TRANSPORTATION SCIENCE 0041-1655/78/1202-0153 $01.25
Vol. 12, No. 2, May 1978 © 1978 Operations Research Society of America
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The Fermat location problem is to find a point whose sum of
weighted distances from m given points (vertices) is a minimum.
The best known method of solution is an iterative scheme
devised by Weiszfeld in 1937, which converges to the unique
minimum point unless one of the iterates happens to “land” on
a nonoptimal vertex. The convergence proof of this scheme
depends on two theorems, one of which (descent theorem) states
that the objective function strictly decreases at each step. This
paper extends the descent theorem by proving: (1) there is a
“ball” whose radius and center depend on the Weiszfeld iter-
ation, such that any algorithm whose iterates are “in the ball”
or “on its surface” is a descent algorithm; (2) under certain
circumstances, one or more of the vertices may be deleted,
although the weighi(s) are taken into account, and the Weisz-
feld algorithm retains its descent property. In general there are
several subsets of vertices which may be deleted, and for each
subset, a corresponding iterate; (3) the convex hull of these
iterates is such that all points within it have the descent
property. Examples of the potential application of these exten-
sions are given, including the construction of a modified Weisz-
feld algorithm that without exception converges to the optimum.
Beyond that, it is hoped the theorems may in time be useful in
proving the descent property of yet to be discovered, very fast,
nongradient algorithms.

rI‘he Fermat location problem is to find a point whose sum of weighted

distances from m given points is a minimum. The problem is very old,

the case m = 3 having been posed by Fermat and solved by Torricelli

prior to 1640! (See ZACHARIAS!'"" for an account of the early mathematical

literature.) While the problem is nonlinear, it has a dual, first stated by

Fasbender in 1846, which according to Kunun'"! has “. . . almost all of the
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useful properties of the duality of linear programming (p. 48).” And it has
no known closed-form solution—in particular, the center of gravity of the
weights and points is not ordinarily a solution.

The problem and means of solving it have attracted much interest of
late, especially in the fields of spatial economics and geography, where it
is known as the generalized Weber problem (after ALFRED WEBER,"'” the
founder of industrial location theory). Potential applications include the
siting of steel mills so as to minimize transport cost, and state capitals so
as to maximize accessibility. Further, it has been extended in numerous
ways: CooPER® has considered the minimization of weighted sums of
positive powers of distance; PLANCHARD AND HURTER" dealt with
mixed norm problems; and KaT1z™ proved the local convergence of a
generalized algorithm for minimizing analogous sums involving any one
of a wide class of increasing functions of distance. See LEA!'"! for a recent
annotated bibliography of the problem, its applications, and its exten-
sions. For reviews, see Refs. [14] and [15].

The best known method of solution is an iterative gradient scheme
devised by WeIszreLD!"® in 1937. While Weiszfeld proved the conver-
gence of his algorithm, his work remained largely unknown in the United
States until the early sixties—by which time the algorithm had been
independently rediscovered, although not proven to converge, by at least
MieHLE,"") KUHN AND KUENNE,” and COOPER.™

Weiszfeld’s convergence proof contains an error, first noted in Ref.
[9], and subsequently corrected by Kunn."®! The corrected proof shows
that the algorithm converges to the unique minimum point, unless it
happens to “land” on a nonoptimal given point. The proof of convergence
depends on two key theorems: (I) that the objective function strictly
decreases at each step; and (2) that the sequence of iterates does not
converge to a nonoptimal member of the set of m given points (although
it may “land and get stuck” on such a point).

Elsewhere [Ref. 12] I have shown how to avoid the vertex iterate
problem in the Weiszfeld algorithm. There it was also proved that the
step-lengths of the algorithm may be as much as doubled, while still
retaining their descent property. In the present paper these earlier results
appear as special cases of far more general descent theorems. It is hoped
that these theorems may be useful in proving the descent property for
some still to be discovered very fast, nongradient iterative method. That
such methods may soon be forthcoming is suggested by the work of
Hargris.!

