Electoral Redistricting with Moment of
Inertia and Diminishing Halves Models

We propose and evaluate two methods for determining congressional districts. The
models are defined so that they only explicitly contain criteria for population equality and
compactness, but we show through a detailed analysis that other fairness criteria such as
contiguity and city integrity are present as emergent properties.

In the Moment of Inertia Method, districts are created such that populations are within
2% of the mean district size and the sum of the squares of distances between each census
tract weighted by population size and the district’s centroid is minimized. We present a
mathematical argument that this model will result in districts that are convex.

In the Diminishing Halves Method, the state is recursively divided in half by a line that
is perpendicular to the statistical best-fit line describing the region’s census tracts.

With the help of a Perl script we are able to parse US Census 2000 data, extracting the
latitude, longitude, and population count of each census tract. By parsing data at the census
tract level instead of the county level, we are able to run our model with high precision. We
run our algorithms on census data from the states of New York as well as Arizona (small),
Illinois (medium), and Texas (large).

We compare the results of our methods to each other and to the current districts in
the respective states. Both our algorithms return districts that are not only contiguous but
also convex, aside from borders where the state itself is nonconvex. We superimpose city
locations on the district maps to check for community integrity. We evaluate our proposed
districts with the Inverse Roeck Test, the Length-Width Test, and the Schwartzberg Test to
obtain quantitative measures of compactness.

The initial conditions do not greatly affect the Moment of Inertia Method. We run
additional variants of the Diminishing Halves Method and find that they do not improve
over our normal method.

Based on our results, we would like to recommend to states that

District shapes should be convex.

City boundaries and contiguity can be emergent properties, not explicit considerations.

A good algorithm can handle states of different sizes.

e We recommend our Moment of Inertia Method, as it consistently performed the best.
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1 Problem Restatement

Concerns over fair district apportionment have existed for over two hundred years. Given
a map and a population distribution, we wish to divide the region into a number of
districts with equivalent population size and characteristics such as geographic compactness.
The specific factors that should be taken into account in enacting a fair apportionment
are themselves unclear and before proposing an algorithm we must first determine what
constitutes a fair division of congressional districts. Once the objective function is
determined, the geography problem now turns into an optimization problem and we must

determine an efficient and robust way to compute district divisions.

2 Assumptions and Assumption Justifications

About States

e The Earth’s Geometry is Euclidean. We assume that no state is so big that the
spherical shape of the earth significantly distorts distance calculations obtained from

Euclidean geometry.

e County lines are not inherently more significant than other boundaries.
Some states attempt to not split counties when determining districts, and other states
give only slight consideration to county lines. Since several of New York’s counties are
too big to use as discrete units for dividing representatives and representing county
boundaries in the model is difficult, we choose instead to use the census tract as our

base unit of population.

e Deviation from the current district division is not a major factor. The criteria
for what constitutes a fair division will be discussed in further detail in Section 4. We
assume that there are no inherent transitional problems with switching to a completely

new division if the new division can be shown to have a higher degree of fairness.
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e District populations are allowed to vary by as much as 2% from the average

value. This is fairly standard assumption to simplify modeling. In particular, we use
the 2% allowance to get around problems with our data on populations not being fine
enough. The error could be made smaller if census blocks were used instead of census

tracts.

About Census Data

3

e Census data are always accurate. There is no other reasonable data set upon

which to base district apportionment, so this is a fair assumption.

Census Tracts individually satisfy fair apportionment criteria. We assume
that no US Census Tract is gerrymandered. There is no political benefit to

gerrymandering a census tract.

All population in a Census Tract can be approximated as located at a single
point. For data input to our program, we read in latitude and longitude locations for
each census tract. We assume that the entire population of a census tract is located
at this point. Since we have 6398 Census Tracts for New York, none of which have
more than 4% of the population for a congressional district (and most of which are

considerably smaller), this does not provide a very severe discretization problem.

Literature Review

The problem of gerrymandering has attracted scholarly attention for decades. Before

introducing our own model, we first provide a very brief overview of documented attempts

to apportion congressional districts with computers.

Attempts to assign districts with computers began in the 1960’s and 1970’s with models

such as Hess, Weaver, et al. [§], Nagel [10], and Garfinkel and Nemhauser [7]. These methods
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typically represent population as a series of weighted (x,y) coordinates and attempt to draw
equal-population districts based on rules of compactness and contiguity. The methods used
for determining compactness vary slightly, and a collection of compactness metrics is reviewed
in Young [16]. Resources were very limited in this era, and the Garfinkel and Nemhauser
paper even reports being unable to compute a 55-county state. For a more detailed review
of early papers see Williams [15].

It has been shown that the many versions of the redistricting problem are NP-hard [I].
Modern papers have attempted techniques such as graph theory [9], genetic algorithms [2],
statistical physics [3], and Voronoi diagrams [6]. There are also papers such as Cirincione et
al. [4] which are intellectual and stylistic descendants of the old papers running with modern
computer resources that enable finer population blocks and tighter convergence criteria.

We developed the most intuitive criteria we could think of and came up with a moment of
inertia model that winds up being similar in formulation to the method of Hess, Weaver, et
al. [8]. However, there are a few differences in the optimization phase of the model between
our implementation and Hess’s implementation, discussed in further detail in Section [5.5]
Our model also has access to much faster computational resources than the early models

did, so we believe that our analysis will still be very informative.

