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Fact: In any barnyard of chickens, in every pair of chickens, one is dominant over the other.
The dominant chicken asserts its dominance by pecking the other chicken on the head and neck,
whence the phrase “pecking order.” However, it rarely happens that this pecking order is linear.
That is, it is rare that there is a first chicken who pecks all the others, a second chicken who
pecks all but the first, and so on. Question: Given that the pecking order may not be linear, is
there still a reasonable way to designate a most dominant chicken, i.e., a king? In this paper, we
analyze at length one promising king definition, and look briefly at several others.

This material illustrates nicely the delights and pitfalls of applied mathematics. One delight is
that a model set up to describe one situation may well describe several others as well. A pitfall is
that the mathematics done with the model, though good mathematics, may not really be of
much use in the situation being modeled. It is not merely a matter of irrelevant theorems. It may
be a matter of the wrong mathematical assumptions or even the wrong definitions. This last is a
very subtle matter because it may be far from obvious that the definitions are wrong.
Specifically, we wish to define a king chicken in such a way that the definition implies a strong
sense of dominance and also implies that every flock of chickens has a king. We give such a
definition and such a theorem—a definition and a theorem due to the mathematical sociologist
H. G. Landau in 1953 [5]. But a king should also be unique, or at least rare. It is necessary to ask
if our definition assures this. We are led to discover and prove many theorems which say that
kings are all too common. In short, the theorems have negative implications about the usefulness
of the definition. But we would not even have discovered this if we had not done some
mathematics with the definition, and done it with this sort of testing in mind.

This lesson, that a model needs to be judged by the theorems it keeps, is perhaps the main
point of this paper. I must confess, however, that for me the theorems themselves are also a main
point; the pure mathematician in me finds them interesting in their own right. Also, their proofs
illustrate some interesting techniques, for instance, duality and induction from n to n+2. In any
event, good modeling does not stop with wrong definitions, no matter how pretty the theorems
they give. One must look for better definitions and/or better mathematical assumptions, and
then start proving theorems again. We say a bit about this second round towards the end of the
paper.

This paper is written primarily for undergraduates, both in the style of proofs and in the
amount of interpretation of theorems. There are problems stated later which could lead to good
undergraduate projects. Indeed, the paper developed from work begun with undergrad-
uates—my 1977 Graph Theory class at Princeton. Some of the results appear to be new.
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A word about sex: there are female chickens, called hens, and there are male chickens, called
roosters. To this natural division mankind has also added neuter chickens, called capons. These
divisions are important to chickens. Chickens of the same sex residing together always form a
pecking order, but roosters and hens rarely peck each other. Thus the “Fact” stated at the
beginning of this article is not quite correct; one must restrict one’s attention to a single sex.
Since a traditional barnyard has several hens but only one or two roosters, pecking is usually
associated with hens, both in common parlance (“henpecked”) and in scholarly articles. For this
reason several people have suggested rather heatedly that I should revise this article by replacing
“king” throughout with “queen.” However, since all chickens peck, I have stuck with king. I use
this as a general term for leader. I have also avoided all use of either male or female pronouns
for chickens.

For a delightful and informative essay on chicken society in general and pecking in
particular, one should read the original article on the subject by Schjelderup-Ebbe [16].

The Model

By a flock F of chickens we mean a nonempty (finite) set of chickens which has the property
that for any two chickens in it, exactly one pecks the other. Formally, we should write
F=(C,P), that is, a flock is not just the set C of chickens, but a binary pecking relation P as
well, where (c,d) € P iff ¢ pecks d. However, it is more natural, and should not be confusing, if
we write “chicken c is in F,” rather than “chicken c is in the chicken set C of flock F.” Likewise,
we often write ¢ € F rather than c€C.

We will sometimes want to refer to P alone, so let us call it the pecking order. Also, let us call
any individual ordered pair in P a pecking pair. Sociologists use the term “peck right,” but in.
what I have read it seems to mean pecking order or pecking pair or both, depending on context.

In general, chickens will be denoted by c,d,a,b or sometimes c,,c,,...,c,. Flocks will be F
and G. Usually there will be exactly one flock under consideration, F, and all chickens
mentioned will be understood to belong to F.

It is helpful to think of a flock as a directed graph. A directed graph consists of a set of
vertices and a set of directed edges between various pairs of vertices. In our case the chickens
become the vertices, and there is a directed edge from vertex ¢ to vertex d if and only if chicken
¢ pecks chicken d. Clearly, any binary relation can be represented by a directed graph in this
way. The graph of a flock has an additional property: between every pair of vertices there is
exactly one directed edge. Such a directed graph is often called complete. Flocks of chickens are
not the only objects modeled by such graphs. Suffice it to say for now that the usual name in the
literature for such a complete directed graph is “tournament.” The theorems we will prove are
good for all complete directed graphs, and hence for all the situations they model. Perhaps then
we should use standard graph-theoretic terms like “graph” and “vertex.” However, I have
decided to stick to chicken-theoretic terms like “flock” and “chicken.” It helps keep firmly in
mind the origins of our study, and it’s more fun.

