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THE COMPLEXITY OF PLANAR COUNTING PROBLEMS*

HARRY B. HUNT I1IIf, MADHAV V. MARATHE!, VENKATESH RADHAKRISHNANS,
AND RICHARD E. STEARNS'

Abstract. We prove the #P-hardness of the counting problems associated with various satis-
fiability, graph, and combinatorial problems, when restricted to planar instances. These problems
include 3SAT, 1-3SAT, 1-EX3SAT, MINIMUM VERTEX COVER, MINIMUM DOMINATING SET, MINIMUM
FEEDBACK VERTEX SET, X3C, PARTITION INTO TRIANGLES, AND CLIQUE COVER. We also prove
the NP-completeness of the AMBIGUOUS SATISFIABILITY problems [J. B. Saxe, Two Papers on Graph
Embedding Problems, Tech. Report CMU-CS-80-102, Dept. of Computer Science, Carnezie Mellon
Univ., Pittsburgh, PA, 1980] and the D¥-completeness (with respect to random polynomial reducibil-
ity) of the unique satisfiability problems [L. G. Valiant and V. V. Vazirani, NP is as-easy as detecting
untque solutions, in Proc. 17th ACM Symp. on Theory of Computing, 1985, pp. 458-463] associated
with several of the above problems, when restricted to planar instances. Previously, very few #P-
hardness results, no NP-hardness results, and no DP-completeness results were known for counting
problems, ambiguous satisfiability problems, and unique satisfiability problems, respectively, when
restricted to planar instances.

Assuming P # NP, one corollary of the above results is that there are no e-approximation algo-
rithms for the problems of maximizing or minimizing a linear objective function subject to a planar
system of linear inequality constraints over the integers.
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1. Introduction. A number of papers in the literature, including [1, 5, 16, 20,
21, 25, 26], have considered the complexity of counting problems, proving many such
problems to be #P-complete. Other papers have studied the complexity of ambiguous
and unique satisfiability problems [23, 27], proving such problems to be NP-hard
and DP-hard,! respectively. Still other papers [3, 4, 5, 6, 15] have considered the
complexity of decision problems when restricted to planar instances, proving many
such problems to be NP-hard. In this paper, we combine these lines of research and
prove for the first time that even when restricted to planar instances, many counting
problems remain #P-complete, many ambiguous satisfiability problems rernain NP-
complete, and many unique satisfiability problems remain D¥-hard.

Previously, very few #P-hardness results, no NP-hardness results, and no D¥-
completeness results were known for counting problems, ambiguous satisfiability prob-
lems, and unique satisfiability problems, respectively, when restricted to planar in-
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stances. Such results are presented for several satisfiability, graph, and combinatorial
problems. These results show that planar counting, planar ambiguous satisfiability,
and planar unique satisfiability problems are as hard as arbitrary such problems, with
respect to polynomial time and random polynomial time reducibilities. The results in
this paper both extend the results in the literature and also provide additional tools
for proving hardness results for planar problems for various complexity classes. These
tools include parsimonious and weakly parsimonious crossover boxes, the NP-hardness
of various basic planar satisfiability problems, and the NP-hardness of the planar am-
biguous satisfiability problems. (Henceforth, we denote the restriction of a problem
IT to planar instances by PL-II.) The particular results presented here include the
following.

1. The problem 3SAT has a parsimonious planar crossover box. Among other
things, this implies that the problem #PL-3SAT is #P-complete, the problem
AMBIGUOUS-PL-3SAT is NP-complete, and the problem UNIQUE-PL-3SAT is DP-
complete.

2. The problem 3SAT is simultaneously polynomial time, planarity-preserving,
and parsimoniously reducible to each of the basic CNF satisfiability probleras listed
in Table 1.1. (Previously, 3SAT was only known to be so reducible to the problem
1-Ex3SaT [3].)

3. There exist polynomial time, weakly parsimonious, and planarity-preserving
reductions from the problem 1-EX3MONOSAT to several graph problems including
MINIMUM VERTEX COVER, MINIMUM DOMINATING SET, and MINIMUM FEEDBACK
VERTEX SET.

4. Using the results 1, 2, and 3, variants of known reductions, and new reduc-
tions, we show that for all of the problems PL-II in Table 1.1, the problem # PL-II is
#P-hard. Similarly, we show that for many of the problems in Table 1.1, the problems
AMBIGUOUS PL-II and UNIQUE PL-II are NP-hard and D¥-hard, respectively.

5. All of the #P-hardness results for planar counting problems in Table 1.1 can
easily be shown to hold, even when the input to the problem consists of a formula
f and one of its satisfying assignments, a graph G and one of its minimurn vertex
covers, a graph G and one of its dominating sets, etc.

Thus the #P-hardness of the problems #PL-II in Table 1.1 is not simply a corol-
lary of the NP-hardness of the problem PL-II, since the problems #PL-II are #P-hard
even when restricted to sets of instances for which the problems PL-II are trivially
polynomial time solvable. Moreover, quoting from [27] we note that “whether the
number of solutions of all NP-complete problems are nevertheless polynomial time in-
terreducible (i.e., whether NP-completeness implies #P-completeness) is still open.”

Corollaries of our results and their proofs include the following.

1. The problems #1-VALID 3SAT and #1-VALID PL-3SAT are #P-complete.
(It is trivially seen that every instance of the problem 1-VALID 3SAT is satisfiable by
the assignment making all variables equal to 1. See Definition 2.10.)

2. The problems AMBIGUOUS 1-VALID 3SAT and AMBIGUOUS 1-VALID PL-
35AT are NP-complete. The problems UNIQUE 1-VALID 3SAT and UNIQUE 1-VALID
PL-3SAT are Co-NP-complete.

3. Assuming P # NP, there are no e-approximation algorithms for the problems
of maximizing or minimizing a linear objective function subject to a planar system of
inequalities over the integers.

Table 1.1 gives a summary of our #P-hardness results. The rest of the paper
is organized as follows. Section 2 contains definitions and preliminaries. Section 3
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discusses the complexity of #PL-3SAT and other basic CNF satisfiability problems.
These problems are used to prove the #P-hardness of other problems discussed in the
subsequent sections. Section 4 discusses the complexity of various counting problems
for planar graphs. Section 5 contains the ambiguous and unique satisfiability results
and the result on the nonapproximability of the objective functions of integer linear
programs. Finally, section 6 consists of conclusions and open problems.

TABLE 1.1
Summary of NP- and #P-hardness results for planar instances. The third column summarizes
the decision complexity of the problems while the fourth column summarizes the complerity of the
counting versions. A star (*) denotes a result obtained in this paper. The numbers in square brackets
are the references where the corresponding results are proved.

No. Problem Decision problem | Counting version
(NP-complete) #P-hard
1 PL-3SAT [15] *
2 PL-EX3SAT * *
3 PL-1-3SAT (3] *
4 PL-1-EX3SAT 13] *
5 PL-1-Ex3MONOSAT * *
6 PL-VERTEX COVER [6] *
7 PL-HAMILTONIAN CIRCUIT [15] [20]
8 PL-DOMINATING SET [6] *
9 PL-FEEDBACK VERTEX SET (6] *
10 PL-3-COLORING [6] [11]
11 PL-GRAPH HOMOMORPHISM (5] [11]
and ONTO HOMOMORPHISM
12 PL-SUBGRAPH ISOMORPHISM [5] *
13 PL-CLIQUE COVER (3] *
14 PL-HITTING SET i3] *
15 PL-X3C (3] *
16 | PL-PARTITION INTO TRIANGLES (3] *
17 PL-PARTITION INTO CLAWS (3] *

2. Definitions and preliminaries. In this section we review the basic def-
initions and notation used in this paper. Additional definitions can be found in
3,5, 19, 23].

DEFINITION 2.1. A search problem II consists of a set Dy of objects called
instances, and for each instance I € Dy, a set Su|l] of objects called solutions for
1. An algorithm is said to solve a search problem Il if, given I € Dy as input, the
algorithm outputs no if Su[I] = ¢ and outputs an s € Sy|I] otherwise.