1. FORMALIZATION

LETA; = (aw," -+, ap), i =1, - -+, m, be a given set of distinet points called
vertices in p-dimensional Euclidean space E¥; and let wi, - -, Wy, be an
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associated set of positive scalars called weights. The Fermat location
problem then is to find P = (x;, - - -, x,) such that

f(P) = ¥ w; PA,

is a minimum; where PA; = | P—A; || =[(x; — aw)* + - + (x, —
a5i)*]'"* is the Euclidean distance between P and A,. Call any point which
minimizes f a minimum point and designate it M.

It follows from elementary properties of norms that f is convex. If the
set of vertices is noncollinear, fis strictly convex and in this case there is
a unique minirmum point. We consider only this case.

THEOREM 1. P = M iff
(a) P is not a vertex and G(P) = 0; where

G(P) = Y, wi(P — A))/PA;; or
(b) P is a vertex, say A, and | G; (4)) | < w;, where
Gi(A)) = Yiwj wilA; — A)/AA.

For a recent proof of Theorem 1, see Kuhn'®: for a much older proof,
see STURM.'

2. WEISZFELD ALGORITHM AND PROOF

NoTE that G(P) is the gradient of f evaluated at P, and that the
requirement G(M) = 0, M not a vertex, is merely the first-order minimi-
zation condition on f. Setting G(P) = 0 and “solving for P” leads directly
to the Weiszfeld transformation W: E* — E”, defined by
(Lete ¥ mi
W(P) = E%};’uf/;% , P not a vertex;
= P — G(P)/(Zawi/PA)).

If P is a vertex, say A, then continuity requires setting W(A,) = Ay; for
a proof, multiply both numerator and denominator in (1) by PA, and
then let P — A,. The associated Weiszfeld iteration is then P,., = W(P,),
r=20,1,.... It is apparent that the algorithm “sticks” at a non-optimal
vertex if it lands there.

The theorem to be extended states that f strictly decreases at each
iteration. More precisely

THEOREM 2 (Descent Theorem). Let P’ = W(P). Then P’ %« P implies

(1)

fiP) < f(P).
Proof (Weiszfeld). If P is not a vertex, then from (1),
_ Zaud;
PI B Elui ’

— . S
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where u; = w;/PA,, i = 1, ---, m. P’ is thus the center of gravity of a
system of points with positive weights and therefore uniquely minimizes
the weighted sum of squares of distances. Hence

YuPA? < YuPAY
Yaw:.PA?/PA; < f(P);
the equality holding iff P' = P.
From the identity
PA}?=[(PA:- PA) + PA]", (2)
we (Eain_x.wi{P’_A,- - ﬁﬂmi o | 2Yawi(PA; — PA)PA/PA; +
Yaw,PA?/PA; = f(P); Yayawi(P'A; — PA)/PA; + f(P') = f(P). Equality

holds iff P = P. The left-hand summation is non-negative, and the
theorem follows.

3. EXTENSIONS OF THE DESCENT THEOREM

LeT T be any transformation T: E” — E” and denote P' = T(P). If in
particular T is the Weiszfeld transformation (1), then let C = W(P).
Furthermore, let A B denote the dot product of any two vectors A and
B, and let A> = A-A. Finally, let E" denote the minimum dimensional
subspace of E” containing the vertices, E"C E*,2=n=p,n=m — 1.

TueEOREM 3. If T is such that CP" < CP; if P, P € E"; if P is not a
vertex; and if P’ # P; then
f(P') < f(P).

Proof. By direct calculation CP’ = CP — (C — P)’ = (C - P)’ — 2
—C-P+P:-C:+20-P-P'<0—>P*-P*—-2(P-P) - C=0,
and so from (1)

Sl (P? — 2P -Ai+ A®) — (P* — 2P-A; + A")]/PA = 0;
or
YwPA2/PA; < SaviPA; = f(P).

The equality holds only if CP” = CP. Use (2) as in the proof of Theorem

2 to obtain '
WY P'A; — PA)*/PA; + f(P") < f(P).

The summation is non-negative. Moreover, since P', P € E" and P’ # P,
then by Lemma 1 (below) there exists at least one vertex, say Az such
that P’A, # PA; hence the summation is strictly positive and the
theorem follows.