Now, how shall we define king? Surely, if chicken ¢ pecks all other chickens in its flock, it
should be called a king, but such a ¢ does not always exist. For instance, suppose there are n
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chickens and they peck each other cyclically; that is ¢; pecks c,,...,c,_; pecks c,, and ¢, pecks
¢,. Then no matter what the other pecking pairs are, every chicken is pecked by at least one
other. So this first suggestion for a definition is too narrow. Yet, if a chicken is to be called a
king, surely it should dominate every other chicken, at least indirectly, and not too indirectly.
Landavu’s idea was to allow domination in two steps as well as directly in one. Landau did not
introduce a term for his concept, but we will.

DerINITION. Chicken c in flock F is a king if for every other chicken d in F, either ¢ pecks d,
or there is some third chicken b such that ¢ pecks b and b pecks d.

Since we will eventually find that this king concept is not a good one, it is important to say a
bit more about what Landau did with it. His main concern [3, 4] was to measure how
hierarchical a pecking order will be, based on various assumptions about how the individual
pecking pairs are determined. He introduced the idea of domination in one or two steps, almost
as an afterthought, as the last topic in a third paper [5] dealing with some related but more
purely mathematical ideas. By introducing this 2-step concept and proving Theorem 1 below,
Landau surely intimated that the concept might be useful for studying levels of dominance.
However, he never explicitly discussed the problem of designating a most dominant chicken.
Moreover, he did remark that his 2-step concept need not pick out a unique chicken. Thus
Landau, who is dead, might well have objected to our use of the work “king” for his concept. So
the negative results below about kings can in no way be regarded as a criticism of Landau’s
work.

Existence Theorems

The miraculous thing about Landau’s definition is that there is always such a king, and that
the proof is easy. First, a few further conventions: For c € F, let S, be the set of chickens ¢ pecks
(Submissive to ¢) and let D, be the set which peck ¢ (Dominates c). Clearly, S,, D,, and {c}
partition F. The partition is illustrated in FIGURE 1. In this figure and henceforth, a “balloon”

FIGURE 1.

represents a set of vertices, and a thick arrow between a single vertex and a balloon indicates
that all edges between the single vertex and those in the balloon are directed like the thick
arrow.

THeoreM 1 (Landau [5], p. 148). Every flock of chickens has a king.

Proof. Let s(c) be the number of chickens ¢ pecks. Let ¢ be a chicken for which s(c) is
maximum. We will prove that ¢ is a king. Suppose not. Then some chicken d € D, is not
dominated in two steps by c. That is, no chicken in S, pecks d. Thus d pecks all chickens in S,.
But 4 also pecks c. So s(d) >s(c), a contradiction.
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COROLLARY 2. Let s be the maximum number of chickens pecked by any chicken in F. Then
every chicken in F who pecks s others is a king.

This Corollary answers the question, “Can there be more than one king?” If we have a flock
of 3 chickens which peck cyclically, then s(c)=1 for each chicken c¢. Thus all 3 are kings.
Perhaps it is not unreasonable for all 3 to be called kings in this case; the flock is small and
symmetric. In a large flock, though, we would want it to be unlikely, if not impossible, for all
chickens to be kings. Thus we have not really answered the question about the existence of
multiple kings until we have comprehensive results about how many kings there can be and how
likely it is that there be that many.

Incidentally, for ¢ to be a king it is not necessary that s(c) be maximum. Can you give an
example? If there are n chickens, can you determine how small s(c) can be for a king?

The following lemma enables us to prove the next several results more easily. First note that
every nonempty subset of a flock is actually a subflock; that is, the subset and its pecking pairs
form a flock themselves. By picking a certain subflock and applying Theorem 1, we gain useful
knowledge about the whole flock.

LEMMA 3. In a flock, every chicken who is pecked is pecked by a king.

Proof. Suppose ¢ € F is pecked, that is, D, 5= . Since D, is a flock, by Theorem 1 it contains
a chicken d who is a king of D,. We will show that d is actually a king of F. It suffices to show
that d dominates every chicken in F— D, in one or two steps. This is true because F— D, =S, U
{c}, d pecks ¢, and c pecks all chickens in S..

DermNiTION. Chicken ¢ is an emperor of flock F if ¢ pecks every other chicken in F.
THEOREM 4. A flock has exactly one king if and only if that king is an emperor.

Proof. “If” is clearly true (Why?). As for “Only if,” suppose ¢ were the only king but not an
emperor. Then c is pecked. Hence F has another king by Lemma 3.

THEOREM 5. No flock has exactly two kings.