4 Criteria for Fair Districting

Before we begin discussing an algorithm for dividing districts, we must first determine
our objective function. Determining a fair objective function is of utmost importance, for
otherwise computers could be used by malicious politicians to disguise gerrymandering rather
than preventing it.

In this section, we list several factors that can be considered in choosing how to divide
districts and we explain which ones we choose. Sections and [0] describe the specific

expressions of these criteria in our two models and their mathematical consequences.
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First we enumerate criteria used by previous researchers then we explain which criteria
we choose for our research. A quick survey of papers published in scholarly journals [3], [7],

[8], [9] reveals that the most essential characteristics in dividing districts are

o FEquality of population, which states that the population difference between two districts

can vary only by at most a certain number of people, usually on the order of 5%.
o Contiguity. Each district must be topologically simply connected.

o (Compactness. There are differing opinions on how to quantitatively define compact

(discussed in Section , but all agree that small wandering branches are bad.

A criterion which we will talk about but which does not appear to be emphasized in
the literature is that of convexity, a stronger form of contiguity. Convexity is a very strong
condition on a region. It requires that any two points in the region can be connected by
a straight line segment contained within the region. This disallows a number of things like
holes or extraneous arms that contribute to most poorly shaped districts. The worst case
for a convex region is a district containing sharp angles or that is very elongated.

Other more debatable criteria, examples of which are discussed further in Nagel [10] or

Williams [15], vary in their phrasing but all serve one of two purposes:

e Targeted homogeneity or heterogeneity. Nagel’s paper explicitly expresses a desire to
use predicted voting data to create “safe districts” and “swing districts” where the
outcomes of elections are more predictable or less predictable, respectively. The stated
reasons for this involve balancing the state’s districts so that some parts of a state
have experienced candidates who are stable to long term change and other parts more
responsive. Other papers discuss clustering groups based on race, economic status,
age, or other demographic data into a district where statewide minorities have a local

majority.
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e Similarity to boundaries or precedent. It seems intuitive that whenever possible people
in the same city should have the same representative. Likewise, it can be viewed
as unfair to representatives if the set of people they are representing changes too
quickly. It also makes sense for districts to follow rivers, lakes, mountains, and other
natural boundaries where appropriate. Usually, boundary of precedent objectives are

accomplished by keeping county boundaries intact whenever possible.

In deciding which criterion we wish to incorporate in our model, we use the guiding
principle that the set of explicitly specified criteria for the model should be as
minimalist as possible so that more complicated measures of good districting come as
emergent properties rather than objectives that we arbitrarily forced the computer to
accomplish.

In the field of computer security, it is frequently stated that security and functionality are
competing goals. In an effort to make software programs have more functions, opportunities
arise for malicious users to exploit vulnerabilities. Analogously, the core set of criteria and
the optional set of criteria listed above are in conflict with each other. Additionally, if we
start to consider criteria that involve complicated objectives, politicians could be able to
gerrymander their state by tweaking the parameters of the objective function. Although
one could argue that the mathematical districting problem is made more complicated and
thus more interesting by the addition of extra objectives, the end result is a more easily
exploitable system that is not guaranteed to actually produce better results. We will explain
why we choose not to include the two optional criteria listed above.

First, we do not consider targeted homogeneity or heterogeneity criteria because we
consider it highly unethical to directly order a computer program to draw districts that
benefit a particular candidate or party, even if the stated reasons appear well-intentioned.
The goal of computer assignment of districts is to eliminate all manipulations of this form,
so including criteria of this form in the objective function is unacceptable.

Secondly, although the use of existing county or natural boundaries might work well for
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small states with a high ratio of counties to congressional districts, the county borders of New
York are ill-suited for this purpose. New York has only 62 counties but 29 representatives.
Making the compromise that we should follow county borders whenever possible but split
counties where reasonable has the problems that it involves much more work in pre-processing
data to incorporate county information and that it still places pressure on creating non-
compact districts.

We now formulate a methodology that involves only two criteria: we will divide the
state into census tracts and assign each census tract to a congressional district while giving
explicit consideration based only upon equality of population and compactness.
We will examine and comment on the other measures retrospectively after first running a

program that is blind to them.

5 Moment of Inertia Method

Our flagship model, which we believe is the most intuitive way to apportion districts, seeks

to minimize the sum of the moments of inertia of the districts.

5.1 Description

As stated in Section [ we need to consider district criteria based on equality of population
and compactness.

By equality of population, we mean that no district’s population should differ by more
than 2% from the mean population per district in the state. There does not appear to be any
clear court-mandated tolerance for population difference [15], so we simply pick a reasonable
number that is within the feasibility of computation based on the discretized units of census
tracts. We could tighten the bounds further if we were willing to tolerate an increase in
computational time and use smaller divisions such as census block groups.

There are many differing opinions about how to define compactness. Young [16] lists
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eight different measures of compactness that can be considered, none of which is perfect.
The most intuitive definition of compactness, which occurred to our team before reading
any of the literature, is to minimize the expected squared distance between all pairs of two
people in any given district. This has the nice physical interpretation of being analogous
to the moment of inertia (at least if the distance used is Euclidean). Some papers such
as Galvao et al [6] use the variant of minimizing inertia based on the travel-time distance
(adjusted for roads, lakes, etc) rather than absolute distance, but we choose to consider only
absolute distance between points because 1) absolute distance data is easier to find and 2)
if district borders are affected by travel-time, then it is technically possible to gerrymander

by promoting the construction of strategic roads or bridges.

