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Abstract — Arrow and Gibbard’s theorems are usually

considered the two most important impossibility theorems

on voting systems. Also important, but less famous, are

some theorems by Young et al. We state and prove them,

survey their extensions, criticize them, and discuss their

limitations. We also present some new and original exten-

sions of Arrow’s theorem to make it cover voting systems

whose goal is to output a single winner, and also give some

other new and old impossibility theorems due to Schulze

and the author.

1 Introduction

Suppose there are some finite number V of voters who must,
with the aid of some voting system, choose one winner from
some finite number N of possible alternatives or candidates.

K.L.Arrow proved his impossibility theorem in 1952. It won
him the 1972 Nobel prize in Economics. It shows, very
roughly, that if N ≥ 3 then “no good voting system can ex-
ist.”1 Although Arrow originally required an entire book to
prove it, nowadays (thanks to John Geanakoplos and others)
its proof can be done on a single page.

A different kind of (and more profound) impossibility theo-
rem was shown by A.Gibbard in 1973 and independently by
M.A.Satterthwaite in 1975. This theorem concerns the idea
that voters can either try to maximize their impact on the
election, or they can try to honestly state their opinions in
their votes. In a “strategyproof” voting system, these two
acts would be the same thing. Unfortunately, Gibbard’s the-
orem shows that if N ≥ 3 then no useful strategyproof voting
system can exist. Although this theorem originally seemed
difficult and profound, nowadays it too has a similar short
proof, due to Jean-Pierre Benôıt.

Finally, J.H.Smith and H.P.Young showed some still more
profound (but for some reason far less well known) Arrow-like
theorems in 1973-1978, with another such theorem proven by
H.Moulin in 1988. These apply (in different versions) both to
voting systems whose goal is to elect a single winner, and to
those whose goal is to rank-order all the candidates. They
provide a complete understanding of “symmetric separable”
systems.

These are the most famous impossibility theorems about vot-
ing systems, and Arrow’s, Gibbard’s, and Moulin’s theorems

nowadays may each may be proven in a single page entirely
with pre-college-level mathematics.

Our goals here are

1. To state and prove them.
2. To survey various extensions of these theorems.
3. To criticize them and discuss their limitations.

Thus this chapter is almost entirely expository and unorigi-
nal. There is, however, one exception: we shall provide some
new extensions of Arrow’s theorem which seem to increase its
usefulness significantly.

2 Arrow’s theorem and I.I.A.

An Arrovian preference ordering is a ranking of the N alter-
natives from top to bottom with ties allowed. It is transitive
if a ≥ b and b ≥ c implies a ≥ c. An Arrovian voting system
(AVS) is a function mapping the V voters’ Arrovian prefer-
ence orderings to a single (output) societal Arrovian prefer-
ence ordering. An AVS has the unanimity property if society
ranks a > b whenever every voter does. It has the I.I.A. (for
“Independence of Irrelevant Alternatives”) property if the so-
cietal ranking of a relative to b (i.e. above, below, or neither)
depends only on a and b’s relative rankings by each voter.
Finally, an AVS is a ab-dictatorship by voter X , if, whatever
X ’s relative ranking of a versus b is, society’s is the same; and
X is simply a dictator if this is true of every a, b.

Theorem 1 (Arrow). Let N ≥ 3. Any AVS that respects
transitivity, I.I.A., and unanimity is a dictatorship.

The most obvious deficiency of this theorem is that most peo-
ple’s notion (as opposed to Arrow’s notion) of a “voting sys-
tem” produces as output not an ordering of the candidates,
but merely the identity of the election winner. Call such a
system an “MVS” (the M standing for “most people’s”). Is
there an Arrow-like theorem for MVSs? The answer is yes,
and it is trivial to produce via the following trick.

Suppose A wins. If A is removed from the election (and from
all voter preference orderings) then suppose B wins. If both
A and B are removed, suppose C wins. And so on. The point
is that this defines an ordering A > B > C · · · among the
candidates. Now: Arrow’s theorem applies to the new voting
system that outputs this ordering, consequently showing:

∗Non-electronic mail to: 21 Shore Oaks Drive, Stony Brook NY 11790.
1Here “good” means, more precisely, “satisfying a certain list apparently-obviously desirable/necessary properties.”
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Theorem 2 (New version of Arrow for single winner
voting systems). Any MVS with N ≥ 3 candidates which

• inputs voter preference orderings
• outputs single winner
• obeys unanimity and I.I.A. concerning the implied or-

dering got by successive winner-removal

must be a dictatorship.

Perhaps because of the trivial way it was produced, this
theorem leaves us unsatisfied. Somehow, requiring I.I.A. of
the somewhat unnatural ordering induced by winner-removal
seems possibly unnatural. Therefore – appearing for the first
time here – we now produce apparently the natural general-
ization of Arrow to single-winner voting systems.

We first must make a few observations and state a few def-
initions. If a voting system inputs preference orderings and
outputs a single winner, then that same voting system fed the
reversed preference orderings, would output a single loser. So
without loss of generality we shall regard our voting system
as outputting both (1) a single “winner” candidate and (2) a
single “loser” candidate. We shall also regard there as being
(although it is not necessary for the voting system to output
or know it) a partial ordering ≺ among the candidates. This
partial ordering and the winner and loser shall be required to
obey the following properties:

Noncontradiction: It is impossible for both a ≺ b and b ≺ a
to hold. (However, it can be entirely possible that nei-
ther holds; that is why ≺ is a partial as opposed to a
total order; indeed we are imagining there to be as few
≺-related candidate-pairs as possible without our voting
system totally losing meaning.)

Transitivity: If a ≺ b and b ≺ c then a ≺ c; if a 6≺ b and
b 6≺ c then a 6≺ c.