Proof. Suppose F has exactly two kings, ¢ and d. Since d is a king, d dominates ¢ in one or
two steps. In particular, c is pecked. Thus ¢ is pecked by a king. This must be d. Repeating the
proof so far with d and ¢ switched, we conclude that 4 is pecked by c. But, by definition of a
flock, no pair can peck each other.

What Theorem 4 tells us is disappointing. Ideally, we would like a definition of king which
implies that the king is always unique. However, we have already seen that Landau’s definition
does not assure uniqueness. Thus our next hope is that the definition assures uniqueness often,
or at least in many cases where it isn’t intuitively obvious that there’s a best choice. Alas, what
Theorem 4 tells us is that the only case in which Landau’s definition gives a unique king is a case
where it is already obvious.

Theorem 5, on the other hand, is promising. What is perhaps the least workable form of
oligopoly, duopoly, can never occur. Perhaps there are lots of other numbers of kings which
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cannot occur. At the least, Theorem 5 prompts us to attack this question more fully. How shall
we make this question more precise? Here is one way.

DEFINITION. Let n and k be integers, n >k > 1. We say that F is an (n,k) flock if F has n
chickens and exactly k of them are kings. If F has n chickens, it is an n-flock.

The question now becomes, “For which n and k do there exist (n,k) flocks?” We will answer
this completely. We begin by answering a special case: “For what n are there (n,n) flocks?” That
is, when can every chicken be a king? The answer is surprising—at least it was to me.

THEOREM 6. For every positive integer n except 2 and 4, there exists an n-flock in which every
chicken is a king.

Our proof of this follows by induction from the following Lemmas.

LEMMA 7. If there exists an (n,n) flock, then there exists an (n+2,n+2) flock.
LeMMA 8. There is a (1,1) flock.

LEMMA 9. There does not exist a (4,4) flock.

LEMMA 10. There is a (6,6) flock.

The proof of Theorem 6 from the lemmas is by two separate inductions. By Lemmas 7 and 8,
one proves the existence of an (n,n) flock for all odd positive integers. By Lemmas 7 and 10 one
proves the existence of an (n,n) flock for all even integers > 6. Finally, (4,4) flocks are excluded
by Lemma 9, hence (2,2) flocks are excluded by Lemma 7.

Proof of Lemma 7. This beautiful argument is contained in FIGURE 2. Suppose F is an (n,n)
flock. Create two new chickens ¢ and 4, and let their pecking relations to each other and to the

c d

FIGURE 2.

chickens of F be defined as in the figure. Call the augmented flock G. Then c is a king of G
(Why?). Also d is a king of G (Why?). Finally, we already know that each b € F is a king of F.
Hence b is a king of G (Why?).

Proof of Lemma 8. This is true vacuously. That is, in any 1-flock the one chicken pecks every
other chicken because there are no other chickens.

As for Lemma 9, there are only 64 ways to assign dominance between 4 chickens 2 at a time
(Why?). By symmetry the number can be much reduced. In any event, it is clear that the truth
value of Lemma 9 can be determined by brute force examination of cases. However, it is
esthetic, as well as less tedious, to give a more incisive, conceptual proof. I offer the following
sketch. If F is to be (4,4), no chicken either pecks or is pecked by all the others. Since there are 6
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pecking pairs, some two chickens, call them a and b, peck exactly two chickens each, while the
remaining two chickens peck exactly one each. One of the first two, say a, uses one of his pecks
on the other. These facts uniquely determine F (draw the graph!) and it is not (4,4).

Proof of Lemma 10. To prove this, we need merely display one (6, 6) flock. Checking whether
a proffered 6-flock works is routine. To devise candidate flocks, it is very helpful to think in
terms of graphs. Since all 6 chickens are to be kings, it is reasonable to arrange the arrows as
symmetrically as possible. Also, for each ¢, the chickens that ¢ pecks should be “spread out,”
that is, they shouldn’t “waste” their pecks on each other since ¢ must peck all other chickens
through them. FIGURE 3 works.

This completes the proof of Theorem 6.

THEOREM 11. There exist (n,k) flocks for all integers n >k > 1, with the following exceptions:
k=2 with n arbitrary,‘ and n=k=4.

Proof. We already know that k=2 with n arbitrary, and (4,4) are excluded. We must show
that nothing else is. The case k2,4 is easy. Start with a (k,k) flock and create n—k new
chickens, each of which is pecked by all £ old chickens. Arrange the pecking order among the
n—k new chickens arbitrarily. Call the augmented flock G. It is easy to see that all the old
chickens are still kings in G and that no new chickens are kings in G. Thus G is (»,k).

For k=4, it suffices to show that a (5,4) flock exists, for then an (n,4) flock with n>5 can be
created by adding n — 5 new subservient chickens to the (5,4) flock just as above. A (5,4) flock is
shown in FIGURE 4.