DEFINITION 2.2. The enumeration problem associated with a search problem 11
is the problem of determining, given I € Dn, the cardinality of Sn[I].

DEFINITION 2.3. The class #P consists of all enumeration problems associated
with search problems II such that there is a nondeterministic algorithm for solving I1
such that, for all I € Dy, the number of distinct accepting sequences for I by the
algorithm equals |Su[lI]| and the length of the longest accepting computation of the
algorithm on I € Dy is bounded by a polynomial in the length of I.

DEFINITION 2.4. A reduction [5] f : Dn — Dp is parsimonious if and only if
VI € Dy the number of solutions of I is equal to the number of solutions of f(I).

DEFINITION 2.5. A reduction f is weakly parsimonious if and only if |S(I)| =
g(D)|IS(f(D)|, where |S(I)| and |S(f(I))| denote the number of solutions of I and

fI), respectively, and g(I) is a polynomial time computable function represerted using
binary notation.



PLANAR COUNTING 1145

An enumeration problem is said to be #P-hard if each problem in #P is polynomial
time parsimoniously or weakly parsimoniocusly Turing reducible to it. If, in addition,
the enumeration problem is in #P, the problem is said to be #P-complete.

DEFINITION 2.6. #3SAT is the problem of computing the number of satisfying
assignments of a Boolean formula F in conjunctive normal form with at most three
literals per clause.

The following basic results on the complexity of counting problems are used in
this paper.

THEOREM 2.7 (see [5, 25]). The problems #3SAT and #GRAPH 3-COLORING
- are #P-complete.

DEFINITION 2.8. The bipartite graph associated with a CNF satisfiability prob-
lem is defined as follows. The clauses and variables in a formula are in one to one
correspondence with the vertices of the graph. There is an edge between a clause node
and a variable node if and only if the variable appears in the clause. A CNF formula
15 planar if and only if its associated bipartite graph is planar.

DEFINITION 2.9. (1) EX3SAT is the restriction of the problem 3SAT to formulas
in which each clause has exactly three literals.

(2) 1-3SAT s the problem of determining if a CNF formula in which each clause
has no more than three literals has a satisfying assignment such that exactly one literal
per clause is satisfied. ) ;

(3) 1-Ex3SAT is the problem of determining if a CNF formula in which each
clause has exactly three literals has a satisfying assignment such that ezactly one
literal per clause is satisfied.

(4) 1-EX3MONOSAT is the restriction of 1-Ex3SAT to formulas having no negated
literals. -

DEFINITION 2.10 (see [24]). A relation R(xy,T2,...,xy,) 25 1-valid if and only if
(1,1,...,1) € R. A CNF formula f is 1-valid if the formula is satisfied when all the
variables in the formula are set to true.

DEFINITION 2.11. Given a Boolean formula F and an assignment v to the vari-
ables of F, the notation v[F| denotes the value of F under v.

DEFINITION 2.12. (1) Exact COVER By 3-SETs (X3C): An instance of this
problem consists of a set X with 3m elements and a collection C of three-element
subsets of X. The question is: does there exist a subcollection C' of C such that every
element of X occurs in exactly one set in C'?

(2) HITTING SET: An instance of this problem consists of a collection C of subsets
of a finite set S and a positive integer K < |C|. The question is: is there a subset
S" C S with |8’ < K such that S" contains at least one element from each subset in
Cc? ,

As in the case of 3SAT, we can associate a bipartite graph G = (S, T, E) with
an instance of each of the above problems. For example, PL-X3C is defined as
follows. Each element in C has a corresponding vertex in S, each element in X
has a corresponding vertex in T, and a vertex in S is joined to a vertex in 7T if and
only if the set corresponding to the vertex in S contains the element corresponding
to the vertex in T'.

DEFINITION 2.13. (1) DOMINATING SET: An instance of this problem consists
of an undirected graph G = (V, E) and an integer K < |V|. The question is: is there
a dominating set of size at most K in G; i.e., is there a subset V' of V, |V'| < K,
such that for each u € V — V' there is a v € V' such that (u,v) € E?

(2) CLIQUE COVER: An instance of this problem consists of an undirected graph
G = (V,E) and an integer K < |V|. The question is: is there a clique cover of size
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at most K in G; i.e., can the graph be partitioned into at most K sets of nodes such
that each set is a clique?

(3) PARTITION INTO CLAWS: An instance of this problem consists of an undirected
graph G = (V, E), |E| = m. The question is: ts there a way to partition the edges
of the graph into sets Eq,...,Es, s = m/3, such that each E; induces a subgraph
isomorphic to Ky 3 (i.e., a claw)?

(4) FEEDBACK VERTEX SET: An instance of this problem consists of a directed
graph G = (V, E)} and an integer K < |V|. The question is: is there a feedback vertex
set of size at most K in G; i.e., does there exist a subset V' of V of size at most K
such that V' contains at least one vertex from every cycle in G?

DEFINITION 2.14. LetIl denote a CNF satisfiability problem. Then the associated
ambiguous version of I1, denoted by AMBIGUOUS-II, is the problem of determining,
given an instance I of I and an assignment v to the variables of I such that v[I} =1,
if there is an additional assignment of values to the variables of I satisfying I. The
associated unique version of I1, denoted by UNIQUE-II, is the problem of determining
if the given instance I of Il has ezactly one satisfying assignment.

More generally, let I be any decision problem. 'Henceforth, when applicable, we
denote the restriction of IT to planar instances by PL-II, the counting version of II
by #I1, the ambiguous version of II by AMBIGUOUS-II, and the unique version of
the problem by UNIQUE-II. For example, recalling Definition 2.12 and the discussion
immediately following it,

(i) PL-X3C is the problem X3C restricted to instances (X,C) for which the
bipartite graph G = (5, T, E) is planar;

(ii) #X3C is the problem of computing, given (X, C), the number of distinct
subsets C’' C C such that each element of X occurs in exactly one set in C’;

(iii) AMBIGUOUS-X3C is the problem of determining, given (X,C,C"), where
C’ C C and each element of X occurs in exactly one set in C’, if there exists another
subset C” C C that is an exact cover of the elements in X.

Finally, henceforth, by reduction, we mean a polynomial time many-one reduction.

3. Basic planar counting problems. In this section, we prove that the prob-
lem PL-3SAT has a parsimonious crossover box. Specifically, we show that the
crossover box in [15] is parsimonious. One immediate corollary is that the problem
#PL-3SAT is #P-hard. We also prove that the problem 3SAT is planarity-preserving
and parsimoniously reducible to each of the basic SAT problems listed in Table 1.1.

DEFINITION 3.1. A crossover box for a satisfiability problem Il is a formula f.
with four distinguished variables a, a1, b, by, which can be laid out on the plane with
the distinguished variables on the outer face, such that

(1) the old variables a and b are opposite to the corresponding new variables a;
and by, ’

(2) each assignment to a and b can be extended to a satisfying assignment of f,

(3) for any satisfying assignment of f., a = a; and b = b;.
The crossover box is parsimonious if and only if for each assignment to the old vari-
ables, there is exactly one extension of this assignment to the variables in the crossover
box such that f. is satisfied.

THEOREM 3.2. The problem 3SAT has a parsimonious planar crossover box.
Hence, 3SAT s parsimoniously reducible to PL-3SAT and #PL-3SAT is #P-complete.

Proof. The crossover box described here is the same as the one given in [15]. Here
we prove that the crossover box also preserves the number of solutions. For expository
purposes, we describe the crossover box in two steps. The first step is to consider the
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following formula:
fe=(@+ba+a)A(a+a) A(b+a) \
(@ + b1+ B) Aaz + B) A (B1 +B) \
w+m+wAm+mA@+wA
(a1 + b2+ 6) A (@1 +8) A (b2 +8) \

(@+B+v+8 N\

@+BAB+NAA+EHAE+) N\

(az +@) A (a+az) A (by +b) A (b+by).

