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Abstract

We compare two mechanisms to implement a simple binary choice, e.g. adopt one
of two proposals. We show that when neither alternative is ex ante preferred, simple
majority voting cannot implement the first best outcome. The fraction of the surplus lost
rises with the number of voters and the total surplus loss diverges in the limit when the
number of voters grows large. We introduce a simple bidding mechanism where votes can
be bought at a quadratic cost and voters receive rebates equal to the average of others’
payments. This mechanism is budget-balanced, individually rational, and fully efficient in
the limit. Moreover, the mechanism redistributes from those that gain from the outcome
to those that lose and everyone is better off under bidding compared to voting.

We test the two mechanisms in the lab using an environment with “moderate” and
“extremist” voters. In the first part of the experiment, subjects gain experience with both
bidding and voting. Then they collectively decide which mechanism applies in the second
part. This endogenous choice of institutions provides clear evidence in favor of bidding:
with groups of size eleven, 90% of the groups opt for the bidding mechanism. The observed
efficiency losses under voting are close to theoretical predictions and significantly larger
than under bidding. Because of redistribution, the efficiency gain from bidding benefits
mostly the moderate voters. Observed behavior under the bidding mechanism deviates
from theoretical predictions to some extent, which can be explained by a quantal response
equilibrium model if we assume that voters overestimate the chance of being pivotal. These
deviations hardly reduce any of the efficiency-improving effect of the mechanism, which
further supports the adoption of this mechanism in the real world applications.
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1. Introduction

Many countries use referenda to decide whether or not to undertake public projects, implement

a policy change, or to accept a new law. Most US states, for example, add bond issues for

schools or roads as “yes/no” items on the ballot of a general election. European countries

have issued national referenda to decide whether to join the European Union, accept European

lawmaking, and a common currency. Referenda are also commonly employed on a local level,

e.g. whether or not to accept a change in zoning restrictions. This type of “direct democracy”

is particularly prevalent in Switzerland where business hours, vacation duration, etc., are often

settled by referendum.

In these examples, it is typically the case that some voters care more about which outcome

prevails than others. Changes in zoning laws might preclude some families from sending their

kids to a good public school and cause the value of their homes to drop. Other families may

simply be unaffected. Likewise, relaxing opening and closing times in Zürich may be very

valuable to store owners and a select group of shoppers while others may see little (or negative)

value. It is an important question whether simple referenda can achieve the socially optimal

outcome when voters differ not only in terms of which outcome they prefer but also in terms

of their intensity, i.e. how much they care about either outcome.

There are several stylized cases where voting is easily seen to be optimal. Suppose each voter

is more likely than not to favor increasing public spending on local schools, and each proponent

values such an increase more than an opponent values the status quo level of spending. For a

large enough electorate, simple majority voting will then result in the optimal outcome. Next,

consider the case where each voter is less likely (say, 40% likely) to favor an increase, but

proponents value such an increase three times more than those opposed value keeping current

spending levels. Now, majority voting is no longer optimal but a super-majority rule is: one

should require the status quo to receive at least 75% of all the votes since conditional on

receiving more/less than 75% of the votes the expected total benefit of keeping the status quo

is higher/lower. For a large electorate, the increase will be implemented as only 60% (< 75%)

favor the status quo – the outcome is again fully efficient in the limit.1

The previous situations are “easy” in that they have a clear ex ante preferred outcome, i.e.

an outcome with a higher expected value. But when it is clear that one of the outcomes has

higher value on average, and the electorate is sufficiently large, then why vote at all? It would

suffice to simply command that the outcome with the higher expected value be implemented,

1The need for super-majority rules when preference intensities vary across alternatives is more systematically
explored by Ledyard and Palfrey (2002).
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unless voting serves only the purpose of ratification. In many instances, however, the main

reason for calling a referendum is that it is not clear which of the two alternatives is ex ante

preferred. In such cases, the referendum serves the important role of an information aggregation

tool.

