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We study the complexity of (approximate) winner determination under the Monroe and 
Chamberlin–Courant multiwinner voting rules, which determine the set of representatives 
by optimizing the total satisfaction or dissatisfaction of the voters with their representa-
tives. The total (dis)satisfaction is calculated either as the sum of individual (dis)satisfac-
tions in the utilitarian case or as the (dis)satisfaction of the worst off voter in the 
egalitarian case. We provide good approximation algorithms for the satisfaction-based 
utilitarian versions of the Monroe and Chamberlin–Courant rules, and inapproximability 
results for the dissatisfaction-based utilitarian versions of these rules and also for all 
egalitarian cases. Our algorithms are applicable and particularly appealing when voters 
submit truncated ballots. We provide experimental evaluation of the algorithms both on 
real-life preference-aggregation data and on synthetic preference data. These experiments 
show that our simple and fast algorithms can, in many cases, find near-perfect solutions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We study the complexity of (approximate) winner determination under the Monroe [40] and Chamberlin–Courant [13]
multiwinner voting rules, both of which aim to select a group of candidates that best represent the voters. Multiwinner elec-
tions are important both for human societies (e.g., in indirect democracies for electing committees of representatives such 
as parliaments) and for software multiagent systems (e.g., for recommendation systems [32,41]), and thus it is important to 
have good multiwinner rules and good algorithms for them. The Monroe and Chamberlin–Courant rules are particularly ap-
pealing because they create an explicit (and, in some sense, optimal) connection between the elected committee members 
and the voters; each voter knows her representative and each committee member knows to whom she is accountable.

We assume that m candidates participate in the election and that the society consists of n voters, each of whom rank 
the candidates, expressing their preferences about who they would like to see as their representative. When choosing a 
K -member committee, the Monroe and Chamberlin–Courant rules work as follows. For each voter these rules assign a 
single candidate as their representative, respecting the following constraints:

✩ This paper combines and extends results presented at IJCAI-2013 (paper titled “Fully Proportional Representation as Resource Allocation: 
Approximability Results”; the paper contained most of our theoretical results) and at AAMAS-2012 (paper titled “Achieving Fully Proportional Representation 
is Easy in Practice”; the paper contained most of our experimental results).
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(a) For the Monroe rule exactly K candidates are assigned to the voters and each selected candidate is assigned to about n
K

voters (see the definitions in Section 2 for details); for the Chamberlin–Courant rule the number of selected candidates 
is at most K and there is no restriction on the number of voters each committee member might represent. (The elected 
committee should take this into account in its operation, e.g., by means of weighted voting.)

(b) The candidates are selected and assigned to the voters optimally, either by minimizing the total (societal) dissatisfaction 
or by maximizing the total (societal) satisfaction (both views are equivalent in terms of optimality of solutions, but—as 
we will show—are different from the approximability perspective).

The total satisfaction is calculated on the basis of individual satisfactions of the agents. We assume that there is a function 
α: N → N such that α(i) measures how well a voter is represented by the candidate that this voter ranks as i-th best. 
This function is the same for each voter. Naturally, it is a decreasing function; a voter is more satisfied with the candidates 
that she ranks higher. For example, it is typical to use the Borda count scoring function whose satisfaction in case of m
candidates is αm

B,dec(i) = m − i. The dissatisfaction of a voter is calculated analogously, except that we assume that α is an 
increasing function (a voter is more dissatisfied with the candidates that she ranks lower). The dissatisfaction variant of the 
Borda count scoring function is αm

B,inc(i) = i − 1.
In the utilitarian variants of the rules, the assignment should maximize the total satisfaction (minimize the total dis-

satisfaction) calculated as the sum of the voters’ individual satisfactions (dissatisfactions) with their representatives. In the 
egalitarian variants, the assignment should maximize the satisfaction (minimize the dissatisfaction) of the worst-off voter.

The Monroe and Chamberlin–Courant rules create a useful connection between the voters and their representatives that 
makes it possible to achieve both the accountability of candidates to the voters, and proportional representation of the 
views of the voters. Among common multi-winner voting rules, the Monroe and Chamberlin–Courant rules are quite special 
in having both the aforementioned accountability and proportionality properties simultaneously. For example, First Past the 
Post system (where the voters are partitioned into districts with a separate single-winner Plurality election in each) can give 
very disproportionate results (forcing some of the voters to be represented by candidates they dislike). On the other side 
of the spectrum are the party-list systems, which achieve perfect proportionality. In those systems the voters vote for the 
parties, and, based on the numbers, each party receives its quota of seats in the parliament, which is filled from a publicly 
available ordered list of candidates of this party. This process makes the elected candidates feel more accountable to the 
apparatchiks of their parties than to the voters. We point the readers to the recent book of Pukelsheim [49] for a detailed 
discussion of such issues.

Unfortunately, the Monroe and Chamberlin–Courant rules have one crucial drawback that makes them impractical. It is 
NP-hard to tell who the winners are! Specifically, NP-hardness of winner determination under the Monroe and Chamberlin–
Courant rules was shown by Procaccia et al. [48] and by Lu and Boutilier [32]. Further, Betzler et al. [9] have studied 
parameterized complexity of winner determination for these rules and, in particular, have shown W[2]-hardness for winner 
determination parameterized by the size K of the desired committee. Nonetheless, they have also shown XP algorithms 
for this parameter (an XP algorithm runs in polynomial time provided the parameter is treated as a constant; thus, in 
other words, Betzler et al. [9] have given a separate polynomial-time algorithm for each fixed size of the committee). It is 
also possible to compute Chamberlin–Courant winners provided that the voters have either single-peaked preferences [9]
or single-crossing preferences [58]. (For the case of the Monroe rule, single-crossing preferences do not help and winner 
determination remains NP-hard in this case [58]; the complexity for the case of single-peaked preferences remains open.)

Lu and Boutilier [32] proposed the use of approximation algorithms as a mean of dealing with hardness of the 
Chamberlin–Courant rule, and have given the first such algorithm for it. Their procedure outputs an assignment that achieves 
no less than 1 − 1

e ≈ 0.63 fraction of the optimal voter satisfaction. However, the approximation ratio 0.63 here means that 
it is possible that, on average, each agent is represented by a candidate that this agent prefers to only about 63% of other 
candidates, even if there is a perfect solution that assigns each agent to her most preferred candidate. Such issues, however, 
would not occur if we had a constant-factor approximation algorithm minimizing the total dissatisfaction. Indeed, if a per-
fect solution exists, then the optimal dissatisfaction is zero and a constant-factor approximation algorithm must also output 
this perfect solution.

The use of approximation algorithms in real-life applications requires some discussion. For example, their use is naturally 
justified in the context of recommendation systems. Here the strive for optimality is not crucial since a good but not optimal 
recommendation still has useful information and nobody would object if we replaced the exact recommendation with an 
approximate one (given that the exact one is hard to calculate). For example, Amazon.com may recommend a book on 
gardening which may not be the best book for you on this topic, but which is still full of useful advice. For such situations, 
Herbert Simon [55] used the term ‘satisficing,’ instead of optimizing, to explain the behavior of decision makers under 
circumstances in which an optimal solution cannot be easily determined. On page 129 he wrote: “Evidently, organisms 
adapt well enough to ‘satisfice’; they do not, in general, ‘optimize’.” The use of approximation algorithms therefore fits well 
with the human nature.

Still, the use of approximation algorithms in elections requires some care. It is conceivable that the electoral commission 
finds an allocation of voters to candidates with a certain value of (dis)satisfaction and one of the parties participating in 
the election finds an allocation with a better value. If the commission does not accept such an improved allocation, the 
society may lose faith in the fairness of the electoral process. There are several ways of handling this possibility. Firstly, an 
approximation algorithm can be fixed by law. In such a case, it becomes an acting voting rule and a new way to measure 
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fairness in the society (indeed, the results of Caragiannis et al. [11] for the case of Dodgson’s rule and of Elkind et al. [19], for 
one of our approximation algorithms, indicate that approximation algorithms may even have some more desirable axiomatic 
properties than the voting rules they approximate). Secondly, an electoral commission may calculate the allocation, but also 
publish the raw data and issue a call for submissions. If, within the period specified by law, nobody can produce a better 
allocation, then the committee goes ahead and announces the result. If someone produces a better allocation, then the 
electoral commission uses the latter one. If the electoral commission adopts this approach, then it makes sense to seek 
randomized approximation algorithms for our rules. While it is hard to imagine that a randomized algorithm would be 
fixed as an acting voting rule, a group of supporters of a party can certainly try to use it to find an allocation which is more 
beneficial for the party than the one found by the electoral commission.1

The use of approximation algorithms is even more natural in elections with partial ballots. Indeed, even an exact algo-
rithm would produce approximate results because the voters provide us with approximate preferences.

1.1. Our results

In this paper we focus on the computational complexity of achieving fully proportional representation. Specifically, we are 
interested in approximation algorithms for winner determination under two fully proportional representation systems—the 
Monroe system and the Chamberlin–Courant system. Our main conclusion is the following:

Achieving near-perfect proportional representation of the voters (as defined by the Monroe and Chamberlin–Courant 
rules) is computationally easy both theoretically and practically.

To support this statement, we provide several polynomial-time approximation algorithms, provide guaranteed approximation 
ratios for them, and evaluate exact approximation ratios empirically. The former depend on two parameters: the number 
m of alternatives and the size K of the committee to be selected. Our two most important algorithms have the following 
properties.

1. The first algorithm (Algorithm P from Section 4.6) finds a set of K candidates such that, on average, each agent is 
represented by someone whom she prefers to at least (1 − 2w(K )

K ) fraction of the candidates, where w is Lambert’s 
W-function, for which it is known that w(x) = ln x − ln ln x +o(1). We stress that this guarantee holds for every possible 
profile of (complete) preference orders. This algorithm approximates the Chamberlin–Courant rule.

2. The second algorithm (Algorithm A from Section 4.1; see also its improvements, Algorithms B and C) guarantees that 
each agent is, on average, represented by someone whom she prefers to at least (1 − K−1

2(m−1)
− H K

K ) fraction of the 
candidates, where H K is the K -th harmonic number. It guarantees that each member of the committee represents 
roughly the same number of agents.2 As before, this guarantee holds for every possible profile of (complete) preference 
orders. This algorithm approximates the Monroe rule.

The guarantees we provide for our algorithms are very strong. For instance, in the Polish parliamentary elections, where 
K = 460 and m ≈ 6000, our algorithms guarantee that each voter will be, on average, represented by a candidate that she 
prefers to 99% of the candidates (in the case of Algorithm P) and to 96% of the candidates (in the case of Algorithm A). Our 
experimental data shows that in real-life settings we indeed achieve such high-quality results. Additionally, we show that the 
algorithms preserve their approximation properties even if we consider truncated ballots, in which agents rank only several 
most preferred candidates. The fact that our algorithms work well with truncated ballots may be very practically important. 
When the ballots are truncated, the results of an election are intrinsically approximate since the exact information about 
preferences of voters is not available. Hence the use of approximation algorithms in this case is even more pertinent.

Our paper gives a detailed account of the approximability of the Monroe and Chamberlin–Courant voting rules. Below 
we provide a more comprehensive summary of our results.

1. The utilitarian variants of the Monroe and Chamberlin–Courant rules are hard to approximate up to any constant factor 
for the dissatisfaction-based cases (see Theorems 1 and 2). These results justify studying the satisfaction-based set-
ting. Constant-factor approximation algorithms for the dissatisfaction-based cases would have been more powerful, but, 
unless unlikely complexity class collapses occur, they do not exist.

2. For the satisfaction-based utilitarian framework we show the following. For the Monroe rule with the Borda scor-
ing function we give a randomized (0.715 − ε)-approximation algorithm (often, the ratio is much better; see Sec-
tion 4 and the comment on Algorithm A above). In the case of an arbitrary positional scoring function we give 
a (1 − 1

e )-approximation algorithm (Theorem 10). For the Chamberlin–Courant rule with the Borda scoring func-
tion we give a polynomial-time approximation scheme (that is, for each ε , 0 < ε < 1, we have a polynomial-time 
(1 − ε)-approximation algorithm; see Corollary 13 and the comment on Algorithm P above).

1 We are very grateful to one of the anonymous reviewers for this observation.
2 The exact meaning of this will be explained later.
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3. We provide empirical evaluation of our algorithms for the satisfaction-based utilitarian framework, both on synthetic 
data and on real-life data. This evaluation shows that in practice our best algorithms achieve at least 0.9 approximation 
ratios, and even better results are typical (see Section 5).

4. We show that our algorithms work very well in the setting where voters do not necessarily rank all the candidates, but 
only provide truncated ballots, in which they rank several most preferred candidates (usually at least three). We provide 
theoretical guarantees on the performance of our algorithms (Propositions 6 and 14) as well as empirical evaluation (see 
Section 5.4).

5. We show that egalitarian variants of the Monroe and Chamberlin–Courant rules are hard to approximate up to any 
constant factor, both for the dissatisfaction-based case and for the satisfaction-based case (see Theorems 15, 16, 17
and 19; the discussion of the egalitarian variants is presented in Appendix C).

Our approximability results show that, as long as one is willing to accept approximate solutions, it is possible to use the 
utilitarian variants of the Monroe and Chamberlin–Courant rules in practice. This view is justified both from the theoretical 
and from the empirical point of view.

1.2. Related work

The Monroe and Chamberlin–Courant rules belong to the class of social assignment rules as they produce a representative 
committee and an assignment of voters to candidates. There are other voting rules that can perform this function but only 
one of them comes close in terms of axiomatic properties. This is the multiwinner Single Transferrable Vote rule (STV). 
The comparison of various axiomatic properties of multiwinner rules conducted by Elkind et al. [19] shows that variants 
of STV have many nice properties and, in particular, are rather strong on proportionality. One has to have in mind that a 
multiwinner STV is not a single rule but a large family of them. A number of different quotas can be used (the most common 
is the Droop quota). There are also variations, such as in how to transfer surplus votes from winning candidates and whether 
to transfer votes to already elected candidates (see [59] for the details). Tie-breaking under STV may be challenging and, 
indeed, there are natural tie-breaking rules that make the winner-determination problem in STV NP-hard [15]. It is still 
possible that a variant STV can be extended to a useful social assignment rule which may serve as an alternative to the 
Chamberlin–Courant rule (but not the Monroe one) but this is yet to be done.

There is a large body of work related to our research either in terms of motivation, perspective, methodology, or the exact 
subject of study. For example, in Appendix A we present a resource-allocation view of the Monroe and Chamberlin–Courant 
rules and, so, our results relate to those on resource-allocation. In terms of formal similarity, the winner determination 
problem for the Chamberlin–Courant rule can be seen as a close relative of the facility location problem. Finally, other 
authors have studied the complexity of and the algorithms for Monroe and Chamberlin–Courant voting rules before. Below 
we review this related literature.

Our methodology is similar to that previously used in the study of approximation algorithms for other NP-hard voting 
rules. These rules include, for example, Dodgson’s rule [4,8,24], Young’s rule [8,51], and Kemeny’s rule [4,7,25]. For the 
single-transferable vote rule (STV), the winner determination problem becomes NP-hard if we use the parallel-universes 
tie-breaking [15]. Many of these hardness results hold even in the sense of parameterized complexity theory (however, 
there are also fixed-parameter tractability results; see the references above for the details).

The aforementioned hardness results motivated the search for approximation algorithms. There are now very good ap-
proximation algorithms for Kemeny’s rule [1,16,28] and for Dodgson’s rule [10,11,20,26,38]. In both cases the results are, 
in essence, optimal. For Kemeny’s rule there is a polynomial-time approximation scheme [28] (although the running time 
of this algorithm is not very practical) and for Dodgson’s rule the achieved approximation ratio is optimal under standard 
complexity-theoretic assumptions [10] (unfortunately, the approximation ratio is not constant but depends logarithmically 
on the number of candidates). On the other hand, for Young’s rule it is known that no good approximation algorithms 
exist [10].

The work of Caragiannis et al. [11] and of Faliszewski et al. [20] on approximate winner determination for Dodgson’s 
rule is particularly interesting from our perspective. In the former, the authors advocate treating approximation algorithms 
for Dodgson’s rule as voting rules in their own right and design them to have desirable properties. In the latter, the au-
thors show that a well-established voting rule, the Maximin rule, is a reasonable, though not optimal, approximation of 
Dodgson’s rule. This perspective is important for anyone interested in using approximation algorithms for winner determi-
nation in elections and, in particular, for the case of Monroe and Chamberlin–Courant voting rules. For example, Elkind et 
al. [19] provide a discussion of axiomatic properties of multiwinner voting rules and show that some of our approximation 
algorithms have more desirable properties than the rules they approximate.

The complexity of the winner determination problem for the Monroe and Chamberlin–Courant rules has been considered 
in several papers. Procaccia, Rosenschein and Zohar [48] were the first to show the hardness of these two rules for the case 
of a particular approval-style dissatisfaction function. Their results were complemented by Lu and Boutilier [32] who proved 
the hardness of the Chamberlin–Courant rule for the case of Borda satisfaction function, by Betzler, Slinko and Uhlmann [9]
who focused on the parameterized complexity of the rules for both the case of unrestriced voter preferences and the case 
of single-peaked preferences, by Yu, Chan, and Elkind [61] who considered voters with preferences that are single-peaked 
on a tree, and by Skowron et al. [58] who considered voters with single-crossing preferences. Further, Lu and Boutilier [32]
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initiated the study of approximability for the Chamberlin–Courant rule and were the first to use the satisfaction-based 
framework. Specifically, they gave the greedy (1 − 1

e )-approximation algorithm for the Chamberlin–Courant rule. Lu and 
Boutilier were motivated by applications to recommendation systems and, in that sense, our view of the rules is quite 
similar to theirs.