Winner-domination: If a is the winner then x ≺ a for all
x 6= a. If b is the loser then b ≺ x for all x 6= b.

Pair-comparison unanimity: If every vote says that a < b,
then a ≺ b; if every vote says that b ≥ a, then b 6≺ a.

I.I.A.: The question of whether a ≺ b or b ≺ a or neither,
depends only on the pairwise relative comparisons of a
versus b in the votes, and not on comparisons among
other candidate-pairs.

Some immediate consequences of these properties include:

Unanimous top-ranking: If every vote top-ranks a, then a
must be the winner.

Unanimous bottom-ranking: If every vote bottom-ranks
b, then b must be the loser.

Winner6=loser: If N ≥ 2 then the winner and loser must
differ.

Undominated=⇒Winner: A candidate x such that no y
exists with x ≺ y, must be the winner. (And if no y
exists with x ≻ y, then x must be the loser.)

A voterX now is an ab-vetoer if whatever relative ranking of a
versus b he has, society’s does not disagree, i.e. if X says a < b
then society says a 6≻ b; and X is simply a vetoer if this is
true of every a, b. Note that (due to Undominated=⇒Winner)
a vetoer can singlehandedly determine both the winner and
loser, i.e. is a win/loss-dictator.

Theorem 3 (Our new extension of Arrow). Let N ≥ 3.
Any voting system which inputs Arrovian preference orderings
among the N candidates (one per voter), and which outputs
a single winner and a single loser candidate, and for which
there implicitly exists a partial ordering ≺ such that the prop-
erties listed above hold, must contain: a vetoer, and hence a
win/loss-dictator.
Criticism: Initially Arrow’s theorem 1 and our theorem 3
seem to be a severe problem, in a sense proving that no good
voting system can exist. That is because“obviously”any good
voting system must obey I.I.A., transitivity, and unanimity,
and must not be a dictatorship, hence by Arrow’s theorem
cannot exist.

But in fact, Arrow’s theorem is not nearly as important as it
at first seems. That is because

1. In the real world, there is no reason voters must input
preference orderings; they could input utility vectors.

2. In that case I.I.A. is actually plainly not a desirable
property of a voting system, from the point of view of
society-wide utility. Example: suppose the utilities of
alternatives A,B are 10, 0 respectively from the view-
point of 51% of the voters, and 0, 99 respectively from
the viewpoint of the remaining 49%. For the good of
society, B should win. But if the “10” were replaced
by “100” then, for the good of society, A should win.
The relative rankings of A and B by the voters have
not changed, but the best societal choice has! So it is
clearly wrong to demand I.I.A. as Arrow does, in the
wider scenario where more general input is allowed.

These two criticisms are unanswerable in the sense that “hon-
est utility voting” is a single-winner-output, utility-vector-
input voting system which obeys all of Arrow’s axioms (as
well as monotonicity), except for I.I.A. which as we’ve seen
shouldn’t then be obeyed.

Other Arrow-like theorems: Kelly [7] surveyed work be-
fore 1978 on other Arrow-type theorems. His theorem 4-12
(due to J.H.Blau) replaces I.I.A. with the equivalent, but
seemingly weaker, assumption of the independence of a sin-
gle irrelevant alternative. An Arrow-like theorem permitting
voters to input partial orderings (under certain assumptions)
is Kelly’s theorem 4-10. Fishburn [3] showed the assumption
that V is finite is essential in Arrow’s theorem. A different
formulation of Arrow’s theorem [9] allowing non-deterministic
voting systems replaces Arrow’s I.I.A. demand by a stochastic
version, continues to require unanimity, and demands further
a “regularity”demand that the probability of X being chosen
cannot increase if more alternatives are made available, and
concludes that if there are ≥ 4 alternatives, the voting system
must be a “weighted random dictatorship.”

Amartya Sen once claimed in print [11] that Gibbard had
found a different extension of Arrow’s theorem to make it
cover voting systems that output winners rather than order-
ings. Sen claimed a proof would be found in his (Sen’s) book
[12] on pp.76-77, but I disagree that there is a proof there.
Gibbard then told me he believed that Sen had in mind his
(Gibbard’s) theorem from [6] (despite the fact that it was
published 8 years after Sen’s book, and despite the fact that
if this is really what Sen had in mind, then Sen misstated the
theorem). Unfortunately, my examination of [6] has merely
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left me feeling that Gibbard’s tricky notion there of what a
“voting system” and/or a “winner” is, is different from every-
body else’s, and thus really his theorem says little or nothing
about voting systems that anybody cares about. So we shall
not survey [6] here, aside from warning the reader to be care-
ful.

3 Gibbard’s theorem and the quality

of being strategyproof

A Gibbardian preference ordering is a ranking of the N alter-
natives from top to bottom with no ties allowed, i.e. a permu-
tation of {1, 2, . . . , N}. A Gibbardian voting system (GVS) is
a function mapping the V voters’ reported Gibbardian prefer-
ence orderings to the identity of a single“winning”alternative.
A GVS has the unanimity property if society always selects
an alternative that is top-ranked by everyone. It is strate-
gyproof if a best strategy for each voter always is to report
his preferences truthfully.

Theorem 4 (Gibbard). Let N ≥ 3. The only strategyproof
GVS that respects unanimity is a dictatorship.

This is a severe limitation on non-dictatorial voting systems –
voters will necessarily, in (N ≥ 3)-candidate elections, some-
times be motivated to vote dishonestly, i.e. to misrepre-
sent their true preference orderings. Furthermore, the proof
we shall provide in §6 still works even if the voting system
asks voters for utility N -vectors instead of N -permutations
as votes – they will still sometimes be motivated to provide
vectors with misordered entries if it is forbidden for those
vectors to contain two equal entries.