5.2 Response to Prior Literature Commentary

Our moment of inertia measure is one of the possible measures of compactness that Young
[16] considers. He finds two problems with it: that it gives good ratings to “misshapen
districts so long as they meander within a confined area” and that there is a significant
bias based on the size of the district (the moment of inertia is proportional to the square of
district size).

In response to the first of these complaints, we will show in that as an emergent
property of our optimization, we will get that all districts are not only contiguous, but
also convex (except where they meet non-convex state lines). In other words, we will draw
districts where it must be possible to travel between any two points in a district in a straight
line without leaving the district. This eliminates the first of Young’s concerns since the
cited examples of misshapen districts such as spirals that cause moment of inertia to predict
poorly all have the property of being non-convex.

The second of Young’s concerns about the moment of inertia measure being biased
towards optimizing large districts is perhaps more serious. If the complaint is true, then

the moment of inertia compactness criteria has to potential to lead to stretched or awkward
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urban districts being formed in order to smooth out larger neighboring districts. In our

experimental runs, this problem was not severe.

5.3 Mathematical Interpretation

In this subsection, we describe the mathematics of the moment of inertia criterion and its
objective function. We derive an important result: any local minimum of our objective
function should consist of a collection of convex districts (excepting places where the state
border is nonconvex).

We will use the average squared distance between two people in the same district as a
measure of the misshapenness of that district. Although we could apply this measure using
any distance function, things become significantly nicer when we assume a Euclidean metric.
In the discussion below let E[z] and Var [z] represent the expectation and variance of a
random variable z, respectively. If we let the coordinates of two randomly chosen people in
the district be (z1,y1) and (z2,y2), and let the coordinates of an arbitrary randomly chosen

person be (z,y), then our measure is

E[(z1 = 22)* + (y1 — 4)°] = E [27] = 2E [1125] + E [23] + E [y7] — 2E [y132] + E [y3]
=2E [2°] — 2B [2]* + 2E [y*] — 2E[y)”

= 2Var [z] + 2Var [y] .

Using the definition and standard properties about variance of a random variable this is

equivalent to

2E U(l’,y) - (E> g)'ﬂ

where (7,7) is the center of mass of people in the district. Furthermore, this quantity is
increased if (Z,7) is replaced by another point. Note that this quantity is twice the moment
of inertia of the district.

We assume that there are NV people in the state that need to be divided into k districts.
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Our objective is equivalent to partitioning our people into k sets S, ..., .S, of equal size, and

picking k points in the plane pq,..., py in order to minimize
k
> D dp)
=1 xGSZ»

where d(a,b) denotes Euclidean distance between points. Taking the points p; to be fixed,
we find that even if we allow ourselves to split a person between districts (which we do not
do in our the actual program), we can recast this as a linear programming problem. We let

m,; be the proportion of x that is in district . We then have that

since we need to have non-negative proportions. Since each person must be wholly divided

we have that for any =z,

Lastly, the restriction of district sizes says that for any ¢ that

Y= (3)

where N is the total population of the state. The objective function is
Z My id(, pz‘)Z- (4)

By linear programming duality, at the point which minimizes our objective (a global
minimum exists since 0 < m,; < 1 implying that our domain is compact), our objective
function can be written as a positive linear combination of the tightly satisfied constraints
in the solution. For this linear combination, let C; be the coefficient of Equation [3| D, the

coefficient of Equation , and E, ; the coefficient of Equation . We have that C; and D, are
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arbitrary, but that E,; > 0 with equality unless m,; = 0. Comparing the m,; coefficients

of our objective and this linear combination of constraints, we get that

Now we note that if m,; > 0, that F,; = 0 and hence that E,; < E,;. In particular,
person z can only be in the district ¢ for which E,; = d(z,p;)? — C; — D, is minimal.
Equivalently, they are in the district ¢ for which d(z,p;)*> — C; is minimal. Therefore, for
the optimal solution, there are numbers C; and the i*" district is the set of people {x :
d(x,p;)? — C; is minimized for j = i}. Furthermore, these regions are uniquely defined up
to exchanging people at the boundaries.

The next thing to note is that the i district is defined by the equations

d(l’,pi)Q — Oz S d(l‘,pj>2 — Oj. (6)

Rotating and translating the problem so that p; = (0,0) and p; = (a,0), and letting = =

(z,y), Equation [f] reduces to

2?2+ 9y - Ci < (x—a)’ +y* - Cj, (7)

or

2ax S a2 + CZ — Cj. (8)

Therefore, each district is defined by a number of linear inequalities. Hence we have now
shown that our measure has the nice property that the optimal districts with fixed p;
are convex. Therefore any local minimum of our objective function should consist of a

partition into convex regions.
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5.4 Computational Complexity

It would be nice to be able to compute the configuration with the global optimum of our
Moment of Inertia objective function, but we probably cannot do so in general. Adopting

the linear program from Section above, we wish to minimize

Z Var [X;]

where X is a randomly chosen person in district 7. This is equal to

2

k L, R
2|y el TP -

i

j : —>
mzﬂ- s
T

Notice that the term

D2 mail TP =D TPy mai =) |7
A T T [ x

is a constant. Hence we wish to maximize the sum of the squares of the magnitudes of the
centers of mass (% Yo mm?) of the districts ¢. This is an instance of quadratic programming
where we try to maximize a positive semi-definite objective function. Since general quadratic
programming is NP-hard, it seems quite likely that it is not easy to find a global maximum
for our problem. On the other hand, we have shown that even local maxima have many of the
properties that we want, namely convexity. Furthermore these local maxima are significantly
easier to find. At very least we can find them from the quadratic programming formulation
using the simplex method.