In this paper we take the view that the Monroe and Chamberlin–Courant rules are special cases of the following resource 
allocation problem (presented in Appendix A in more detail). The alternatives are viewed as shareable resources, each with 
a certain capacity defined as the maximal number of agents that may share this resource. Each agent has preferences over 
the resources and is entitled in getting exactly one. The goal is to select a predetermined number K of resources and to find 
an optimal allocation of these resources. This provides a unified framework for the two rules and reveals the connection 
of proportional representation problems to other resource allocation problems. In particular, it closely resembles multi-unit 
resource allocation with single-unit demand [54, Chapter 11] (see also the work of Chevaleyre et al. [14] for a survey of 
the most fundamental issues in the multiagent resource allocation theory) and resource allocation with sharable indivisible 
goods [2,14]. Below, we point out other connections of the Monroe and Chamberlin–Courant rules to several other problems.

Facility Location Problems. In the facility location problem, there are n customers located in some area and an authority, 
say a city council, that wants to establish a fixed number K of facilities to serve those customers. Customers incur 
certain costs (say transportation costs) of using the facilities. Further, establishing a facility may have additional 
cost, possibly depending on aspects such as the facility’s location. The problem is to find K locations for the 
facilities that would minimize the total cost for the society. If these facilities have unlimited capacities and can 
serve any number of customers, then each customer would use her most preferred (i.e., closest) facility and the 
problem is similar to finding the Chamberlin–Courant assignment. If the capacities of the facilities are finite and 
equal, the problem looks like finding an assignment under the Monroe rule. An essential difference between this 
problem and the winner determination problem under the Chamberlin–Courant rule are the setup costs and the 
distance metric. The parameterized complexity of the Facility Location Problem was investigated by Fellows and 
Fernau [21]. The papers of Procaccia et al. [48] and of Betzler et al. [9] contain a brief discussion of the connection 
between the Facility Location Problem and the winner determination problem under the Chamberlin–Courant rule. 
Note that in the context of facility location, it makes sense to look at both the utilitarian setting and at the 
egalitarian setting. The latter is particularly appealing, for example, when we seek to locate such facilities as fire 
stations or intensive care units and we want to guarantee a particular level of service to every member of the 
society.3

Group Activity Selection Problem. In the group activity selection problem [17] we have a group of agents (say, conference 
attendees) and a set of activities (say, options that they have for a free afternoon such as a bus city tour or a wine 
tasting). The agents express preferences regarding the activities and organizers try to allocate agents to activities 
to maximize their total satisfaction. If the number of agents that can participate in each activity is unrestricted, 
this reduces to the winner determination problem under the Chamberlin–Courant rule. Similarly, if roughly the 
same number of agents should participate in each activity, the problem becomes very close to computing the 
winners under the Monroe rule. The Group Activity Selection Problem is, however, far more general and allows 
the agents to express quite complicated preferences. For example, an agent might have preferences of the form: 
“I like wine-tasting best provided that at most 10 people participate in it, and otherwise I prefer a bus city tour 
provided that at least 15 people participate, and otherwise I prefer to not take part in any activity.” Darmann et 
al. [17] give some hardness and easiness results for this problem, but its investigation has only started.

Finally, we mention that finding winners under the Monroe and Chamberlin–Courant rules can be seen from the per-
spective of matching theory. One of the closest problems in this context is that of demand matching [52,56]. We are given 
a biparite graph G = (U , V ; E) and three functions: the profit function π : E → R+ , the demand function d: E → R+ , and 
the capacity function b: U ∪ V → R+ . If we write δ(v) to denote the set of edges incident to a vertex v , the goal can be 
formulated as follows: Find a subset M ⊆ E that maximizes the profit 

∑
e∈M π(e) under the constraint that for each vertex 

w ∈ U ∪ V we have 
∑

e∈M∩δ(w) d(e) ≤ b(w).
Intuitively, the connection of demand matching to our problems is as follows. The vertices on one side, say V , correspond 

to the agents and for each such vertex v in this group we set b(v) = 1. The vertices on the other side, U , correspond to the 
candidates; under Mondroe rule, for each vertex u on this side we set b(u) to be the number of agents divided by the size 
of the committee and under Chamberlin–Courant, we set b(u) to be the number of agents. We have a complete bipartite 
graph, where the profits of the edges are the satisfactions derived by the agents from being represented by the candidates. 
The significant difference between the winner-determination problems for our two rules and the demand matching problem 
is that the demand matching does not put constraints on the number of vertices from U involved in the matching (and we 
need that at most K candidate vertices are involved, where K is the size of the committee to be elected). Also, the profit 
functions that we focus on are of a very special form. The results of Shepherd and Vetta [52] and of Singh and Wu [56] show 

3 We thank one of the anonymous reviewers for this comment.
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that the demand matching problem appears to be much harder to solve (approximately) than our problems. Nonehteless, 
we believe that exploring the connections between (demand) matching and our problems is a very promising direction.

The above connections show that, indeed, the complexity of winner determination under the Monroe and Chamberlin–
Courant voting rules is interesting, can lead to progress in several other directions, and may have impact on applications 
within artificial intelligence.

2. Preliminaries

We first define basic notions such as preference orders and positional scoring rules. Then we present the formal defini-
tions of the winner determination problems for the Monroe and Chamberlin–Courant voting rules. Finally, we briefly recall 
relevant notions regarding computational complexity.

Preferences. For each n ∈ N, by [n] we mean {1, . . . , n}. We assume that there is a set N = [n] of agents and a set A =
{a1, . . . ,am} of alternatives. Each agent i has a preference order 
i over A, i.e., a strict linear order of the form aπ(1) 
i
aπ(2) 
i · · · 
i aπ(m) for some permutation π of [m]. For an alternative a, by posi(a) we mean the position of a in the i-th
agent’s preference order. For example, if a is the most preferred alternative for i then posi(a) = 1, and if a is the least 
preferred one then posi(a) = m. A collection V = (
1, . . . , 
n) of agents’ preference orders is called a preference profile.

We often include subsets of the alternatives in the descriptions of preference orders. For example, if A is the set of all 
the alternatives and B is some nonempty strict subset of A, then by B 
 A − B we mean that for the preference order 
 all 
alternatives in B are preferred to those outside of B .

A positional scoring function (PSF) is a function αm: [m] → N. A PSF αm is an increasing positional scoring function (IPSF) if 
for each i, j ∈ [m], if i < j then αm(i) < αm( j). Analogously, a PSF αm is a decreasing positional scoring function (DPSF) if for 
each i, j ∈ [m], if i < j then αm(i) > αm( j).

Intuitively, if βm is an IPSF then βm(i) can represent the dissatisfaction that an agent suffers when assigned to an alter-
native that is ranked i-th in her preference order. Thus, we assume that for each IPSF βm it holds that βm(1) = 0 (an agent 
is not dissatisfied by her top alternative). Similarly, a DPSF γ m measures an agent’s satisfaction and we assume that for 
each DPSF γ m it holds that γ m(m) = 0 (an agent is completely not satisfied with her least desired alternative). Sometimes 
we write α instead of αm , when it cannot lead to confusion.

We will often speak of families α of IPSFs (DPSFs) of the form α = (αm)m∈N , where αm is a PSF on [m], such that:

1. For a family of IPSFs it holds that αm+1(i) = αm(i) for all m ∈N and i ∈ [m].
2. For a family of DPSFs it holds that αm+1(i + 1) = αm(i) for all m ∈N and i ∈ [m].

In other words, we build our families of IPSFs (DPSFs) by appending (prepending) values to functions with smaller domains. 
To simplify notation, we will refer to such families of IPSFs (DPSFs) as normal IPSFs (normal DPSFs). We assume that each 
function αm from a family can be computed in polynomial time with respect to m. Indeed, we are particularly interested in 
the Borda families of IPSFs and DPSFs defined by αm

B,inc(i) = i − 1 and αm
B,dec(i) = m − i, respectively.

Assignment functions. A K -assignment function (or simply K -assignment) is any function Φ: N → A, such that ‖Φ(N)‖ ≤ K
(that is, it assigns agents to at most K alternatives). A Monroe K -assignment function is an assignment function that 
additionally satisfies the following cardinality constraint: For each alternative a ∈ A we have ‖Φ(N)‖ = K and either 
� ‖N‖

K 
 ≤ ‖Φ−1(a)‖ ≤ �‖N‖
K � or ‖Φ−1(a)‖ = 0.

We also consider partial assignment functions. A partial K -assignment function is defined in the same way as the regular 
one, except that it may assign a null alternative, ⊥, to some of the agents. It is convenient to think that for each agent i
we have posi(⊥) = m. A partial Monroe K -assignment is a partial K -assignment that can be extended to a regular Monroe 
K -assignment (that is, a partial Monroe K -assignment can break the cardinality constraints, but it must be possible to 
extend it in such a way that these constraints are no longer broken). Given an assignment Φ , for each agent i we refer to 
alternative Φ(i) as the representative of i.

Given a normal IPSF (DPSF) α, we consider the following three functions, each assigning a positive integer to a given 
assignment Φ:

	α
sum(Φ) =

n∑
i=1

α
(
posi

(
Φ(i)

))
,

	α
max(Φ) = maxn

i=1α
(
posi

(
Φ(i)

))
,

	α
min(Φ) = minn

i=1α
(
posi

(
Φ(i)

))
.

These functions aggregate individual dissatisfaction (satisfaction) values of the agents to measure the overall quality of the 
assignment. In the utilitarian framework, we use the first function, 	α

sum(Φ), as the total (societal) dissatisfaction function in 
the IPSF case and as the total (societal) satisfaction function in the DPSF case. We use the second and the third functions, 
respectively, as the total dissatisfaction and satisfaction functions for IPSF and DPSF cases in the egalitarian framework (the 
egalitarian framework is discussed in Appendix C). We sometimes omit the word “total” if no confusion may arise.
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The Monroe and Chamberlin–Courant rules. Let us now define the problems of winner determination under the Monroe 
and Chamberlin–Courant (CC) rules. In both cases the goal is to find an optimal assignment, where the optimality is relative 
to one of the total dissatisfaction or satisfaction functions that we have just introduced. The former is to be minimized and 
the latter is to be maximized.

Definition 1. Let α be a normal IPSF. An instance of α-CC-DisWinner problem consists of a set of agents N = [n], a set of 
alternatives A = {a1, . . . ,am}, a preference profile V of the agents, and a positive integer K . We ask for a K -assignment func-
tion Φ such that 	α

sum(Φ) is minimized. The problem α-Monroe-DisWinner is defined in the same way but we additionally 
require Φ to be a Monroe K -assignment function.

Definition 2. Let α be a normal DPSF. The problem α-CC-SatWinner is defined in the same way as α-CC-DisWinner, except 
that we seek a K -assignment Φ such that 	α

sum(Φ) is maximized. The problem α-Monroe-SatWinner is defined in the same 
way but we additionally require Φ to be a Monroe K -assignment function.

Definitions 1 and 2 regard the utilitarian variants of the rules: We consider the egalitariant variants in Appendix C. Below 
we provide an example illustrating the utilitarian variants.

Example 1. Consider a set N = {1, 2, 3, 4, 5, 6} of six agents and a set A = {a, b, c, d} of four alternatives. Suppose the agents 
have the following preference orders:

1: a 
 b 
 c 
 d

2: a 
 c 
 b 
 d

3: a 
 d 
 c 
 b

4: a 
 b 
 d 
 c

5: b 
 c 
 a 
 d

6: c 
 d 
 b 
 a

and we are looking for a committee of size K = 2. Consider the dissatisfaction-based variant of Chamberlin–Courant rule 
with the Borda dissatisfaction function, αB,inc (i.e., problem αB,inc-CC-DisWinner). In this case, there is a unique optimal 
K -assignment Φ:

Φ(1) = Φ(2) = Φ(3) = Φ(4) = a, Φ(5) = Φ(6) = c.

Agent 5 ranks her representative on the second position and all the other agents rank their representatives on the first 
positions. Thus, the aggregated dissatisfaction of the agents is 	αB,inc

sum (Φ) = 0 + 0 + 0 + 0 + 1 + 0 = 1. If we considered 
the satisfaction-based variant of the problem (αB,dec-CC-SatWinner), the assignment would be the same, but with the 
satisfaction 	αB,dec

sum (Φ) = 3 + 3 + 3 + 3 + 2 + 3 = 17.
On the other hand, consider the dissatisfaction variant of the Monroe rule, that is, problem αB,inc-Monroe-DisWinner. In 

this case we are looking for a Monroe K -assignment function, so each alternative who is a representative has to represent 
exactly three agents. The following assignment function, Φ ′ , is optimal:

Φ ′(1) = Φ ′(3) = Φ ′(4) = a, Φ ′(2) = Φ ′(5) = Φ ′(6) = c.

The aggregated dissatisfaction is 	αB,inc
sum (Φ ′) = 0 +1 +0 +0 +1 +0 = 2. In the satisfaction based variant the same assignment 

is optimal, and its satisfaction is 	αB,dec
sum (Φ ′) = 3 + 2 + 3 + 3 + 2 + 3 = 16.

As is clearly visible in the above example, in terms of exact solutions our satisfaction-based problems are equivalent to 
the dissatisfaction-based ones (indeed, one can always transform an IPSF to an equivalent DPSF and vice versa). However, 
as we will see, these two families of problems behave differently in terms of their approximability.

The goal in our problems is to compute a particular (Monroe) K -assignment. Naturally, such an assignment defines a set 
of K alternatives, who are viewed as the winners of the given multiwinner election. In this paper we make the following 
assumption.

Assumption. We assume that the size K of the committee that we seek always divides the number n of the agents.

Note that while this assumption looks very innocent at first, in fact in many related settings it can be crucial. For 
example, Elkind et al. [19] have shown that the Monroe rule satisfies homogeneity property when K divides the number of 
agents, but fails it in general. Nonetheless, this assumption does not affect our hardness proofs at all, and one can verify that 
all our approximation algorithms also work when it is not satisfied. However, this assumption simplifies the presentation.
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For each subset of the alternatives S ⊆ A such that ‖S‖ ≤ K , we write Φ S
α to denote the partial (Monroe) K -assignment 

that assigns agents only to the alternatives from S and such that Φ S
α maximizes the utilitarian satisfaction 	α

sum(Φ S
α). (We 

introduce this notation only for the utilitarian satisfaction-based setting because it is useful to express appropriate algo-
rithms for this case. For other settings we only have hardness results and this notation would not be useful. Whether we 
mean a K -assignment or a Monroe K -assignment will always be clear from the context.)

Computational Issues. For many normal IPSFs α and, in particular, for the Borda IPSF, our problems are NP-hard [9,48]. 
Thus we seek approximate solutions.

Definition 3. Let r be a real number such that r ≥ 1, let α be a normal IPSF (or, let α be a normal DPSF and let r be 
such that 0 < r ≤ 1), and let R be either Monroe or CC. An algorithm is an r-approximation algorithm for α-R-DisWinner

problem (for α-R-SatWinner problem) if on each instance I it returns a feasible assignment Φ such that 	α
sum(Φ) ≤ r · OPT

(such that 	α
sum(Φ) ≥ r · OPT), where OPT is the optimal total dissatisfaction (satisfaction) 	α

sum(ΦOPT).

Example 2. Let us once again analyze the setting from Example 1. Consider the dissatisfaction-based variant of Chamberlin–
Courant rule and the following assignment:

Φ ′′(1) = Φ ′′(4) = Φ ′′(5) = b, Φ ′′(2) = Φ ′′(3) = Φ ′′(6) = c.

(Note that this is the best K -assignment function if both b and c are to be the representatives; also, this assignment happens 
to be a Monroe 2-assignment.) The total dissatisfaction of the agents is 	αB,inc

sum (Φ ′′) = 1 + 1 + 2 + 1 + 0 + 0 = 4. Since the 
optimal dissatisfaction is 1, this is a 4-approximate solution for αB,inc-CC-DisWinner. (For the case of Monroe the optimal 
dissatisfaction is 2, so this is also a 2-approximate solution for αB,inc-Monroe-DisWinner.)

On the other hand, consider the satisfaction-based setting. The optimal satisfaction of the voters is 17 but un-
der Φ ′′ the satisfaction is 	

αB,dec
sum (Φ ′′) = 2 + 2 + 1 + 2 + 3 + 3 = 13. That is, Φ ′′ is a 0.76-approximate solution for 

αB,dec-CC-SatWinner (and, since the optimal satisfaction for the case of Monroe is 16, this is a 0.81-approximate solu-
tion for αB,dec-Monroe-SatWinner).

Lu and Boutilier [32] gave a (1 − 1
e )-approximation algorithm for the CC-SatWinner family of problems. Throughout 

this paper, for each of our problems we either prove inapproximability with respect to any constant r (under standard 
complexity-theoretic assumptions) or we present an approximation algorithm. In our inapproximability proofs, we use the 
following two classic NP-complete problems [23].

Definition 4. An instance I of Set-Cover consists of set U = [n] (called the ground set), family F = {F1, F2, . . . , Fm} of 
subsets of U , and positive integer K . We ask if there exists a set J ⊆ [m] such that ‖ J‖ ≤ K and 

⋃
j∈ J F j = U .

Definition 5. X3C is a variant of Set-Cover where ‖U‖ is divisible by 3, each member of F has exactly three elements, and 
K = ‖U‖

3 . (Since K is defined implicitly, an X3C instance consists only of the set U and the family F .)

Set-Cover remains NP-complete even if we restrict each member of U to be contained in at most two sets from F
(it suffices to note that this restriction is satisfied by Vertex-Cover, which is a special case of Set-Cover). X3C remains 
NP-complete even if we additionally assume that n is divisible by 2 and each member of U appears in at most 3 sets from 
F [23].