There then remains a narrow escape hatch, which approval
and range voting2 exploit to partially evade Gibbard’s theo-
rem. Specifically, these two voting systems allow equalities
(indeed, in approval voting in ≥ 3-candidate elections, each
voter is forced to express a preference equality). They both
are strategyproof in the weaker sense that each voter finds it
strategically best, in a 3-candidate election, to provide a vote-
vector which either obeys his true preference >-inequalities,
or is a limiting case of them, i.e. is arbitrarily near to a vector
satisfying them.

Indeed, approval and range voting are strategyproof in this
weaker sense, for any number of candidates. That is, if an
approval or range voter knows the exact vote totals from all
the other voters, then he may always choose an approval vote
vector which is both optimally strategic and is a limit of vec-
tors which obey his true preference ordering <-relations.

However, neither range nor approval voting are strategyproof
– even in this weaker limit-sense – for 4-candidate elections
with a very large number of voters if a voter does not know
the exact vote totals from all the other voters, but instead
only knows the vote totals (and perhaps also the covariance
matrix) of a random subset of (say) 0.1% of the other voters.

Example #1: Let the 4 candidates be A,B,C,D. Suppose
their election utilities, from your point of view, are: UA = 0,
UB = 20, UC = 70, UD = 25. Assume the prior likelihoods

of election of the candidates (based on vote totals from a
pre-election poll – we assume the covariance matrix is propor-
tional to the 4×4 identity matrix) are LA ≫ LB ≫ LC ≫ LD.
(To be completely concrete, assume our model of all the other
voters is that they approve candidates A,B,C,D with inde-
pendent probabilities 0.7, 0.6, 0.5, 0.1 respectively.) Then your
best strategic approval vote is (0, 1, 1, 0) for (A,B,C,D) re-
spectively, which is dishonest about your preference for the
candidate-pair B,D. N

Example #2: There are two liberal candidates L1, L2 and
two conservatives C1, C2. You are pretty sure that L1, L2 will
get a near-equal number of the other people’s votes, and ditto
for C1, C2, but don’t know whether the liberals or conserva-
tives will be ahead. This kind of situation can be modeled
with a highly ellipsoidal Gaussian probability distribution,
e.g. arising from a covariance matrix of the form













1 1 −O(ǫ) ±O(ǫ) ±O(ǫ)

1 −O(ǫ) 1 ±O(ǫ) ±O(ǫ)

±O(ǫ) ±O(ǫ) 1 1 −O(ǫ)

±O(ǫ) ±O(ǫ) 1 −O(ǫ) 1













(1)

when ǫ → 0+ (whereas the previous example worked even
with a spherical, i.e. correlation-free, Gaussian). Then your
best strategy is to vote in the style (1, 0, 1, 0) for L1, L2, C1, C2

respectively, even if you prefer both L’s over both C’s (or both
C’s over both L’s). This example also can be generalized to
2N candidates falling into N ultra-correlated pairs. N

These examples indicate that Gibbard was employing a
wrongheaded notion of “strategyproof.” In Gibbard’s notion,
voters are assumed to know all other votes. A more realistic
world-model would involve voters with only partial informa-
tion about the other votes, for example knowing only a small
random subset of them or only a probabilistic model of them.
Of course, if strategyproof voting systems are impossible even
under Gibbard’s exact-information scenario, then they are im-
possible under the more general scenario where voters might
only have partial information. So in that sense, Gibbard’s is
the strongest possible theorem – but if we are going in the
other logical direction then Gibbard’s is the weakest possible
theorem.

To repair that flaw we would like to have a theorem saying
that nondictatorial strategyproof voting systems are impossi-
ble in (≥ 4)-candidate elections where voters may only have
access to partial information about the other votes, even for
“voting systems” permitting utility vectors as votes, and even
with the weakened notion of “honesty” where vector votes
which are limits of vectors obeying honest <-preference in-
equalities are permitted. So far, that theorem remains a con-
jecture, although situations like example #2 above convince
me that it must be true.

Several extensions of Gibbard’s theorem are known. We shall
state but not prove them.

Let a GVS with chance be a map from the voters’ Gibbardian
preference orders and some random bits to the identity of a
single winning alternative.

2We remind the reader that in range voting in an N-candidate election each vote is a real N-vector each of whose entries x obeys 0 ≤ x ≤ 1;
whereas in approval voting x = 0 or x = 1. The vote vectors are summed and the greatest entry in the sum-vector corresponds to the winner. Ties
are broken randomly.
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Theorem 5 (Gibbard’s probabilistic extension of Gib-
bard [5]). The only strategyproof GVS’s with chance are

Random dictator: Choose a voter at random and proclaim
his top-rank choice the winner.

Random pair vote: Choose a pair (a, b) of distinct alterna-
tives at random, and perform an ordinary 2-alternative
election using the voters’ preference relations restricted
to a, b only.

Combination: Some probabilistic combination of the above
two ideas.

Unfortunately, as Gibbard remarks, these GVS’s, despite be-
ing strategyproof, seem unacceptable in practice since they
“leave too much to chance.”

Let a GVS with ties be like a GVS, except the voters now
are allowed to express indifference in their preference order-
ings, and the outcome can be an arbitrary subset of “tied”
co-winners. The voters are each assumed to have private util-
ities for each possible winner-subset that are compatible with
each of them assuming that some (unspecified) lottery mech-
anism will be used to break the ties. (Voters are allowed to
have differing theories about what those lottery mechanisms
will be.) It obeys the near-unanimity property if, whenever
all voters (except possibly one) strictly top-rank some alter-
native, it alone wins.

Theorem 6 (Benôıt’s extension of Gibbard [1]). Let
N ≥ 3 and V ≥ 3. There is no strategyproof GVS with ties
that respects near-unanimity.