Following [15], we give an intuitive explanation of formula f.. Clauses 1, 2, and 3
imply that (@ & (a2 Abz)); clauses 4, 5, and 6 imply (3 < (as Aby)); clauses 7, 8, and
9 imply (v <> (@1 A b1)); clauses 10, 11, and 12 imply (6 < (@3 A by)). Clause 13 (the
four literal clause) implies that at least one of &, 3, -, or § is true. Clauses 14, 15, 16,
17 imply that (a+7) — (BAS) and (3+8) — (@A¥). Finally, clauses 18 and 19 imply
(a < ay) and (b < bz). It can now be verified that the formula f. implies (a; < a)
and (by « b). For example, consider an assignment v such that v[a;] = v|[b;] = 0.
Then f. implies that v[g] = v[§] = v]a] = v][ag] = v[b2] = 0 and v[y] = 1. We leave
it to the reader to verify the other three cases. Thus, in any satisfying assignment
to f., the new variables a;,as, by, b2, , 3,7, and § are functionally dependent on a
and b. In other words, given an assignment to the variable a and b there is a unique
way to extend this assignment so as to satisfy all the clauses in f.. Thus f, is a
parsimonious crossover box. Even though the formula itself is a parsimonious planar
crossover box, it is unsuitable for a reduction to PL-3SAT because it has one clause
with four literals, namely, (@ + 8 + v + §). The second step is to obtain the formula
f{ by replacing this clause with the formula (o + 6 + ¢) A (€ + 8 + 7). The planarity
of the formula f/ is demonstrated in Figure 3.1. This step also preserves numbers of
satisfying assignments as demonstrated by the following claim.

CraMm 3.3. (1) Ezactly one of a, 8,v,6 is true in any satisfying assignment to
fe. (2) € is functionally dependent on «a, 3,7, and 6. Thus a satisfying assignment
for fo can be extended in a unique way to a satisfying assignment to the formula f!.

Proof. We prove the claim for the case when « is true. The other three cases are
similar. As already discussed, clauses 14, 15, 16, 17 imply that (a + ) — (8A6) and
(84 6) = (@A%). Consider a satisfying assignment v such that v[a] = 1. Then the
above discussion implies that v[3] = v[§] = 0. Now, since (8 « (a2 A b)) and v[g]
= 0, we have v{az] = 1 and v([b;] = 1. Since (y « (a1 A b1)) and v[b;] = 1 it: implies
that v[y] = 0. This forces v{{] = 0. O



1148 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

F1G. 3.1. The parsimonious planar crossover box for 3SAT. The clauses are denoted by ellipses
and the variables are denoted by circles.

Thus, the satisfying assignments to f. satisfy f.. It can now be seen that in a
satisfying assignment to the variables of fZ, the values of a1, a3, by, bs, @, B, 7, 6, and
¢ are all functionally dependent on a and b. Therefore, f/ is a parsimonious =rossover
box.

We can now describe the reduction given in [15] from 3SAT to PL-3SAT. For
any 3CNF formula, lay the formula in the plane, possibly with certain edge pairs
crossing over at “crossover points.” This layout is a planar graph with vertex set
consisting of the variables, clauses, and crossover points. In this layout, we add a
new variable node on the edge between two crossover points or between a crossover
point and a clause node, as shown in Figure 3.2. The resulting graph is bipartite
where the first set of nodes consists of the variable nodes and the second set; consists
of the clause nodes and the crossover points. Each edge is between a variable and
a crossover point, or between a variable and a clause. Also, each crossover point
has four distinct variables as neighbors. We now replace each crossover point with
the crossover box in Figure 3.1, where ay, by, «, 8, 7, 8, and £ are given distinct
names in each replacement. Here a, b, a1, and b; are identified with the neighbors of
the crossover point in cyclic order in the layout. The new layout is planar and the
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Fi1G. 3.2. Figure showing how new variables are introduced in the bipartite graph for 3SAT to
obtain an instance of PL-3SAT. In the example, the instance of 3SAT is given by F = (w—-x + y) A
(w+y+2)A(x+y+2). The circles denote original variables, ellipses denote the original clauses,
and the black dots denote new variables added. Each crossover of edges is replaced by a crossover
box shown in Figure 3.1.

new formula has the same number of solutions as the original, since in any satisfying
assignment the new variables are functionally dependent on the old. g

Next, we strengthen Theorem 3.2 by showing that counting the number of sat-
istying assignments of a planar 3CNF formula is #P-complete, even when the input
consists of a planar 3CNF formula F' and an assignment v[F] to the variables of F
which satisfies F'.

THEOREM 3.4. Given an instance F of PL-3SAT and an assignment v to the
variables of F' such that v[F] = 1, the problem of counting the number of satisfying
assignments of F is #P-complete.

Proof. Step 1. Given an arbitrary planar 3CNF formula f(z,, s, ..., Z,). we first

construct a new formula fi(x1,%2,...,%n, Tns1), where fi = (f Azpt1) VIETATZ A
NI A m]

Obviously, an assignment v, such that v[z;] = v[zy] = --- = v[z,] =
V[rpy1] = O, satisfies f;. Hence f; is always satisfiable. Also, the number of

satisfying assignments of f is one more than the number of satisfying assignments of
f. Therefore, knowing the number of satisfying assignments of f; tells us the number
of satisfying assignments of f.

Step 2. Convert f1(z1, Z2, ..., Tn, Tn+1) into an equivalent 3CNF formula
fo(®1,T2, ., Tn, T, Tng2, - - - Tnyp), Where Tpnyo, ..., Tnyp are new variables. This
is done in the standard way as follows. Obtain a parse tree of fi. For each non-leaf
node in the parse tree introduce new variables y1,ys, . .., ¥m, Where y,, is the variable
corresponding to the root of the parse tree. Each node of the parse tree corresponds

to an operator applied to one or two inputs. Let the children of a non-leaf node i be
7 and k.
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Case 1. If the operator at node 7 is an AND operator, construct a new 3CNF
formula equivalent to the formula y; = (y; A yx)-

Case 2. If the operator is an OR operator, construct a 3CNF formula equivalent
to the formula y; = (y; + yx).

Case 3. If the operator is a NOT operator, construct a 3CNF formula equivalent
to the formula y; = 7.

The final 3CNF formula f; is a conjunction of all the 3CNF formulas along with
tn- Now it is easy to see that f; is satisfiable if and only if f; is satisfiable and the
reduction is parsimonious. (The new variables are functionally dependent on the old.)

Step 3. Next, lay out f2 on a plane and replace each crossover in the layout by the
crossover box described in Theorem 3.2. Let f3 be the resulting planar 3CNF formula.
By Theorem 3.2, the reduction from f» to f3 is parsimonious. Thus the number of
satisfying assignments of f3 is one more than the number of satisfying assignments of
f- The theorem now follows. 0

Next we extend this result to prove that counting the number of satisfying as-
signments of a 1-valid planar 3CNF formula is #P-hard.

THEOREM 3.5. The problem #1-VALID PL-3SAT is #P-complete.

Proof. Given an arbitrary PL-3CNF formula f(z1,z2,...,Z,) and a satisfying as-

signment v such that v(f] = 1, we construct a new formula fi(z1,z2,...,Zn,y1,- -, Yp),
where y;,...,y, are new variables. The formula f; is constructed as follows. Let
T, Tl - - -, 21, be the variables in f such that v(z;,] = v([x;,] = -+ = v[z,] = 0.

Then replace 77, by y; and z;, by 77, 1 <1 < p. Obviously, the formula f; is 1-valid
and the reduction is parsimonious. 0

Karp and Luby [14] presented randomized fully polynomial time approximation
schemes for several #P-complete problems, including #DNF. Since then, substantial
research has been done in the area of approximation algorithms for various counting
problems. Saluja, Subramanium, and Thakur [22] give a logical characterization of
the counting problems that have a polynomial time random approximation scheme.
Our #P-hardness of #P1-3SAT and other problems immediately raise the question
of approximating the optimal values of these counting problems. The parsimonious
reduction from 3SAT to PL-3SAT implies that, given a deterministic polynornial time
algorithm A to approximately count the number of satisfying assignments of a planar
3CNF formula, we can construct a deterministic polynomial time algorithm A’ with
the same performance guarantee to approximately count the number of satisfying
assignments of an arbitrary 3CNF formula.