We also use results from the theory of parameterized complexity developed by Downey and Fellows [18]. This theory 
allows one to single out a particular parameter, say k, and analyze its ‘contribution’ to the overall complexity of the problem. 
An analogue of the class P here is the class FPT which contains problems that can be solved in time f (k)nO (1) , where n is 
the size of the input instance and f is some computable function. The class of problems that can be solved in polynomial 
time provided the value of the parameter is fixed is called XP; note that FPT ⊆ XP. Parameterized complexity theory also 
operates with classes W[1] ⊆ W[2] ⊆ · · · which are believed to form a hierarchy of classes of hard problems (combined, 
they are analogous to the class NP). It holds that FPT ⊆ W[1], but it seems unlikely that FPT = W[1], let alone FPT = W[2]. 
We point the reader to the books of Niedermeier [44] and Flum and Grohe [22] for detailed overviews of parametrized 
complexity theory. Interestingly, while both Set-Cover and Vertex-Cover are NP-complete, the former is W[2]-complete 
and the latter belongs to FPT (see, e.g., the book of Niedermeier [44] for these now-standard results and their history).

3. Hardness of approximation

We now present our inapproximability results for the Monroe and Chamberlin–Courant rules in the dissatisfaction-based 
utilitarian case. We show similar inapproximability results for the egalitarian variants of our rules in Appendix C.

Theorem 1. For each normal IPSF α and each constant factor r > 1, there is no polynomial-time r-approximation algorithm for 
α-Monroe-DisWinner unless P = NP.
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Fig. 1. The alignment of the positions in the preference orders of the agents. The positions are numbered from the left to the right. The left wavy line shows 
the positions m f (·), each no greater than 3. The right wavy line shows the positions ml(·), each higher than nr · α(3). The alternatives from A2 (positions 
of one such an alternative is illustrated with circles) are placed only between the peripheral wavy lines. Each alternative from A2 is placed on the left from 
the middle wavy line exactly 2 times, thus each such alternative is placed on the left from the right dashed line no more than 2 times (exactly two times 
in the figure).

Proof. Let us fix a normal IPSF α and let us assume, aiming at getting a contradiction, that there is some constant r > 1
and a polynomial-time r-approximation algorithm A for α-Monroe-DisWinner.

Let I be an instance of X3C with a ground set U = [n] and a family F = {F1, F2, . . . , Fm} of 3-element subsets of U . 
Without loss of generality, we assume that n is divisible by both 2 and 3 and that each member of U appears in at most 3 
sets from F .

Using I , we build an instance IM of α-Monroe-DisWinner as follows. We set N = U (that is, the elements of the ground 
set are the agents) and we set A = A1 ∪ A2, where A1 = {a1, . . . , am} is a set of alternatives corresponding to the sets from 
the family F , and A2 is a set of dummy alternatives of cardinality ‖A2‖ = 1

2 n2r · α(3), needed for the construction. We let 
m′ = ‖A2‖ and rename the alternatives in A2 so that A2 = {b1, . . . , bm′ }. We set K = n

3 .
We build agents’ preference orders using the following algorithm. For each j ∈ N , set M f ( j) = {ai | j ∈ Fi} and Ml = {ai |

j /∈ Fi}. Set m f ( j) = ‖M f ( j)‖ and ml( j) = ‖Ml( j)‖. As the frequency of the elements from U is bounded by 3, we have 
m f ( j) ≤ 3. For each agent j we set her preference order to be of the form M f ( j) 
 j A2 
 j Ml( j), where the alternatives in 
M f ( j) and Ml( j) are ranked in an arbitrary way and the alternatives from A2 are placed at positions m f ( j) +1, . . . , m f ( j) +
m′ in the way described below (see Fig. 1 for a high-level illustration of the construction).

We place the alternatives from A2 in the preference orders of the agents in such a way that for each alternative bi ∈ A2
there are at most two agents that rank bi among their nr · α(3) top alternatives. The following construction achieves this 
effect. If (i + j) mod n < 2, then alternative bi is placed at one of the positions m f ( j) + 1, . . . , m f ( j) + nr · α(3) in j’s 
preference order. Otherwise, bi is placed at a position with index higher than m f ( j) + nr · α(3) (and, thus, at a position 
with index higher than nr · α(3)). This construction can be implemented because for each agent j there are exactly m′ · 2

n =
nr · α(3) alternatives bi1 , bi2 , . . . , binrα(3)

such that (it + j) mod n < 2, where t ∈ [nrα(3)].
Let Φ be an assignment computed by A on IM . We will show that 	α

sum(Φ) ≤ n ·α(3) · r if and only if I is a yes-instance 
of X3C.

(⇐) If there exists a solution for I (i.e., an exact cover of U with n
3 sets from F ), then we can easily show an assignment 

in which each agent j is assigned to an alternative from the top m f ( j) positions of her preference order (namely, one that 
assigns each agent j to the alternative ai ∈ A1 that corresponds to the set Fi , from the exact cover of U , that contains j). 
Thus, for the optimal assignment ΦOPT it holds that 	α

sum(ΦOPT) ≤ α(3) · n. In consequence, since A is an r-approximation 
algorithm, it must return an assignment with the total dissatisfaction at most nr · α(3).

(⇒) Let us now consider the opposite direction. We assume that A found an assignment Φ such that 	α
sum(Φ) ≤ nr ·α(3)

and we will show that I is a yes-instance of X3C. Since we require each alternative to be assigned to either 0 or 3 agents, if 
some alternative bi from A2 were assigned to some 3 agents, at least one of them would rank bi at a position worse than 
nr · α(3). This would mean that 	α

sum(Φ) ≥ nr · α(3) + 1. Analogously, no agent j can be assigned to an alternative that is 
placed at one of the ml( j) bottom positions of j’s preference order. Thus, only the alternatives in A1 have agents assigned 
to them and, further, if agents x, y, z, are assigned to some ai ∈ A1, then it holds that Fi = {x, y, z} (recall that Fi is a set 
from the input X3C instance; we will call each set Fi for which alternative ai is assigned to some agents x, y, z selected). 
Since each agent is assigned to exactly one alternative, the selected sets are disjoint. Since the number of selected sets is 
K = n , it must be the case that the selected sets form an exact cover of U . Thus, I is a yes-instance of X3C. �
3
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One may wonder if hardness of approximation for α-Monroe-DisWinner is not an artifact of the strict require-
ments regarding the number of chosen candidates. It turns out that unless P = NP, then for each r, s > 1 there is no 
(r, s)-approximation algorithm that finds an assignment with the following properties: (1) the aggregated dissatisfaction 
	α

sum(Φ) is at most r times higher than the optimal one, (2) the number of alternatives to which agents are assigned is at 
most sK and (3) each selected alternative (i.e., each alternative that has agents assigned), is assigned to no more than s n

K

and no less than 1
s

n
K agents. (The proof is similar to the one used for Theorem 1.) Thus, in our further study we do not 

consider such relaxations of the problem.
A result analogous to Theorem 1 also holds for the CC-DisWinner family of problems.

Theorem 2. For each normal IPSF α and each constant factor r > 1, there is no polynomial-time r-approximation algorithm for 
α-CC-DisWinner unless P = NP.

Proof. The proof is in Appendix D. �
The above results show that the task of computing winner sets with aggregated voter dissatisfaction close to the optimal 

one is computationally hard both for the Monroe and Chamberlin–Courant rules. On the other hand, if we focus on agents’ 
total satisfaction then polynomial-time constant-factor approximation algorithms exist in many cases (see, e.g., the work of 
Lu and Boutilier [32] and the next section).

4. Algorithms for the utilitarian, satisfaction-based cases

We now turn to approximation algorithms for the Monroe and Chamberlin–Courant multiwinner voting rules in the 
satisfaction-based framework. Indeed, if one focuses on agents’ total satisfaction then it is possible to obtain high-
quality approximation results. In particular, we show the first nontrivial (randomized) approximation algorithm for 
αB,dec-Monroe-SatWinner (recall that αB,dec is the Borda family of DPSFs; for the case of m candidates, we have 
αm

B,dec(i) = m − i). We show that for each ε > 0 we can provide a randomized polynomial-time algorithm that achieves 
0.715 − ε approximation ratio; the algorithm usually achieves even a better approximation. For the case of arbitrarily 
selected DPSF we show a (1 − 1

e )-approximation algorithm. Finally, we present the first polynomial-time approximation 
scheme (PTAS) for αB,dec-CC-SatWinner. These results stand in sharp contrast to those from the previous section, where we 
have shown that approximation is hard for the dissatisfaction-based framework.

The core difficulty in computing the winners under the Monroe and Chamberlin–Courant rules is in selecting the alterna-
tives that should be assigned to the agents. Given a preference profile and a set S of up to K alternatives, using the standard 
network-flow argument, it is easy to find a (possibly partial) optimal assignment Φ S

α of the agents to the alternatives from S .

Proposition 3. (Implicit in the paper of Betzler et al. [9].) Let α be a normal DPSF, N be a set of agents, A be a set of alternatives, V be 
a preference profile of N over A, and S a K -element subset of A (where K divides ‖N‖). Then there is a polynomial-time algorithm 
that computes a (possibly partial) optimal K -assignment Φ S

α (Monroe K -assignment Φ S
α) of the agents to the alternatives from S.

Note that for the case of the Chamberlin–Courant rule the algorithm from the above proposition can be greatly simplified: 
To each voter we assign the candidate that she ranks highest among those from S . For the case of Monroe, unfortunately, 
we need the expensive, though still polynomial-time, network-flow-based approach. Nonetheless, Proposition 3 allows us to 
focus on the issue of selecting the winning alternatives and not on the issue of matching them to the agents.

Below we describe our algorithms for αB,dec-Monroe-SatWinner and for αB,dec-CC-SatWinner. Formally speaking, every 
approximation algorithm for αB,dec-Monroe-SatWinner also gives feasible results for αB,dec-CC-SatWinner. However, some 
of our algorithms are particularly well-suited for both problems and some are tailored to only one of them. Thus, for each 
algorithm we clearly indicate if it is meant only for the case of Monroe, only for the case of Chamberlin–Courant, or if it 
naturally works for both systems.

4.1. Algorithm A (Monroe)

Perhaps the most natural approach to solve αB,dec-Monroe-SatWinner is to build a solution iteratively: In each step we 
pick some not-yet-assigned alternative ai (using some criterion) and assign it to those n

K agents that (a) are not assigned 
to any other alternative yet, and (b) whose satisfaction of being matched with ai is maximal. It turns out that this idea, 
implemented formally as Algorithm A (see pseudocode in Fig. 2), works very well in many cases. We provide a lower bound 
on the total satisfaction it guarantees in the next lemma. We remind the reader that the j-th harmonic number H j = ∑ j

i=1
1
i

has asymptotics H j = Θ(log j).

Lemma 4. For every preference profile, Algorithm A returns a solution in which each agent is, on average, represented by an alternative 
that she prefers to at least (1 − K−1 − H K ) fraction of the alternatives.
2(m−1) K
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Notation: Φ ← a map defining a partial assignment, iteratively built by the algorithm.
Φ← ← the set of agents for which the assignment is already defined.
Φ→ ← the set of alternatives already used in the assignment.

if K ≤ 2 then
compute the optimal solution using an algorithm of Betzler et al. [9] and return.

Φ = {}
for i ← 1 to K do

score ← {}
bests ← {}
foreach ai ∈ A \ Φ→ do

agents ← sort N \ Φ← so that if agent j precedes agent j′ then pos j(ai) ≤ pos j′ (ai)

bests[ai] ← choose first n
K elements from agents

score[ai] ← ∑
j∈bests[ai ](m − pos j(ai))

abest ← argmaxa∈A\Φ→ score[a]
foreach j ∈ bests[abest ] do

Φ[ j] ← abest

Fig. 2. The pseudocode for Algorithm A.

Proof. Let n = ‖N‖. When K ≤ 2, our algorithm computes an optimal solution exactly so we assume that K ≥ 3. Let us 
consider the situation in the algorithm after the i-th iteration of the outer loop (we have i = 0 if no iteration has been 
executed yet). So far, the algorithm has picked i alternatives and assigned them to i n

K agents (recall that for simplicity we 
assume that K divides n evenly). Hence, each agent has �m−i

K−i � unassigned alternatives among her i + �m−i
K−i � top-ranked 

alternatives. By the pigeonhole principle, this means that there is an unassigned alternative a	 who is ranked among the 
top i + �m−i

K−i � positions by at least n
K agents. To see this, note that there are (n − i n

K )�m−i
K−i � slots for unassigned alternatives 

among the top i + �m−i
K−i � positions in the preference orders of unassigned agents, and that there are m − i unassigned 

alternatives. As a result, there must be an alternative a	 for whom the number of agents that rank him or her among the 
top i + �m−i

K−i � positions is at least:

1

m − i

((
n − i

n

K

)⌈
m − i

K − i

⌉)
≥ n

m − i

(
K − i

K

)(
m − i

K − i

)
= n

K
.

In consequence, the n
K agents assigned in the next step of the algorithm will have the total satisfaction at least n

K · (m −
i − �m−i

K−i �). Thus, summing over the K iterations, the total satisfaction guaranteed by the assignment Φ computed by 
Algorithm A is at least the following value: (to derive the fifth line from the fourth one we note that K (H K − 1) − H K ≥ 0
when K ≥ 3):

	
αB,dec
sum (Φ) ≥

K−1∑
i=0

n

K
·
(

m − i −
⌈

m − i

K − i

⌉)

≥
K−1∑
i=0

n

K
·
(

m − i − m − i

K − i
− 1

)

=
K∑

i=1

n

K
·
(

m − i − m − 1

K − i + 1
+ i − 2

K − i + 1

)

= n

K

(
K (2m − K − 1)

2
− (m − 1)H K + K (H K − 1) − H K

)

≥ n

K

(
K (2m − K − 1)

2
− (m − 1)H K

)

≥ (m − 1)n

(
1 − K − 1

2(m − 1)
− H K

K

)

This completes the proof. �
The relation between m, the ratio K/m, and the guarantee of satisfaction of an average voter is depicted in Fig. 3.

Corollary 5. Algorithm A is a polynomial-time (1 − K−1 − H K )-approximation algorithm for αB,dec-Monroe-SatWinner.
2(m−1) K
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Fig. 3. The relation between the number of alternatives m (left figure) or the ratio K/m (right figure) and the guarantee of satisfaction of an average voter, 
1 − K−1

2(m−1)
− H K

K , under Algorithm A for the Monroe system.

Proof. If each agent were assigned to her top alternative, the total satisfaction would be equal to (m −1)n. Thus, by applying 
Lemma 4 we get the following bound:

	
αB,dec
sum (Φ)

OPT
≤ 1 − K − 1

2(m − 1)
− H K

K
. �

Note that in the above proof we measure the quality of our assignment against a, perhaps-impossible, perfect solution, 
where each agent is assigned to her top alternative. This means that for relatively large m and K , and small K

m ratio, 
the algorithm can achieve a close-to-ideal solution irrespective of the voters’ preference orders. We believe that this is an 
argument in favor of using Monroe’s system in multiwinner elections. On the flip side, to obtain a better approximation 
ratio, we would have to use a more involved bound on the quality of the optimal solution. To see that this is the case, form 
an instance I of αB,dec-Monroe-SatWinner with n agents and m alternatives, where all the agents have the same preference 
order, and where we seek to elect K candidates (and where K divides n). It is easy to see that each solution that assigns 
the K universally top-ranked alternatives to the agents is optimal. Thus the total dissatisfaction of the agents in the optimal 
solution is:

n

K

(
(m − 1) + · · · + (m − K )

) = n

K

(
K (2m − K − 1)

2

)
= n(m − 1)

(
1 − K − 1

2(m − 1)

)
.

By taking large enough m and K (even for a fixed value of m
K ), the fraction 1 − K−1

2(m−1)
can be arbitrarily close to the 

approximation ratio of our algorithm (the reasoning here is somewhat in the spirit of the idea of identifying maximally 
robust elections, as studied by Shiryaev, Yu, and Elkind [53]).

For small values of K , it is possible that the H K
K part of our approximation ratio would dominate the K−1

2(m−1)
part. In such 

cases we can use the result of Betzler et al. [9], who showed that for each fixed constant K , αB,dec-Monroe-SatWinner

can be solved in polynomial time. Thus, for the finite number of cases, where H K
K is too large, we can solve the problem 

optimally using their algorithm. In consequence, the quality of the solution produced by Algorithm A most strongly depends 
on the ratio K−1

2(m−1)
. In most cases we can expect it to be small. For example, in Polish parliamentary elections K = 460 and 

m ≈ 6000; in this case the greedy algorithm’s approximation ratio is about 0.96. Put differently, in this case our algorithm 
guarantees to provide a solution in which each voter is, on average, represented by a candidate that she prefers to at least 
96% of the candidates.

Our algorithm has one more great advantage: Since it focuses on the top parts of voters’ preference orders, it can achieve 
very good results even if the voters submit truncated ballots (that is, if they rank some of their top alternatives only).4 Below 
we present the formal analysis of the algorithm’s approximation ratio for this case. Unfortunately, we did not obtain a closed 
form formula and, instead, we present the guaranteed approximation ratio as a sum, in Proposition 6 below. We also present 
the relation between the fraction of the top alternatives ranked by each of the voters and the approximation ratio for few 
values of m and K in Fig. 4.