Observe that range voting does not obey the near-unanimity
property (although it does obey unanimity), because 999 vot-
ers ranking A above B by 0.001 are outweighed by one voter
ranking B above A by 1. This in fact makes it plain that near-
unanimity is not always a desirable property (from the stand-
point of maximizing society-wide utility) for a voting system
to have. Thus Benôıt’s extension does not apply to range vot-
ing and also, like Arrow’s theorem, is somewhat wrongheaded
in that one of its axioms that “obviously” should be obeyed
by “good” voting systems, in reality is unjustified.

P.K.Pattanaik invented a weaker notion of “strategyproof-
ness” involving the idea that “threats” of manipulation could
be met by “counterthreats.” This weaker kind of strate-
gyproofness is also known to be impossible, see p.71 of [7].

Finally, note that ordinary majority voting in an (N =
2)-alternative election is strategyproof, obeys I.I.A., near-
unanimity, and unanimity, and is not a dictatorship. In other
words, as far as Arrow, Gibbard, and Benôıt are concerned,
it is perfectly wonderful. Thus these impossibility theorems
all only apply when N ≥ 3.

4 Impossibility theorems by Smith,

Young, Levenglick, Moulin, and

Perez

J.H.Smith [14], Young [17], and Levenglick [18] proved
some wonderful theorems about voting systems which input
preference-orderings of the candidates. Smith and Young’s
discoveries overlapped and were independent. Although Ar-
row’s focus was on voting systems that output a full ordering
of all the candidates, while Gibbard’s focus was on simply
selecting a single winner, the Smith/Young/Levenglick theo-
rems are available in different versions addressing either focus.

A voting system is separable3 if, whenever the results of elec-
tions on two disjoint voter subsets are the same, then the
result of the election on the combined vote set must also be
the same. Warning: this yields two very different definitions
of “separable”depending on whether we are considering “elec-
tion results” which are an ordering of all candidates, versus
just the name of a winner (or the names of several “winners”).

A voting system is symmetric if it produces the same results,
regardless of how the voters are permuted and regardless of
how the candidates are permuted (except that in the latter
case, the results are permuted).

A voting system is weighted positional4 if it works as follows:
each time a voter ranks a candidate kth we award that candi-
date Sk points, where S1, S2, S3,..., SN are N pre-fixed real
constants. The candidate with the most points wins, or in the
ordering-as-output version, we rank the candidates by their
number of points. Smith and Young also considered breaking
ties by means of a second weighted positional system (with
different real weights), and then ties in this system could be
broken by votes using a third weighted positional system, and
so on. Young called these “composed weighted positional sys-
tems.”5 Alternatively, and equivalently, we could use just
one set of weights S1, S2,..., SN but these would not be real
numbers, but rather a larger field containing both reals and
infinitesimal quantities. Yet another equivalent view would be
to regard the weights as tuples of reals, ordered lexicographi-
cally.

Theorem 7 (Smith & Young’s separability theorem
[14][17]). A symmetric and separable voting system whose
output is the name of a winner (or the names of several un-
ordered winners) must be a composed weighted positional sys-
tem (or equivalent to one). If the voting system also satisfies
a further condition, which Young calls “continuity,6 ” then it
must be a (plain) weighted positional system.

A “Condorcet-Winner” is a candidate who would beat each
other candidate in a head-to-head 2-candidate election, using
the same preference orderings as votes (but with all the other
N − 2 candidates erased from those orderings).7

3J.H.Smith’s name. Young instead called this property “consistency,” and others have called instances where it is disobeyed, the “multiple
districts paradox.”

4J.H.Smith’s name; Young’s name was “point scoring system.”
5J.H.Smith called them “generalized point scoring systems.”
6But Smith calls it “Archimedean.” Roughly, the Archimedean property states that a sufficiently large set of voters with a given distribution of

preferences can impose its will on any fixed-size set of voters.
7Condorcet invented this notion and realized that Condorcet-Winners need not exist. Condorcet also realized that Borda’s weighted-positional

system (with weights SK = N − K − 1) can select a winner different from the Condorcet-Winner: with 6 votes A > B > C, 4 votes B > C > A,
and 1 vote C > A > B the Borda winner is B but the Condorcet-Winner is A. Theorem 8 shows that similar counterexamples exist for every

composed weighted positional voting system. If a Condorcet-Winner does exist, it is necessarily unique.
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Theorem 8 (Hansson’s no-Condorcet theorem [18]). If
the number of candidates N ≥ 3, there is no symmetric and
separable voting system whose output is the name of a winner
(or the names of several unordered winners) and which always
uniquely elects a Condorcet-Winner whenever one exists.8

In order to generalize theorem 8 to handle voting systems
which output full orderings rather than just the name of a
winner, Young and Levenglick introduced the quasi-Condorcet
property, which we now define.

Suppose i and j and the votes are such that

1. Every voter ranks candidate i either immediately above
or immediately below candidate j, and

2. In a head-to-head election between candidates i and k
(got by erasing all the N − 2 other candidates from all
voter preference orderings) the two would come out ex-
actly tied, for every k.

A quasi-Condorcet voting system is one whose output order-
ing, in such an“ultra-tied”scenario, would always rank i and j
equal (or, if equalities are disallowed via a tie-breaking scheme
which always outputs exactly one ordering) which would be
equally likely to rank i immediately above or immediately
below j.

Theorem 9 (Young-Levenglick [18]). There is exactly
one symmetric and separable voting system whose output is
an ordering of all the candidates, and which obeys the quasi-
Condorcet property: Kemeny’s voting method.9

J.H.Smith [14] considered single-winner voting systems based
on“successive elimination.” These systems proceed in rounds:
each round, the candidate (or several candidates) with the
fewest points under a weighted positional voting system is
eliminated. Such systems are not weighted positional sys-
tems, and hence by theorem 7 are not separable. But, more
severely, Smith showed they always are “non-monotonic”even
in the 3-candidate case.