Intuitively Theorem 3.2 and the above observation mean that counting the num-
ber of satisfying assignments of a planar 3CNF formula is as hard as counting the
number of satisfying assignments of an arbitrary 3CNF formula with respect to poly-
nomial time reducibility. We remark that the result holds even for 1-VALID PL-3CNF
formulas.

Next, we prove the #P-hardness of other basic satisfiability problems. First we
prove two lemmas. ‘

LEMMA 3.6. Let F be the planar monotone formula (c+d+e)A(c+e+ f)A
(d+e+ f). Then there is a unique satisfying assignment v to the variables of F such
that each clause has exactly one true literal, namely, vic] = v{d] = v|[f] =0; and
vie] =1.

Proof. The proof is by inspection. 0

LEMMA 3.7. The following EX3CNF formula is planar and has exactly one
satisfying assignment, namely, the assignment v defined by v(z;] = 0(1 < i < 9):
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(m

S
©—0)

—o

FiG. 3.3. PL-EX3SAT formula as described in Lemma 3.7. Ellipses denote the clauses in G.
The clauses are numbered in the order in which they appear in Lemma 3.7.

G(zyy...,x9) = (%1 +TQ+T3)/\(T1 + 22 + 7) A (T2 +I3+$8)A(T3+$1 +.’L’9)/\
(T4 + x1 +:L'7)/\(.717_5+:L‘2+I8)/\(Ts+.’L'3+.’L‘g)/\(T7+.’L‘5+l’8)/\(‘fs+.’l:6+1’g)/\
(To + a4 +27) ATy + Ty +To) A (T2 + Ts + T7) A (T3 + Te + Ts) A (Ty + Tg + o).

Proof. Planarity is demonstrated by Figure 3.3. The given assignment v satisfies
G since each clause of G contains a negated literal.

Suppose G is true. Let u be any truth assignment to the variables in G'. Then,
x7 — xg by clauses 6, 8, and 12; 23 — xg¢ by clauses 7, 9, and 13; zg — z7 by clauses
5, 10, and 11. Therefore, (z7 + zg + 9) — (@7 A 23 A Zg). Hence by clause 14, ulz]
= uf[zg] = ufzrg] = 0. Given this, z; — z2 by clause 2; 5 — 3 by clause 3; and
rz — x1 by clause 4. Therefore, (1 + z2 + x3) — (1 A 2 A 73). Hence by clause 1,
ulr;] = ulrp] = ulrs] = 0. But this implies that u[z4] = ufr;] = ufzs] = 0by
clauses 5, 6, and 7. Hence in any satisfying assignment u of G, u[z;] = 0 (1< <9).
0

Next we give planarity-preserving parsimonious reductions from 3SAT to the basic
SAT problems listed in Table 1.1. Without loss of generality, we assume that the given
instance of the CNF formula does not have any single literal clause.

THEOREM 3.8. There exist planarity-preserving parsimonious reductions from
3SAT to each of the following problems: Ex3SAT, 1-3SAT, 1-Ex3SAT, 1-EX3MONOSAT
and X3C. !

Proof. 3SAT — EX3SAT: Let f be a 3CNF formula with clauses (1 <37 <k).
For 1 <j <k, let ¢ be cj, if ¢; is a three-literal clause. If ¢; = (I;1 + [;2), let ci be
(L1 + e + ) AG(z], ..., 2d).
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G is defined as in Lemma 3.7 and :c{ (1 < i< 9) are distinct new variables. Let
k
N ’
= /\ G
Jj=1

Then by Lemma 3.7, Figure 3.3, and direct inspection of the definitions of the for-
mulas ¢, the reduction mapping f into g is seen to be a planarity-preserving and
parsimonious reduction of the problem 3SAT to the problem Ex3SAT.

3SAT — 1-Ex3SAT?: Let f be a 3CNF formula with clauses ¢;(1 < 7 < m).

(1) For each three-literal clause c; = (2, + 2, + 2;) of f, let ¢} = (2, + v/ +v7) A
(Z5+ W +w)A (v +w? + ) A (Z7 +v7 +27), where w7, v?, w?, t7, and 27 are distinct
new variables local to cj.

(2) For each two-literal clause ¢; = (2, + 24) of f, let ¢ = (2, + w? +v7) A (zg +
w! +w)A (W +wd + ) A(ad +vI +29)A (af +d7 +eF) A (0 + e + fIYA(d7 + e + f7),
where u?, v7, w9, t7, 27, a?, d, and €’ are all new variables local to ¢}. Let

m
_ /
- /\ Cj
Jj=1

To see the planarity of this reduction, see Figure 3.4. We claim that f’ is exactly-
one satisfiable if and only if the original formula f is satisfiable. Moreover, the re-
duction is planarity-preserving and parsimonious. To prove that the reduction is
parsimonious, it suffices to show the following two claims.

CLAM 3.9. No assignment of truth values to the variables of clause ¢j (1 < j <
m) of f which does not satzsfy ¢; can be extended to an asszgnment of truth values to
the variables of the formula c that exactly-one satisfies cJ

Proof. Let c; = (2p+ 24 + zr) and u be an assignment to the variables such that
ufz,] = ufzg] = ulz] = 0. Let v be an exactly-one satisfying assignment to the
variables of ¢; such that v[z,] = v([z,] = v[z] = 0 (i.e, v is an extension of u).
Then, the clauses (zZ5 +u’ +w?) and (Z; + v/ +z7) imply that v[u/] = v[w!] = v[v]
= v[z/] = 0. It follows that v does not exactly-one satisfy the clause (z, +u’ + w?)
of .

Let ¢; = (zp + z4) and u be an assignment to the variables such that ufz,] =
u[zy] = 0. Let v be an exactly-one satisfying assignment to the variables cf c; such
that v{zp] = v[z,] = 0. Then, the clauses (z, + u’/ + v7) and (Z5 + v/ + w?) imply
that v[u/] = v[w/] = 0and v [v/] = 1. But given this, the clause (a’ + v/ + z7)
implies that v[a’/] = 1. Lemma 3.6 now implies that v does not exactly-one satisfy
. O

! Cram 3.10. For each satisfying assignment to the variables of the clause c¢; (1 <
j < m) of f, there is exactly one way the assignment can be extended to the variables
of the formula c;- so as to exactly-one satisfy c}.

Proof. When ¢; = (2p + 24 + 2), we need to verify that the only exactly-one

satistying assignments cg. are the following:
l.zp =1,2, =0,2, =0, =0, =0,w =0,¢ =1, 17 = 0
2.2, =0,z =1, 2 =0, u = 1,0 =0, w =0t =1, 27 = 0
3.2 = 0,2 =0,2, = 1,4 =0,v =1 w =0¢ =0,z =0

8 8
Il

2 Although they claim to have a parsimonious reduction, the reduction actually given in [3] is not
parsimonious.
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F1G. 3.4. Figure illustrating the reduction from 3SAT to 1-EX3SAT. (a) shows how to ‘ransform
a three-literal clause. (b) shows how to transform a two-literal clause. The clauses are numbered in
the order in which they appear in the reduction outlined in the proof of Theorem 3.8. Note that the
reduction is a local replacement—type reduction and hence preserves planarity.

4.z, = 1, zy = 1, 2 0,w =0,v =0,w =1, =0, 2/ = 0
5.2p = 1,2 =0,2. =1L, =0, =0,w =0,¢t) =1, 27 =1,
6. z, = 0, z, Lz =1Luw = 1,4 =0,w =0,¢t) =1, 27 =1,
and :
7zp=1,zq=1zr—luijvfzowletJ:O,'ﬂ:l.