Unfortunately, the quadratic programming approach leads to an optimization involving
kN variables. This can be quite large. Instead we consider the formulation where to have a
local maximum we need to pick p; and C; as in Section [4| (thus defining our districts by “z

goes in the district 7 for which d(z, p;)* — C; is minimal”), in such a way that the districts
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have the correct size and so that p; is the center of mass of the i*" district. This will imply
that we have a local maximum of the quadratic program since near our solution, up to first

order, our objective function is

C= ) maid(z, pi)’ (9)

for some constant C. Since we have a global maximum of [9) moving a small amount in any
direction within our constraint does not decrease our objective to first order. Furthermore,
since our objective is positive semi-definite, this implies that we are at a local maximum.
This formulation is much better since we are now left with only 3k degrees of freedom, where

k is the number of districts.

5.5 Comparison to Hess, Weaver, et al.

We note that this procedure is very similar to that used by Hess, et. al. in 1965 in [§].
They too were attempting the minimize the summed moments of inertia of their districts.
They also converged on their solution via an iterative technique that alternated between
finding the best districts for given centers and finding the best centers for given districts.
Our approach differs from theirs in two main points, the method of finding new districts for
given centers, and the general philosophy towards achieving exact population equality. Both
of these differences seem to stem from the fact that we have both finer data (Hess used 650
enumeration districts for dividing Delaware into 35 state House and 17 state Senate seats,
whereas we have on the order of 10 times more census tracts, specific numbers given in Table
in Section [7)) and more computational power than Hess did.

We are unable to determine exactly what algorithm Hess used to determine optimal
districts with given centers other than that he claimed to use a “transportation algorithm”.
It is possible that he used the linear programming formulation from Section [4] (possibly using
a min-cost-matching formulation). We had many more census tracts to work with and used

an algorithm better adjusted to this problem (see Section .
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We also had different perspectives about what to do to even out population. Our
fundamental units were sufficiently small that we could just run our algorithm adjusting
district sizes in a natural way until all districts were within 2% of the desired population.
(In order to speed up computation, in the early iterations of our algorithm, we allowed errors
of as much as 20% then gradually tighten the tolerance.) Hess used a solution method that
divided his fundamental units of population between districts and later had perform post-
iteration checks and alterations so that units were no longer split and population equality
still worked out. As Hess points out this readjustment has the potential to increase moments

of inertia and could theoretically lead to a failure to converge.

6 Diminishing Halves Method

In order to find an alternative solution against which to compare our moment of inertia

algorithm, we use the Method of Diminishing Halves proposed by Forest in [5].

6.1 Definition

The Diminishing Halves Method splits the state up into two nearly-equal sized districts and
recurse on each of the two halves. The idea is to split up in such a way that the resulting
halves are relatively compact. Forrest does not specify exactly how the state must be split
into two halves at each step, but rather argues that the method for splitting the state in
two could be adjusted based on preferences for keeping counties intact or other goals. We
need to choose a methodology for finding a line that would split the state into two compact
halves.

Suppose we run a least squares regression on the latitude and longitude coordinates of
the state’s census tracts. Then we would expect that dividing along this best-fit line would
be a bad idea since it would probably cut major cities in half or cover a long distance across

the state. If we take a line perpendicular to the best-fit line, then hopefully we will get the
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opposite properties. Therefore, we will divide the state at each stage with a line whose slope
is perpendicular to the best-fit line of the census tracts in the state. We are not aware of

anyone in the literature who has used this specific criterion before.

6.2 Mathematical Interpretation

The best fit line is an approximation of the shape of the state. We compute best fit by
attempting to minimize the mean squared Euclidean distance from the line. It is not difficult
to see that for any given slope the best possible line with that slope contains the center of

mass. Therefore the best fit line is of the form
(X — X)sinf+ (Y —Y)cosf = 0. (10)

Notice that the left hand side of [10] is the distance of a point (X,Y") from the line. Hence

we wish to minimize

E [((X — X)sinf + (Y —Y)cos6) 2} = sin® #Var [X]+2sin 6 cos 0Cov (X, Y )+cos? GVar [Y].
(11)

This value is minimized when
sin 0 cos (Var [X] — Var [Y]) + (cos® § — sin?#)Cov (X,Y) = 0 (12)

or when
—2Cov (X,Y)

tan(26) = Var [X] — Var [Y] (13)

Now that we have computed the proper slope of line, in order to divide the population

into k£ districts we divide the state by a line perpendicular to the best fit that splits the

population in ratio LSJ : (%W When we need to divide into an odd and an even half, ceiling

half goes to the southernmost side.
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7 Experimental Setup

7.1 Extraction of US Census Data

We used a Perl script (see Appendix B) to extract the census data from US Census 2000
Summary File 1 [12] at the census tract level. For the state of New York, we detected
6661 tracts in the database, 6398 of which had non-zero population. We extracted the
population along with the latitude and longitude of a point from each district. The districts
had populations varying from 0 to 24523 with a median of 2518.