Theorem 10 (Smith’s elimination=⇒nonmonotonicity
theorem [14]). Any elimination-based single-winner voting
system where the round eliminations are based on a nontrivial
weighted positional scoring system, is non-monotonic. That
is, changing some of the votes in a candidate’s favor can re-
move him from first place.
Moulin [8] and Perez [10] extended Hansson’s no-Condorcet
theorem to show that not only must voting systems that al-
ways elect Condorcet-Winners (when they exist) disobey sep-
arability, they must in fact exhibit a particularly nasty kind
of pathology called the “strong no-show paradox”:10

Theorem 11 (Condorcet=⇒No-Show-Paradox [8][10]).
Any (≥ 4)-candidate voting system inputting preference or-
derings as votes, and outputting a set of “winners,” and which
uniquely elects a Condorcet-Winner whenever one exists, must
exhibit “no-show paradox” situations in which

1. A is the unique winner, and
2. by adding a some identical new votes11 strictly prefer-

ring A over B, we get a scenario in which A is no longer
the unique winner, but B is a winner.

(See our theorem 20 for a proof of a slightly altered state-
ment.)

Compared to Arrow’s impossibility theorem, these theorems
seem far superior. Many of them apply to either ordering-
or winner-as-output voting systems. They start from ax-
ioms (separability, symmetry) which seem more clearly de-
sirable. The axiom whose desirability I do dispute is the re-
quirement that input votes be preference orderings instead of
real-vectors. These theorems perhaps indeed may be thought
of as damning indictments of every preference-orderings-as-
votes system. While the axiom that Condorcet-Winners must
be elected perhaps is desirable if only preference orderings are
available, it clearly is undesirable if real vectors are allowed
as votes (we already gave a counterexample in §2).

5 Proof of both Arrow’s theorem

and our new extension

We prove theorem 3 (and as an immediate consequence, Ar-
row’s original theorem 1) following Geanakoplos [4]. Both this
proof and the proof we shall give in §6 of Gibbard’s theorem
are similar in that they begin by showing the existence of a
“pivotal” voter P .

The proof: Arbitrarily focus on some outcome b. Let a “pro-
file” mean all the votes.

Lemma 12 (TopBot=⇒TopBot). In any profile in which
each voter either puts b at the top, or at the bottom, of his
preference ordering, society must also (even if some voters
put b at the top and others at the bottom), i.e. b must either
be the winner or loser.

Proof of lemma 12: Suppose for a contradiction that there
exist a and c (distinct from each other and from b) with a 6≺ b
and b 6≺ c in the societal ordering. (By winner-domination,
this must happen if b is neither the winner nor the loser.)

By I.I.A., a 6≺ b and b 6≺ c will still hold even after each voter
moves c above a because (since b is topmost or bottommost in
every vote) this would not disturb any ab or cb votes. Hence
by transitivity the social preference would have a 6≺ c. But by
pair-unanimity it would have a ≺ c, a contradiction. Q.E.D.

Lemma 13 (Pivotal voter). There must exist a “pivotal”
voter P who, solely by changing his vote, can (in at least one
profile) move b from the bottom to the top of the social order-
ing, i.e. from loser to winner status.

8This is theorem 2 in [18] and in its present simplifed form is credited to Bengt Hansson.
9Kemeny’s voting method is the following. Let the L1-distance between two compatibly-sized matrices A, B be dist(A, B)

def
=

P

i,j |Aij − Bij |.
With each preference ordering among the N candidates associate the N × N anti-symmetric matrix with ij entry +1 if i is preferred to j, −1 if j

is preferred to i, and 0 if i = j. The election matrix is the average of all the matrices arising from the votes. Kemeny’s voting method outputs a
preference ordering whose matrix has minimum L1-distance to the election matrix. (Warning: it is known that this minimization task is NP-hard;
essentially it is a traveling salesman problem. J.Rothe and H.Spakowski have indeed recently claimed to have shown that it is P NP

‖
-complete to

determine Kemeny winners.)
10Note: separability is actually logically unrelated to the no-show paradox, despite the fact that they seem similar.
11In Perez’s strengthened versions, under certain conditions, only a single new vote is needed.
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Proof of lemma 13: We shall show that P can change b from
a state in which no x exists with x ≺ b, to a state in which
no x exists with b ≺ x; by undominated=⇒winner this is the
same as changing b from loser to winner.

Let each voter put b bottommost in his vote. By unanimity, b
must be the loser and b ≺ x for all x. Now go though the vot-
ers in order from voter 1 to voter V having each successively
move b from the bottom to the top of their vote-ranking (while
leaving all other relative rankings unchanged). At some point
b must change social rank (since at the end of this process, by
unanimity, it obeys b ≻ x for all x, i.e. has top rank and is
the winner); suppose this happens during the change-of-vote
of voter P . By lemma 1 this one change must shift b all the
way from loser to winner. Q.E.D.

Define “profile ❶” to be the profile just before P changes his
vote, and “profile ❷” just after.

Lemma 14 (Pivotal=⇒ ac-vetoer). The pivotal voter P
from lemma 13 and its proof must be an ac-vetoer for any
outcome pair ac not involving b.

Proof of lemma 14: Construct profile ❸ from profile ❷ by
letting P move a above b in his vote (so that a >P b >P c)
and then by letting all voters besides P arbitrarily alter their
relative rankings of a and c while leaving b in its extreme po-
sition. By I.I.A. the societal ordering corresponding to profile
❸ must have a 6≺ b (since all ab votes are the same as in profile
❶) and b 6≺ c (since all bc votes are the same as in profile ❷).
So by transitivity society must put a 6≺ c in profile ❸. But
now by I.I.A. the social preference must have a 6≺ c whenever
a >P c. Q.E.D.

In particular, note that P singlehandedly can control the iden-
tity of the winner, or the loser, or both, since at least one of
these cannot be b.

