
examining only a finite number more bits of the initial
data – there isn’t any nonsense about having to wait for
a huge number more bits before you know what to do at
any particular swingby.

5.6 Open questions

What if quantum mechanics is put in? The recent ad-
vent of “quantum computers [sh97],” “quantum error
correcting codes,” and “quantum fault tolerance tech-
niques [pr96]” suggests that Church’s extended thesis
(appropriately redefined) is false, at least with a naive
interpretation of quantum mechanics and some simplis-
tic models of “decoherence [zu91].” The un-extended
Church thesis seems open. (Later note: I have estab-
lished the validity of Church’s thesis in quantum mechan-
ics in a different paper [sm99]. Amazingly, the same n-
body problem which, under Newton’s laws, we have seen
falsifies Church’s thesis, is in fact simulable in quantum
mechanics, so that, surprisingly, nonrelativistic quantum
mechanics is actually easier than nonrelativistic classical
mechanics.)

31Triple collisions, however, are not regularizable, although due
to the “limiting orientations theorem” of [sa81], the term “elas-
tic bounce” can still be given an unambiguous meaning for k-way
collisions.
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At the other end of the spectrum, we have the pinna-
cle of classical (meaning deterministic and continuous)
field theories: General Relativity, as embodied by the
Einstein-Maxwell equations.

There are plausibility arguments that this is simulat-
able, although certainly I have no proof. (Some discus-
sion is in §4.5.) For example, in GR, point masses and
point charges cannot serve as infinite energy sources, nor
can information propagate faster than c. I also point out,
although this is not commonly appreciated, that such
phenomena as radiation reaction, which were thought to
reveal inconsistencies or limitations in classical field the-
ories, in fact seem to be handled entirely self-consistently
by GR [sc85].

On the other hand, GR exhibits phenomena which cast
doubt on its simulability, such as the fact that black holes
can form out of nothing (e.g. from colliding gravitational
waves in pure vacuum) and the fact that light can spiral
an unboundedly large number of times around a black
hole before finally escaping (or being swallowed).

6 Appendix on notation

We use the acronyms ODE=ordinary differential equa-
tion, PDE=partial differential equation, RK=Runge-
Kutta (see EQ 8, 9), GR=general relativity, iff=“if and
only if.” When we say x is “bounded above” y we mean
that a constant c > 0 exists so that x ≥ c + y, uniformly
within some set of parameters that x and y are func-
tions of and that c is independent of – this set should
be clear from the context. Similarly for “bounded be-
low” and “bounded within (an interval);” such phrases
are of course stronger than the usual “greater than.” We
use O and o and “order” asymptotic notation: f(x) =
O(g(x)) means there exists a constant c > 0 so that
0 ≤ f(x) < cg(x) for all sufficiently large (or small; which
limit is intended should be apparent from the context)
x. f(x) = o(g(x)), where f(x), g(x) > 0, means that in
the appropriate x-limit, f(x)/g(x) → 0. If f(x) and g(x)
are “of the same order” that means f(x) = O(g(x)) and
g(x) = O(f(x)). In order to avoid confusion regarding
the word “order” (two uses already in this sentence!) we
have used the word “degree” when speaking either of the
number of differentiations in an equation or of the degree
of accuracy of a timestepping scheme (“degree k” means
having error of order δk+1). A quantity is “polynomially
large” if it grows more slowly than some polynomial as
certain quantities (which should be clear from the con-
text...) tend to ∞. On the other hand, if a quantity
grows like exp of a polynomially large quantity, it is “ex-
ponentially large.” You are “polynomially small” if your
reciprocal is polynomially large, and similarly for “expo-
nentially small.” One must be careful when using these
terms. For example, “to represent a fixed-point num-
ber to exponential accuracy requires polynomially many
bits” is a true statement.
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[sc86] Gerhard Schäfer. The ADM hamiltonian at
the postlinear approximation. General Rela-
tivity and Gravitation, 18(3):255–270, 1986.

[sh97] Peter W. Shor. Polynomial time algorithms
for prime factorization and discrete loga-
rithms on a quantum computer, SIAM J.
Computing, 26: 1484–1509, 1997.

[sm99] Warren D. Smith.
Church’s thesis meets quantum mechanics,
http://math.temple.edu/ wds/homepage/works.html

#49.

[sm03] Warren D. Smith. Turing machine engineer-
ing and Immortality.
http://math.temple.edu/ wds/homepage/works.html

#74.

[tu36] Alan M. Turing. On computational num-
bers with an application to the entschei-
dungsproblem. Proc London Math Soc.,
42:230–265, 1936. correction: PLMS 43
(1937) 544-546.

[we72] Sheldon Weinberg. Gravitation and Cosmol-
ogy. Wiley, 1972.

[wi72] C.M. Will and K. Nordtvedt Jr. Conserva-
tion laws and preferred frames in general rel-
ativity. Astrophys. J., 177:757–774, 1972.

[xi92] Z. Xia. The existence of noncollision singu-
larities in the n-body problem. Annals Math.,
135(3):411–468, 1992.

[zu91] Wojciech H. Zurek. Decoherence and the
transition from quantum to classical. Physics
Today, pages 36–44, October 1991.

TM 93-105-3-0058-6 23 . 6. 0. 0