We used this data to model the population density of New York by assuming that the
entire population of each tract was located at the coordinates given. We adjusted for the
fact that one degree of latitude and one degree of longitude represent different lengths on
the earth’s surface by having our program interally multiply all longitudes by the cosine of
the average latitude.

After modeling New York, we also used our Perl script to extract data for the states
of Arizona (small — 8 congressional representatives), Illinois (medium — 19 representatives),
and Texas (large — 32 representatives). Table (1] lists the states we tested, their populations,

number of congressional districts, and number of non-empty census tracts.

State | Population Number of Districts Non-empty Census Tracts
TX | 20,851,820 32 7530
NY | 18,976,457 29 6398
IL | 12,419,293 19 8078
AZ | 5,130,632 8 1934

Table 1: Summary of Census Data

7.2 Implementation in C++

Using our data, we used a C+-+ program to compute an approximate local minimum of

our Moment of Inertia objective function. We do so without splitting census tracts between
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districts, and this discretization requires us to allow a little lenience about the exact sizes of
our districts (we allow them to vary from the mean by as much as 2%).

We attempt to converge to a local optimum via two steps. First we pick guesses for the
points p;. We then numerically solve for the C; that make the district sizes correct, giving us
some potential districts. We allow a variation of 2% from the mean, beginning with a 20%
allowable deviation in the first few iterations and tightening the constraint on subsequent
iterations. We then pick the center of mass of the new districts as new values of p;, and
repeat for as long as necessary. It should be noted that each step of this procedure decreases
the quantity in Equation This is because our two steps consist of finding the optimal
districts for given p; and finding the optimal p; for given districts. We found the correct
values of C; by alternatively increasing the smallest district and decreasing the largest one.
When this adjustment overshot the necessary value we halved the step size for that district,
and when it overshot by too much, we reversed the change. We found that for New York we
were able to converge to our final districts in a couple of minutes on a laptop with a 1.42GHz
(G4 processor.

After determining our districts, we were able to output them into a postscript file where
we displayed the census tracts color-coded by district so that one could visually determine
compactness. Finally, for these districts we computed some of the compactness measures
discussed in [I6] in order to get objective measures of their compactness.

We also created a C++ program to implement the Diminishing Halves method (see

Section [0]).

7.3 Further Analysis in Mathematica

The Inverse Roeck Test, Length-Width Test, and Schwartzberg Test were used on the regions
generated by the C++ program to verify compactness of the proposed districts. These three
tests were implemented in Mathematica with aid of the Convex Hull and Polygon Area

notebooks from the Wolfram Mathworld website [13] [14].
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8 Measures of Compactness

We need an objective method for determining how successful our program is at creating
compact districts. In [I6], Young gave several measures for the compactness of a region. We
will use some of these to help compare our districts with those produced by other methods.
Since our algorithms generate convex districts except in places where the state border is
nonconvex, we perform all of these results on the convex hull of our districts so that the test

results are not unfairly affected by awkwardly shaped state borders.

8.1 Definitions

The Inverse Roeck Test. Let C' be the smallest circle containing the region, R. We

Area(C)

Arca(R) " This is a number bigger than 1 with smaller numbers corresponding to

measure
more compact regions. This is the reciprocal of the Roeck test as phrased in Young. We
have altered it so that all of our measures in this section have smaller numbers corresponding
to more compact regions.

Length-Width Test. Inscribe the region in the rectangle with largest length-to-width
ratio. We compute the ratio of length to width of this rectangle. This will be a number more
than 1, with numbers closer to 1 corresponding to more compact regions.

The Schwartzberg Test. We compute the perimeter of the region divided by the
square root of 4r times its area (we use different wording from Young, but this test is
mathematically equivalent). By the isoperimetric inequality, this is at least 1 with a value

of 1 if and only if the region is a disk. This test considers a region compact if the value is

close to 1.

8.2 Calculation in Mathematica

The Inverse Roeck Test, Length-Width Test, and Schwartzberg Test were used on the regions

generated by the C++4 program to verify compactness of the proposed districts. These three
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tests were implemented in Mathematica with aid of the Convex Hull and Polygon Area
notebooks from the Wolfram Mathworld website [13] [14].

First we assumed that the regions were defined by the convex hull of the census tracts
that they contain. This is reasonable assuming the districts are convex, which they are
except where they meet non-convex state boundaries. We determined the bounding polygon
by taking the convex hull of the census tracts contained within each district.

For the Roeck test, we computed the area of the polygon by triangulating it. We found
the circumradius by noting that if every triple of vertices can be inscribed in a disk of radius
R, then the entire polygon can be fit into such a disk. This is because a set of points all fit
in a disk of radius R centered at p if and only if the disks of radius R about these points
intersect at p. Let D; be the disk of radius R centered around the i** point. If every triple of
points can be covered by the same disk, then any three of the D;’s intersect. Therefore, by
Helly’s theorem all the disks intersect at some point, and hence the disk of radius R at this
point covers the entire polygon. Hence we need for any three points the radius of the disk
needed to contain them all. This is either half the length of the longest side if the triangle
formed is obtuse, or the circumradius otherwise.