When ¢; = (zp + 24), we need to verify that the only exactly-one assignments of c
are the following:

Lzp = 1, 2,=0,uw =0,vV = 0,w =0,¢ =1,27 =0, ¢ =
0, d = 0,¢& =1, fi = 0;

2.2, =0,z =Lw =1, =0,w =0,t) =1,20 =0, =0,
d? = 0,¢ =1, f/ = 0;and

3.zp =1,z =1L, W =0,v =0,w =1,t) =0,2/ =0, =0,
& =0,¢ =1, fIl = 0. a

1-EX3SAT — 1-Ex3MONOSAT: Let f be an instance of 1-Ex3SAT. Let

m
= /\ ¢
j=1
For each ¢;, construct c} as follows. Replace each negated literal of the form Z,

appearing in the clause ¢; by a distinct new variable yg in ¢;, then add the clauses
(2p+y)+al) Aah+d)+el)A (a+ fi+el) A(d) + f +el). Note that for each negated
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Fi16. 3.5. Figure illustrating the reduction from 1-EX3SAT to 1-EX3MONOSAT. The figure
illustrates the construction for a three-literal clause ¢; which contains all negated literals

literal, we introduce new copies of the auxiliary variables a{,, ceey fg. See Figure 3.5
for an example.

Let
m
r_ /
= /\cj.
=1

Then f’ is an instance of 1-EX3MONOSAT obtained from f. The result follows from
Lemma. 3.6 and the fact that for all variables z and y, (z +1v) is exactly-one satisfiable
if and only if x = 7. :
1-Ex3MoNOSAT — X3C: Although Dyer and Frieze [3] do not observe this, the
reduction given in their paper [3] from 1-EX3SAT to X3C is actually parsimonious.
The reduction presented hére is essentially the same as that given in [3], except that
we start from an instance of 1-Ex3MoONOSAT. Thus in our reduction, we do not
have to take care of negated literals. We now describe the reduction. Each variable
is represented by a cycle of 3 element sets. If the variable occurs r times in the 1-
EX3SAT instance, then there are 2r sets, with each successive pair of sets sharing an
element. This cycle is augmented with r additional sets and 2r elements by adding a
3-set to one of the external elements in each pair. The 3 elements now corresponding
to an appearance of v; will be called a connector. The variable v; is set to true if and
only if all three connector elements are covered by the cycle when v; appears in the
corresponding clause. Figure 3.6 illustrates the variable component. Next, consider
each clause ¢;. Each ¢; is represented by a configuration shown in Figure 3.7. This has
12 elements and 9 sets. Of the 12 elements, 3 are internal and the rest are grouped in
groups of 3. Each group of 3 elements is called a terminal of ¢;. Finally, we connect a
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connector

N
A~

FiG. 3.6. Variable configuration for reduction to X3C. The black dots represent element nodes,
while the ellipses denote the triples. )

d f
b c
h
k
(o) . i
a terminals
' u i

F1G. 3.7. Figure illustrating the clause configuration. The sets {I,a,b}, {d, ¢, f}, {j, i, h} repre-
sent the three terminals. The vertices labeled ¢, g, k are the internal elements.

2

clause component to the variable component as follows. For each v; € ¢; we identify
three distinct connector elements with one of the terminals in ¢;. The constriction is
depicted in Figure 3.8. Let G denote the graph obtained as a result of the construction.
Planarity of G follows by the fact that each component replacing a variable and a
clause is planar and the components are joined in a planarity-preserving way. We first
prove that there is an exact cover of ¢; configuration if and only if exactly one terminal
is covered externally, when we restrict the covering such that either none or all 3 of
the elements in each terminal are covered externally. But the configuration has the
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connector and
terminals

AY \ A .
~ variable ’ \ Vvariable -

. nfiguration ~
*\ configuration e ~ gonfiguraj

Fi1G. 3.8. Figure illustrating the way the clause and variable configurations are attached.

property that each of the 3 internal elements appear in 3 of the 9 sets and no 2 appear
in the same set. It follows that if this configuration forms part of an exact cover by
3-sets, then exactly 3 of the sets must be used, hence 9 of the 12 elements will be
covered internally. Moreover, this can only be done so that exactly 1 of the terminals
will be left uncovered. This uncovered terminal is covered by sets in the variable
configuration and amounts to setting the literal true. It can then be argued that the
exact cover by 3-sets has a solution if and only if the corresponding 1-EX3MONOSAT
instance is satisfiable. It is easily verified that the reduction is parsimonious. This is
because the clause configuration forces precisely 1 literal to be set to true and the other
2 literals to be false. Moreover, for each satisfying assignment of 1-EX3M0ONOSAT,
there is exactly 1 way the sets can be chosen so as to have an exact cover. Hence, the
reduction is parsimonious. g

COROLLARY 3.11.  The problems PL-Ex3SaT, PL-1-EX3SAT, and PL-1-
EX3MONOSAT are NP-complete. The problems #PL-EX3SAT, #PL-1-3SAT, #PL-
1-EX3SAT, #PL-1-EX3MONOSAT, and #PL-X3C are #P-complete.

4. Planar graph problems.

4.1. Overview of our proofs. In this section we give parsimonious/weakly
parsimonious and planarity-preserving reductions from PL-1-Ex3MoONOSAT to vari-
ous graph problems. The problems considered here are MiNIMUM VERTEX COVER,
MINIMUM DOMINATING SET, CLIQUE COVER, FEEDBACK VERTEX SET. PARTI-
TION INTO CLAWS, PARTITION IN TRIANGLES, and BIPARTITE DOMINATING SET.
Previously, reductions showing that these problems were NP-hard frequently did not
preserve the number of solutions. Central to the proofs is the reduction (called RED1)
from 1-EX3MONOSAT to 3SAT with the property that every formula is mapped to a
formula in which all satisfying assignments satisfy exactly one literal in each three-
literal clause. This in turn enables us to obtain (weakly) parsimonious reductions
from EX1-3MONOSAT to the problems considered here.
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(a) ®)

FiG. 4.1. Figure illustrating the reduction RED1 discussed in section 4.2. Observe that the
reduction is planarity-preserving.

4.2. Reduction RED1. Let RED1 be a mapping from an instance

m
f= /\ ¢j
j=1
of 1-EX3MONOSAT to an instance
m
f=NAg

i
-

J

of 3SAT, where for ¢; = (z+y +2),¢; = (2 +y+ 2) A(T+7) AT +2) AZ+7).

LEMMA 4.1. The formula f’ has the following properties.

(1) The satisfying assignments of f' are exactly the eractly-one satisfying assign-
ments of f. ,

(2) In any satisfying assignment of f', all but one clause in c; is exoctly-one
satisfiable.

(3) Each variable in the formula f' occurs at least twice negated and at least once
unnegated.

(4) RED1 1s planarity-preserving. (See Figure 4.1.)

(5) RED1 is parsimonious.

Proof. The proof is by inspection. O :

We call each of the c; a clause group. Observe that each ¢; has four clauses; one
is a three-literal clause and the others are two-literal clauses.

4.3. Weakly parsimonious reductions and basic graph problems.

THEOREM 4.2. There exists a planarity-preserving and weakly parsimonious re-
duction from 1-EX3MONOSAT to each of the following problems: (1) MINIMUM VER-
TEX COVER, (2) MINIMUM DOMINATING SET, (3) MINIMUM FEEDBACK VERTEX
SET, and (4) SUBGRAPH ISOMORPHISM.

Proof. (1) MINIMUM VERTEX COVER: The reduction is from 1-EX3MONOSAT
and is similar to the one given in [5] for proving NP-hardness of MINIMUM VERTEX
COVER. Let f be a 1-EX3MONOSAT formula. Apply RED1 to f to obtain j’. Next,
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Fic. 4.2. Figure illustrating the reduction from 1-EX3MONOSAT to VERTEX COVER and the
transformation of a clause group (x +y + 2) A (T +Y) A (E+ Z) A (Z +Y). The dotted enclosures
depict how to locally transform the clauses as well as the variables so as to preserve planarity of the
resulting graph.

starting from f’, construct an instance G(V, E) of the vertex cover problem as shown
in Figure 4.2 as follows.

1. Consider a clause group ¢ = (z +y + 2) A (T +7) AT + 2) NZ + 7).
Corresponding to the clause (x + y + 2), construct a triangle with vertices {z,y, z}
and edges {(z,y), (z,2),(y,2)}. Corresponding to a clause of the form (T + ¥) add
the edge {(x,y)}. Call this the clause graph.