LEMMA 1. If Py, P, € E" then P\A; = P, A, i=1, -, miff P,= P..
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Proof. Let B be any set of n + 1 linearly independent vertices which
determine E". Borsuk' (p. 127) proves that the position of each point P
€ E" is uniquely determined by the n + 1 distances PA,, A; € B. Hence,
the position of each point P € E" is uniquely determined by the m = n
+ 1 distances PA,, - - -, PA,,.

Theorem 3 admits of a simple geometric interpretation: there is a
“ball” of radius CP, centered at C: if P’ = T(P) is “in the ball” or “on its
surface” (but P # P) then f(P’) < f(P). Furthermore, when one recalls
that C is the center of gravity of a system of points with positive weights,
it should be intuitively clear why Theorem 3 is true, if Theorem 2 is: the
graph of A(P') = Yu; P'A’, u; = wPA; is an “upward” facing paraboloid
of revolution centered at C; points closer to C than is P are on lower level
curves of A than is P. The situation for points in E is portrayed in Figure
1.




158 / L. M. OSTRESH, JR.

One may question the need for the condition P, P’ € E" and for Lemma
1 because it may seem obvious that E,-w.-(ﬁz; — PA)?/PA; #0if P’ # P,
P not a vertex. In fact, it is neither obvious nor in general true! As a
counter-example suppose A, = (0,0), A, = (1,0), wr = w2 = 1, P = (0,1),
and P’ = (0, —=1). Then (1 — 1)*/1 + (/2 — v/2)*/1 = 0, but P # P.

Further results are aided by the following notation: Let I be the index
set of the weights and vertices, let JJ be a nonempty subset of I, and let
K be the complement of J, so that JUK = I, J N K = ¢, where ¢ is the
null set. Let G/(P) denote a “subset gradient” of f(P), defined by

Gs(P) = Sjes wi(P — A)/PA;, (P# A,V JEJ).

Further, for K not empty and G,(P) # 0 (we shall only be interested in
such cases), let Uy = GAP)/ || GAP) |, a unit vector in the direction of
G.,(P); and define the resultant R,(P) as:

R(P) = — (G4(P) — Usw),

where wx = Yiek Wi

Note that if || G/(P) | > wx then the direction of R,(P) is opposite
that of G,(P); its magnitude is that of G,(P) reduced by wx. Also note
that if J = I then K is empty, so R/(P) is the negative gradient of f, if P
is not a vertex.

Finally, define the positive quantity

$,(P) = Yjes wi/PA;, (P# A,V jEJ);
and let T/(P) be a transformation defined by
TAP) =P, ;= P+ 2R/P)/sAP). (3)
LEMMA 2. IfP# A, Y j € J and |GAP) | = wk, then f(P's) = flP).

Proof. 1f |GAP) | = wg, then R,(P) =0, P’; = P, and the lemma is
trivially true. Otherwise, by direct calculation:

(P'y— P)s;(P)— 2RAP) =0
(P'y — P) [{Syes wiPy— P+ 2P — 2A,)/PA;} — 2Uwx] = 0;
(Sjes w(Pf —2P s A;+ Af) -
(P2 — 2P-A;+ AP))/PA} — 2(P'y— P)- Uy wx = 0.

Since || GAP) | > wk, Gs(P) and Uy have directions opposite R.(P) and
therefore opposite (P'; — P). Hence, —(P'; — P)- U, = PP'; and

PP qwx + Yjesw; PUA}/PA; = Yenw;PA,;.

Use (2) as in the proof of Theorem 2 to obtain
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PP’y Yhexwr + Yo Y e P A; — PA)*/PA; + Y,cn,P A, = Y jesw;PA,.

Adding Yiex wr PA, to both sides and using the triangle inequality
wiPP ; + w,PA; = wirP A REK, gives EJ'GJ w; (P 4A; — PAj)E/PAj e
(P 5 = f(P),

which, since the summation is non-negative, proves the lemma.

We show below that if P is a vertex there exists J such that the
conditions of Lemma 2 apply. Here we more generally prove:

LEMMA 3. If P is an interior point of the convex hull of the vertices, and
if P is not a vertex, then there exists JCI such that| GAP)| = wx.