In this paper we consider binary-choice problems where voters’ preferences are symmetrically

distributed across two alternatives so that, ex ante, there is no preferred outcome. Of course,

given the actual value realizations, one of the alternatives is preferred ex post and the question is

what mechanism implements the first best outcome. Majority voting is not the answer because

inefficiencies arise when the mean and median value are on opposite sides, which occurs with

non-negligible probability. We show that the fraction of surplus realized under voting is strictly

less than 100% by Jensen’s inequality (Proposition 1). Importantly, the fraction of the surplus

that is lost is increasing in the size of the electorate and the total surplus loss diverges in the

limit.

We propose a novel electoral design that allows individuals to express an intensity, or bid, for

their preferred outcome. In this bidding mechanism, individuals can buy votes at a quadratic

cost and receive a rebate equal to the average of others’ payments. The alternative that receives

the largest total bid is selected. We show that the bidding mechanism is budget-balanced,

individually rational,2 and fully efficient in the limit (Proposition 2). The intuition is that, in

a large electorate, the impact of a bid on the probability that the preferred outcome is selected

is small, and, hence, approximately linear in the bid. As a result, the marginal benefit of

raising one’s bid is proportional to one’s value. With a quadratic payment rule the marginal

cost is linear in the bid. Equating the marginal cost and benefit yields optimal bids that are

proportional to value. And when bids are proportional to value, the alternative with the largest

total bid is also the one that is value maximizing: bidding is efficient.

As noted above, another important drawback of voting is that there is no compensation for

those harmed by the outcome.3 This “tyranny of the majority” seems untenable in many cases,

2We consider situations without a status quo, e.g. when one of two proposals will replace the current policy.
With a status quo, the probability that a new proposal is accepted may vanish when the collective grows large
even when it is common knowledge that adopting the proposal is welfare improving (Mailath and Postlewaite,
1990). This negative result stems from a clash between the requirement of efficiency, budget balancedness, and
incentive compatibility on the one hand and voluntary participation (individual rationality) on the other hand.
Without a status quo, individual rationality is satisfied. But even with a status quo, there are many situations
where voluntary participation constraints do not play a role either because participants cannot “escape” the
outcome of the mechanism or compliance is enforced. For example, a country’s tax scheme to fund public goods
is typically enforced by law with severe punishments for those who evade it. Likewise, homeowners cannot
simply avoid the consequences of a change in zoning laws by not participating in the relevant referendum.

3Varian (1994) describes a procedure for inducing socially optimal choices by requiring participants to com-
pensate those harmed by their decisions. This procedure has been tested with positive results in the lab (An-
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e.g. when a change in zoning restrictions causes house values to drop it seems unreasonably

harsh not to compensate its owners. Redistribution from those that benefit to those that

are harmed is automatic in our bidding mechanism. Indeed, we show that under the bidding

mechanism everyone is better off. In other words, the increase in overall welfare does not simply

accrue to those with more “extreme” valuations but is evenly distributed among voters of all

types (Proposition 2).

We test our bidding mechanism in the laboratory and compare its performance to majority

voting. The experiments employ a setup with “moderate” (low-value) and “extremist” (high-

value) voters who are equally likely to prefer one of two alternatives. In the first twenty periods

of the experiment, subjects make choices under both the bidding and voting mechanism. Then

they collective choose whether the bidding or voting mechanism applies in the final twenty

periods of the experiment.4 This endogenous choice of institutions provides perhaps the clearest

evidence for the desirability of bidding versus voting: with electorates of size eleven, we find

that 90% of the groups (18 out of 20) opt for the bidding mechanism.

An additional benefit of our experimental design is that subjects have ample opportunity

to learn in the first part, which makes equilibrium behavior in the second part more likely. We

find that voting is near-perfect in this second part: only 0.7% of all votes are “mistakes” that

go against the preferred alternative. As a result, observed efficiency losses under voting are as

theory predicts: 22% on average with groups of size three and 28% with groups of size eleven.

Observed efficiency losses are much smaller under the bidding mechanism: 7% with a group

size of three and 13% with a group size of eleven. Furthermore, the bidding mechanism results

in significant levels of redistribution and it is the “moderate” voter who benefits the most.