2. For each variable x that appears ¢ times we construct a simple cycle with 2:
vertices. Let the odd-numbered variables represent the negated occurrences and the
even-numbered variables represent the unnegated occurrences. Call this the variable
graph.

3. Join the vertices of the clause graph to the vertices of the variakle graph
as follows. Consider a clause group c;». Corresponding to a clause, join the triangle
vertices x,y, and z to the corresponding unnegated occurrences of z,y, and z in the
cycles. Corresponding to a clause of the form (T + 7), join the two vertices z,y to the
negated occurrence of the variables z and y, respectively. Repeat the procedure for
each clause group.

Now set K = 1/2>" C; + 2m + 3m, where C; is the length of the cycle of the
variable ¢ and m is the number of clause groups in f’. The reduction is illustrated in
Figure 4.2.

CrLamm 4.3. (1) The formula f' is satisfiable if and only if the graph G has a
vertex cover of size K.

(2) The reduction is planarity-preserving and weakly parsimonious.

Proof. Part1. Observe that for any vertex cover, one needs to pick at least half of
the nodes from each cycle, two of the three nodes from each triangle, and one from the
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simple edge for each two-literal clause. (Recall that there are 3m two-literal clauses
in f".) The sum is exactly K. Given this observation, the proof is similar to the one
given in [5].

Part 2. It can be easily verified by observing in Figure 4.2 that the reduction is
planarity-preserving. To see that for each distinct satisfying assignment of f/, there
are 2™ distinct vertex covers of size K, note that, by Lemma 4.1, for each satisfying
assignment, all but one clause in each clause group has only one true literal. This
forces the choice of vertices from the clause graph for all clauses having only one true
literal. For each satisfying assignment and for each clause group there is one clause in
the clause group in which both the literals are true. For each such clause any of the
two vertices can be included in the vertex cover. Since there are m clause groups, we
have m such clauses and hence we have 2™ different vertex covers for each satisfying
assignment. O ; '

Note that our reduction shows that counting the number of vertex covers of size
< k is #P-hard even if there are no vertex covers of size strictly less than k. For the
next two results, we use such an instance of #-vertex cover for our reductions.

(2) MINIMUM DOMINATING SET: The reduction is from the MINIMUM VERTEX
COVER problem. The reduction in [13] from VERTEX COVER to DOMINATING SET
can easily be modified to get a parsimonious reduction. Let G; = (Vy,Ey), Vi =
{v1,...,vn} be an instance of the MINIMUM VERTEX COVER problem. We construct
an instance Gy = (Va, E3) of the MINIMUM DOMINATING SET problem as follows.
There is one vertex in V3 corresponding to every vertex in V;. For each edge in G
we also introduce two additional vertices and join them to the two endpoints of the
original edge. Formally, Vo, = U; UU, and E; = A; U A,, where

U1 = {u,- | V; € Vl},
Uy = {il:z‘lj,l‘;j (’Ui,’l)j) S El},
Ar = {(ui, uy) | (vi,v5) € En},

Ay = {(uhmgj)’ (:L'ij?uj)’ (uivx;j)7 (‘T;j’uj) l (vi’vj) € El}'

CLAIM 4.4. G has a minimum vertex cover of size k if and only if G has a
minimum dominating set of size k. Furthermore, the reduction is planarity-preserving
and parsimonious.

Proof. It is easy to see that the reduction is planarity-preserving. Consider a
minimum vertex cover VC = {v;,,vi,,...,v;, } of G1. Corresponding to VC we claim
that there is exactly one dominating set in the graph G», namely, the vertex set
DS = {u;,uiy, ..., u; }. First note that for each edge in the original graph G we
have four new edges and two new vertices in G2. Consider a pair of nodes of the form
2y’ 7% connected to the nodes u; and u;. It is clear that the only way to dominate
both xij , I;j by using only one node is to include one of u; or u; in the dorainating
set. We need to consider two cases. First consider the case when exactly cne of v;
or v; is in VC. Then it is clear that there is exactly one dominating set DS in G»
corresponding to VC. When both v; and v; are in VC, the minimality of V/C implies
that at least one edge incident on v; and at least one edge incident on v; are covered
solely by v; and vj, respectively. This implies that both u; and u; have to be in
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any feasible dominating set of G2. Thus we have exactly one dominating set DS in
G’y corresponding to the vertex cover VC in G;. Conversely, consider a minimum
dominating set DS = {u;,, U4y, ..., u;, } of size k in G5. Consider an edge (vl,v]) in
G. If u; and u; are not in DS, then by construction of Ga, both zi! and 25 are in
DS. But we could then construct a new dominating set DS’ of G2, where

= DS — {z¥, 25} U {us}.

Clearly |DS’| < |DS}, which is a contradiction to the assumption that DS is a min-
imum dominating set. Thus, DS does not contain any vertex from the set Us. We
now claim that VC = {v;,,vi,,...,v;,} is a vertex cover of G. The claim follows by
ohserving that corresponding to each edge (v;,v;) € Eq, at least one of the vertices
Uy, Uj, zlj,xj are in the set DS. We have already argued that .7:1 ,z2 ¢ DS. Thus
one of u;,u; is in DS. The corresponding vertex in VC is seen to cover the edge
(1,‘1',’Uj). 0O ‘

(3) FEEDBACK VERTEX SET: The reduction is from the MINIMUM VERTEX
COVER problem. Starting from an instance G1(Vi, E1) of the MINIMUM VERTEX
COVER problem, we construct the graph G5 that is identical to the one given for the
MINIMUM DOMINATING SET problem. By arguments similar to those given in the
proof of the MINIMUM DOMINATING SET problem, it is easy to see that tha G; has
a minimum vertex set of size K if and only if G» has a feedback vertex set of size K
and the reduction is parsimonious.

(4) SuBGRAPH IsoMORPHISM: This follows directly by taking the graph H to
be a simple cycle on n nodes, and the weakly parsimonious reduction from 3SAT to
the HAMILTONIAN CIRCUIT problem given in Provan [20]. 0

COROLLARY 4.5. The problems #P1-MINIMUM VERTEX COVER, #PL-MINIMUM
DOMINATING SET, #PL-MINIMUM FEEDBACK VERTEX SET, and #PL-SUBGRAPH
ISOMORPHISM are #P-complete.

4.4. Parsimonious reductions and other graph problems. In this section
we briefly discuss why the reductions studied by [6, 15] and [3, 4] from X3C to various
other graph problems are parsimonious and planarity-preserving.

THEOREM 4.6. There exist planarity-preserving and parsimonious reductions
from X3C to each of the problems (1) MINIMUM CLIQUE COVER, (2) PARTITION
INTO CLAWS, (3) BIPARTITE DOMINATING SET, (4) PARTITION INTO TRIANGLES,
and (5) MINIMUM HITTING SET.

Proof. (1) MINIMUM CLIQUE COVER: The reduction is the same as given in [3, 5].
Given an instance I(X,C) of X3C such that |X| = 3p and |C| = m, we construct
an instance G of the MINIMUM CLIQUE COVER problem such that G has a clique
cover with cliques of size 3 if and only if I has a solution. The reduction consists of
replacing each triple in the instance of I by a triangle and by replacing an edge from
a triple to an element by a set of triangles. The reduction is illustrated in Figure
4.3. Formally, for each element, we have a vertex in G. Corresponding to each triple
ti = {x, Y, z: } and the associated edges (t;,x;), (ti, yi), (£, 2;), we create the subgraph
as shown in Figure 4.3. The graph G obtained by carrying out the above reduction for
each triple has 3p+9m vertices and 18m edges. The reduction is planarity-preserving,
as each component is planar and they are joined in a planarity-preserving way. We
claim that I has a solutign if and only if G has a clique cover of size (p + 3m). In
particular, as shown in [3, 5], if ¢;,...,t, is the set of triples in an exact cover, then
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F1G. 4.3. Figure tllustrating the reduction from X3C to CLIQUE COVER.

the corresponding clique cover is constructed by taking
{o, 8 2}, {7, 6"y}, (&' 7%, 2}, {8, 85, 85}
whenever t; = {x;,ys, 2;} is in the exact cover and by taking the cliques
{of, 8481}, {7, 6", 15}, %, 7', 5}

when the corresponding triple t; is not in the exact cover. Conversely, since G has
3p + 9m vertices, if G has a clique cover of size p + 3m it implies that each clique
consists of exactly three vertices. (Recall that we do not have cliques of size 4 in
G.) The corresponding exact cover is given by choosing those t; € C such shat the
triangles t%,t5,t} are in the clique cover. Finally, we prove that the reduction is
parsimonious. First note that if the triple triangle {t},t%,¢4} is not chosen then we
have to choose the triangles {a*, 8%, t1}, {7*, 6%, 5}, {s*, 7", 4} so as to cover the triple
vertices. Second, once the triangle {t},t%,t4} is chosen there is exactly one way for
the auxiliary nodes (and thus the element nodes) to be covered, namely, the lower
triangle corresponding to the covering triple, i.e., choosing the triangles

{ad, Bz}, {7, 6 i), {kE 7, i)

These observations immediately imply that the reduction is parsimonious.
(2) PARTITION INTO CLAWS: The reduction is from X3C and is the same as the

one given in [3]. The reduction consists of the following steps.