Proof. Let K consist of the single element k, and thus J = I — {(k}.
From the relation G(P) = GAP) + wy (P — A,)/PA, we obtain

| G(P) || * — 2ws || G(P) || cosas + wi® = || G4(P) || ?,

where a; is the angle between G(P) and (P — Ay). If P = M, then
| G(P) || = 0 and wi = || GAP) || . Otherwise, since P is an interior
point, there exists at least orie vertex, say Aj, such that cosai < 0, which,
since || G(P) | > 0, proves the lemma.

In general there are several subsets oJ C I for which the conditions of
Lemma 2 hold, and for each such subset there is a corresponding point
FP’;. Denote the set of all such points by P* = {P;} (formally, P, € P*
iff J C I'is such that || GA/(P) | = wk, K = I — .J). Further, let H denote
the convex hull of the points in P* U {P}. Then by the (strict) convexity
of f, we have

THEOREM 4. @ € H and @ not an extreme point of H implies f(Q) <
f(P).

One of the difficulties with Weiszfeld's algorithm is that if an iterate
lands on a non-optimal vertex it stays there. While the algorithm cannot
converge to such a vertex, it can “jump” there—Kuhn’s ' correction to
Weiszfeld's convergence proof consists exactly of pointing this out and
restricting the generality of the proof accordingly. As a specific applica-
tion of Theorem 4, observe how it solves this problem of vertex iterates:

First note that if K is empty, (3) reduces to P'; = P — 2G(P)/s1(P), so
that P’ = (P + P/)/2. Comparison with (1) suggests the following
generalization of the Weiszfeld transformation:

Cs= WiHP)=(P+ P,)/2= P+ R;(P)/s,(P). (4)

Suppose that P = A, # M: then by Theorem 1, | Gi(Ax) || > ws. Let K
consist of the single element %; since J = I — K then 4, # A, Y j€EJ, and
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Gi(As) = G,(As). The conditions of Lemma 2 apply and P’; € P*; thus
C, € H, since C; = (Ax + P’)/2. Also, Ri(A,) # 0 and s,(A;) is bounded,
so Cy # Ay and C; # P';. Therefore, C; is not an extreme point of H and
by Theorem 4 f(C.)) < f(Ax).

The Weiszfeld algorithm is known to converge to M provided there are
no vertex iterates. The use of (4) in the event of such an iterate would
provide an algorithm that without exception converges to the optimum,.

4. EXAMPLES

IN ORDER to fix ideas and to show the potential applicability of the
preceding results, we present two examples. In both cases we assume co-
planar vertices and for notational convenience set A; = (a;, ;) and P =
(x, ¥).

The first example demonstrates the construction of H, the convex hull
of points generated by (3). Let the vertices and weights be given as in
Table I, and assume P = (1,0). Suppose J = {1,3,4,6}; then K =
(2,5}, and from Table I:

aip =3 +0.7071 + 0.7071 = 0.7071 | _ [ 3.7071
= 0 — 0.7071 + 0.7071 + 0.7071 0.7071

| GAP) || = 3.7739 > 2 = Shextti.

»

Since P’y € P*, we proceed to calculate P'r.

s/(P) = 1.5 + 0.7071 + 0.7071 + 0.7071 = 3.6213;
RAP) = —(GAP) — Us Lrexwy) = =Gu(P)(1 = Zrexw)/ || GAP) [ );

3.7071 ~1.7425
RAP) = - 0_7071} (1 - 2/3.7739) = [ o332 |
By (3), then:
11, 2 [-17425] _[ 0.0376
Fas [o] * 36213 [—0.3324} - [—0.1836]'

TABLE 1
ATA FOR CONSTRUCTION OF H
P = (xy) = (1,0) A= (aybi)

Vertices - Gradient
3 Weights w,/PA, N
@ by wilx — a,)/PA, wily = b)/PA;
q -3 0 3 1.5 3.0 0
2 1.1 0 1 10.0 —-1.0 0
3 0 1 1 0.7071 0.7071 -0.7071
4 0 -1 1 0.7071 0.7071 0.7071
5 2 1 1 0.7071 -0.7071 —0.7071
6 2 =1 1 0.7071 —0.7071 0.7071
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Now suppose that J/ = {2,3,4,5,6}; then K = {1}, GAP) = (- 1,0), and
| GAP) | = 1< 3 = Ysckiwn. In this case, P’y & P* so we stop at this
point.