<1

Ce¢ 6

N e
N

Cs C3

Ca
FIGURE 3. FIGURE 4.

Probabilistic Theorems

The results above about the existence of (n,k) flocks may seem to be evidence enough that
our definition of king is not a good one. However, this conclusion is premature. It may be that
(n,k) flocks for k large are extremely rare. It may also be that emperors are extremely common.
If either of these things is true, the definition would be, in practice, a useful way to determine
power in a flock.

How shall we assign probabilities to the various pecking orders a flock can have? With no
prior information to go on, it seems reasonable to assign equal probability to each possible
pecking pair. That is, for every unordered pair {c,d}, assign probability 1/2 to the event that ¢
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pecks d, and 1/2 to the event that d pecks c. Since an n-flock has (§) unordered pairs, there are
2® equally likely pecking orders. In what follows we use this probability assumption, and we
refer to an n-flock chosen using this assumption as a random n-flock. We also use basic rules of
probability. In particular, let Pr(E) be the probability that event E occurs. Let { E;} be a set of
events, and let U E; be the event that at least one of the E; occurs. Then

Pr(U E) < X Pi(E), ¢y

with equality iff the E; are mutually exclusive.
THEOREM 12. The probability that a random n-flock has an emperor is n(1/2)"~ 1.

Proof. Let E; be the event that chicken ¢; is emperor. Since no two chickens can be emperors
simultaneously, and since by symmetry Pr(E;)=Pr(E)) for all i and j, the probability we seek is
nPr(E,). Moreover, ¢, is emperor iff he pecks all n—1 others. Hence Pr(E,)=(1/2)""".

COROLLARY 13. The probability that a random n-flock has an emperor approaches 0 as n—co.

Proof. We need one fact from analysis: Exponential functions grow much faster than
polynomials. Precisely, if P(x) is any polynomial, and a > 1, then

as x—o0, P(x)/a*—0. )

One way to prove this is by repeated use of L’Hospital’s Rule. Since the probability p(n) that a

random n-flock has an emperor is 2n/2" (by Theorem 12), it must approach 0 as n—>cc. (In fact,
pr(n) goes to 0 very fast. For n> 12, pz(n)<.01.)

That it is very rare for only one chicken to be king did not surprise me, but I was shocked to
learn that the opposite extreme—every chicken a king—is very common. I would never have
guessed such a thing, let alone proved it, had not a student reported to my class the results of a
computer program he ran which counted the number of kings in 100 random flocks of 16
chickens. No flock had fewer than 8 kings, and most had 14, 15, or 16!

THEOREM 14. The probability that every chicken in a random n-flock is a king approaches 1 as
n—>00.

Proof. Let p(n) denote this probability. I do not know an exact expression for p(n), so the
proof proceeds by estimates. Let p(n)=1—p(n) be the probability that not every chicken is a
king. I will overestimate p(n) with a certain computable quantity g(n) and will then show
q(n)—0 as n—o0. Thus p(n)—0, so p(n)—1.

Not every chicken is a king if and only if there exists an ordered pair (c,d) such that ¢ does
not peck d and no chicken which ¢ does peck pecks d. Let p(c,d) be the probability that the
‘particular pair (c,d) has this non-dominating property. By symmetry all the p(c,d) are equal.
Since there are n(n— 1) such ordered pairs, p(n) <n(n—1)p(c,d) by (1). This last product is the
q(n) referred to above. It is easy to compute because p(c,d) is easy to compute. The probability
that ¢ does not peck d is 1/2. The probability that, for a specific third chicken b, ¢ does not
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dominate d through b is 3/4 (Why?). Now, who pecks whom between ¢ and d is independent of
their mutual relation to any one b, and their mutual relation to one b is independent of their
relation to any other b. Thus p(c,d)=(1/2)(3/4)"~2. So
n-2_ (8/9)n(n-1)
g(m)y=n(n=1)(1/2)(3/4)"*= 25—
: 4/3)
By (2), g(n)—0. (In fact, g(n) <.01 when n >42. Thus for these same n (and no doubt some
lower ones) p(n) >.99.)

COROLLARY 15. Let k(n) be the average number of kings in a random n-flock. As n—oo,
k(n)—n—0.

Proof. Let px(n,i) be the probability that a random flock of n chickens has exactly i/ kings. By
definition, k(n)=3,ipx(n,i). Thus, using the notation p(n) as in the proof of Theorem 14,

n >k(n) >npg(n,n)=n(1—p(n))
| 8/9n(n—1) ]
@/3"
e B/OP=])
@/3)

By (2), the latter term goes to 0. Thus k(n)—n—0.

The results of this section are much more damaging to our king concept than the previous
existence results. Yet, as we point out later, there may still be hope for the definition in terms of

its utility for applications to real-world flocks. For now, let us be content that the definition has
led to some surprising theorems.