1. Construct the bipartite graph G(C U X, E) corresponding to the given in-
stance I(X,C) of X3C.

2. As in [3], we assume that each element vertex appears in either two or three
sets; 1.e., the element vertices have a degree 2 or 3.

3. For each element of degree 3, we add an extra edge and for each element of
degree 2, we add two extra edges. This is shown in Figure 4.4. Let G, denote the
resulting graph.
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element of
degree 2
element of
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edge new edges

I'1G. 4.4. Figure illustrating the reduction from X3C to PARTITION INTO CLAWS

Clearly the reduction is planarity-preserving. We now recall the proof in [3] to
show that the edges of G; can be partitioned into a disjoint set of claws. Note that
each element vertex is adjacent to either 1°or 2 vertices of degree 1, so it follows that
each element node must be the center of at least one claw. But each such element
node has degree 4 and hence can be the center of exactly one claw. After removing
the claws from G; the resulting graph G5 has the property that all element nodes
have degree 1. This implies that the only way to partition G, into claws is for each
triple to have a degree of 0 or 3. Thus the triples with degree 3 induce a solution for
the X3C in an obvious way. Conversely, given a solution for I, the above argument
can be reversed to yield a partition of the edges in Gy into claws. The following
observations immediately imply that the reduction is parsimonious.

1. There is a unique way to pick the claws in G, with the element nodes as
centers.

2. In Gy, each triple vertex has degree 3 or 0 and each element node has degree
1in G,. '

(3) BIPARTITE DOMINATING SET: Reduction from X3C. The construction is
similar to that in [3]. Let I(X,C) be an instance of PL-X3C with each element
occurring in at most three triples. We first construct the bipartite graph G associated
with I. Next, we attach a 2-claw (K 2) to each triple vertex in G as shown in
Figure 4.5. (In [3], they add a path of length 2.) Let G’ denote the graph obtained
as a result of the transformation. The construction is depicted in Figure 4.5. Since
G is bipartite and we added a claw as shown in Figure 4.5, it follows that G’ is also
bipartite. Also note that the reduction is planarity-preserving and thus G’ is planar.
Let the number of triples be m and the number of elements be 3p. Then we set
k = p+ m. Now by arguments similar to those in [3], it is easy to see that G’ has
a dominating set of size k if and only if I has an exact cover of size p. \We prove
the reduction is parsimonious. Consider a solution S(I) for I. Since each triple in
the solution covers three distinct element nodes, these element nodes cannot be used
to dominate the vertices in G’ without increasing the cardinality of the solution for
G'. This means that for each of the p triples chosen in the solution S(I), we have
exactly one node in G’ that can be used in the dominating set so as to domiinate all
the element nodes. Moreover, due to the constraints on the size of the dominating set
in G’, it follows that we can select exactly one vertex per claw (the vertex with degree

3 and marked a) in the dominating set. These observations imply that the reduction
is parsimonious.
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b c
triple node .a\/.
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the triple vertex
®
X y z X y F
(a) (b)

FI1G. 4.5. Figure illustrating the parsimonious reduction from X3C to BIPARTITE DOMINATING
SET. It is easy to see that the reduction preserves planarity of the graph.

(4) PARTITION INTO TRIANGLES: The reduction is from X3C and is the same
as the reduction described in the proof of CLIQUE COVER. Given that the resulting
graph has no cliques of size 4, the proof follows.

(6) MiNniMUM HITTING SET: As given in [5], each instance of vertex cover can
be seen to be an instance of a hitting set, in which every edge (u,v) corresponds to
the set {u,v}. The elements of the set are simply the nodes of the graph. The result
now follows by noting that there is a weakly parsimonious reduction from 3SAT to
MINIMUM VERTEX COVER. O

COROLLARY 4.7. The problems #P1L-MINIMUM CLIQUE COVER, #PL-PARTITION
INTO CLAWS, #PL-BIPARTITE DOMINATING SET, #PL-PARTITION INTO TRIAN-
GLES, and #PL-MINIMUM HITTING SET are #P-complete.

THEOREM 4.8. Let II be one of the problems in Table 1.1. It is #P-complete to
count the number of solutions to I1, even when one is given an instance of [1 and a
solution which is guaranteed to satisfy I1.

Proof. Starting from a 3CNF formula obtained in the proof of Theorem 3.4, we
now do the same set of reductions discussed in the earlier theorems to obtain an
instance of the problem II. Since we know that the 3CNF formula is satisfiable, it
follows that the instance of II has a solution. O

5. Unique and ambiguous planar problems. Our parsimonious planar cross-
over box for 3SAT can also be used to show that additional problems for planar CNF
formulas are as hard as the corresponding problems for arbitrary CNF formulas, with
respect to polynomial time or random polynomial time reducibilities. W briefly
describe these results. We first recall the definitions of D and random polynomial
time reductions from [19, 27].

DEFINITION 5.1. DP = {L; — Ly | L1, Ly € NP}. Intuitively, a problem is in DP
if 1t can be solved by asking one question in NP and one question in Co-NP.

DEFINITION 5.2. Problem A is reducible to problem B by a randomized polynomial
time reduction if there is o randomized polynomial time Turing machine T and a
polynomaial p such that

(1) ¥z, [¢ ¢ A — Tla] & B);
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(2) Vz, [x € A — T(z] € B with probability at least 1/p(|z|)]. 0

THEOREM 5.3. UNIQUE-PL-3SAT is DP-complete under randomized polynomial
time reductions.

Proof. We modify the proof of the DP-completeness of UNIQUE SAT ir [27], so
that whenever their reduction outputs a boolean formula f, our reduction outputs the
planar formula PL(f) obtained by applying the parsimonious planar crossover box to
f. The formula PL(f) has exactly the same number of satisfying assignments as f. In
particular, PL(f) is uniquely satisfiable if and only if f is uniquely satisfiable. B

A second example is the following.

THEOREM 5.4. AMBIGUOUS-PL-3SAT is NP-complete.

Proof. Given an instance of an arbitrary 3CNF formula f, we first construct a
new formula using the same construction as in Step 1 of Theorem 3.4. As pointed out
in the proof of Theorem 3.4, the new formula is ambiguously satisfiable if and only if -
the original formula is satisfiable. We then do the same sequence of reductions as in
Theorem 3.4 to obtain a planar formula that is ambiguously satisfied if and only if
the original formula is satisfied. O

Using the ideas similar to those in the proof of Theorem 3.5, we can prove the
following theorem.

THEOREM 5.5. AMBIGUOUS-1-VALID PL-3SAT s NP- complete

COROLLARY 5.6. UNIQUE-1-VALID PL-3SAT is Co-NP-complete.