In the experiments, bidding is more efficient than voting because those with higher values

buy more votes than those with lower values. However, the observed ratio of high to low bids is

less extreme than theoretically predicted. In particular, low-value voters tend to buy too many

votes while high-value voters buy close to the equilibrium amount. As a result, bidding is not

100% efficient. Another reason is that bidding tends to be somewhat “noisy.” To explore this

further we estimate a quantal response equilibrium model assuming that voters overestimate

dreoni and Varian, 1999; Chen and Gazzale, 2004). Unlike the bidding mechanism that we propose, Varian’s
(1994) procedure works only when the costs and benefits are commonly known.

4This endogenous choice of institution is inspired by Wicksell’s (1896) principle of unanimity and voluntary
consent in taxation: “if a proposal yields a common outcome that applies to all members of a collective, and
the outcome provides higher overall welfare, then there exists a compensation scheme whereby those that gain
from the outcome compensate those that are harmed in a manner such that everyone is better off. As a result,
the proposal will be accepted unanimously.” In our experiments there is no status quo so it is unclear which of
the two institutions would require unanimous consent. To not favor either bidding or voting, we let the choice
of institution be determined by majority voting.
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the chance of being pivotal. We find that this model explains the individual and aggregate data

quite well.

1.1. Related Approaches

The need to allow for an expression of preference intensity to improve on voting outcomes can

also be found in the work of Casella (2005) who introduced the idea of “storable votes.” When

voters face a series of binary choices and are endowed with a budget of votes, they can “store”

votes when indifferent about an issue and allocate more votes to issues they feel strongly about.

Casella (2005) shows that storable votes can be welfare improving relative to the case where

each voter gets a single vote per issue, a prediction that has been corroborated by laboratory

experiments (Casella, Gelman, and Palfrey, 2006).

In contrast to Casella (2005), we study a single binary choice for which the introduction

of a budget of votes has no effect (i.e. the entire budget of votes would be used). Moreover,

the bidding mechanism we propose is fully efficient and redistributes from those that benefit

to those that are harmed. Unlike the storable votes approach, our bidding mechanism could

be applied to classic hold out problems such as land assemblages for commercial development

(e.g. shopping malls) or public projects (e.g. highways or power lines).

Another related approach is Smith’s (1977) “compensation election,” which was tested in

laboratory experiments by Oprea, Smith, and Winn (2007). In this mechanism, voters submit

bids and the alternative with the largest total bid is implemented. Those that win pay their

bids and those that lose get paid their (own) bids. Unlike our proposed bidding mechanism,

the compensation election is thus not budget balanced. Furthermore, as pointed out by Oprea,

Smith, and Winn (2007), no equilibrium model exists to predict behavior in the compensation

election. Finally, the experimental setup of Oprea, Smith, and Winn (2007) does not allow

them to test whether the compensation election improves efficiency compared to voting, which

is the main point of this paper.

1.2. Organization

The paper is organized as follows. In the next section we show that majority voting is inefficient

when neither alternative is ex ante preferred. We start with an example of normally distributed

values for which welfare under voting and the optimal welfare can be computed exactly. We then

use the central limit theorem to show that voting is inefficient for arbitrary value distributions.

In Section 3 we introduce our bidding mechanism and show that it is fully efficient in the

limit when the electorate grows large. We test both the voting and bidding mechanisms in
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the laboratory. Section 4 describes the design of the experiments, the procedures, and the

hypotheses. The experimental results are discussed in Section 5. Section 6 concludes. The

instructions for the experiment can be found in the Appendix.

2. Inefficient Voting

Suppose there are 2n + 1 voters whose values are symmetrically distributed according to a

normal distribution, Φ(v), with mean zero and variance one. Here a negative value corresponds

to a preference for alternative A while a positive value reflects a preference for alternative B.

A voter with value v receives |v| if her preferred alternative is implemented and −|v| otherwise.

Thus |v| captures the intensity of the preference.