Proposition 6. Let P be the number of top positions in the agents’ preference orders that are known by the algorithm. In this case 
Algorithm A returns a solution in which each agent is, on average, represented by an alternative that she prefers to at least r fraction 
of the alternatives (in particular, this algorithm is a polynomial-time r-approximation algorithm for αB,dec-Monroe-SatWinner), 
where:

4 The study of truncated ballots is receiving more and more attention in the context of computational social choice. For example, Baumeister et al. [5]
consider campaign management for truncated ballots, Narodytska and Walsh [42] consider the complexity of strategic voting, and Lackner [30] studies 
algorithms for recognizing single-peakedness in this case.
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Fig. 4. The relation between the number of the known positions and the approximation ratio of Algorithm A for αB,dec-Monroe-SatWinner.

r =
K−1∑
i=0

1

n(m − 1)
max

(
r(i),0

)

and

r(i) =

⎧⎪⎪⎨
⎪⎪⎩

n
K (m − i − m−i

K−i ) if (i + m−i
K−i ) ≤ P ,

n
K

(K−i)(m−i)
4 if (i + m−i

K−i ) > P and (2P − m) ≥ i ≥ (K − 2),

n
K

(m−P )(K−i)(P−i)
m−i otherwise.

Proof. The proof is in Appendix D. �
For example, for the case of Polish parliamentary elections (K = 460 and m = 6000), to achieve 90% of voters’ optimal 

satisfaction, each voter would have to rank about 8.7% of the candidates. Of course, 8.7% of 6000 candidates is still over 
500. It is too much for the algorithm to be directly useful in these elections, but it indicates the power of truncated ballots. 
Extending our approach to further limit the number of candidates each voter has to rank is an important open issue. We 
stress again that our results give even stronger guarantees than just an approximation. For instance, in our example, if each 
voter ranks about 8.7% of the candidates then, independently of the agents’ preferences, on average each agent will be 
represented by someone who she prefers to 90% of the candidates.

Our results show that for most settings there is very little reason to ask the agents to rank all the alternatives. Using 
Proposition 6, election designers can estimate how many alternatives the agents should rank to obtain a particular level of 
satisfaction and, since computing preference orders can be expensive for the agents, this can save a large amount of effort.

4.2. Algorithm B (Monroe)

There are simple ways in which we can improve the quality of the assignment Φ produced by Algorithm A. For example, 
we can keep the elected committee S = Φ(N) but optimally reassign the alternatives to the voters using the algorithm 
in Proposition 3 obtaining the assignment Φ S

α . This is exactly what our Algorithm B is doing. As shown in Section 5, this 
very simple trick turns out to noticeably improve the results of the Algorithm A in practice (and, of course, the theoretical 
approximation guarantees of Algorithm A carry over to Algorithm B).

4.3. Algorithm C (Monroe, CC)

Algorithm C is a further heuristic improvement over Algorithm B. This time the idea is that instead of keeping only 
one partial function Φ that is iteratively extended up to the full assignment, we keep a list of up to d partial assignment 
functions, where d is a parameter of the algorithm. At each iteration, for each assignment function Φ among the d stored 
ones and for each alternative a to which Φ has not assigned agents yet, we compute an optimal extension of this Φ that 
assigns agents to a. As a result we obtain possibly more than d (partial) assignment functions. For the next iteration we 
keep those d that give highest satisfaction.

We provide pseudocode for Algorithm C in Fig. 5. If we take d = 1, we obtain Algorithm B. If we also disregard the last 
two lines prior to returning the solution, we obtain Algorithm A.

Algorithm C can also be adapted for the Chamberlin–Courant rule. The only difference concerns creating the assignment 
functions: we replace the contents of the first foreach loop with the following code:
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Notation: Φ ← a map defining a partial assignment, iteratively built by the algorithm.
Φ← ← the set of agents for which the assignment is already defined.
Φ→ ← the set of alternatives already used in the assignment.
Par ← a list of partial representation functions

Par = []
Par.push({})
for i ← 1 to K do

newPar = []
for Φ ∈ Par do

bests ← {}
foreach ai ∈ A \ Φ→ do

agents ← sort N \ Φ← (agent j precedes agent j′ implies that pos j(ai) ≤ pos j′ (ai))

bests[ai] ← choose first N
K elements of agents

Φ ′ ← Φ

foreach j ∈ bests[ai] do
Φ ′[ j] ← ai

newPar.push(Φ ′)
sort newPar according to descending order of the total satisfaction of the assigned agents
Par ← chose first d elements of newPar

for Φ ∈ Par do
Φ ← compute the optimal representative function using an algorithm of Betzler et al. [9] for the set of winners Φ→

return the best representative function from Par

Fig. 5. The pseudocode for Algorithm C.

foreach ai ∈ A \ Φ→ do

Φ ′ ← Φ

foreach j ∈ N do

if agent j prefers ai to Φ ′( j) then

Φ ′( j) ← ai

newPar.push
(
Φ ′)

Note that, for the case of the Chamberlin–Courant rule, Algorithm C can also be seen as a generalization of Algorithm GM 
that we discuss in Section 4.5.

4.4. Algorithm R (Monroe, CC)

Algorithms A, B and C achieve very high approximation ratios for the cases where K is small relative to m. For the 
remaining cases, where K and m are comparable, we can use a sampling-based randomized algorithm (denoted as Algo-
rithm R) described below. We focus on the case of Monroe and we briefly mention the case of CC at the end.

The idea of this algorithm is to randomly pick K alternatives and match them optimally to the agents, using Proposi-
tion 3. Naturally, such an algorithm might be very unlucky and pick K alternatives that all of the agents rank low. Yet, if 
K is comparable to m then it is likely that such a random sample would include a large chunk of some optimal solution. 
In the lemma below, we assess the expected satisfaction obtained with a single sampling step (relative to the satisfaction 
given by the optimal solution) and the probability that a single sampling step gives satisfaction close to the expected one. 
Naturally, in practice one should try several sampling steps and pick the one with the highest satisfaction.

Lemma 7. A single sampling step of the randomized algorithm for αB,dec-Monroe-SatWinner achieves expected approximation ratio 
of 1

2 (1 + K
m − K 2

m2−m
+ K 3

m3−m2 ). Let pε denote the probability that the relative difference between the expected total satisfaction and 
the obtained total satisfaction is higher than ε . Then we have pε ≤ 1

1+ε .

Proof. Let N = [n] be the set of agents, A = {a1, . . . , am} be the set of alternatives, and V be the preference profile of the 
agents. Let us fix some optimal solution Φopt and let Aopt be the set of alternatives assigned to the agents in this solution. 
For each ai ∈ Aopt, we write sat(ai) to denote the total satisfaction of the agents assigned to ai in Φopt. Naturally, we have ∑

a∈Aopt
sat(a) = OPT. In a single sampling step, we choose uniformly at random a K -element subset B of A. Then, we form 

a solution ΦB by matching the alternatives in B optimally to the agents (via Proposition 3). We write Kopt to denote the 
random variable equal to ‖Aopt ∩ B‖, the number of sampled alternatives that belong to Aopt . We define pi = Pr(Kopt = i)
to be the probability that B contains i alternatives from Aopt. For each j ∈ {1, . . . , K }, we write X j to denote the random 
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variable equal to the total satisfaction of the agents assigned to the j-th alternative from the sample. We claim that for 
each i, 0 ≤ i ≤ K , it holds that:

E

(
K∑

j=1

X j

∣∣∣ Kopt = i

)
≥ i

K
OPT + m − i − 1

2
·
(

n − i
n

K

)
.

Why is this so? Given a sample B that contains i members of Aopt, our algorithm’s solution is at least as good as a solution 
that matches the alternatives from B ∩ Aopt in the same way as Φopt, and the alternatives from B − Aopt in a random 
manner. Since Kopt = i and each a j ∈ Aopt has equal probability of being in the sample, it is easy to see that the expected 
value of 

∑
a j∈B∩Aopt

sat(a j) is i
K OPT. After we allocate the agents from B ∩ Aopt, each of the remaining, unassigned agents 

has m − i positions in her preference order where she ranks the agents from A − Aopt. For each unassigned agent, the 
average score value associated with these positions is at least m−i−1

2 (this is so, because in the worst case the agent could 
rank the alternatives from B ∩ Aopt in the top i positions). There are (n − i n

K ) agents that are not yet assigned, and so the 
expected total satisfaction from assigning them randomly to the alternatives is m−i−1

2 · (n − i n
K ). This proves our bound on 

the expected satisfaction of a solution yielded by optimally matching a random sample of K alternatives.
Since OPT is upper bounded by (m − 1)n (consider a possibly-nonexistent solution where every agent is assigned to his 

or her top preference), we get that:

E

(
K∑

j=1

X j

∣∣∣ Kopt = i

)
≥ i

K
OPT + m − i − 1

2(m − 1)
·
(

1 − i

K

)
OPT.

We can compute the unconditional expected satisfaction of ΦB as follows:

E

(
K∑

j=1

X j

)
=

K∑
i=0

piE

(
K∑

j=1

X j

∣∣∣ Kopt = i

)

≥
K∑

i=0

pi

(
i

K
OPT + m − i − 1

2(m − 1)
·
(

1 − i

K

)
OPT

)
.

Since 
∑K

i=1 pi · i is the expected value of Kopt, we have that 
∑K

i=1 pi · i = K 2

m (one can think of summing the expected values 
of K indicator random variables; one for each element of Aopt, taking the value 1 if a given alternative is selected and 
taking the value 0 otherwise). Further, from the generalized mean inequality we obtain 

∑K
i=1 pi · i2 ≥ ( K 2

m )2. In consequence, 
through routine calculation, we get that:

E

(
K∑

j=1

X j

)
≥

(
K

m
OPT + m2 − K 2 − m

2m(m − 1)
·
(

1 − K

m

)
OPT

)

= OPT

2

(
1 + K

m
− K 2

m2 − m
+ K 3

m3 − m2

)
.

It remains to assess the probability that the total satisfaction obtained through ΦB is close to its expected value. By the 
definition in the statement of the theorem, we have:

pε = Pr

(
K∑

j=1

X j < (1 − ε)E

(
K∑

j=1

X j

))
.

We define random variable Y , which with probability pε has value (1 −ε)E(
∑K

j=1 X j) and with probability 1 − pε has value 
OPT. Since the value of 

∑K
j=1 X j is smaller or equal to OPT with probability 1, and by the definition of pε , it must hold that 

E(Y ) ≥ E(
∑K

j=1 X j). After substituting the exact formula for E(Y ) in this inequality, it becomes:

pε ·
(

(1 − ε)E

(
K∑

j=1

X j

))
+ (1 − pε) · OPT ≥ E

(
K∑

j=1

X j

)
.

Since E(
∑K

j=1 X j) ≥ OPT
2 , we get:

pε ·
(

(1 − ε)E

(
K∑

j=1

X j

))
+ (1 − pε) · 2E

(
K∑

j=1

X j

)
≥ E

(
K∑

j=1

X j

)
.

From which we get that pε ≤ 1 . This completes the proof. �
1+ε
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Fig. 6. The relation between the ratio K/m and the expected approximation guarantee of Algorithm R, 1
2 (1 + K

m − K 2

m2−m
+ K 3

m3−m2 ), for the Monroe system 
(as opposed to the case of Algorithm A, we do not include a figure that shows the relation between the approximation ratio and the number of candidates 
m for fixed values of ratio K/m because for this algorithm this is, in essence, a constant).

Parameters: λ ← required probability of achieving the approximation ratio equal 0.715 − ε
if H K

K ≥ ε
2 then

compute the optimal solution using an algorithm of Betzler et al. [9] and return.
if m ≤ 1 + 2

ε then
compute the optimal solution using a simple brute force algorithm and return.

Φ1 ← solution returned by Algorithm A
Φ2 ← run the sampling-based algorithm − log(1 − λ) · 2+ε

ε times; select the assignment of the best quality
return the better assignment among Φ1 and Φ2

Fig. 7. Algorithm AR—combination of Algorithms A and R.

In the next theorem we show that to have a high chance of obtaining a high quality assignment, we need to repeat the 
sampling step many times. Thus, for practical purposes, by Algorithm R we mean an algorithm that repeats the sampling 
process a given number of times (this parameter is given as input) and returns the best solution found (the assignment is 
created using Proposition 3).

The relation between the ratio K/m and the expected approximation guarantee of Algorithm R is depicted in Fig. 6.
The threshold for K

m , where the sampling step is (in expectation) better than the greedy algorithm is about 0.57. Thus, 
by combining Algorithm R and Algorithm A, we can guarantee an expected approximation ratio of 0.715 − ε , for each fixed 
constant ε . We give the pseudocode for the combination of the two algorithms (Algorithm AR) in Fig. 7.

Theorem 8. For each fixed ε , Algorithm AR provides a (0.715 − ε)-approximate solution for the problem αB,dec-Monroe-SatWinner 
with probability λ in time polynomial with respect to the input instance size and − log(1 − λ).

Proof. Let ε be a fixed constant. We are given an instance I of αB,dec-Monroe-SatWinner.
We consider the following cases. If m ≤ 1 + 2

ε , then we solve I using a brute-force algorithm (note that in this case the 
number of alternatives is at most a fixed constant). Similarly, if H K

K ≥ ε
2 then we use the exact algorithm of Betzler et al. [9]

for a fixed value of K (note that in this case K is no greater than a certain fixed constant).
On the other hand, if neither of the above conditions hold (that is, if we have m > 1 + 2

ε and H K
K ≤ ε

2 ), then we try 
both Algorithm A and a number of runs of the sampling-based algorithm. It is easy to check through routine calculation 
that if H K

K ≤ ε
2 and m > 1 + 2

ε then Algorithm A achieves approximation ratio no worse than (1 − K
2m − ε). We run the 

sampling-based algorithm − log(1 −λ) 2+ε
ε times. The probability that a single run fails to find a solution with approximation 

ratio at least 1
2 (1 + K

m − K 2

m2−m
+ K 3

m3−m2 ) − ε
2 is p ε

2
≤ 2

2+ε . Thus, the probability that at least one run will find a solution 
with at least this approximation ratio is at least:

1 − p
− log(1−λ) 2+ε

ε
ε
2

= 1 −
(

2

2 + ε

) 2+ε
2 ·(− log(1−λ))

≥ 1 − exp
(
log(1 − λ)

) = λ.

Since m ≤ 1 + 2
ε , by routine calculation we see that the sampling-based algorithm with probability λ finds a solution with 

approximation ratio at least 1
2 (1 + K

m − K 2

m2 + K 3

m3 ) − ε . By solving the equation

1
(

1 + K − K 2

2
+ K 3

3

)
= 1 − K
2 m m m 2m
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Fig. 8. The relation between the number of alternatives m (left figure) or the ratio K/m (right figure) and the approximation guarantee of Algorithm AR for 
the Monroe system. For small values of m the lines on right plot indicate smaller approximation guarantee than 0.715—this is because the plots take into 
account the factor H K /K (see Lemma 4), which can be decreased to an arbitrarily small value, improving the quality of approximation to at least 0.715. 
However, doing so would require one to solve instances with small values of K using a brute-force algorithm, which may not be feasible in practice (even 
though theoretically possible). Thus, we chose to present the figure for the setting that one can apply in practice.

Notation: Φ S
α—the partial assignment that assigns a single alternative to at most n

K agents, that assigns to the agents only the 
alternatives from S , and that maximizes the utilitarian satisfaction 	α

sum(Φ S
α).

S ← ∅
for i ← 1 to K do

a ← argmaxa∈A\S	
α
sum(Φ

S∪{a}
α )

S ← S ∪ {a}
return Φ S

α

Fig. 9. Pseudocode for Algorithm GM.

we can find the value of K
m for which the two algorithms give the same approximation ratio. By substituting x = K

m we get 
equality 1 + x − x2 + x3 = 2 − x. One can calculate that this equality has a single solution within 〈0, 1〉 and that this solution 
is x ≈ 0.57. For this x both algorithms guarantee approximation ratio of 0.715 − ε . For x < 0.57 the deterministic algorithm 
guarantees a better approximation ratio and for x > 0.57, the randomized algorithm does better. �

The relation between m, the ratio K/m, and the approximation guarantee of Algorithm AR is depicted in Fig. 8.
Let us now consider the case of CC. It is just as natural to try a sampling-based approach for solving αB,dec-CC-SatWinner, 

as we did for the Monroe variant. Indeed, as recently (and independently) observed by Oren [45], this leads to a randomized 
algorithm with expected approximation ratio of (1 − 1

K+1 )(1 + 1
m ). However, since we will later see an effective, determin-

istic, polynomial-time approximation scheme for αB,dec-CC-SatWinner, there is little reason to explore the sampling based 
approach.

4.5. Algorithm GM (Monroe, CC)

Algorithm GM (greedy marginal improvement) was introduced by Lu and Boutilier for the case of the Chamberlin–
Courant rule. Here we generalize it to apply to the Monroe rule as well, and we show that it is a (1 − 1

e )-approximation 
algorithm for α-Monroe-SatWinner. We point out that this approximation result for the Monroe rule applies to all non-
decreasing PSFs α. For the Monroe rule, the algorithm can be viewed as an extension of Algorithm B.

The algorithm proceeds as follows. We start with an empty set S . Then we execute K iterations. In each iteration we 
find an alternative a that is not assigned to agents yet, and that maximizes the value Φ S∪{a}

α . (A certain disadvantage of 
this algorithm for the case of Monroe is that it requires a large number of computations of Φ S

α . Since the Monroe rule 
assigns each alternative to at most n

K agents in the partial assignment Φ S
α , computing Φ S

α is a slow process based on 
min-cost/max-flow algorithm.) We provide the pseudocode for Algorithm GM in Fig. 9.

We derive the approximation ratio of Algorithm GM as a corollary of a more general result regarding weighted 
b-matchings in bipartite graphs.