Submissive Chickens and Duality

DEeFrINITION. -Chicken ¢ € F is a slave if ¢ is pecked by all other chickens in F. Chicken c is a
serf if every other chicken either pecks c or pecks another chicken who pecks c.

s

Since the definitions of serf and slave are just those of king and emperor “turned around,” it
seems clear that all the results about king and emperor go through for serf and slave. The only
question is how to justify this without repeating everything.

What we have here is a simple example of duality. Duality is a correspondence between
concepts so that for every true statement in one’s theory, if one substitutes corresponding
concepts throughout, one gets another true statement. For instance, in our theory the correspon-
dence includes: pecks<>is pecked by; king<sserf; emperor<sslave; chickeneschicken; and
flocke>flock. Using this duality (justified in a moment), one gets from Theorem 1, for instance,
that every flock of chickens has a serf, and from Lemma 2, that every chicken who pecks pecks a
serf.

To justify this duality, note that the fundamental concept in our theory is the pecking order
P. Everything else has been defined in terms of this binary relation. For instance a flock is a set
C such that for every ¢,d € C, exactly one of the ordered pairs (c,d), (d,c) is in P.

Thus we see that every theorem in our theory is really of the form “If P satisfies hypotheses
A, then it also satisfies conclusions B.” (Sometimes the only hypothesis is the tacit one that P is
the relation of some flock.) Now, the crux is: the name P we have used for the relation is
irrelevant. We could substitute any other name P* in the theorem and the proof would still be
valid. Of course any defined terms used in the (usual) statement of the theorem and its proof
would have to be replaced by terms defined identically, but using P* instead of P.

In particular, we could replace P =“pecks” with P* =“is pecked by.” Making this substitution
in the definitions of king and emperor clearly gives serf and slave. Since a chicken is an element
in the set on which “pecks” is defined, after the substitution a chicken is still a chicken. Also a
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flock is still a flock, for there is no difference in meaning between saying “for every pair, exactly
one pecks the other,” and “for every pair exactly one is pecked by the other.” Thus the claimed
duality is justified.

In addition to giving a formal boost to one’s theory by providing an analogous theorem for
every theorem already proved, duality also gives a psychological boost by suggesting situations
in which to look for new types of theorems. Specifically, it gets us to ask about situations in
which concepts and their dual concepts interact. For instance, since we know about the
probability that every chicken is a king, and dually, about the probability that every chicken is a
serf, it occurred to me to ask about the probability that every chicken is both. The answer is
another theorem.

THEOREM 16. Let pxs(n) be the probability that, in a random n-flock, every chicken is both a
king and a serf. As n—, pgs(n)—1.

Proof. Let pg(n) be the probability that all n chickens are kings, and let pg(n) be the
probability that all n are serfs. By Theorem 14, px(n)—1. By its dual, pg(n)—1. Now, if ENE’ is
the event that events E and E’ both occur, then

' Pr(ENE")>Pr(E)+Pr(E")—1. 3)
(This is shown by applying (1) to the events not-E and not-E’.) So let E be “all n chickens are
kings” and E’ be “all n chickens are serfs.” Then (3) becomes pxs(n) >px(n)+pg(n)— 1. Since
Prs(n) <1 in any event, the theorem follows.

We ask the reader to prove the next theorem, and to use it to give a much simpler proof of
Theorem 16.

THEOREM 17. If every chicken of F is a king, then every chicken of F is a serf.

Redefining Kings

Clearly we should consider other definitions of king. I begin with two alternative definitions
suggested by students who have heard me lecture on this topic.

According to the current definition, a king dominates every other chicken in one or two steps.
Why not allow 3 steps, or 47 To be precise, let us say ¢ dominates 4 in s steps if there is a
sequence of chickens ¢=c, ¢,,...,¢_1, ¢,;=d such that for all i=0,1,...,s—1, ¢; pecks ¢, ,. Then
c is an s-king if ¢ dominates every other chicken in F in at most s steps. In particular, a 1-king is
an emperor and a 2-king is a king.

We may now ask: do 3-kings always exist? For which (n,k) do there exist n-flocks with k
3-kings? How often is every chicken a 3-king? Is the definition of 3-king more satisfactory than
that of king? What about 4-kings? Etc. Actually, most of these questions are very easy to answer,
either by mimicking the proofs of the theorems for kings, or, often enough, by simply using the
statements of those theorems. We leave all this to the reader. The upshot is: s-kings are not more
satisfactory.

Another approach suggested by students hinges on the idea that, though a flock rarely has
just one king, often the set of all kings is at least a proper subset of the flock. Thus, given flock
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F=F,, let F, be the subflock of all kings of F,. In general, for i > 1, let F;,, be the subflock of
all kings of flock F;. Then Fy, F,,... is a nonincreasing sequence of subsets of F,. Since F, is
finite, there must be a first i for which F,, = F;; thereafter the sequence is constant. Let us call
any c in this F; a king-of-kings.