The Length-Width test is computed as follows. We pick potential orientations for our
rectangle in increments of /100 radians. At each increment we project our points parallel
and perpendicular to a line with that orientation. The extremal projections will determine
the bounding sides of our rectangle. We chose the value from the orientation that yields the
largest length-to-width ratio.

Calculating the Schwartzberg test is straightforward. We compute the area of the polygon

: : : . Perimeter
and its perimeter, and the resulting answer is Nt
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9 Results for New York

Figure 1| presents maps of the Moment of Inertia Method districts, the districts from the
Diminishing Halves Method, and the actual current congressional districts of New York. Full
page versions of each map are printed in Appendix A.

Our program’s raw output plots the latitude and longitude coordinates of each census
tract using a different color and symbol for each district. The state border and black
division lines have been added separately. There appears to be a slight color bleed across
the borderlines near crowded cities, but this is due to the plotting symbols having nonzero
width. Zooming in on our plot while the data is still in vector form (before rasterization)

shows that our districts are indeed convex.

9.1 Discussion of districts

One can see visually that both the Moment of Inertia and the Diminishing Halves Method
produce more compact looking results than the districts currently in place. Some of the
current New York districts legitimately try to respect county lines, but there are a few
egregious offenders such as Congressional Districts 2, 22, and 28, where the boundaries
conform to neither county lines nor good compactness. The current District 22 has a long
arm that connects Binghamton and Ithaca and the current District 28 hugs the border of
Lake Ontario in order to connect Rochester with Niagara Falls and the northern part of
Buffalo. Both of our methods allow Ithica and Binghamton to be in the same district, but
without stretching the district to the land west of Poughkeepsie. Buffalo and Rochester are
kept separate in both of our models.

Our model does not contain information about county lines, so we cannot evaluate its
ability to keep communities intact based on counties. However, by looking at regions where
the census tracts are clustered, we can see the location of cities on the map. Both of our

methods do a good job at keeping the major cities of New York intact (excepting the fact
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that it is difficult to evaluate the New York City area, which contains about half the state’s
population). The cities of Buffalo and Rochester are divided into at most two districts
in our methods, whereas they are divided into three under the current districting. The
Diminishing Halves method has a cleaner division for Rochester but the Moment of Inertia
Method handles Syracuse much better.

Both the Moment of Inertia and the Diminishing Halves methods produce districts with
linear boundaries. The Diminishing Halves Method has a tendency to create more sharp
corners and elongated districts, whereas the Moment of Inertia Method produced rounder
districts. The Diminishing Halves Method tends to regions that are almost all triangles and
quadrilaterals. Whenever three districts meet with the Diminishing Halves Method, odds
are that one of the angles is a 180° angle. The Moment of Inertia Method does a better
job of spreading out the angles of three intersecting regions more evenly, and thus results in
more pleasant district shapes.

The fact that the greater New York City area contains roughly one half of New York’s
population is convenient for the Diminishing Halves algorithm. However, the Diminishing
Halves algorithm does not deal very well with bodies of water. This led to the creation of
one noncontiguous district (given by pink squares in Figure ) Overall, the shapes given

by the Moment of Inertia Method look rounder and more appealing.

9.2 Compactness Measures

Table [2] lists the results of the compactness tests. All of the tests we use produce numbers

larger than 1 where smaller numbers correspond to more compact regions.

] Districts H Inverse Roeck Test \ Schwartzberg Test \ Length-Width Test ‘
NY (Moment of Inertia) 2.29 £ 0.66 1.64 £0.62 1.91£0.61
NY (Diminishing Halves) 2.50 £ 0.87 1.74 £0.69 1.91£0.77

Table 2: Mean and standard deviation for compactness measures of districts. Smaller
numbers correspond to more compact districts.
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According to these measures the moment of inertia method does marginally better than
the diminishing halves method. The diminishing halves numbers appear to be larger by
about a seventh of a standard deviation. This probably is caused by a few of the more
misshapen districts.

All three measures are calibrated so that the circle gives the perfect measurement of 1.
Roughly speaking, the Roeck test measures area density, the Length-Width test measures
skew in the most egregious direction, and the Schwartzberg test measures overall skewness.
Each of these measures tells us approximately the same thing: the Moment of Inertia Method
performs a little bit better than the Diminishing Halves Test.

It would be desirable to compare the numbers in Table [2| to the current US districts, but
there are two reasons why we cannot do this. First, the US Census 2000 census file that
we read from does not offer congressional district identification at the census tract level. In
order to compute compactness, we would need to choose a more fine population unit, so the
numbers would not be directly comparable to those in Table [2 Second, all of our districts
in both methods are convex except for where the state border is nonconvex. This is not
true for the current districts, and it is unclear how useful the compactness numbers are at

comparing convex districts to nonconvex districts.

10 Results for Other States

In order to test how well our algorithms performed on states with different sizes, we also
computed districts for the states of Arizona (small — 8 districts), Illinois (medium — 19
districts), and Texas (large — 32 districts). Figures give the maps of the Moment of
Inertia Method districts, those generated by the Diminishing Halves Method, and the current

congressional districts. Full page versions of each map are printed in Appendix A.
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10.1 Discussion of Districts

1. Arizona. Under the current division, Arizona District 2 is a very blatant case of

gerrymandering. Neither of our models produces a district this bad.