Finale: We will now argue P must also be a vetoer over every
pair ab, and hence a full vetoer. To see this, consider a third
distinct outcome c which we put at the bottom in every vote
in the construction in the proof of lemma 13. Now by the
argument in the proof of lemma 14, there must be a pivotal
voter P ′ who is an αβ-vetoer for any pair αβ not involving c
– such as ab. Note that P , acting alone, can reverse some so-
cietal a ≺ / ≻ b ranking (namely at profiles I and II) since by
winner-domination this societal ranking exists in both cases so
that vetoing it in fact reverses it, i.e. is a genuine accomplish-
ment. This accomplishment would be impossible if anybody
besides P were an ab-vetoer. Since P ′ is an ab-vetoer, we
conclude that P = P ′ so that P is a full vetoer and hence a
win/loss-dictator. Theorems 3 and 1 are now proven. Q.E.D.

A far even simpler proof still! The fact that an Arrovian
Voting System obeying I.I.A. cannot exist for (≥ 3)-candidate
elections is a triviality if we add the demand that the system
reduce to majority vote in the 2-candidate case. That is be-
cause: suppose in some Condorcet-cyclic profile, candidate
A wins. Then by omitting all the candidates besides A and
B (where B is a candidate superior to A pairwise), B must
win, i.e. those omitted candidates were not “irrelevant”to the
A versus B battle, contradicting Arrow’s I.I.A. assumption.
Q.E.D.

6 Proof of Gibbard’s theorem

We follow Benôıt [2] to prove theorem 4.12

The proof: Suppose we are given a strategyproof Gibbar-
dian voting system obeying unanimity. We shall show some
voter is a dictator.

Lemma 15 (Old or new winner). Suppose some profile13

causes outcome a to be the winner. Modify the profile by
raising some outcome x in voter i’s ranking (holding all else
fixed). Then: either a or x is the new winner.

Proof of lemma 15: Suppose for a contradiction that when x
rises some other winner c is chosen. Then if i prefers a over c
he would not report the change, whereas if he preferred c to
a he would have falsely reported the change earlier. Q.E.D.

Lemma 16 (Bottom feeders are not winners). Consider
an arbitary profile in which all voters bottom-rank b. Then b
cannot be the winner.

Proof of lemma 16: If b were a winner then by strategyproof-
ness it would still have won if the voters one at a time raised
a to the top of their votes (since otherwise some voter would
have). But that would contradict unanimity. Q.E.D.

Now start with the profile in lemma 16 and starting with voter
1 and continuing through each other voter in order, have that
voter raise b from the bottom to the top of their vote (leaving
all else fixed). Let P be the pivotal voter whose change causes
b to be elected. “Profile ❶” is the profile before P changes his
vote, and “profile ❷” after.

Consider profile ❷ with winner b. Outcome b must still win if
any other voter i > P changes his ranking, otherwise i would
misrepresent. Also b must still win if any voter i ≤ P changes
his vote-ranking with b still ranked top (otherwise i would not
honestly report his ranking).

Lemma 17. If voters 1, 2, . . . , P top-rank b, then b must win.

Proof of lemma 17: Consider profile ❶ (with b not the win-
ner). Outcome b must still not win if any voter i < P changes
his ranking, or else i would have done just that. We can make
this same argument considering these voters acting one at a
time. Q.E.D.

Similarly b must still not win if any voter i ≥ P changes his
vote-ranking (but still ranking b bottom), or else i would not
honestly report his ranking, and we can make this same ar-
gument considering these voters acting one at a time, thus
similarly proving:

Lemma 18. If voters P, P + 1, . . . , V bottom-rank b, then b
cannot win.

With these lemmas in hand, we now are ready to show that
the pivotal voter P is, in fact, a dictator.

Let profile ❸ mean any profile of the form
1 2 . . . P − 1 P P + 1 . . . V
? ? . . . ? k ? . . . ?

? ?
...

...
...

...
b b b b b b b b

12A different short proof, instead based on induction on V , has been given by Arunava Sen [13].
13Remember, all profiles consist entirely of strict preferences in theorem 4.
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First raise k to the top for all voters; then by unanimity k
wins. Now raise b to the top for voters 1 through P − 1 one
at a time to get profile ❹:
1 2 . . . P − 1 P P + 1 . . . V
b b . . . b k k . . . k
k k . . . k ? ? . . . ?
...

...
...

...
...

...
? ? ? ? b b b b

By lemma 18 outcome b does not win, so by lemma 15 k does.
Finally raise b to the second position for voter P . Now k still
does not win or else P would not report this change, i.e. k
wins in profile ❺:
1 2 . . . P − 1 P P + 1 . . . V
b b . . . b k k . . . k
k k . . . k b ? . . . ?
...

...
...

...
...

...
? ? ? ? ? b b b

Now reconsider profile ❸ and suppose g wins (g 6= k). Raise b
to the top for voters 1, 2, . . . , P − 1 one at a time. By lemma
18 we know b does not win so by lemma 15 the winner is still
g. Now raise b in voter P ’s vote to the second position to get
profile ❻:
1 2 . . . P − 1 P P + 1 . . . V
b b . . . b k ? . . . ?
? ? . . . ? b ? . . . ?
...

...
...

...
...

...
? ? ? ? ? b b b

Here, if b is not the winner, then by lemma 15 g must still
win. From lemma 17 we know b will still win when it is raised
to the top of P ’s vote. Hence P should now falsely report this
preference since he prefers b to g 6= k, contradicting strate-
gyproofness. Hence the winner in profile ❻ must be b.