Definition 6 (Weighted-B-Matching (for bipartite graphs)). Let (U , V , E) be a bipartite undirected graph, where U ∪ V is 
the set of vertices and E is the set of edges. For each edge {u, v} ∈ E , by w(u,v) ∈ R≥0 we denote its weight, and for each 
left-side vertex u ∈ U , by su ∈ N we denote its capacity. The goal is to find a subset of the edges with the maximal total 
weight, such that each vertex u ∈ U belongs to at most su of the selected edges, each vertex v ∈ V belongs to at most one 
of the selected edges, and altogether at most K vertices from U belong to the selected edges.
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Notation: Φ ← a map defining a partial assignment, iteratively built by the algorithm.
Φ← ← the set of agents for which the assignment is already defined.
Φ→ ← the set of alternatives already used in the assignment.
num_pos(a, x) ← ‖{i ∈ [n] \ Φ← : posi(a) ≤ x}‖ (the number of not-yet assigned
agents that rank alternative a in one of their first x positions)
w(·) denotes Lambert’s W-function.

Φ = {}
x = � mw(K )

K �
for i ← 1 to K do

ai ← argmaxa∈A\Φ→ num_pos(a, x)
foreach j ∈ [n] \ Φ← do

if pos j(ai) < x then
Φ[ j] ← ai

foreach j ∈ A \ Φ← do
a ← such server from Φ→ that ∀a′∈Φ→ pos j(a) ≤ pos j(a

′)
Φ[ j] ← a

Fig. 10. The algorithm for αB,dec-CC-SatWinner (Algorithm P).

Theorem 9. Consider a greedy algorithm for Weighted-B-Matching that proceeds as follows. It starts with an empty set S of edges, 
and in each of K consecutive steps adds to S such a vertex u ∈ U that {u} ∪ S ∪ V induces a weighted B-matching with the maximal 
total weight. After K steps, the algorithm returns a weighted B-matching with maximal total weight for the graph induced by vertices 
S ∪ V . This algorithm is a polynomial-time (1 − 1

e )-approximation algorithm for Weighted-B-Matching.

Proof. The proof is in Appendix D. �
Theorem 10. For each non-decreasing positional scoring function α Algorithm GM is a (1 − 1

e )-approximation algorithm for 
α-Monroe-SatWinner.

Proof. This theorem follows from Theorem 9. To show that this is the case, we reduce α-Monroe-SatWinner to Weighted-

B-Matching. Consider an instance of α-Monroe-SatWinner with the set of agents [n], with the set of alternatives A, and 
with committee size K . We form an instance of Weighted-B-Matching with bipartite graph (U , V , E) as follows:

1. We set U = A, i.e., the vertices on the left correspond to the candidates.
2. We set V = [n], i.e., the vertices on the right correspond to the agents.
3. For every candidate a ∈ A and every agent i ∈ [n], we form an edge {a, i}, whose weight is equal to the satisfaction of 

agent i from being assigned to candidate a.
4. Each candidate a has capacity sa = n

K .

It is easy to see that solving so constructed instance of Weighted-B-Matching corresponds to solving α-Monroe-SatWinner, 
and that the algorithm described in Theorem 9, for this instance, becomes Algorithm GM. �

Formally speaking, Algorithm GM is never worse than Algorithm A. For the Borda satisfaction function, it inherits the 
approximation guarantees from Algorithm A, and for other cases Theorem 10 guarantees approximation ratio 1 − 1

e (we do 
not know of any guarantees for Algorithm A for these cases). The comparison with Algorithms B and C is not nearly as easy. 
Algorithm GM is still likely better than both of them for satisfaction functions significantly different from the Borda one, but 
for the Borda case our experiments show that Algorithm GM is much slower than Algorithms B and C and obtains almost 
the same or slightly worse results (see Section 5).

4.6. Algorithm P (CC)

Algorithm P is presented in Fig. 10. The idea of this algorithm is to compute x = mw(K )
K , where w is the Lambert’s 

W-function and to greedily compute an assignment that (approximately) maximizes the number of agents assigned to one 
of their top x alternatives.5 If after this process some agent has not been assigned to any alternative, we assign her to 
her most preferred alternative from those already selected. Somewhat surprisingly, it turns out that this greedy strategy 
achieves high-quality results.

5 This is very similar to the MaxCover problem. Skowron and Faliszewski [57] have discussed the connection of MaxCover to the winner determination 
problem under the Chamberlin–Courant voting system (for approval-based satisfaction functions) and provided a number of FPT approximation schemes 
for it.
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Fig. 11. The relation between the size of the committee K and the guarantee of satisfaction, 1 − 2w(K )
K , of an average voter under Algorithm P for the 

Chamberlin–Courant rule.

Theorem 11. For every preference profile, Algorithm P returns a solution in which each agent is, on average, represented by an alter-
native that she prefers to at least 1 − 2w(K )

K fraction of the alternatives.

Proof. Let x = mw(K )
K . We will first give an inductive proof that, for each i, 0 ≤ i ≤ K , after the i-th iteration of the outer 

loop at most n(1 − w(K )
K )i agents are unassigned. Based on this observation, we will derive the approximation ratio of our 

algorithm.
For i = 0, the inductive hypothesis holds because n(1 − w(K )

K )0 = n. For each i, let ni denote the number of unassigned 
agents after the i-th iteration. Thus, after the i-th iteration there are ni unassigned agents, each with x unassigned alterna-
tives among her top x ranked alternatives. As a result, at least one unassigned alternative is present in at least ni x

m−i of the 
top x positions of unassigned agents. This means that after the (i + 1)-th iteration the number of unassigned agents is:

ni+1 ≤ ni − ni x

m − i
≤ ni

(
1 − x

m

)
= ni

(
1 − w(K )

K

)
.

If for a given i the inductive hypothesis holds, that is, if ni ≤ n(1 − w(K )
K )i , then:

ni+1 ≤ n

(
1 − w(K )

K

)i(
1 − w(K )

K

)
= n

(
1 − w(K )

K

)i+1

.

Thus the hypothesis holds and, as a result, we have that:

nK ≤ n

(
1 − w(K )

K

)K

≤ n

(
1

e

)w(K )

= nw(K )

K
.

Let Φ be the assignment computed by our algorithm. To compare it against the optimal solution, it suffices to observe that 
the optimal solution has the value of satisfaction of at most OPT ≤ (m − 1)n, that each agent selected during the first K
steps has satisfaction at least m − x = m − mw(K )

K , and that the agents not assigned within the first K steps have satisfaction 
no worse than 0. Thus it holds that:

	
αB,dec
sum (Φ) ≥

(
n − nw(K )

K

)(
m − mw(K )

K

)

≥ n · m ·
(

1 − w(K )

K

)(
1 − w(K )

K

)
≥ nm

(
1 − 2w(K )

K

)
.

This completes the proof. �
The relation between K , and the guarantee of satisfaction of an average voter is given in Fig. 11.

Corollary 12. Algorithm P is a polynomial-time (1 − 2w(K )
K )-approximation algorithm for αB,dec-CC-SatWinner.

Proof. Since a satisfaction of each single agent is bounded by (m − 1), by applying Theorem 11, we get the conclusion. �
Since for each ε > 0 there is a value Kε such that for each K > Kε it holds that 2w(K )

K < ε , and αB,dec-CC-SatWinner

problem can be solved optimally in polynomial time for each fixed constant K (see the XP algorithm for parameter K given 
by Betzler et al. [9]), there is a polynomial-time approximation scheme (PTAS) for αB,dec-CC-SatWinner (i.e., a family of algo-
rithms such that for each fixed r, 0 < r < 1, there is a polynomial-time r-approximation algorithm for αB,dec-CC-SatWinner
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Fig. 12. The relation between the number of the known positions and the approximation ratio of Algorithm P for αB,dec-CC-SatWinner.

in the family; note that in PTASes we measure the running time by considering r to be a fixed constant). The reason is 
that given the approximation parameter ε and an instance of the problem with a particular value of K , we can solve it as 
follows:

1. If K ≤ Kε , then we use the brute-force algorithm of Betzler et al. [9] to solve the problem optimally (since Kε is a 
constant, the algorithm runs in polynomial time).6

2. Otherwise, we use Algorithm P (whose approximation ratio is sufficiently good when K ≥ Kε ).

Corollary 13. There is a PTAS for αB,dec-CC-SatWinner.

Finally, we show that Algorithm P performs very well even if the voters cast truncated ballots. Proposition 14 gives the 
relation between the number Q of positions used by the algorithm and the approximation ratio. In Fig. 12 we show this 
relation for some values of the parameters m and K .

Proposition 14. Algorithm P that uses x = Q instead of x = �mw(K )
K �, where Q ≤ mw(K )

K , returns a solution in which each agent is, 
on average, represented by an alternative that she prefers to at least m−Q

m−1 (1 − e− Q K
m ) fraction of the alternatives. In particular, such 

algorithm is a polynomial-time (m−Q
m−1 (1 − e− Q K

m ))-approximation algorithm for αB,dec-CC-SatWinner.

Proof. The proof is in Appendix D. �
For example, for Polish parliamentary elections (K = 460, m = 6000), it suffices that each voter ranks only 0.5% of her 

top alternatives (that is, about 30 alternatives) for the algorithm to find a solution with guaranteed satisfaction at least 90%
of the maximal satisfaction (possibly not achievable) when every voter is assigned to her top alternative.

5. Empirical evaluation of the algorithms

In this section we present the results of empirical evaluation of algorithms from Section 4. In the experiments we 
consider variants of the randomized algorithms that use exactly 100 sampling steps. In all cases but one, we use Borda 
DPSF to measure voter satisfaction. In one case, with six candidates, we use PSF defined through vector (3, 3, 3, 2, 1, 0) (we 
made this choice due to the nature of the data set; see discussion later).

We have conducted four sets of experiments. First, we have tested all our algorithms on relatively small elections (up 
to 10 candidates, up to 100 agents). In this case we were able to compare the solutions provided by our algorithms with 
the optimal ones. (To obtain the optimal solutions, we were using the ILP formulations, see Appendix B, and the GLPK’s 
ILP solver.) Thus we report the quality of our algorithms as the average of fractions C/Copt , where C is the satisfaction 
obtained by a respective algorithm and Copt is the satisfaction in the optimal solution. For each algorithm and data set, we 
also report the average fraction C/C ideal, where C ideal is the satisfaction that the voters would have obtained if each of them 
were matched to her most preferred alternative. In our further experiments, where we considered larger elections, we were 
not able to compute optimal solutions, but the fraction C/C ideal gives a lower bound for C/Copt. We report this value for 
small elections so that we can see an example of the relation between C/Copt and C/C ideal and so that we can compare the 
results for small elections with the results for the larger ones. Further, for the case of Borda PSF the C/C ideal fraction has a 
very natural interpretation: If its value for a given solution is v , then, on the average, in this solution each voter is matched 
to an alternative that she prefers to (m − 1)v alternatives.

6 The exact polynomial depends on ε and this is why the algorithm is not a fully polynomial-time approximation scheme.
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In our second set of experiments, we have run our algorithms on large elections (thousands of agents, hundreds of 
alternatives), coming either from the NetFlix data set (see below) or generated by us using one of our models. Here we 
report the average fraction C/C ideal only. We analyze the quality of the solutions as a function of the number of agents, the 
number of candidates, and the relative number of winners (fraction K/m). (This last set of results is particularly interesting 
because in addition to measuring the quality of our algorithms, it allows one to assess the size of a committee one should 
seek if one wants to achieve a given average satisfaction of agents.)

In the third set of experiments, we investigate the effect of submitting truncated ballots (i.e., preference orders where 
only some of the top alternatives are ranked). Specifically, we focus on the relation between the fraction of ranked alter-
natives and the approximation ratios of the algorithms. We ran our experiments on relatively large instances describing 
agents’ preferences; thus, here as in the previous set of experiments, we used NetFlix data set and the synthetic data sets. 
We report the quality of the algorithms as the ratio C/C ideal .

In the fourth set of experiments we have measured running times of our algorithms and of the ILP solver. Even though 
all our algorithms (except for the ILP based ones) are polynomial-time, in practice some of them are too slow to be useful.

5.1. Experimental data

For the evaluation of the algorithms we consider both real-life preference-aggregation data and synthetic data, gener-
ated according to a number of election models. The experiments reported in this paper predate the work of Mattei and 
Walsh [37] on gathering a large collection of data sets with preference data, but we mention that the conference version of 
this paper contributed several data sets to their collection.

5.1.1. Real-life data
We use real-life data regarding people’s preference on sushi types, movies, college courses, and performance of athletes

in figure-skating competitions. One of the major problems regarding real-life preference data is that either people express 
preferences over a very limited set of alternatives, or their preference orders are partial. To address the latter issue, for each 
such data set we extended the partial orders to total orders using the technique of Kamishima [27]. (The idea is to complete 
each preference order based on those reported preference orders that appear to be similar.)

Some of our data sets contain a single profile, whereas the others contain multiple profiles. When preparing data for a 
given number m of candidates and a given number n of voters from a given data set, we used the following method: We 
first uniformly at random chose a profile within the data set, and then we randomly selected n voters and m candidates. 
We used preference orders of these n voters restricted to these m candidates.

There are two important points that we should make about our real-life data sets and the way we use them. First, one 
should keep in mind that the method of extending partial preference orders to total ones can possibly have significant 
influence on the results. Here we used the Kamishima [27] technique, but other ones are possible and might give different 
results. Second, in our experiments on real-life data, for each experiment we redraw a sample from a given data set. This 
means that our samples are not independent and our results should be seen as “noisy observations about the same event,” 
where the event corresponds to the type of preferences in a given data set. We believe that such results are still useful 
and do give some information on how our algorithms would behave in practice. Nonetheless, one should keep in mind 
their limitations. We point the reader to Regenwetter et al.’s book [50] for a detailed discussion of various issues in treating 
empirical data in social choice, including the two issues just mentioned.7

Sushi Preferences. We used the set of preferences regarding sushi types collected by Kamishima [27].8 Kamishima has 
collected two sets of preferences, which we call S1 and S2. Data set S1 contains complete rankings of 10 alternatives collected 
from 5000 people. S2 contains partial rankings provided by 5000 people over a set of 100 alternatives (each “vote” ranks 
10 alternatives). We used Kamishima’s [27] technique to obtain total rankings.

Movie Preferences. Following Mattei et al. [35,36], we have used the NetFlix data set9 of movie preferences (we call it
Mv). NetFlix data set contains ratings collected from about 480 thousand distinct users regarding 18 thousand movies. The 
users rated movies by giving them a score between 1 (bad) and 5 (good). The set contains about 100 million ratings. We 
have generated 50 profiles using the following method: For each profile we have randomly selected 300 movies, picked 
10 000 users that ranked the highest number of the selected movies, and for each user we have extended her ratings to 
a complete preference order using the method of Kamishima [27]. (However, we should mention that Popova et al. [46]
presented a detailed discussion showing that the exact results—in their case for single-winner voting rules—that one could 
derive from the NetFlix data set vary strongly depending on the assumptions one makes about extending the ratings to 
complete preference profiles. Thus our results about this data set should be understood only as examples of the type of 
results one should expect.)

7 We are very grateful to the anonymous reviewers for pointing out these issues.
8 The sushi data set is available under the following url: http :/ /www.kamishima .net /sushi/.
9 http :/ /www.netflixprize .com/.

http://www.kamishima.net/sushi/
http://www.netflixprize.com/
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Course Preferences. Each year the computer science students at the AGH University in Krakow choose courses that they 
would like to attend. In our case, the students were offered a choice of six courses of which they had to attend three. Thus 
the students were asked to give an unordered set of their three most preferred courses and a ranking of the remaining 
ones (in case too many students selected a particular course, those with the highest GPA were enrolled and the remaining 
ones were moved to their less preferred courses). In this data set, which we call Cr, we have 120 voters (students) and 6
alternatives (courses). However, due to the nature of the data, instead of using Borda count PSF as the satisfaction measure, 
we use the vector (3, 3, 3, 2, 1, 0). Currently this data set is available as part of PrefLib [37].

Figure Skating. This data set, which we call Sk, contains preferences of the judges over performances in figure-skating 
competitions. The data set contains 48 profiles, each describing a single competition. Each profile contains preference orders 
of 9 judges over about 20 participants. The competitions include European skating championships, Olympic Games, World 
Junior, and World Championships, all from 1998.10 (Note that while in figure skating judges provide numerical scores, this 
data set is preprocessed to contain preference orders.)

Most of the data sets that we used are currently available as part of the PrefLib [37] library of preference data.

5.1.2. Synthetic data
For our tests, we also use profiles generated using three well-known distributions of preference orders.

Impartial Culture. Under the impartial culture model of preferences (which we denote IC), for a given set A of alternatives, 
each voter’s preference order is drawn uniformly at random from the set of all possible total orders over A. While not very 
realistic, profiles generated using impartial culture model are a standard testbed of election-related algorithms.

Polya–Eggenberger Urn Model. Following McCabe-Dansted and Slinko [39] and Walsh [60], we use the Polya–Eggenberger 
urn model [6] (which we denote Ur). In this model we generate votes as follows. We have a set A of m alternatives and an 
urn that initially contains a copy of each of the m! preference orders over A. To generate a vote, we simply randomly pick 
one from the urn (this is our generated vote), and then—to simulate correlation between voters—we return a copies of this 
preference order to the urn. When generating an election with m candidates using the urn model, we set the parameter a
so that a

m! = 0.05. (Both McCabe-Dansted and Slinko [39] and Walsh [60] refer to the value a
m! as parameter b; we mention 

that those authors use much higher values of b but we felt that too high a value leads to a much too strong correlation 
between votes.)