Unlike New York, which has half of its population in the corner of the state surrounding
New York City and the other half spread out somewhat evenly, Arizona contains two
cities with a large population (Tucson and the Phoenix area) and is sparsely populated
elsewhere. Such a high concentration of population causes the Diminishing Halves
Method to make unappealing triangular cuts that dangle into the far corners of the
state. Aside from District 2, even the current districts appear to look better on average
than the Diminishing Halves Method’s districts. The Moment of Inertia Method does

a much nicer job.

The case of Arizona suggests that the Moment of Inertia Method will have an easier
time adjusting to smaller states where there are fewer lines to draw and population

density can be concentrated in only one or two small regions.

2. Illinois. The current Illinois District 17 is strongly noncompact. Districts 11 and
15 also have suspicious tails that do not follow any county line. Both of our models
provide a fairer redistricting. The Moment of Inertia Method does unfortunately split
the cities of Bloomington and Decatur, but not any worse than they are split by the
current US district assignment. The Diminishing Halves Method does a better job
of keeping Bloomington and Decatur intact, but splits Springfield and the fringes of
Peoria, so there is a tradeoff. In the region surrounding the Chicago area, the Moment
of Inertia Method’s districts look much more organic than the stripes painted by the

Diminishing Halves Method, so we recommend the Moment of Inertia Method overall.

3. Texas. Texas is a large state comparable in population to New York. However, unlike

New York, Texas has its population distributed across several very large cities instead
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of primarily one. Houston, San Antonio, Dallas, and Austin are all large cities. The
Diminishing Halves Method has a difficult time dealing with all the large cities, and
draws too many thin awkward triangles. The Moment of Inertia Method cleanly divides
all the major cities into as few components as is reasonable and avoids filling the
southern part of Texas with thin districts the way that Texas Districts 15, 25, and 28

appear in the current plan.

Even though the size of Texas is comparable to New York, the Moment of Inertia
Method takes substantially longer to compute an answer. The computation runs
in a little under half an hour, presumably due to the fact that Texas has more
distinct population centers than New York. The computation time is still very
reasonable compared to the timescale of calculations in fields such as computational

fluid mechanics.

10.2 Compactness Measures

Table [3] lists the results of the compactness tests. All of the tests we use produce numbers

larger than 1 where smaller numbers correspond to more compact regions.

’ Districts H Inverse Roeck Test ‘ Schwartzberg Test ‘ Length-Width Test ‘
(Moment of Inertia) 2.04 £0.64 1.14 £0.09 1.72 £ 0.57

~ TX (Diminishing Halves) 2.76 = 1.66 1.27 4+ 0.20 230+ 1.73
(Moment of Inertia) 1.90 £0.36 1.28 £0.26 1.55£0.39

~ IL (Diminishing Halves) 2.49 £ 0.99 1.35£0.24 2.01 £ 0.96
(Moment of Inertia) 2.18 £ 0.56 1.17 £ 0.08 1.77 £ 0.51

~ AZ (Diminishing Halves) 2.69£0.91 1.29 £0.15 207x£0.79

Table 3: Mean and standard deviation for compactness measures of districts. Smaller
numbers correspond to more compact districts.

The Diminishing Halves algorithm produces consistently worse results by all three

measures, most of the individual data sets are still within the borderline of statistically
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significant plausibility.  Additionally, for these states the Diminishing Halves Method
produces results with extraordinarily high standard deviations, especially for the smaller
states. This fact suggests (and the maps seem to confirm) that the discrepancy is due
largely to a small number of very elongated districts produced by the Diminishing Halves
Method.

Given the evidence we have accumulated, we recommend the Moment of Inertia Method

over the Diminishing Halves Method.

11 Sensitivity to Parameters

As a test for robustness, we tweaked some of the parameters to the Moment of Inertia
Model to see if the results would be substantially impacted. Neither of these parameters
is relevant to the Diminishing Halves Method, which is deterministic aside from having to
choose which half of the state receives the [%J share and which half receives the ’—g-‘ share
of the population when dividing a region whose assigned number of representatives k is odd
(the Diminishing Halves Method currently assigns the larger division to the southernmost
half). We additionally tested variants of the Diminishing Halves Method to see if we could

improve the performance to be comparable to the Moment of Inertia Method.

11.1 Initial Condition

We ran the Moment of Inertia Model on each of the states with three different random seeds.
The results were almost identical each time. A very close inspection could reveal a small
number of borderline census tracts that were not always identically grouped, but the centers

of mass of the districts were in essentially the same location regardless of the initial seed.
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11.2 Population Equality Criterion

We ran the New York case of the Moment of Inertia Model using a 5% allowable deviation
from the mean in district population instead of a 2% allowable deviation. We observed no

significant change in the results.

11.3 Variants of the Diminishing Halves Method

We modified our criterion for determining the dividing line in the Diminishing Halves Method
to use a mass-weighted best-fit line instead of a best-fit line that was not weighted to account
for different census tracts containing different numbers of people. We ran this modified
method on New York, Arizona, and Illinois. We also tried a modification of the Diminishing
Halves method that alternately draws vertical and horizontal (longitude and latitude) lines
on the New York case. In all these modified cases, results were visibly much worse than
those generated with the method as described in Section [} The modified methods tended

to split cities into more districts than our normal method.