Now raise k to the second position for voters 1, 2, . . . , P − 1
and to the top for voters P + 1, . . . , V . Then b still wins or
else the first group of voters would not truthfully report this
change, whereas the second group of voters would have mis-
reported it. But this modification of profile ❻ is the same as
profile ❺ with winner k! That contradiction proves g (g 6= k)
cannot have been the winner in profile ❸. In short,

Lemma 19 (Pivot voter selects non-b winner). In pro-
file ❸, whomever P top-ranks (as long as it is not b) must
win.

We have nearly shown that P is a dictator; we shall now go
the rest of the way to showing that. Consider an arbitrary
profile in which P ranks some outcome k (k 6= b) on top. First
modify this profile by dropping b to the bottom for all voters.
By lemma 19 the winner is k. Now restore b to its initial
position for all voters (one at a time). By lemma 15, either k
or b must now win. Now consider profile ❼:
1 2 . . . P − 1 P P + 1 . . . V
b b . . . b b a . . . a
...

...
...

...
...

...
c c . . . c c c . . . c

where c 6= b and c 6= k. Similarly to the argument in lemmas
16-18 have c jump to top rank in the votes one at a time until
we find the pivotal voterM for outcome c. Similarly to lemma
19 M ’s top choice in profile ❻ must win. On the other hand

from 15 we also know that b wins in profile ❼. Hence M ≤ P .
But a symmetric argument (beginning with M then finding
P ) shows P ≤M . Hence P = M and voter P is pivotal with
respect to c as well as b. So not only do we know either k or
b wins in our initial arbitrary profile, we also know it must be
k or c. Since c 6= b that forces it to be k.

Finally, if k 6= b a similar argument shows P is pivotal for a as
well as c and that b wins. We conclude that P is a dictator:
P ’s top choice always wins. That proves theorem 4. Q.E.D.

7 Proofs of Smith-Young-Levenglick-

Hansson-Moulin-Perez theorems

We shall not prove all of these theorems; we shall instead
only prove the simplest among them and sketch most of the
remaining proofs.

Table 7.1 shows that no weighted positional scoring system
can elect a Condorcet-Winner whenever one exists.

#voters their vote
5 A > B > C
2 B > A > C
4 B > C > A
2 C > A > B

Figure 7.1. Nasty 13-voter example. A is the unique
Condorcet-Winner. However, the total numbers of (top-
ranked, mid-ranked, bottom-ranked) votes garnered are re-
spectively A : (5, 4, 4), B : (6, 5, 2), and C : (2, 4, 7) so that
in any weighted-positional score-sum system, no matter what
weights S1 ≥ S2 ≥ S3 are employed (provided not all Sk are
equal), B would be the unique winner. N

Hansson’s theorem 8 has a particularly simple standalone
proof. Suppose for a contradiction that a separable Con-
dorcet (≥ 3)-candidate voting system exists. Let ψ be a V -
vote-profile in which no Condorcet-Winner exists and let the
election winner-set for ψ (or for 2ψ) contain candidate A.
Since A is not a Condorcet-Winner there exists another can-
didate B who would be preferred to A if all other candidates
were ignored, say by VBA votes. (And suppose we choose B
to maximize VBA.) Define a new profile φ on 2V +VBA votes
such that V + VBA votes have preference order A > B > . . .
while V votes have preference order B > A > . . . . Evidently
A is a Condorcet-Winner for φ. Hence by separability ψ + φ
and 2ψ+ φ both have winner A. But by construction 2ψ+ φ
has Condorcet-Winner B, a contradiction. Q.E.D.

We omit the proof of Smith and Young’s theorem 7 that a
symmetric and separable voting system whose output is the
name of a winner (or the names of several unordered winners)
must be a composed weighted positional system. Essentially,
its idea is to investigate convex sets in the N !-dimensional
space of rational numbers. The set of permissible counts of
each of the N ! possible types of votes such that candidate A
wins, is evidently such a set if we have a symmetric and sepa-
rable voting system. Then it is realized that these sets really
are only N2-dimensional and must arise from a basis that is
the N ×N permutation matrices. Then it is further realized
that they must only be N -dimensional polytopal cones and
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must be defined by inequalities among a single linear real-
valued “scoring function.”

J.H.Smith’s proof that any elimination system whose rounds
are based on a weighted-positional scoring system, is non-
monotonic, is in figure 7.2.

#voters their vote
8 A > B > C
8 C > A > B
8 B > C > A
3 A > C > B
3 B > A > C → A > B > C
3 C > B > A → C > A > B
2 A > B > C
1 A > C > B
1 B > A > C

Figure 7.2. J.H.Smith’s 37-voter nonmonotonicity example
[14]. In any elimination system whose rounds are based on a
nontrivial weighted-positional scoring system, C will be elim-
inated in the first round and then A will win 22 to 15. But
after 6 voters of two kinds make the changes in A’s favor indi-
cated by the arrows, then B gets eliminated in the first round
whereupon C wins 19 to 18. (Evidently only one of the two
kinds of vote need to change to stop A from winning, either in
this example, or in the situation after the first kind change.)
N

Although Smith [14] did not mention it, we remark that fur-
ther, if the round-eliminations are based on any system that
eliminates Condorcet Losers then this same counterexample
works. (This strengthens his theorem.)

Finally, we present a marvelous 1-page proof by Markus
Schulze,14 of (a somewhat altered version of) the Moulin-
Perez theorem 11 that voting systems that uniquely elect
Condorcet-Winners must exhibit no-show paradoxes.

Theorem 20 (Our form of Moulin-Perez theorem).
It is impossible for any (possibly nondeterministic) single-
winner election method (with preference orderings as votes)
with (≥ 4) candidates to satisfy both
Condorcet: if there is a Condorcet-Winner, he must be

elected uniquely and with certainty,
(Strong) participation: adding votes with A ranked top

cannot decrease the probability A wins, and adding votes
with B ranked below all voters who win with positive
probability, cannot increase the probability that B wins.