Generalized Mallow’s Model. We refer to this data set as Ml. Let 
 and 
′ be two preference orders over some alternative 
set A. Kendal–Tau distance between 
 and 
′ , denoted dK (
, 
′), is defined as the number of pairs of candidates x, y ∈ A
such that either (x 
 y) ∧ (y 
′ x) or (y 
 x) ∧ (x 
′ y).

Under Mallow’s distribution of preferences [34] we are given two parameters: a center preference order 
 and a number 
φ between 0 and 1. The model says that the probability of generating preference order 
′ is proportional to the value 
φdK (
,
′) To generate preference orders following Mallow’s distribution, we use the algorithm given by Lu and Boutilier 
[33].

In our experiments, we use a mixture of Mallow’s models. Let A be a set of alternatives and let 	 be a positive integer. 
This mixture model is parametrized by three vectors, Λ = (λ1, . . . , λ	) (where each λi is between 0 and 1, and 

∑	
i=1 λ1 = 1), 

Φ = (φ1, . . . , φ	) (where each φi is a number between 0 and 1), and Π = (
1, . . . , 
	) (where each 
i is a preference order 
over A). To generate a vote, we pick a random integer i, 1 ≤ i ≤ 	 (each i is chosen with probability λi ), and then generate 
the vote using Mallow’s model with parameters (
i, φi).

For our experiments, we use a = 5, and generate vectors Λ, Φ , and Π uniformly at random.

5.2. Evaluation on small instances

We now present the results of our experiments on small elections. For each data set, we generated elections with the 
number of agents n = 100 (n = 9 for data set Sk because there are only 9 voters there) and with the number of alternatives 
m = 10 (m = 6 for data set Cr because there are only 6 alternatives there) using the method described in Section 5.1.1
for the real-life data sets, and in the natural obvious way for synthetic data. For each algorithm and for each data set we 
ran 500 experiments on different instances for K = 3 (for the Cr data set we used K = 2) and 500 experiments for K = 6
(for Cr we set K = 4). For Algorithm C (both for Monroe and for CC) we set the parameter d, describing the number of 
assignment functions computed in parallel, to 15. The results (average fractions C/Copt and C/C ideal) for K = 3 are given 
in Tables 1 and 3; the results for K = 6 are given in Tables 2 and 4 (they are almost identical as for K = 3). For each 
experiment in this section we also computed the standard deviation; it was always on the order of 0.01. We also computed 
the minimum satisfaction values returned by our algorithms in each of the experiments. For all the algorithms except 
Algorithm P, these values were never lower than 90% of the reported average values (for Algorithm P, they were never lower 
than 85% of the reported average values). These results lead to the following conclusions:

10 This data set is available under the following url: http :/ /rangevoting .org /SkateData1998 .txt.

http://rangevoting.org/SkateData1998.txt
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Table 1
The average quality of the algorithms compared with the optimal solution (C/Copt) for the small instances of data 
and for K = 3 (K = 2 for Cr); m = 10 (m = 6 for Cr); n = 100 (n = 9 for Sk).

Monroe CC

A B C GM R C GM P R

S1 0.94 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
S2 0.95 0.99 1.0 ≈ 1.0 0.99 1.0 ≈ 1.0 0.98 0.99
Mv 0.96 ≈ 1.0 1.0 ≈ 1.0 0.98 1.0 ≈ 1.0 0.96 ≈ 1.0
Cr 0.98 0.99 1.0 ≈ 1.0 0.99 1.0 ≈ 1.0 1.0 ≈ 1.0
Sk 0.99 ≈ 1.0 1.0 ≈ 1.0 0.94 1.0 ≈ 1.0 0.82 0.99

IC 0.94 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
Ml 0.94 0.99 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
Ur 0.95 0.99 ≈ 1.0 0.99 0.99 1.0 0.99 0.97 0.99

Table 2
The average quality of the algorithms compared with the optimal solution (C/Copt) for the small instances of data 
and for K = 6 (K = 4 for Cr); m = 10 (m = 6 for Cr); n = 100 (n = 9 for Sk).

Monroe CC

A B C GM R C GM P R

S1 0.95 ≈ 1.0 1.0 0.99 0.99 1.0 ≈ 1.0 0.97 0.99
S2 0.94 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.98 ≈ 1.0
Mv 0.95 0.99 1.0 ≈ 1.0 0.98 1.0 ≈ 1.0 0.97 ≈ 1.0
Cr 0.96 ≈ 1.0 1.0 ≈ 1.0 0.99 1.0 1.0 1.0 1.0
Sk 0.99 ≈ 1.0 1.0 ≈ 1.0 0.88 1.0 1.0 0.91 ≈ 1.0

IC 0.95 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
Ml 0.95 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.98 0.99
Ur 0.96 0.99 ≈ 1.0 0.99 ≈ 1.0 1.0 ≈ 1.0 0.96 0.99

Table 3
The average quality of the algorithms compared with the simple lower bound (C/Cideal) for the small instances of 
data and for K = 3 (K = 2 for Cr); m = 10 (m = 6 for Cr); n = 100 (n = 9 for Sk).

Monroe CC

A B C GM R C GM P R

S1 0.85 0.89 0.9 0.89 0.89 0.92 0.92 0.91 0.92
S2 0.85 0.89 0.89 0.89 0.89 0.93 0.93 0.91 0.92
Mv 0.88 0.92 0.92 0.92 0.91 0.97 0.97 0.93 0.97
Cr 0.94 0.96 0.97 0.96 0.96 0.97 0.97 0.97 0.97
Sk 0.96 0.96 0.97 0.97 0.91 1.0 1.0 0.82 0.99

IC 0.8 0.84 0.85 0.84 0.84 0.85 0.85 0.84 0.85
Ml 0.83 0.88 0.88 0.88 0.88 0.92 0.9 0.89 0.9
Ur 0.8 0.85 0.86 0.85 0.85 0.9 0.89 0.87 0.89

Table 4
The average quality of the algorithms compared with the simple lower bound (C/Cideal) for the small instances of 
data and for K = 6 (K = 4 for Cr); m = 10 (m = 6 for Cr); n = 100 (n = 9 for Sk).

Monroe CC

A B C GM R C GM P R

S1 0.91 0.96 0.96 0.95 0.95 0.98 0.98 0.96 0.98
S2 0.88 0.93 0.93 0.93 0.93 0.98 0.98 0.96 0.98
Mv 0.85 0.89 0.89 0.89 0.88 0.99 0.99 0.97 0.99
Cr 0.95 0.98 0.99 0.99 0.98 1.0 1.0 1.0 1.0
Sk 0.91 0.92 0.92 0.92 0.81 1.0 1.0 0.91 ≈ 1.0

IC 0.91 0.95 0.95 0.94 0.95 0.96 0.96 0.95 0.95
Ml 0.89 0.94 0.94 0.94 0.93 0.98 0.98 0.95 0.97
Ur 0.91 0.95 0.95 0.94 0.95 0.98 0.98 0.94 0.97
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Fig. 13. The relation between the value of the parameter d for Algorithm C and the quality of the algorithms C/Cideal for the Chamberlin–Courant system 
(left figure) and for the Monroe system (right figure); m = 10; K = 3; n = 100.

1. For the case of Monroe, Algorithm A obtains very good results, but nonetheless Algorithms B and C improve noticeably 
upon Algorithm A. In particular, Algorithm C (for d = 15) obtained the highest satisfaction on all data sets and in almost 
all cases was able to find an optimal solution.

2. Both for Monroe and for CC, Algorithm R gives slightly worse solutions than Algorithm C.
3. The results do not seem to depend on the data sets used in the experiments (the only exception is Algorithm R for the 

Monroe system on data set Sk; however Sk has only 9 voters so we view it as a border case).

Since Algorithm C achieves very good results, it is natural to ask for the impact of the value of the parameter d on the 
quality of approximation. We present this relation for n = 100, m = 10, and K = 3 in Fig. 13. We see that for the case of 
Chamberlin–Courant system even a small value of d is sufficient to obtain algorithm’s optimal behavior. For the case of the 
Monroe system, slightly larger values of d lead to optimal behavior. In the next section we show that for the larger values 
of m Algorithm A gives high quality results by itself, and thus the impact of the value of d is even less pronounced. For this 
reason we omit presentation of the analogous results regarding parameter d for larger values of m.

5.3. Evaluation on larger instances

For experiments on larger instances we needed data sets with at least n = 10 000 agents. Thus we used the NetFlix data 
set and synthetic data. (Additionally, we ran the subset of experiments (for n ≤ 5000) also for the S2 data set.) For the 
Monroe rule we present results for Algorithms A, C, and R, and for the Chamberlin–Courant rule we present results for 
Algorithms C and R. We limit the set of algorithms for the sake of clarity of presentation. For Monroe we chose Algorithm A 
because it is the simplest and the fastest one, Algorithm C because it is the best generalization of Algorithm A that we 
were able to run in reasonable time, and Algorithm R to compare a randomized algorithm to deterministic ones. For the 
Chamberlin–Courant rule we chose Algorithm C because it is, intuitively, the best one, and we chose Algorithm R for the 
same reason as in the case of Monroe.

First, for each data set and for each algorithm we fixed the value of m and K and for each n ranging from 1000 to 10 000
with the step of 1000 we ran 50 experiments. We repeated this procedure for 4 different combinations of m and K : (m = 10, 
K = 3), (m = 10, K = 6), (m = 100, K = 30) and (m = 100, K = 60). We measured the statistical correlation between the 
number of voters and the quality of the algorithms C/C ideal . The ANOVA test in most cases showed that there is no such 
correlation. The only exception was S2 data set, for which we obtained an almost negligible correlation. For example, for 
(m = 10, K = 3) Algorithm C under data set S2 for the Monroe system for n = 5000 gave C/C ideal = 0.88, while for n = 100
(in the previous section) we got C/C ideal = 0.89. Thus we conclude that in practice the number of agents has almost no 
influence on the quality of the results provided by our algorithms.

Next, we fixed the number of voters n = 1000 and the ratio K/m = 0.3, and for each m ranging from 30 to 300 with step 
size 30 (naturally, as m changed, so did K to maintain the ratio K/m), we ran 50 experiments. We repeated this procedure 
for K/m = 0.6. The relation between m and C/C ideal for Mv and Ur, under both the Monroe rule and the Chamberlin–
Courant rule, is given in Figs. 14 and 15 (the results for K/m = 0.6 look similar).

Finally, we fixed n = 1000 and m = 100, and for each K/m ranging from 0.1 and 0.5 with the step of 0.1 we ran 50
experiments. The relation between the ratio K/m and the quality C/C ideal is presented in Figs. 16 and 17.

For the case of Chamberlin–Courant system, increasing the size of the committee to be elected improves overall agents’ 
satisfaction. Indeed, since there are no constraints on the number of agents matched to a given alternative, a larger com-
mittee means more opportunities to satisfy the agents. For the Monroe rule, a larger committee may lead to a lower total 
satisfaction. This happens if many agents like a particular alternative a lot, but only some of them can be matched to this al-
ternative and others have to be matched to their less preferred ones. Indeed, this observation is—to some extent—supported 
by our theoretical results: For example, if we fix the number of candidates m, the approximation guarantee of Algorithm P 
(for Chamberlin–Courant; see Fig. 11) is monotonically increasing with K , whereas this is not the case for the approximation 
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Fig. 14. The relation between the number of alternatives m and the quality of the algorithms C/Cideal for the Monroe system; K/m = 0.3; n = 1000.

Fig. 15. The relation between the number of alternatives m and the quality of the algorithms C/Cideal for the Chamberlin–Courant system; K/m = 0.3; 
n = 1000.

Fig. 16. The relation between the ratio K/m and the quality of the algorithms C/Cideal for the Monroe system; m = 100; n = 1000.

Fig. 17. The relation between the ratio K/m and the quality of the algorithms C/Cideal for the Chamberlin–Courant system; m = 100; n = 1000.
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Fig. 18. The relation between the number of known positions P and the quality of the algorithm C/Cideal for Algorithms C, A, and R for the Monroe system. 
Each row of the plots describes one algorithm; each column describes one data set; n = 1000.

guarantee of Algorithm A (for Monroe; see the right-hand side of Fig. 3). Nonetheless, we see that for Monroe Algorithm C 
achieves C/C ideal = 0.925 even for K/m = 0.5 for the NetFlix data set.

Our conclusions from these experiments are the following. For the Monroe rule, even Algorithm A achieves very good 
results. However, Algorithm C consistently achieves better (indeed, almost perfect) ones. For the Chamberlin–Courant rule 
the randomized algorithm on some datasets performs better than the deterministic ones. However, even in such cases, the 
improvement over Algorithm C is small.

5.4. Truncated ballots

The purpose of our third set of experiments is to see how our algorithms behave in practical settings with truncated 
ballots. We conducted this part of evaluation on relatively large instances, including n = 1000 agents and up to m = 100
alternatives. Thus, in this set of experiments, we used the same sets of data as in the previous subsection: the NetFlix data 
set and the synthetic distributions. Similarly, we evaluated the same algorithms: Algorithms A, C, and R for the case of the 
Monroe system, and Algorithms C and R for the case of the Chamberlin–Courant system.

For each data set and for each algorithm we ran experiments for three independent settings with different values of the 
parameters describing the elections: (1) m = 100, K = 20, (2) m = 100, K = 10, and (3) m = 20, K = 4. For each setting we 
ran the experiments for the values of P (the number of known positions) varying between 1 and m.

For each algorithm, data set, setting and each value of P we ran 50 independent experiments in the following way. From 
a data set we sampled a sub-profile of the appropriate size n × m. We truncated this profile to the P first positions. We ran 
the algorithm for the truncated profile and calculated the quality ratio C/C ideal . When calculating C/C ideal we assumed the 
worst case scenario, i.e., that the satisfaction of each agent from an alternative outside of her first P positions is equal to 0. 
In other words, we used the positional scoring function described by the following vector: 〈m −1, m −2, . . . , m − P , 0, . . . ,0〉. 
Next, we averaged the values of C/C ideal over all 50 experiments.
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Fig. 19. The relation between the number of known positions P and the quality of the algorithm C/Cideal for Algorithms C and R for the Chamberlin–Courant 
system. Each row of the plots describes one algorithm; each column describes one data set; n = 1000. (Results for the Mallows model are similar to those 
for the urn model and are omitted for clarity.)

The relation between the percentage of the known positions in the preference profile and the average quality of the 
algorithm for the Monroe and Chamberlin–Courant systems are plotted in Figs. 18 and 19, respectively. We omit the plots 
for the Urn model and for the Mallow’s model, as in this case the results are very similar. We have the following conclu-
sions.

1. All the algorithms require only small number of the top positions to achieve their best quality. Here, the deterministic 
algorithms are superior.

2. The small elections with synthetic distributions appear to be the worst case scenario (we also run our experiments 
for Urn model and for Mallow’s model: for these two models our algorithms gave slightly better results than for the 
impartial culture model)—in such cases we require the knowledge of about 40% of the top positions to obtain the highest 
approximation ratios of the algorithms. In the case of the NetFlix data set, even on small instances the deterministic 
algorithms require only about 8% of the top positions to get their best quality (however the quality is already high for 
3–5% of the top positions). For the larger number of the alternatives, the algorithms do not require more than 3% of the 
top positions to reach their top results.

3. Algorithm C gives the best solutions and is also the most immune one to the lack of knowledge. These results are more 
evident for the case of the Monroe system.

5.5. Running time

In our final set of experiments, we measured running times of our algorithms on the data set Mv. We used a machine 
with Intel Pentium Dual T2310 1.46 GHz processor and 1.5 GB of RAM. In Fig. 20 we show the running times of the GLPK 
ILP solver for the Monroe and for Chamberlin–Courant rules. These running times are already large for small instances and 
they are increasing exponentially with the number of voters. For the Monroe rule, even for K = 9, m = 30, n = 100 some of 
the experiments timed out after 1 hour, and for K = 9, m = 30, n = 200 none of the experiments finished within one day. 
Thus we conclude that the real application of the ILP-based algorithm is very limited.

Example running times of the other algorithms for some combinations of n, m, and K are presented in Table 5. For the 
case of CC, essentially all the algorithms are very fast and the quality of computed solutions is the main criterion in choosing 
among them. For the case of Monroe, the situation is more complicated. While for small elections all the algorithms are 
practical, for elections with thousands of voters, using Algorithm GM becomes problematic. Indeed, even Algorithm C can 
be seen as a bit too slow if one expects immediate results. On the other hand, Algorithms A and B seem perfectly practical 
and, as we have seen in the previous experiments, give high-quality results.
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Fig. 20. The running time of the standard ILP solver for the Monroe and for the Chamberlin–Courant systems. For the Monroe system, for K = 9, m = 30, 
and for n ≥ 200 none of the single algorithm execution finished within 1 day.