12 Strengths and Weaknesses

Strengths:

e Emergent behavior from simple criteria. We only specify criteria for population
equality and compactness. We satisfy contiguity and city integrity without explicitly

trying to do so.

e Simple, intuitive measure of complexity of districts. In the Moment of Inertia
Method, our measure of the non-compactness of a district is equivalent to its moment
of inertia. This gives us a model that is easy to understand and does not use any

arbitrary constants that could be fine-tuned to gerrymander districts.
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e Results in convex districts. In both models we produce districts that are guaranteed
to be convex, aside from where the state border is nonconvex. This provides a fairly

strong argument for the compactness of the resulting districts.

e Easily computable. Our final districting could be computed in a few minutes with

modest computational resources.

e Nice looking final districts. The districts resulting from our algorithm appear very

nice.

Weaknesses:

e No theoretical bounds on convergence time. We were unable to prove that our

algorithm converges in reasonable time, although it has done so in practice.

e Potential for elongated smaller districts. It is possible that some of the
smaller districts produced by the Moment of Inertia Method are stretched in order
to accommodate larger districts. The Diminishing Halves Method may not correctly

divide regions such as discs or squares that are not described well by a best fit line.

e Does not respect natural or cultural boundaries. Our algorithms do not take
natural or cultural boundaries into account. Doing so would have the advantage of not
having district boundaries crossing rivers, but could places pressure on making districts

noncompact and allows for loopholes that could be exploited by malicious politicians.

e Does not necessarily find the global optimum. Our Moment of Inertia algorithm
only finds a local minimum of our objective function. As far as we know finding the
global minimum is not computationally tractable. This leads potentially to some non-
determinism in the resulting districts, which could in turn allow gerrymandering, but

the amount is small.
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e Can only draw new districts, not determine if existing districts are
gerrymandered. The paper by Cirincione et al. [4] contained a pseudoconfidence
interval analysis where they used their model to predict whether South Carolina’s
1990 redistricting had been gerrymandered. We do not perform this analysis here.
The problems of analyzing existing districts for signs of gerrymandering and drawing

new districts are separate, but share many of the same concepts.

13 Conclusion

We have formulated and tested two methods for assigning congressional districts with a
computer. We have written a Perl script that allows us to easily obtain US Census data
from all of the census tracts in any state.

The Moment of Inertia Method searches for the answer that satisfies the intuitive criterion
that people within the same district should live as close to each other as possible. The fact
that variants of this method were among the first algorithms to be seen in the literature
testifies to the intuitiveness of this algorithm. With modern computer technology, we are
able to implement this method and obtain results that would not have been computationally
feasible in the 1960s and 1970s.

The Diminishing Halves Method uses the concept of recursively dividing the state in half,
which is very simple to explain to voters. In an attempt to avoid elongated districts and to cut
along sparsely populated areas rather than densely populated regions, our implementation of
the diminishing halves method chooses a dividing line perpendicular to the statistical best-fit
line of the latitude and longitude coordinates of the census tracts. We are not aware of any
location in the literature that uses this specific variant of the Diminishing Halves Method.

In reading the literature concerning computer districting schemes, one finds that a good
number of these papers contain warnings against putting too much trust in the supposed

unbiasedness of computer automation. Although no computer system is perfect, we do have
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some concrete recommendations that we would advise state officials to implement when

considering how to assign congressional districts in a fair manner:

e Processing data at the census tract level or finer is computationally feasible.
Our methods process data at the census tract level and run in a couple minutes, (slightly
longer for Texas). It would not be unreasonable to attempt data processing at the block

group level if it was felt that the extra resolution would be beneficial.

e Districts should be convex. Most models in the literature check only for contiguity.
However, even severely gerrymandered districts such as Arizona District 2 satisfy
contiguity. Requiring all districts to be convex greatly reduces the potential for political

abuse.

e City boundaries and contiguity of districts should be emergent properties,
not explicit considerations. Neither of our methods explicitly require districts
to be contiguous, yet the districts they generate are not only contiguous but convex.
Neither of our methods attempt to preserve city or county boundaries, yet the Moment
of Inertia Method does a good job at keeping cities together whenever reasonable. It
is probably sensible for smaller states with a high ratio of counties to congressional
representatives to be concerned with county boundaries, but for the state of New York
where there are comparatively few counties, looking at city integrity instead of county

integrity is a more reasonable idea.

e A good algorithm can handle states of different sizes. Algorithms that perform
well on large states might not necessarily yield good results when applied to a smaller
state with only one or two large cities. We have tested our algorithms on states of

different sizes and found that the Moment of Inertia Method behaves well in all cases.

¢ We recommend a moment of inertia compactness criterion. The Moment

of Inertia Method consistently produced more visually appealing districts than the
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Diminishing Halves Method. All of the additional compactness tests that we performed
came down in favor of the Moment of Inertia Method. The Moment of Inertia Method
does a better job at respecting city boundaries. It is possible that there is a variant
of the Diminishing Halves method that performs better, but in all of our tests the

Moment of Inertia Method was the strongest performer.
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