The idea is that the number of kings-of-kings should be much less than the number of kings.
Alas, Theorem 14 tells us that it isn’t much less. As soon as n is large enough, most of the
sequences Fy, F,,... are constant right from the start. Almost every chicken is a king-of-kings! It
also turns out that most of the existential questions we have asked about kings can be answered
easily for kings-of-kings too: review the proofs for kings. One intriguing question may appear
more difficult: characterize those flocks which have a unique king-of-kings. (A hint on how to
answer this question is given later.)

We now turn to definitions of king suggested by studies in the literature of other situations
modeled by complete directed graphs. We have already mentioned that such graphs are usually
called tournaments. Consider a round-robin tournament among » teams ¢,,...,%,. Round-robin
means that each pair {f,#} plays exactly once and there are no ties. If we create a vertex i for
each ¢, and put an edge from i to j iff # beats #, then this construction gives us a complete
directed graph for each round-robin tournament. Conversely, every complete directed graph
represents a possible round-robin tournament.

In a real-world tournament, often one wants not only to determine the best team but also to
rank them all in descending order. Surely, the basic idea of best team is akin to that of king
chicken, so any method for ranking teams ought to have inherent in it a plausible method for
choosing a king.

A concept used in many proposed ranking methods is the score vector. Let 7 be a tournament
with n teams. Let s5; be the number of victories of team ¢ in 7. Renumber the teams so that
sy >8,> -+ >s5, Then the score vector is defined to be (sy,...,s,). It seems natural to rank the
teams in this order, and to declare team ¢, to be the champion. By analogy, we could redefine
king to be a chicken who pecks the most others. Indeed, by Corollary 2, this new definition is at
least as selective as the original. (What is called s in Corollary 2 is what we now call s,.)

However, there may be ties in score vectors. If a tie occurs for top scorer, then this ranking
method does not pick a unique king either. In fact, it is possible for every team to have the same
score. It is not hard to show that this is possible if and only if 7 is odd.

Another objection is that a team which wins more games may not really be better. What if
some ¢; wins fewer games than ¢, but wins them all against tougher teams than ¢, wins against?
We might be inclined to rate ¢ higher than ¢,. Only, how do we judge which teams are tough
unless we already have a ranking? Here is one way which has been proposed. We make an initial
ranking of the teams based on their score vectors as above. Now, for each team we compute a
revised score vector by summing the scores of all the teams it beat. We now have a revised score
vector (s,’,...,s,’), where it may well be that we have to rerank the teams in order that the
revised scores are in descending order. We can repeat the process: Compute a rerevised score for
each team by summing the revised scores of all the teams it beat. The rerevised scores may
require a further reordering. In theory, we could repeat this process endlessly. If the reader feels
intuitively that, after a while, little new information is gained by revising the current score vector
again, he is right. It is a theorem that after a finite number of revisions, no further reranking will
be caused by further revision. The proof of this uses the theory of eigenvalues of matrices! For
precise statements and proofs, see Moon [8] Section 15. Suffice it to say here that this method of
choosing a champion (or a king) is not free from objections either.

Another definition of champion is suggested by the following theorem: In every tournament
there is a directed path which passes through each vertex once. In terms of chickens in an
n-flock, this means it is always possible to number the chickens so that ¢, pecks c,, ¢, pecks
¢3..., and ¢,_, pecks c,. We could redefine a king to be the head of such a chain of command.
Unfortunately, this path is rarely unique; in fact, it is unique if and only if the pecking order is
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linear. Moreover, as n— o0, the probability that in a random n-flock every chicken is a king in
this sense goes to 1 too. For more details about this approach, see Roberts [14], Section 3.2.
(Roberts does not give a proof of the last, probabilistic assertion. It can be proved using the fact
that each so-called strong tournament contains a cycle which passes through all the vertices and
the fact that most tournaments are strong. See Moon (8], Theorems 1 and 3.)

Many other methods have been proposed for ranking tournaments, none of them entirely
satisfactory. Perhaps this explains why most leagues have special play-offs to determine the
champion.

Other Models

Our model produces too many kings, yet changes in the definition of king don’t seem to help.
So maybe the real problem is with our assumptions about pecking orders rather than with our
definitions. To explain this suggestion without undue complications, let us do so within the
context of Landau’s original definition. We have shown that this definition is unreasonable if we
allow a flock to have any pecking order, or even if we assume each pecking order on »n chickens
is equally likely. But these assumptions were based, to put it politely, on mathematical esthetics
and convenience, not on knowledge of chickens. Landau himself was a theoretician of chickens
rather than an observer of chickens. But he had read the observational literature. As he notes,
although the pecking order in real-world flocks is rarely linear, it is also rarely very far from
linear. Thus, for real-world flocks, it may be that his definition works much better than we so far
have led ourselves to suspect.