Under majority voting, a voter with value v generates a surplus equal to |v| when k ≥ n

others prefer the same alternative and −|v| when k < n others prefer the same alternative.

Since the event where k others prefer the same alternative is equally likely as the event where

2n − k others prefer the same alternative, all terms cancel except the one for k = n. The ex

ante expected surplus, or expected welfare, under simple majority voting is thus

Wvoting = (2n+ 1)

√
2

π

( 2n

n

)(1

2

)2n
where we used that E(|v|) =

√
2/π when values are normally distributed.

Under an efficient mechanism, a voter with value v generates a surplus equal to v when the

sum of others’ values is greater than −v, which occurs with probability Φ(v/
√

2n), and she

generates a surplus equal to −v with complementary probability. Expected welfare is therefore

Woptimal = (2n+ 1)

∫ ∞
−∞

v
(

2Φ
( v√

2n

)
− 1
)
dΦ(v) =

√
2

π
(2n+ 1)

The open orange circles in the left panel of Figure 1 show the fraction of the surplus realized

by majority voting for various electorate sizes. Note that efficiency Wvoting/Woptimal is strictly

decreasing in the size of the electorate and falls from 100% when the size of the electorate is

one to its limit value

lim
n→∞

Wvoting

Woptimal

=

√
2

π

as indicated by the dashed line. (The filled blue circles show the fraction of total surplus

realized by the bidding mechanism, which is discussed in the next section.) Since the fraction
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of the surplus lost grows with the size of the electorate the total surplus loss Woptimal −Wvoting

diverges to +∞ in the limit.

Remark 1. One misconception is that since neither alternative is ex ante preferred, flipping a

coin would do as well as voting. The mistake in this reasoning is that even though each voter

is equally likely to favor either alternative ex ante, one of the alternatives is preferred by the

majority ex post. Indeed, the expected difference in the total support for either alternative

diverges when the electorate grows large. Voting serves as an information aggregation tool by

picking out the correct alternative preferred by the majority. As a result, total expected welfare

under voting diverges to +∞ as the number of voters grows large, while flipping a coin would

result in an expected welfare of 0. �

Remark 2. Another misconception is that while voting is known to be inefficient in small

groups the inefficiency loss disappears for large electorates. As Figure 1 shows, voting gets

worse as the size of the electorate grows. The fraction of the surplus realized by voting falls

with the size of the electorate and the total surplus loss diverges. �

The assumption of normally distributed values is helpful in that the convolution of normal

distributions is normal. As a result, an exact expression for the optimal welfare can be derived

for all electorate sizes. For a general symmetric distribution, F (v), a similar expression can be

derived for large electorates using the central limit theorem. The probability that the sum of

others’ values is greater than −v limits to Φ(v/
√

2nσ) where σ2 = E(v2) denotes the variance.

Hence, expected welfare limits to

Woptimal ≈ (2n+ 1)

∫ ∞
−∞

v
(

2Φ
( v√

2nσ

)
− 1
)
dF (v) ≈

√
2

π
(2n+ 1)E(v2)

where the far right expression follows from a Taylor approximation as n→∞.5 The expression

for expected welfare under voting derived above applies to any symmetric distribution if we

replace
√

2/π by E(|v|). To summarize:

Proposition 1. For any symmetric value distribution, the fraction of the total surplus realized

by majority voting falls from 1 when the size of the electorate is one to

lim
n→∞

Wvoting

Woptimal

=
E(
√
v2)√

E(v2)

which is less than 1 (for non-degenerate distributions) by Jensen’s inequality. The total surplus

loss Woptimal −Wvoting diverges in the limit.

5To first order Φ(v/
√

2nσ) ≈ Φ(0) + Φ′(0)v/
√

2nσ = 1
2 (1 + v/

√
nπσ).
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Our results contrast with those of Ledyard and Palfrey (2002) who show that voting is fully

efficient in the limit when one of the alternatives is ex ante preferred. In this case, a super-

majority rule can be used to ensure that, for large electorates, the alternative with the higher

expected value wins with probability one. In fact, there are many super-majority rules that

are efficient, including a command mechanism that simply implements the ex ante preferred

alternative.6 In this sense, when one alternative is ex ante preferred, the election does not need

to aggregate the information that is dispersed in the electorate.