Table 5
Example running times of the algorithms [in seconds].

m = 10, K = 3 m = 10, K = 6

n = 2000 6000 10 000 2000 6000 10 000

M
on

ro
e

A 0.01 0.03 0.05 0.01 0.04 0.07
B 0.08 0.9 2.3 0.2 1.4 3.6
C 1.1 8 22 2.1 16 37
GM 0.8 7.3 20 1.9 13 52
R 7.6 50 180 6.5 52 140

CC

C 0.02 0.07 0.12 0.05 0.14 0.26
GM 0.003 0.009 0.015 0.003 0.01 0.018
P 0.009 0.032 0.05 0.008 0.02 0.05
R 0.014 0.04 0.065 0.02 0.06 0.11

m = 100, K = 30 m = 100, K = 60

n = 2000 6000 10 000 2000 6000 10 000

M
on

ro
e

A 0.5 1.6 2.8 0.9 2.8 4.9
B 0.8 4 9.5 1.7 8 18
C 38 140 299 64 221 419
GM 343 2172 5313 929 5107 13420
R 41 329 830 88 608 1661

CC

C 4.3 11 19 7.5 19 31
GM 0.06 0.2 0.4 0.09 0.3 0.7
P 0.03 0.1 0.26 0.03 0.1 0.2
R 0.06 0.24 0.45 0.1 0.4 0.8

6. Summary

We have studied approximability of finding winners under the Monroe and Chamberlin–Courant multiwinner voting 
rules. We have shown that if we try to optimize agents’ dissatisfaction, then our problems are hard to approximate up to 
any constant factor. The same holds for the case where we focus on the satisfaction of the least satisfied agent. However, 
for the case of optimizing the sum of agents’ satisfactions, we found good approximation algorithms. In particular, for the 
Monroe system we suggest a randomized algorithm that for the Borda score achieves an approximation ratio arbitrarily close 
to 0.715 (and much better ratios in many real-life settings), and (1 − 1

e )-approximation algorithm for arbitrary positional 
scoring function. For the Chamberlin–Courant system, we have shown a polynomial-time approximation scheme (PTAS).

In Table 6 we present the summary of our (in)approximability results. In Table 7 we present specific results regarding 
our approximation algorithms for the utilitarian satisfaction-based framework. In particular, the table clearly shows that for 
the case of Monroe, Algorithms B and C are not much slower than Algorithm A but offer a chance of improved performance. 
Algorithm GM is intuitively even more appealing, but achieves this at the cost of high time complexity. For the case of 
Chamberlin–Courant rule, theoretical results suggest using Algorithm P (however, see below).

We have provided experimental evaluation of the algorithms for computing the winner sets both for the Monroe and 
Chamberlin–Courant rules. While finding solutions for these rules is computationally hard in the worst case, it turned out 
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Table 6
Summary of approximability results for the Monroe and Chamberlin–Courant multiwinner voting systems and for 
the general resource allocation problem (see Appendix A for the general resource allocation model and Appendix C
for the egalitarian variants of our rules).

Monroe Chamberlin and Courant General model

dissat. satisfaction dissat. satisfaction dissat. satisfaction
ut

il. Inapprox. 
Theorem 1

Good approx. Inapprox. 
Theorem 2

Good approx. Inapprox. 
Theorem 1
Theorem 2

Open 
problem

eg
al

.

Inapprox. 
Theorem 15

Inapprox. 
Theorem 17

Inapprox. 
Theorem 16

Inapprox. 
Theorem 19

Inapprox. 
Theorem 15
Theorem 16

Inapprox. 
Theorem 17
Theorem 19

Table 7
A summary of the algorithms studied in this paper. The top of the table regards algorithms for the Monroe rule and 
the bottom for the Chamberlin–Courant rule. In column “Approximation” we give currently known approximation 
ratio for the algorithm under Borda PSF, on profiles with m candidates and where the goal is to select a committee 
of size K . Here, O (Φ S ) = O (n2(K + logn)) is the complexity of finding a partial representation function with the 
algorithm of Betzler et al. [9]. w(·) denotes Lambert’s W-function.

Algorithm Approximation Runtime Reference

M
on

ro
e

A 1 − K−1
2(m−1)

− H K
K Kmn Lemma 4

B as in Algorithm A Kmn + O (Φ S ) Lemma 4
C as in Algorithm A dKmn + dO (Φ S ) Lemma 4
GM as in Alg. A for Borda PSF; 1 − 1

e for others KmO (Φ S ) Theorem 10

R 1
2 (1 + K

m − K 2m−K 3

m3−m2 )
| log(1−λ)|

Kε2 O (Φ S ) Lemma 7
AR 0.715 max(A,R) Theorem 8

CC

PTAS Corollary 13

P 1 − 2w(K )
K nmw(K ) Theorem 11

GM 1 − 1
e Kmn Lu and Boutilier [32]

C as in Algorithm GM dKm(n + log dm) Lu and Boutilier [32]
R (1 − 1

K+1 )(1 + 1
m )

| log(1−λ)|
ε2 n Oren [45]

that in practice we can obtain very high quality solutions using very simple approximation algorithms. Indeed, both for the 
Monroe and Chamberlin–Courant rules we recommend using Algorithm C (or Algorithm A on very large Monroe elections). 
Our experimental evaluation confirms that the algorithms work very well in the case of truncated ballots. We believe that 
our results mean that (approximations of) the Monroe and Chamberlin–Courant rules can be used in practice.

Our work leads to a number of further research directions. First, it would be interesting to find a better upper bound 
on the quality of solutions for the (satisfaction-based) Monroe and Chamberlin–Courant systems (with Borda PSF) than the 
simple n(m −1) bound that we use (where n is the number of voters and m is the number of candidates). We use a different 
approach in our randomized algorithm, but it would be much more interesting to find a deterministic algorithm that beats 
the approximation ratios of our algorithms. One of the ways of seeking such a bound would be to consider the Monroe rule 
with “exponential” Borda PSF, that is, with PSF of the form, e.g., (2m−1, 2m−2, . . . , 1). For such PSF our approach in the proof 
of Lemma 4 would not give satisfactory results and so one would be forced to seek different attacks. In a similar vein, it 
would be interesting to find out if there is a PTAS for the Monroe system.

In our work, we have focused on PSFs that are strictly increasing/decreasing. It would also be interesting to study 
PSFs which increase/decrease but not strictly, that is, PSFs which allow some equalities. We have started to work in this 
direction by considering agents with dichotomous preferences. Formally, we consider t-approval PSF’s αt , which (in the 
satisfaction-based variant) are defined as follows: αt (i) = 1 if i ≤ t and otherwise αt(i) = 0. Results for this case for the 
Chamberlin–Courant rule are presented in the paper of Skowron and Faliszewski [57]. (As a side comment, we mention that 
there are also other interesting multiwinner voting rules that focus on dichotomous preferences; we point the reader to the 
overview of Kilgour [29] and to algorithmic studies of, for example, LeGrand et al. [31], Caragiannis et al. [12], and Aziz et 
al. [3].)

On a more practical side, it would be interesting to develop our study of truncated ballots. Our results show that we 
can obtain very high approximation ratios even when voters rank only relatively few of their top candidates. For example, 
to achieve 90% approximation ratio for the satisfaction-based Monroe system in Polish parliamentary election (K = 460, 
m = 6000), each voter should rank about 8.7% of her most-preferred candidates. However, this is still over 500 candidates. 
It is unrealistic to expect that the voters would be willing to rank this many candidates. Thus, the obvious question is how 
should one organize Monroe-based elections in practice, to balance the amount of effort required from the voters and the 
quality of the results?
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Appendix A. The Monroe and Chamberlin–Courant rules as resource allocation problems

One of the ways of looking at the Monroe and Chamberlin–Courant rules is to consider them through the lenses of 
resource allocation. In this section we describe this more general view.

As before, we assume that we have a set N = [n] of agents and a set A = {a1, . . . , am} of items. In the voting setting the 
items were the candidates participating in election; now they can be other entities as well (see the example later). Each 
agent has a preference order over A. The understanding is that each agent will receive access to one of the items and in 
the preference order each agent ranks the items from the most desired one to the least desired one. Additionally, each item 
a ∈ A has the capacity capa ∈ N. At most capa agents can be granted access to item a. A capacitated K -assignment function 
Φ is a K -assignment that satisfies the constraint that for each item a, ‖Φ−1(a)‖ ≤ capa .

Given this setup, our resource allocation problem is the following (for the dissatisfaction-based case and for the 
satisfaction-based case).

Definition 7. Let α be a normal IPSF. An instance of α-Capacitated-DisWinner problem consists of a set of agents N = [n], 
a set of items A = {a1, . . . ,am}, a preference profile V of the agents, a sequence (capa1

, . . . , capam
) of items’ capacities, and 

a positive integer K . We ask for a capacitated K -assignment function Φ such that 	α
sum(Φ) is minimized.

Definition 8. Let α be a normal DPSF. α-Capacitated-SatWinner is defined in the same way as α-Capacitated-DisWinner

except that we ask to maximize 	α
sum(Φ).

Now it is easy to see that for each IPSF α (DPSF α), α-CC-DisWinner (α-CC-SatWinner) is a special case of 
α-Capacitated-DisWinner (α-Capacitated-SatWinner): It suffices that the capacities are set to be ‖N‖. Similarly, if K
divides ‖N‖ and we set the all the capacities to ‖N‖

K , then we obtain the variants of the problem for the Monroe rule.
Nonetheless, Capacitated-DisWinner (Capacitated-SatWinner) is a far more general problem and we believe that it is 

interesting in its own right. For example, consider a company that wants to pay for sport classes for its employees. Naturally, 
each class can fit only a given number of employees and, due to limited budget, the company wants to pay for K different 
classes only. However, it also wants the employees to be as happy with the provided classes as possible and, so, it asks each 
employee to rank the classes. Our problem models exactly the issue of choosing which classes to offer and which employees 
should be assigned to which one of them.

While all the negative results for the case of the Monroe and Chamberlin–Courant rules translate directly to our resource 
allocation problem, we do not have any positive results for it. We believe that finding approximation algorithms for it (in 
the satisfaction-based setting) is a very interesting, challenging, open problem.

Appendix B. ILP formulation for the Monroe and Chamberlin–Courant rules

To experimentally measure the quality of our approximation algorithms, we compare the results against optimal solutions 
that we obtain using integer linear programs (ILPs) that solve the Monroe and Chamberlin–Courant winner determination 
problem. An ILP for the Monroe rule was provided by Potthoff and Brams [47], Lu and Boutilier [32] adapted it also for 
the Chamberlin–Courant rule with arbitrary PSF α. For the sake of completeness, below we recall the ILP whose optimal 
solutions correspond to α-Monroe-SatWinner winner sets for the given election (we also indicate which constraints to 
drop to obtain an ILP for finding α-CC-SatWinner winner sets):

1. For each i, 1 ≤ i ≤ n, and each j, 1 ≤ j ≤ m we have a 0/1 variable aij indicating whether alternative a j represents 
agent i. For each j, 1 ≤ j ≤ m, we have a 0/1 variable x j indicating whether alternative a j is included in the set of 
winners.

2. Our goal is to maximize the value 
∑n

i=1 α(posi(a j))aij subject to the following constraints:
(a) For each i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ aij ≤ x j (alternative a j can represent agent i only if a j belongs to the set 

of winners).
(b) For each i, 1 ≤ i ≤ n, 

∑
1≤ j≤m aij = 1 (every agent is represented by exactly one alternative).
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(c) For each j, 1 ≤ j ≤ m, x j� n
K 
 ≤ ∑

1≤i≤n aij ≤ x j
n
K (each alternative either does not represent anyone or represents 

between � n
K 
 and n

K agents; if we remove these constraints then we obtain an ILP for the Chamberlin–Courant rule).
(d)

∑n
j=1 x j ≤ K (there are exactly K winners).11

We used the GLPK 4.47 package (GNU Linear Programming Kit, version 4.47) to solve these ILPs, whenever it was possible 
to do so in reasonable time.

Appendix C. Egalitarian cases: hardness results

In this section we provide our results for the egalitarian variants of the Monroe and Chamberlin–Courant rules. We start 
by providing formal definitions of our problems.

Definition 9. Let α be a normal IPSF. Problems α-EgalitarianCC-DisWinner and α-EgalitarianMonroe-DisWinner are 
defined in the same way as α-CC-DisWinner and α-Monroe-DisWinner, respectively, except that we seek to minimize 
	α

max(Φ) (instead of 	α
sum(Φ)).

Definition 10. Let α be a normal DPSF. Problems α-EgalitarianCC-SatWinner and α-EgalitarianMonroe-SatWinner are 
defined in the same way as α-CC-SatWinner and α-Monroe-SatWinner, respectively, except that we seek to maximize 
	α

min(Φ) (instead of 	α
sum(Φ)).

In other words, the egalitarian variants of our problems are defined in the same way as the utilitarian variants, but the 
aggregated satisfaction of the agents (the aggregated dissatisfaction of the agents) is understood as that of the worst-off one 
of them.

We define the notion of approximation algorithms for the egalitarian variants of the problems in the same way as in 
the utilitarian case. We show that there are no constant-factor approximation algorithms for the egalitarian variants of the 
Monroe and Chamberlin–Courant rules.

Theorem 15. For each normal IPSF α and each constant r > 1, there is no polynomial-time r-approximation algorithm for 
α-Monroe-DisWinner unless P = NP.

Proof. The proof of Theorem 1 applies to this case as well. In fact, it even suffices to take m′ = ‖A2‖ = 1
2 nr · α(3). �

Theorem 16. For each normal IPSF α and each constant factor r > 1, there is no polynomial-time r-approximation algorithm for 
α-EgalitarianCC-DisWinner unless P = NP.

Proof. The proof of Theorem 2 is applicable in this case as well. In fact, it even suffices to take the m groups of alternatives, 
A1, . . . , Am , to contain α(2) · r alternatives each. �
Theorem 17. For each normal DPSF α (where each entry is polynomially bounded in the number of alternatives) and each constant 
factor r, with 0 < r ≤ 1, there is no r-approximation algorithm for α-EgalitarianMonroe-SatWinner unless P = NP.

Proof. Let us fix a DPSF α = (αm)m∈N , where each entry αm is polynomially bounded in the number of alternatives m. For 
the sake of contradiction, let us assume that for some r, 0 < r ≤ 1, there is a polynomial-time r-approximation algorithm 
A for α-EgalitarianMonroe-SatWinner. We will show that the existence of this algorithm implies that X3C is solvable in 
polynomial time.

Let I be an X3C instance with ground set U = {1, 2, . . . , n} and collection F = {F1, . . . , Fm} of subsets of U . Each set 
in F has cardinality three. Further, without loss of generality, we can assume that n is divisible by three and that each 
i ∈ U appears in at most three sets from F . Given I , we form an instance IM of α-EgalitarianMonroe-SatWinner as 
follows. Let n′ = 3 · (αm+1(1) · � 1−r

r � + 3). The set N of agents is partitioned into two subsets, N1 and N2. N1 contains n
agents (intuitively, corresponding to the elements of the ground set U ) and N2 contains n′ agents (used to enforce certain 
properties of the solution). The set of alternatives A is partitioned into two subsets, A1 and A2. We set A1 = {a1, . . . , am}
(members of A1 correspond to the sets in F ), and we set A2 = {b1, . . . , bm′ }, where m′ = n′

3 .
For each j, 1 ≤ j ≤ n, we set M f ( j) = {ai | j ∈ Fi}. For each j, 1 ≤ j ≤ n, we set the preference order of the j-th agent in 

N1 to be of the form

M f ( j) 
 A2 
 A1 − M f ( j).

11 For the Monroe framework inequality here is equivalent to equality. We use the inequality so that deleting constraints from item (2c) leads to an ILP 
for the Chamberlin–Courant rule.
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Note that by our assumptions, ‖M f ( j)‖ ≤ 3. For each j, 1 ≤ j ≤ n′ , we set the preference order of the j-th agent in N2 to 
be of the form

b� j
3 � 
 A2 − {b� j

3 �} 
 A1.

Note that each agent in N2 ranks the alternatives from A1 in positions m′ + 1, . . . , m′ + m. Finally, we set the number of 
candidates that can be selected to be K = n+n′

3 .

Now, consider the solution Φ returned by A on IM . We will show that 	αm+m′
max (Φ) ≤ rαm+m′

(3) if and only if I is a 
yes-instance of X3C.

(⇐) If there exists an exact set cover of U with sets from F , then it is easy to construct a solution for IM where the 
satisfaction of each agent is greater or equal to r · αm+m′

(3). Let I ⊆ {1, . . . , m} be a set such that 
⋃

i∈I F i = U and ‖I‖ = n
3 . 

We assign each agent j from N1 to the alternative ai such that (a) i ∈ I and (b) j ∈ Fi , and we assign each agent from N2
to her most preferred alternative. Thus, Algorithm A has to return an assignment with the minimal satisfaction greater or 
equal to r · αm+m′

(3).
(⇒) For the other direction, we first show that r · αm+m′

(3) ≥ αm+m′
(m′). Since DPSFs are strictly decreasing, it holds 

that:

r · αm+m′
(3) ≥ r · (αm+m′(

m′) + m′ − 3
)
. (1)

Then, by the definition of DPSFs, it holds that:

αm+m′(
m′) = αm+1(1). (2)

Using the fact that m′ = (αm+1(1) · � 1−r
r � + 3) and using (2), we can transform inequality (1) to obtain the following:

r · αm+m′
(3) ≥ r · (αm+m′(

m′) + m′ − 3
)

= r ·
(
αm+m′(

m′) +
(
αm+1(1) ·

⌈
1 − r

r

⌉
+ 3

)
− 3

)

≥ r · αm+m′(
m′) + (1 − r) · αm+1(1)

= r · αm+m′(
m′) + (1 − r) · αm+m′(

m′) = αm+m′(
m′).

This means that if the minimal satisfaction of an agent is at least r ·αm+m′
(3), then no agent was assigned to an alternative 

that she ranked beyond position m′ . If some agent j from N1 were assigned to an alternative from A2, then, by the pi-
geonhole principle, some agent from N2 would be assigned to an alternative from A1. However, each agent in N2 ranks the 
alternatives from A1 beyond position m′ and thus such an assignment is impossible. In consequence, it must be that each 
agent in j was assigned to an alternative that corresponds to a set Fi in F that contains j. Such an assignment directly 
leads to a solution for I . �

Let us now move on to the case of EgalitarianCC-SatWinner family of problems. Unfortunately, in this case our inap-
proximability argument holds for the case of Borda DPSF only (though we believe that it can be adapted to other DPSFs 
as well). Further, in our previous theorems we were showing that existence of a respective constant-factor approximation 
algorithm implies that NP collapses to P. In the following theorem we will show a seemingly weaker collapse of W[2] to 
FPT.