In short, the real problem may be that our assumptions about pecking are too broad. Maybe
we should restrict flocks to tournaments which are “almost linear.” Maybe we need to use a
probability distribution which is very far from random.

Let us pursue the first of these proposed alterations just a bit further. Before we can prove
anything about kings in “almost linear” flocks, we need to have a precise mathematical
definition of that concept. One way to define it is suggested by the following facts. Proofs may
be found in Moon [8], Sections 5-7, but the reader might try to prove them himself. (1) A
tournament is linear iff it contains no 3-cycles; (2) the number of 3-cycles in a tournament
depends only on the score vector; (3) in a random n-tournament, the expected number of
3-cycles is (1/4)(3). Thus the number of 3-cycles is a measure of how linear a tournament is.
According to the observational literature Landau quotes, a typical flock of 10 to 20 chickens
contains only 2 or 3 3-cycles. Thus a good topic for further study is this: Are there bounds for
the number of kings in terms of the score vector or the number of 3-cycles? If the number of
3-cycles is severely bounded, is the number and nature of the kings severely restricted? If not,
what does the number of kings depend on? For more information about the number of 3-cycles
as a measure of linearity, see Harary, Norman and Cartwright [2], pp. 300-304. Landau himself
proposed a different measure of linearity, which he called the hierarchy index [3, 4].

A word of caution: if the goal is to designate a unique king, then no amount of restriction on
pecking orders, either absolute or probabilistic, will cause Landau’s definition to be the right
one. This is because of Theorem 4. In our present context, what it says is this: Any restriction
which leads to Landau kings’ being unique is a restriction which makes the concept unneces-
sary; use the simpler concept of emperor instead.
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However, it may well be reasonable to allow a few kings. Then Landau’s definition would still
be in the running, especially if one can find mathematical restrictions on pecking orders which
result in few kings in his sense and which correspond well to the empirical facts about flocks. On
the other hand, it may be that the combination of some restrictions on pecking orders and some
alternative definition of king will turn out to be best. In any event, this is not something a
mathematician can decide by pure cogitation. A thorough knowledge of the facts about chickens
is necessary. To pursue this seriously, one might begin by reading the many articles on chickens
in the anthology on social hierarchy [15].

Dominance structures occur in many human and animal societies. They were first studied
among chickens, where they are especially apparent, quite stable, very hierarchical, and involve
every pair; but now many other instances have been documented (see [15] or Chapter 13 of [18]).
The point here is that there is considerable variety among species as to the nature of the
dominance structure. Mathematical restrictions which are right for chickens may not be right for
others. There is room here for a lot of mathematical modeling. Also, a lot of reading of empirical
studies and a lot of interaction with social scientists will be necessary if this modeling is to be
accurate and useful.

Further Problems

The previous section presents one big open problem. One reason the problem is big is because
it is vague; a lot of the work would be in determining appropriate models. Proving theorems
would only come later, and might forever be subsidiary, say, to running and evaluating
computer simulations.

In contrast, the problems in this section concern our original model and definitions. Thus
they are precise and mathematical, but more narrow. Because of the unrealistic implications of
this model for kings, these problems are better regarded as pure mathematics than as applied.
When 1 first drafted this article, these problems were all open. Problems 1, 2 and 4 have since
been solved, and no doubt more solutions will be found by the time this article appears in print.
However, this should not discourage anyone from working on any of them. Different solutions
often involve different techniques, are more or less difficult or complete, answer or suggest
different generalizations, etc. Problem 4 was solved by an undergraduate. The solution of
Problem 1 is announced in [13].

PrOBLEM 1. For what 4-tuples (n,k,s,k,) does there exist an n-flock with exactly k kings and
s serfs and such that exactly k, of the kings are also serfs?

PROBLEM 2. What are the possible structures for subflocks of kings? That is, for which
n-flocks F does there exist an m-flock G such that G contains » kings and F is the subflock of
kings of G?

It is not true that every flock F is the king subflock of some G. A necessary condition on F is
implicit in Lemma 3. Problem 2 asks for necessary and sufficient conditions. Incidentally,
Lemma 3 can be used to answer a question asked in the previous section: When is there a
unique king-of-kings?

ProBLEM 3. When do the various definitions of king agree? For instance, when is the set of
kings-of-kings the same as the set of kings? When is the set of chickens with the highest score the
same as the set of kings? Etc.

ProBLEM 4. Find a proof of Lemma 7 using induction from » to n+ 1 instead of from n to
n+2. Such an induction can only work starting at n=5 (Why?) so it cannot be entirely
straightforward.