3. Efficient Bidding

An early approach to the efficient provision of public goods is due to Clarke (1971). The

“Clarke Tax” mechanism is a member of the Vickrey-Clarke-Groves (VCG) family for which

truth telling is a dominant strategy and agents are taxed the negative externality their choice

imposes on others. The Clarke Tax mechanism is also known as the “Pivotal” mechanism since

agents only pay if their choice changes the outcome, i.e. when they are pivotal.

To illustrate, suppose two voters, labeled 1 and 2, indicate a preferred alternative and their

values for it. If both voters favor the same alternative, neither is pivotal and, hence, neither

pays anything. If they prefer different alternatives and |v2| > |v1| then voter 2 is pivotal and

is taxed 2|v1| (since her vote changes voter 1’s payoff from |v1| to −|v1|). Note that voter 2’s

payment is independent of her report and that it is a weakly dominant strategy for her to report

truthfully. If she reports a different value v̂2 with |v̂2| > |v1| then the outcome and the tax are

the same and if |v̂2| < |v1| then her payoff changes from |v2| − 2|v1| to −|v2|, which is worse.

An important shortcoming of the Clarke Tax mechanism is that it is not budget balanced,

i.e. excess tax contributions are discarded. In the above example, voter 2’s payment does

not accrue to voter 1 but is “burned” in order to maintain incentive compatibility.7 It is well

known, however, that whenever VCG runs a surplus, an efficient, Bayesian incentive compatible

mechanism that is individually rational and balances the budget exists (Krishna and Perry,

6Suppose, for instance, that values are distributed according to a normal distribution, Φ(v − µ), with mean
µ > 0 and variance one. Then the optimal welfare is given by

Woptimal = (2n+ 1)

∫ ∞
−∞

v
(

2Φ
(v + 2nµ√

2n

)
− 1
)
dΦ(v − µ) ≈ (2n+ 1)µ+

√
2

π
(2n+ 1)e−(2n+1)µ2

A command mechanism yields Wcommand = (2n + 1)µ. So when µ > 0 there is no efficiency loss in the limit
when the electorate grows large (Ledyard and Palfrey, 2002). However, this argument breaks down when µ = 0.

7Results from laboratory experiments by Attiyeh et al. (2000) confirm that compared to simple majority
voting the Clarke Tax mechanism is inefficient because excess taxes must be discarded.
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1998). This mechanism was proposed by Arrow (1979) and independently by d’Aspremont and

Gérard-Varet (1979a,b) and is known as the AGV or “expected externality” mechanism. The

basic idea is that voters receive rebates that depend on others’ tax payments so that the budget

can be balanced without affecting incentives.

The mechanism we propose is inspired by the AGV mechanism but simpler. In our bidding

mechanism, votes for either alternative can be bought at a quadratic cost and voters receive

rebates equal to the average of others’ payments. The alternative with the largest total bid

is implemented. The intuition behind our proposal is as follows. For a large electorate, the

impact of anyone’s bid on the probability that the preferred outcome is selected is small and

approximately linear in the bid. As a result, the marginal benefit of raising one’s bid is pro-

portional to one’s value. With a quadratic payment rule the marginal cost is linear in the bid.

Hence, optimal bids are proportional to value and selecting the alternative with the largest

total bid is value maximizing.

To formalize this intuition, let G(bi) denote the expected probability that alternative B is

selected from voter i’s point of view if she buys bi votes:

G(bi) = Prob
(
bi +

∑
j 6= i

bj > 0
)

let C(bi) denote the cost of buying bi votes

C(bi) =
1

2
√
nπσ

b2i

and let R(b−i) denote the rebate voter i receives

R(b−i) =
1

2n

∑
j 6= i

C(bj)

which is independent of voter i’s own bid.