To prove hardness of approximation for αB,dec-EgalitarianCC-SatWinner, we first prove the following simple lemma.

Lemma 18. Let K , p, l be three positive integers and let X be a set of cardinality lpK . There exists a family S = {S1, . . . , S(lK
K

)} of 
pK -element subsets of X such that for each K -element subset B of X, there is a set Si ∈ S such that B ⊆ Si .

Proof. Set X ′ = [lK ] and let S ′ be a family of all K -element subsets of X ′ . Replace each element i of X ′ with p new 
elements (at the same time replacing i with the same p elements within each set in S ′ that contains i). As a result we 
obtain two new sets, X and S , that satisfy the statement of the theorem (up to the renaming of the elements). �
Theorem 19. Let αm

B,dec be the Borda DPSF (αm
B,dec(i) = m − i). For each constant factor r, 0 < r ≤ 1, there is no r-approximation 

algorithm for αm
B,dec-EgalitarianCC-SatWinner unless FPT = W[2].

Proof. For the sake of contradiction, let us assume that there is some constant r, 0 < r ≤ 1, and a polynomial-time 
r-approximation algorithm A for αm

B,dec-EgalitarianCC-SatWinner. We will show that the existence of this algorithm im-
plies that Set-Cover is fixed-parameter tractable for the parameter K (since Set-Cover is known to be W[2]-complete for 
this parameter, this will imply FPT = W[2]).
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Let I be an instance of Set-Cover with ground set U = [n] and family F = {F1, F2, . . . , Fm} of subsets of U . Given I , we 
build an instance ICC of αm

B,dec-EgalitarianCC-SatWinner as follows. The set of agents N consists of n subsets of agents, 

N1, . . . , Nn , where each group Ni contains exactly n′ = (� 2
r �K
K

)
agents. Intuitively, for each i, 1 ≤ i ≤ n, the agents in the 

set Ni correspond to the element i in U . The set of alternatives A is partitioned into two subsets, A1 and A2, such that: 
(1) A1 = {a1, . . . , am} is a set of alternatives corresponding to the sets from the family F , and (2) A2, ‖A2‖ = � 2

r ��m(1+r)
K �K , 

is a set of dummy alternatives needed for our construction. We set m′ = ‖A‖ = m + ‖A2‖.
Before we describe the preference orders of the agents in N , we form a family R = {r1, . . . , rn′ } of preference orders over 

A2 that satisfies the following condition: For each K -element subset B of A2, there exists r j in R such that all members of 
B are ranked among the bottom �m(1+r)

K �K positions in r j . By Lemma 18, such a construction is possible (it suffices to take 
l = � 2

r � and p = �m(1+r)
K �); further, the proof of the lemma provides an algorithmic way to construct R .

We form the preference orders of the agents as follows. For each i, 1 ≤ i ≤ n, set M f (i) = {at | i ∈ Ft}. For each i, 1 ≤ i ≤ n, 
and each j, 1 ≤ j ≤ n′ , the j-th agent from Ni has preference order of the form:

M f (i) 
 r j 
 A1 − M f (i)

(we pick any arbitrary, polynomial-time computable order of candidates within M f (i) and A1 − M f (i)).

Let Φ be an assignment computed by A on IM . We will show that 	
αm′

B,dec
max (Φ) ≥ r ·(m′ −m) if and only if I is a yes-instance 

of Set-Cover.
(⇐) If there exists a solution for I (i.e., a cover of U with K sets from F ), then we can easily show an assignment where 

each agent is assigned to an alternative that he or she ranks among the top m positions (namely, for each j, 1 ≤ j ≤ n, we 
assign all the agents from the set N j to the alternative ai ∈ A1 such that j ∈ Fi and Fi belongs to the alleged K -element 
cover of U ). Under this assignment, the least satisfied agent’s satisfaction is at least m′ − m and, thus, A has to return an 

assignment Φ where 	
αm′

B,dec
max (Φ) ≥ r · (m′ − m).

(⇒) Let us now consider the opposite direction. We assume that A found an assignment Φ such that 	
αm

B,dec
max (Φ) ≥

r · (m′ − m) and we will show that I is a yes-instance of Set-Cover. We claim that for each i, 1 ≤ i ≤ n, at least one agent 
j in Ni were assigned to an alternative from A1. If all the agents in Ni were assigned to alternatives from A2, then, by the 
construction of R , at least one of them would have been assigned to an alternative that she ranks at a position greater than 
‖A2‖ − �m(1+r)

K �K = � 2
r ��m(1+r)

K �K − �m(1+r)
K �K . For x = �m(1+r)

K �K we have:⌈
2

r

⌉
x − x ≥ m′ − m′r + mr

(we skip the straightforward calculation) and, thus, this agent would have been assigned to an alternative that she ranks at 
a position greater than m′ − m′r + mr. As a consequence, this agent’s satisfaction would be lower than (m′ − m)r. Similarly, 
no agent from Ni can be assigned to an alternative from A1 − M f (i). Thus, for each i, 1 ≤ i ≤ n, there exists at least one 
agent j ∈ Ni that is assigned to an alternative from M f (i). In consequence, the covering subfamily of F consists simply of 
those sets Ft , for which some agent is assigned to alternative at ∈ A1.

The presented construction gives the exact algorithm for Set-Cover problem running in time f (K )(n + m)O (1) , where 
f (K ) is polynomial in 

(� 2
r �
K

)
. The existence of such an algorithm means that Set-Cover is in FPT. On the other hand, we 

know that Set-Cover is W[2]-complete, and thus if A existed then FPT = W[2] would hold. �
Appendix D. Other proofs omitted from the main text

Proof of Theorem 2. Let us fix a normal IPSF α. For the sake of contradiction, let us assume that there is some constant 
r > 1, and a polynomial-time r-approximation algorithm A for α-CC-DisWinner. We will show that it is possible to use A
to solve the NP-complete Vertex-Cover problem.

Let I = (U , F , K ) be an instance of Vertex-Cover, where U = [n] is the ground set, F = {F1, . . . , Fm} is a family of 
subsets of U (where each member of U belongs to exactly two sets in F ), and K is a positive integer.12

Given I , we construct an instance ICC of α-CC-DisWinner as follows. The set of agents is N = U and the set of alterna-
tives is A = ⋃m

j=1 A j , where each A j contains exactly α(2) · r · n (unique) alternatives. Our intention is that for each j ∈ [m]
the alternatives in A j correspond to the set F j . For each A j , 1 ≤ j ≤ m, we pick one alternative, which we denote a j . For 
each agent i ∈ N , we set i’s preference order as follows: Let F j and Ft , j < t , be the two sets that contain i. Agent i’s 
preference order is of the form a j 
i at 
i At − {at} 
i A − (At ∪ {a j, at}) (the particular order of alternatives in the sets 

12 In the typical view of the Vertex-Cover problem we speak of a graph where each vertex corresponds to a set in F , where each edge corresponds to a 
member of U , and where the goal is to pick K vertices that cover all the edges. The interpretation of the set U is as follows: If an edge k ∈ U belonged to 
sets Fi and F j , this means that this edge connects vertices i and j.
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At − {at} and A − (At ∪ {a j, at}) is irrelevant for the construction). We ask for an assignment of the agents to at most K
alternatives.

Let us consider a solution Φ returned by A on input ICC . We claim that 	α
sum(Φ) ≤ nr · α(2) if and only if I is a 

yes-instance of Vertex-Cover.
(⇐) If I is a yes-instance then each agent i can be assigned to one of the top two alternatives in his or her preference 

order (if there is a size-K cover, then this assignment selects at most K candidates). Thus the total dissatisfaction of an 
optimal assignment is at most n · α(2). As a result, the solution Φ returned by A has total dissatisfaction at most nr · α(2).

(⇒) If A returns an assignment with total dissatisfaction no greater than nr · α(2), then, by the construction of agents’ 
preference orders, we see that each agent i was assigned to an alternative from a set A j such that i ∈ F j . Since the assign-
ment can use at most K alternatives, this directly implies that there is a size-K cover of U with sets from F . �
Proof of Proposition 6. We use the same approach as in the proof of Lemma 4, except that we adjust our estimates of 
voters’ satisfaction. Consider a situation after some i-th iteration of the algorithm’s outer loop (i = 0 if we are before the 
first iteration). If i + m−i

K−i ≤ P , then we can use the same lower bound for the satisfaction of the agents assigned in the 
(i + 1)-th iteration as in the proof of Lemma 4. That is, the agents assigned in the (i + 1)-th iteration will have satisfaction 
at least r1(i) = n

K · (m − i − m−i
K−i ).

For the case where i + m−i
K−i > P , the bound from Lemma 4 does not hold, but we can use a similar approach to find 

a different one. Let P x ≤ P be some positive integer. We are interested in the number x of not-yet assigned agents who 
rank some not-yet-selected alternative among their top P x positions (after the i-th iteration). Similarly as in the proof of 
Lemma 4, using the pigeonhole principle we note that:

x ≥ 1

m − i

(
n − i

n

K

)
(P x − i) = n

K
· (K − i)(P x − i)

m − i
.

Thus, the satisfaction of the agents assigned in the (i + 1)-th iteration is at least:

min

(
x,

n

K

)
(m − P x) = n

K
· (m − P x)min

(
(K − i)(P x − i)

m − i
,1

)
. (3)

The case (K−i)(Px−i)
m−i ≥ 1 (or, equivalently, i + m−i

K−i ≤ P x) implies that i + m−i
K−i ≤ P and for this case we lower-bound agents’ 

satisfaction by r1(i). For the case where (K−i)(Px−i)
m−i ≤ 1, i.e. where i + m−i

K−i ≥ P x , Eq. (3) simplifies to:

n

K
· (m − P x) · (K − i)(P x − i)

m − i
. (4)

We use the estimate given by Eq. (4) to bound the satisfaction of the agents assigned in the (i + 1)-th iteration for the cases 
where (a) i + m−i

K−i ≥ m+i
2 and (b) m+i

2 ≤ P (or, equivalently, (2P − m) ≥ i ≥ (K − 2)): We estimate Eq. (4) as follows:

n

K
· (m − P x) · (K − i)(P x − i)

m − i
≥ n

K
·
(

m − m + i

2

)
· (K − i)(m+i

2 − i)

m − i

= n

K
· (K − i)(m − i)2

4(m − i)
= n

K
· (K − i)(m − i)

4
.

For the remaining cases (corresponding to the “otherwise” clause in the definition of r(i)), we set P x = P and (4) becomes:

n

K
· (m − P )(K − i)(P − i)

m − i
.

Naturally, we replace our estimates by 0 whenever they become negative.
To complete the proof, it suffice to, as in the proof of Lemma 4, note that (m − 1)n is an upper bound on the satisfaction 

achieved by the optimal solution. �
Proof of Theorem 9. The proof follows by applying the powerful result of Nemhauser et al. [43], which says that greedy 
algorithms achieve (1 − 1

e )-approximation ratio when used to optimize nondecreasing submodular functions (we explain 
these notions formally below). The main challenge in the proof is to define a function that, on one hand, satisfies the 
conditions of Nemhauser et al.’s result, and, on the other hand, models solutions for Weighted-B-Matching.

Let U ∪ V be the set of vertices and E be the set of edges of a given bipartite graph. For each edge {u, v} ∈ E , let w(u,v)

denote its weight. Without loss of generality, we assume that each vertex from U is connected with each vertex from V . 
Indeed, it is always possible to modify the original graph by introducing the missing edges and setting their weight to 0, so 
that the optimal solutions for the modified graph are the same as for the original one. Let s : U → N be a function assigning 
to the vertices from U their capacities, and let K denote the number of vertices from U that can be used in a B-matching. 
For each S ⊆ U such that ‖S‖ ≤ K , by Φ S : V → U we denote the optimal B-matching in the graph induced by S ∪ V ; by 
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	(Φ S ) we denote the total weight of Φ S . It is easy to verify that both Φ S and 	(Φ S ) are computable in polynomial time. 
We define function z, z: 2U → R+ , so that for each S ⊆ U , ‖S‖ ≤ K , we have z(S) = 	(Φ S ). Clearly, z(S) is nondecreasing 
(that is, for each two sets A and B , if A ⊆ B ⊆ U and ‖B‖ ≤ K , then z(A) ≤ z(B)). Let Smax = argmaxS⊂U ,‖S‖=K z(S). We 
see that each optimal B-matching for the graph induced by Smax ∪ V is also optimal for the original graph. Thus, if z
were submodular, then by the result of Nemhauser et al. [43] we would get that the greedy algorithm from the theorem 
statement is a (1 − 1

e )-approximation algorithm for Weighted-B-Matching (for bipartite graphs). So, our goal is to show 
that z is submodular.

Formally, function z is submodular if for each two sets S and T , S ⊂ T ⊂ U , and each vertex u ∈ U \ T it holds that:

z
(

S ∪ {u}) − z(S) ≥ z
(
T ∪ {u}) − z(T ).

We will show a slightly stronger variant of submodularity. However, first we introduce some additional notation for capacity 
functions. For each u ∈ U , we write s ∪{u} to denote the function such that (s ∪{u})(u) = s(u) +1 and ∀u′∈S\{u}(s ∪{u})(u′) =
s(u′). (Analogously, we interpret s \ {u} as subtracting one from the capacity for u, provided the capacity is nonzero.) Also, if 
s and t are two capacity functions, then by s ≤ t we mean that ∀u∈U s(u) ≤ t(u). We extend our function z to allow subsets 
of the vertices from V and arbitrary capacity functions: For each subset V ′ ⊆ V and each capacity function s, we define 
zV ′ (s) to be the weight of the optimal B-matching for a graph induced by U ∪ V ′ , such that the capacities of the vertices 
from U are given by the capacity function s. We will now prove a stronger variant of submodularity for our extended z. 
That is, we will show that for each two capacity functions s and t , each V ′ ⊆ V , and each vertex u ∈ U it holds that:

s ≤ t ⇒ zV ′
(
s ∪ {u}) − zV ′(s) ≥ zV ′

(
t ∪ {u}) − zV ′(t). (5)

We will also extend notation for optimal matchings: Let Φs
V ′ : V ′ → U denote the optimal B-matching for a graph induced 

by U ∪ V ′ , and capacity function s.
Our proof is by induction on V ′ . Clearly, Eq. (5) holds for V ′ = ∅. Now, assuming that Eq. (5) holds for every V ′ ⊂ V ′′

we will prove its correctness for V ′′ . Let us fix some vertex u ∈ U and let v ∈ V ′′ denote a vertex such that Φt∪{u}
V ′′ (v) = u

(if there is no such vertex v then clearly the equation holds). Let us = Φs
V ′′(v) and ut = Φt

V ′′ (v) (technically, it is possible 
that either of these vertices does not exist; in such a case, in the reasoning below we treat this vertex as a null one and we 
assume the weight of each edge incident to the null vertex is zero). We have:

zV ′′
(
t ∪ {u}) − zV ′′(t) = w(u,v) + zV ′′\{v}(t) − w(ut ,v) − zV ′′\{v}

(
t \ {ut}

)
.

We also have:

zV ′′
(
s ∪ {u}) − zV ′′(s) ≥ w(u,v) + zV ′′\{v}(s) − w(us,v) − zV ′′\{v}

(
s \ {us}

)
.

Since Φt
V ′′ describes an optimal B-matching under the capacity restriction t , we have that:

w(ut ,v) + zV ′′\{v}(t \ ut) ≥ w(us,v) + zV ′′\{v}
(
t \ {us}

)
.

Finally, from the inductive hypothesis for V ′ = V ′′ \ {v} we have:

zV ′′\{v}(s) − zV ′′\{v}
(
s \ {us}

) ≥ zV ′′\{v}(t) − zV ′′\{v}
(
t \ {us}

)
.

By combining these inequalities we get:

zV ′′
(
s ∪ {u}) − zV ′′(s) ≥ w(u,v) + zV ′′\{v}(s) − (

w(us,v) + zV ′′\{v}
(
s \ {us}

))
≥ w(u,v) − w(us,v) + zV ′′\{v}(t) − zV ′′\{v}

(
t \ {us}

)
≥ w(u,v) + zV ′′\{v}(t) − w(ut ,v) − zV ′′\{v}

(
t \ {ut}

)
= zV ′′

(
t ∪ {u}) − zV ′′(t).

This completes the proof. �
Proof of Proposition 14. Let ni denote the number of the agents not-yet-assigned until the (i + 1)-th iteration of the 
algorithm. Using the same reasoning as in Theorem 11 we show that ni ≤ n(1 − Q

m )i . As before, our proof proceeds by 
induction on i. It is evident that the hypothesis is correct for i = 0. Now, assuming that ni ≤ n(1 − Q

m )i , we assess ni+1 as 
follows:

ni+1 ≤ ni − ni Q

m − i
≤ ni

(
1 − Q

m

)
≤ n

(
1 − Q

m

)i+1

.

This proves the hypothesis. Thus, we can bound nK :
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nK ≤ n

(
1 − Q

m

)K

≤ n

(
1

e

) Q K
m

.

This means that the satisfaction of the assignment Φ returned by our algorithm is at least:

	
αB,dec
sum (Φ) ≥ (n − nK )(m − Q ) ≥ n(m − Q )

(
1 − e− Q K

m
)
.

In effect, it holds that:

	
αB,dec
sum (Φ)

OPT
≥ n(m − Q )(1 − e− Q K

m )

n(m − 1)
≥ m − Q

m − 1

(
1 − e− Q K

m
)
.

This completes the proof. �
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