PrOBLEM 5. In a random n-flock, what is the probability that exactly £ chickens are kings?
That at least k chickens are kings? That at least a particular set S of chickens are kings?
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Implicit in our theorems are answers to the “exactly” question for k=0,1,2 and to the at-least
question for k=0,1,2,3. The answer to the “set” question is known when S is a singleton.
Answers for a few more cases ought to be obtainable by careful brute force, but matters rapidly
get complicated: kingships are not independent events. The real question is: are there formulas
for general k and S? Fortunately, if any one of the three questions can be answered completely,
the other two follow by the general combinatorical principle of Inclusion-Exclusion. (For
discussion of this principle, see any probability or combinatorics book.)

If exact formulas can’t be found, what about bounds and asymptotics? We already have an
asymptotic result for k=n, namely that the probability goes to 1. (Note that the “exactly” and
the “at-least” problems are the same for k= n.) Thus we automatically have asymptotic results
for all k <n, namely that the probability goes to 0 for the exactly problem However, it might be
interesting to determine how fast it goes to 0.

PrOBLEM 6. In real-world flocks, pecking orders are not permanent. Occasionally the order
between two chickens switches. Call one such change a single switch. Landau’s second paper [4]
was devoted to the question of how repeated single switches affect the nature of the pecking
order over time, under various assumptions about the nature of those single switches. Landau
did not, however, analyze what single switches do to the set of kings. Problem 6 is to analyze
this. Specifically, suppose F and G are flocks on the same set of chickens. Let their number of
kings be kr and k;, where we may assume that k <kg. There are many sequences of single
switches which turn F into G. Can a sequence be found in which the number of kings always
stays the same or increases? If S is the set of chickens who are kings in both F and G, can a
sequence be found so that at each state every chicken in S is still a king? These are examples of
questions about “minimally disruptive” sequences of single switches from F to G. Still other
questions can be made up if one does not specify G. For instance, for every flock F is there a
single switch which does not change the set of kings, or at least does not change the number of
kings? Does every flock have a single switch which changes the number of kings by at most one?
Does every emperorless flock have a single switch which changes the number of kings by exactly
one?

Credits

The idea of studying chicken flocks mathematically seems to have originated with Rapoport
[10, 11, 12], but the first significant general results are Landau’s. Landau succeeded in analyzing
the expected value of his “hierarchy index” for arbitrary n-flocks under several different
probabilistic assumptions about pecking pairs. As an aside, he proved Theorem 1 and Corollary
2. Landau attributes independent and earlier proofs of Theorem 1 to F. E. Hohn and H. E.
Vaughan.

Theorems 4 and 5 appear implicitly in a problem posed in this MAGAZINE by D. L. Silverman
[17] and solved there by Moon [9]. The context there is that of debtors in a club instead of
henpecked chickens. Lemma 9 appears as half of problem 5 on page 317 of [2]. Theorem 14 is
essentially a restatement of part of a result of Moon and Moser, as given by Moon [8], pages
32-34.

It surprises me that more has not been done with Landau’s ideas in the 25 years since he
wrote [3, 4, 5]. Dominance is an important concept in biology, sociology, and psychology. One
wants to know why various groups of living things develop dominance structures, why one
particular living thing dominates another, and why dominance structures of whole groups tend
to be hierarchical. Landau’s hierarchy index is well-known among quantitatively minded social
scientists; they compute it as a statistic in analyzing their data. However, little has been done in
these 25 years to further develop a mathematical theory of hierarchy formation. Landau himself
wrote another paper on this subject in 1965 [6]. He also wrote a survey of all his work on this
subject, published posthumously in 1968 [7]. (I recommend this survey as a first paper to read on
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this subject.) It seems that the only substantial article to appear since on the mathematics of
hierarchy formation is Chase [1].

What have mathematicians done with Landau’s ideas? The King Chicken Theorem is only a
secondary result in [5]. The main theorem is a characterization of those n-tuples which are the
score vectors of tournaments. This is what has interested mathematicians most. This score vector
characterization has been reproved several ways and generalized; see Moon [8], Sections 21 and
22.

Landau’s king concept seems to have interested mathematicians only to the limited extent
already mentioned, and to have interested social scientists not at all. If we limit ourselves to
chickens, there are several possible explanations for this lack of interest among social scientists.
It has already been noted that the pecking order in chicken flocks is so close to hierarchy that
subtle methods of designating top chickens have not seemed necessary. Moreover, the observa-
tional literature indicates that even when there is an evident most dominant chicken, this
chicken does not Jead the flock. It merely exercises certain perquisites, e.g., it gets the best food
or the best roost. Domestic flocks do not seem to have real leaders.

On the other hand, since the variety of dominance structures in human and animal societies is
immense, it is possible that Landau’s king concept, or some other mathematical king concept,
could still prove useful to social scientists.

In closing, I would like to thank all the mathematicians and students, especially Tim Bock,
who have kept me thinking about this subject.

Work on this paper was done while the author was in the Mathematics Department at Princeton University,
supported by National Science Foundation Grant MCS 76-19670.
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