Proof. To prove the membership in Co-NP, consider an arbitrary formula F(z1,

.. Z,), which is an instance of 1-VALID PL-3SAT. By the definition of 1-VALID
formulas, an assignment v to the variables such that viz;] = v{zs] =---v[r,] = 1
satisfies F(zy,...,z,). Now consider the formula H(zy,...,z,) = F(z1,Z2,...,Zn)A
(T1 VT3...T,). F is uniquely satisfiable if and only if H is unsatisfiable. To prove
Co-NP-hardness, given a formula f(z,, s, ...,T,), we construct a formula g such that

g(l‘l, N ,[1,'n+1) = [f(LL'I,IL'Q, . ,.'L‘n) A xn+1] \/(.T_l/\—fi . ..’L‘n+1).

Now using ideas similar to those in the proof of Theorem 3. 5 we obtain a planar
formula g; with the following properties:

(1) g1 is l-valid.

(2) g1 is uniquely satisfiable if and only if f is unsatisfiable. O

Combining our parsimonious planar crossover box for 3SAT and the reductions
to prove Theorem 3.8, we get that exact analogues of Theorems 5.3-5.5 hold for each
of the problems Ex3SAT, 1-3SAT, 1-EX3SAT, and 1-EX3MONOSAT. Thus, we have
the following corollary.

COROLLARY 5.7. Let I1 be one of the following problems: EX3SAT, 1-3SAT, 1-
EX3SAT, or 1-EX3MONOSAT. Then the problem AMBIGUOUS-PL-II is NP-complete
and the problem UNIQUE-PL-II is DF-complete under randomized polynomial time
reductions.

As a corollary of our parsimonious reductions, the unique versions of many graph
problems are also DF-complete.

COROLLARY 5.8. Let I1 be one of the problems PL-PARTITION INTO TRIAN-
GLES, PARTITION INTO CLAWS, or BIPARTITE DOMINATING SET. Then the problem
AMBIGUOUS-II is NP-complete and the problem UNIQUE-II is D -complete under ran-
domized polynomial reductions.

Proof. Given that each reduction in the sequence of reductions 3SAT — PL-3SAT
- PL-Ex1-3SAT — PL-X3C is parsimonious, that UNIQUE 3SAT is DP-complete,
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and that the reduction from X3C to each of the problems mentioned above is parsi-
monious, the proof of the corollary is similar to the proof of Theorem 5.4. g

5.1. Nonapproximability results for integer linear programming. Next,
we give an application of our result that AMBIGUOUS PL-3SAT is NP-complete and
prove that it is not possible to approximate the optimal value of the objective function
of an integer linear program.

An instance of an integer linear program consists of a system of linear inequali-
ties and an objective function which is to be maximized (minimized); i.e., maximize
(minimize) cz subject to the constraints Az < b. The variables x are allowed to take
only integer values. We say that a minimization problem II is e-approximable, ¢ > 1
(or has an e-approximation) if there is a polynomial time algorithm that, given an
instance I € II, finds a solution which is within a factor € of an optimal solution for
7 ‘

THEOREM 5.9. Unless P = NP, given an instance of the integer linear program
problem and a feasible solution, the mazimum (minimum) value of the objective func-
tion is not polynomial time e-approzimable for any € > 1, even when the bipartite
graph associated with the set of constraints is planar.

Proof. We prove the theorem for the maximization version of the problem. The
proof for the minimization version is similar and hence omitted.

Step 1. Given a 3SAT formula f(z1,z2,...,T,), we construct a formula
9(z1,- - Tp1) = [f(Z1,%2, .., Tn) ATnga] V(TTA TS ... Tngi)-
It follows that for any assignment v, v{g(zi,...,Zn+1)] = 1 if and only if either (i)
VI (21,22, 20)] = 1 and Vzns1] = 1, or (i) viza) = vlza) = - Vizap] = 0.
Step 2.  Starting from g¢(z1,...,Zn+1), we construct a PL-3SAT formula
9(T1,Z2, ..., Tny1, b, ..., ty) such that §(z1,22,...,Tnt1,t1,- .., ty) is satisfiable if
and only if g(z1,22,...,Zn+1) Is satisfiable.

The construction can be carried out as in Step 2 in the proof of Theorem 3.4. We
therefore omit the details here.

Step 3. Let § = Gy AG>...G,. Construct a new 1-Ex3-MONOSAT fcrmula h
from g such that g is satisfiable if and only if h is satisfiable. Let h = C; ACa ... Cp.
Replace each clause C; = (z;, + zi, + x;,) by the inequality (z;, + z;, + 24,) > 1.
All the inequalities corresponding to the clauses make up the constraints. We also
add constraints that Vi, z; € {0,1}. The objective function is now simply z,41.
It is easy to verify that the maximum value of the objective function is exactly 1
if f(x1,%2,...,Zy) is satisfiable and is 0 otherwise. Hence it follows that unless P
= NP the integer linear program problem has no polynomial time e-approximation
algorithm for any € > 1. O

6. Conclusions and open problems. We showed that for many problems II
studied in the literature, the problems #PL-II, AMBIGUOUS-PL-II, and UNIQUE-PL-
IT are as hard as the respective problems #II, AMBIGUOUS-II, and UNIQUE-II with
respect to polynomial time or random polynomial time reducibilities. We note that
the problem #PL-HAMILTONIAN-CYCLE was proved to be #P-complete by Provan
[20]. We can give an alternate proof of the #P-hardness of # PL-HAMILTONIAN-
CYCLE by a reduction from a variant of RED1. The reduction is significantly more
complicated than that in [20]. Consequently, we omit it here.

As corollaries of our results, we have shown that many planar problems are com-
plete for the classes NP, #P, and D¥. Our results and their proofs provide the
following general tools for proving hardness results for planar problems.
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1. We have shown how parsimonious -and weakly parsimonious crossover boxes
can be used to prove the #P-hardness of many planar counting problems. These ideas
were used to prove the #P-hardness of problem #1-VALID PL-3SAT.

2. We extended the class of basic planar CNF satisfiability problems that are
known to be NP-complete. Previously, only PL-3SAT [15] and PL-1-EX3SAT [3] were
known to be NP-hard. We expect that the variants of the problem PL-3SAT shown to
be NP-hard here will be useful in proving hardness results for many additional planar
problems. In particular, we have already shown that the problem PL-1-3MONOSAT
and its variant RED1 are especially useful in proving the #P-hardness of many planar
graph problems.

3. We have shown that the problem AMBIGUOUS-PL-3SAT can be used to prove
the nonapproximability of linear integer programming. Recently, there has been a lot
of research in the area of approximability of graph and combinatorial problems, and
the tools for showing negative results are few. Our proof of the nonapproximability of
the minimum or maximum objective value of an integer linear program is direct and
significantly different from the proof given in Kann {12] or Zuckerman [28]. Moreover,
in [9], we show how to use the NP-completeness of AMBIGUOUS-PL-3SAT to show the
nonapproximability of several constrained optimization problems even when restricted
to planar instances. (The results in [12, 28] do not hold for planar instances.)
Finally, the results presented here and their proofs suggest a number of open problems
including the following.

1. Can natural planar problems be found that are complete for additional com-
plexity classes such as PSPACE, #PSPACE, MAX SNP, MAX II;, etc.? (In recent
papers [8, 9, 17, 10}, we partially answer this question by showing that a number of
problems are complete for the classes PSPACE, #PSPACE, MAX-SNP, MAX II;, even
when restricted to planar instances.)

2. Valiant [25] has shown that the problem #2SAT is #P-complete. How hard
is the problem #P1-25AT? We conjecture that the problem is #P-complete, but it
seems to us that different techniques than the ones used here are required to prove
this. Recently Vadhan has affirmatively proved the conjecture [29].

3. We have shown that many unique satisfiability problems are complete for
DF, even when restricted to planar instances. Using our parsimonious reductions, we
then proved the DP-completeness of a number of graph problems for planar graphs.
A number of such problems for planar graphs remain open. For example, how hard
is the problem UNIQUE-PL-HAMILTONIAN CIRCUIT?

4. Do results similar to the ones proved in this paper hold for other restricted
classes of graphs, e.g., intersection graphs of unit disks and squares? Such graphs
have been studied extensively by [2, 7, 18] in the context of image processing, VLSI
design, geometric location theory, and network design.
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tions. These suggestions significantly improved the quality of presentation and helped
us in correcting a number of errors in the earlier draft. We thank Salil Vadhan for
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