(Note: further, the extension to our proof will produce “max-
imally dramatic” no-show paradoxes requiring only a single
no-show voter.)
Proof (Schulze). Suppose such a method existed. Then
starting with the 15-voter scenario in table 7.3, we shall in six
further steps derive a contradiction.

#voters their vote
3 A > D > B > C
3 A > D > C > B
4 B > C > A > D
5 D > B > C > A

Figure 7.3. Situation 1. N

Situation 2: Suppose B was elected with positive probabil-
ity in situation 1. When we add 6 B > D > A > C voters
B must be elected with positive probability (by participation)
and D must be elected with certainty according to Condorcet.
Therefore, B couldn’t be elected with positive probability in
situation 1.

Situation 3: Suppose C was elected with positive probabil-
ity in situation 1. When we add 8 C > B > A > D voters
C must be elected with positive probability (by participation)
and B must be elected with certainty according to Condorcet.
Therefore, C couldn’t be elected with positive probability in
situation 1.

Situation 4: Suppose D was elected with positive probabil-
ity in situation 1. When we add 4 D > A > B > C voters
D must be elected with positive probability (by participation)
and A must be elected with certainty according to Condorcet.
Therefore, D couldn’t be elected with positive probability in
situation 1.

Situation 5: We conclude from situations 2-4 that A must
be elected with certainty in situation 1. When we add 4
C > A > B > D voters, B and D must be elected each
with zero probability (by participation).

Situation 6: Suppose A was elected with positive probabil-
ity in situation 5. When we add 6 A > C > B > D voters
A must be elected with positive probability (by participation)
and C must be elected with certainty according to Condorcet.
Therefore, A couldn’t be elected with positive probability in
situation 5.

Situation 7: Suppose C was elected with positive probabil-
ity in situation 5. When we add 4 C > B > A > D voters
C must be elected with positive probability (by participation)
and B must be elected with certainty according to Condorcet.
Therefore, C couldn’t be elected with positive probability in
situation 5. Q.E.D.

Extension: In the scenarios in our proof with k identical
no-show voters, we can – by adding those voters one at a
time until the first one that changes the winner – produce a
“no-show paradox” scenario with only a single no-show voter.
Q.E.D.

Remark: Theorem 20’s requirement that there be ≥ 4 can-
didates is essential because Condorcet’s own “least reversal”
voting system satisfies the conditions of the theorem in the
3 -candidate case. That is because Perez ([10] p.613) trivially
showed by computing the change in the pairwise-preference-
count matrix that the Simpson-Kramer minmax voting sys-
tem is immune to single voter15 “strong” no-show paradoxes
of both the “positive” type where that voter, by abstaining
from casting his honest vote top-ranking A, prevents A’s vic-
tory, and the “negative” type where that voter, by casting
his honest vote bottom-ranking B, causes B to win – but
no other voting system known to him is immune to these
both. Now Condorcet’s system (as well as Tideman “ranked
pairs,” Heitzig “River,” Schulze “beatpath” etc.) is equivalent
to Simpson-Kramer in the 3-candidate case. (Also, although
Simpson-Kramer is vulnerable to “weak” no-show paradoxes,

14And included with his permission.
15Or by induction, any number of copies of that voter.
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it is easy to see that they cannot happen in the 3-candidate
case; hence all no-show paradoxes are impossible.)

8 Condorcet implies “favorite be-

trayal”

Theorem 21 (Condorcet implies “favorite betrayal”).
Consider voting systems in which votes are rank-orderings of
the candidates (optionally permitting equality-rankings) and
in which

1. Condorcet winners are always elected when they exist
2. In a 3-candidate election without a Condorcet winner,

the candidate suffering only one pairwise defeat, and
among these the candidate suffering the weakest such
defeat, is always elected.

We claim that in any such voting system, voting in a manner
dishonestly ranking one’s favorite below top, can be strategi-
cally uniquely optimal.

Proof: The proof if ranking-equalities is permitted is in table
8.1,16 and if they are not permitted see the election in table
8.2. Q.E.D.

#voters their vote
2 A > B > C
3 C > A > B
4 C = B > A
2 A > B > C

Figure 8.1. Defeats are A > B by 7:4, B > C by 4:3, and
C > A by 7:4. There is an A > B > C > A Condorcet cycle
in which B > C is the weakest defeat (“weakest”measured by
either “winning votes” or by “margins”), so that C is elected.

Notice that the two A > B > C voters shown on the bottom
line of the table can turn the“lesser evil”B into the Condorcet
Winner by “betraying” their favorite “third party” candidate
A and voting B > A > C or B > A = C or B > C > A.

However, changing their vote instead to A = B > C or
A > B = C or A = C > B or A > C > B or A > B > C or
B = C > A or A = B = C (or C > B > A or C > A > B
or C > A = B) does not suffice: then C still uniquely wins
in all cases. Hence favorite-betrayal of A was strategically
necessary. N

#voters their vote
8 B > C > A
6 C > A > B
5 A > B > C

Figure 8.2. Favorite Betrayal, or how dishonest ex-
aggeration can pay. In this 19-voter example there is a
Condorcet cycle, and the winner is B under any of a large
number of voting systems.

But if the 6 C > A > B voters insincerely switch to
A > C > B (“betraying their favorite” C) then A becomes
the winner under a large number of (the same) voting sys-
tems and – more to the point for our purposes – becomes the

Condorcet-winner. In the view of these voters, this is a better
election result, i.e. the betrayal worked, and one may verify
voting without betraying C doesn’t work. N

9 Final note

It is perhaps worth re-iterating that most of these impossi-
bility theorems do not apply, or only apply in weakened form
to, voting systems in which votes are not preference orderings,
but instead are real vectors; and to the extent that is true,
these impossibility theorems may be though of as indictments
of preference-ranking-based voting systems and as reasons to
prefer vector votes.
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