All other P’ are constructed in a like manner. By enumerating all
possible subsets .J C I, the elements of P* are determined. Table II gives
a full listing of all P’; € P* for this example. Figure 2 plots them and the
associated convex hull H. In this case M = (— 0.0978, 0.0) and appears as
a star in the figure.

For the second example, we consider the vertex iterate problem referred
to earlier. Let A, = (= 2,0), A, = (— 1,0), A; = (1,0), A, = (2,0), A5 = (0,
1), As = (0,—1), and let w; = --- = ws = 1. These data, which first
appeared in Ref. [8], are plotted in Figure 3. By symmetry, M = (0,0).
Also, if P = (x,0), then the Weiszfeld transformation is such that W(P)
= P’ = (x',0); that is, the sequence of iterates is one-dimensional.

Figure 4 (based on Figure 2 in Ref. [8]) plots x’ as a function of x
(dashed line), for P between M and A,. Notice that for some P, approxi-
mately (1.62,0), W(P) = As, and thus the algorithm is “stuck.”

The generalized Weiszfeld transformation suffers from no such diffi-
culty, however. If P = A4,, a test can be made to determine whether
| Ge(Ax) || = ws: if it is, then A, = M, by Theorem 1; if it is not, then set
K = {k} and use W,(A,), as given in (4). In this example,

TABLE II
ELEMENTS oF P*
) . Ga(P) kaw. - Py
af/ax af/ay x'y Y
1,2,3,4,5,6 P 2 0 0 14.328 0.721 0
1,34,5,6 2 3 0 1 4,328 0.076 0
1.2,4,5,6 3 1.293 0.707 1 13.621 0.939 —0.033
1,2,3,5,6 4 1.293 —-0.707 1 13.621 0.939 0.033
1,2,34,6 5 2,707 0.707 1 13.621 0.745 —0.067
1,2,34,5 6 2.707 -0.707 1 13.621 0.745 0.067
1,4,5,6 2,3 2.293 0.707 2 3.621 2).789 —0.065
1,3,5,6 2,4 2.293 —0.707 2 3.621 0.789 0.065
1,3,4,6 2,5 3.707 0.707 2 3.621 0.038 —0.184
1,3,4,5 2,6 3.707 -0.707 2 3.621 0.038 0.184
1,2,4,6 4.5 2 1.414 2 12.914 0.943 —0.040
1,246 3,6 2 0 2 12,914 1 0
1,2,3,6 4,5 2 0 2 12.914 1 0
1,235 4, 6 2 1.414 2 12.914 0.943 0.040
1,234 5,6 3414 0 2 12.914 0.781 0
14,6 23,5 3 1.414 3 2914 0.803 —-0.093
14,5 23,6 3 0 3 2914 1 0
1,3,6 24,5 3 0 3 2914 1 0
1,3,6 24,6 3 —1.404 3 2914 0.803 0.093
1,34 2,5,6 4414 0 3 2914 0.030 0
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F" (0,1) A (2,0
A, (-10) A, (11,00
i} ’ 210
Puo) o
A, (0,1) Ag2
Fig. 2. Construction of convex hull H.
y
I A5
A A Ar A
-2 -l | 2
A

Fig. 3. Location of vertices.

[1], 1 [-283]_[o0393
o (o] raial 7] [}

The result is plotted as a star (*) in Figure 4. Note that in this figure
the closer x’ is to the x-axis the “better” the algorithm, for the faster its
convergence to M. We thus have the paradoxical result that vertex
iterates are substantially “better” than their near neighbors. This suggests
the following adaptation of Weiszfeld’s algorithm: At each iteration,
determine the vertex nearest to P,. Suppose this is A;. Then set K = {k}
and check whether || Gx(P) || > ws. If it is, then set P,.1 = W,(P,); the
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Fig. 4. 1" as a function of x.

effect of this procedure, applied to the preceding example, is depicted in
Figure 4 (dotted line).

It is presently not known whether this procedure (which incidentally
is in general a non-gradient method) substantially improves the rate of
convergence of the Weiszfeld algorithm. For a good discussion of this rate
of convergence and a means of improving it, see KaTz.[®
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