Proposition 2. The bidding mechanism is budget balanced and individually rational. For large

electorates, truthful bidding constitutes a Bayes-Nash equilibrium and

lim
n→∞

Wbidding

Woptimal

= 1

Furthermore, voters of (almost) all types are better off under bidding compared to voting.
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Proof. It is readily verified that
∑

iRi =
∑

i bi, i.e. the bidding mechanism is budget balanced.

Consider voter i and suppose all others bid truthfully, i.e. bj = vj for j 6= i. Voter i’s expected

payoff when her value is vi and she bids bi is given by

πi(vi, bi) = vi
(
2G(bi)− 1

)
− C(bi) +

σ

2
√
nπ

where the final term on the right side is the expected rebate when others bid truthfully. Since

G(0) = 1
2
, voter i’s payoff when she bids zero is equal to the rebate, which is non-negative, so the

bidding mechanism is individually rational. Moreover, for a large electorate, the central limit

theorem implies that G(bi) limits to Φ(bi/
√

2nσ), which can be approximated by Φ(bi/
√

2nσ) ≈
1
2
(1+bi/

√
nπσ). Hence, voter i’s profit is maximized at bi = vi. In other words, truthful bidding

constitutes a Bayes-Nash equilibrium. The bidding mechanism is efficient because it selects the

alternative with the largest total bid, which is the one with the largest total value.

Finally, under truthful bidding, the expected payoff of a voter with value v limits to

π(v) =
1

2
√
nπσ

(v2 + σ2)

while under voting the expected payoff limits to

π(v) =
1√
nπ
|v|

The difference is proportional to (v − sign(v)σ)2, which is strictly positive for all |v| 6= σ. �

The full efficiency obtained under bidding contrasts with the inefficiencies that arise under

majority voting (Proposition 1). In addition, the gain in welfare that results with bidding

does not simply accrue to those that care more about the outcome. The redistribution that is

inherent to the bidding mechanism ensures that voters of all types are better off.

We next show that bidding works not only in the limit but also in smaller groups. For

example, for an electorate of size two the equilibrium bids can be computed exactly, e.g.

B(v) = sign(v)
√

2(1− exp(−1
2
v2))

when values are (standard) normally distributed.8 Since the equilibrium bidding function is

8Assuming the other voter uses the proposed bidding function, a voter with value v who makes a bid b has
expected payoffs

π(v, b) = v
(
2Φ(B−1(b))− 1

)
− b2/

√
2π + (

√
2− 1)/

√
π

where the final term on the right side is the expected rebate and B−1(b) = sign(b)
√

log(1/(1− 1
2b

2)2) is the

inverse bidding function. Optimizing with respect to the bid yields b = B(v).

9



1 3 5 7 9 11 13
0.5

0.6

0.7

0.8

0.9

1.

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

Figure 1. The left panel shows efficiency levels under voting (open orange circles) and bidding (filled
blue circles) for various electorate sizes with normally distributed values. Voting is efficient with one
voter but efficiency falls quickly for larger electorate sizes and limits to

√
2/π as shown by the dashed

line. In contrast, bidding is close to 100% efficient for all electorate sizes. The right panel shows
equilibrium bids for electorates of size two (light blue), five (medium blue), and eleven (dark blue).

increasing, the bidding mechanism is fully efficient. Moreover, voters of all types are better off

under bidding compared to voting when the electorate size is two.9

While we have no analytic characterization of the bidding functions for other finite electorate

sizes, it is straightforward to determine them numerically.10 The right panel in Figure 1 shows

the equilibrium bidding functions for electorates of size two (light blue curve), five (medium

blue curve), and eleven (dark blue curve). For the latter case, bids are close to the 45-degree

line for values within plus or minus two standard deviations. In other words, for 95% of the

values, bidding is close to truthful, resulting in efficient outcomes. The filled blue circles in

the left panel of Figure 1 show the predicted efficiency levels under bidding by electorate size.

The bidding mechanism is fully efficient with one (or two) voters, there is only a slight drop in

efficiency for intermediate electorate sizes, and full efficiency obtains in the limit.

There are two main points to be taken away from our analysis. One is that bidding improves

on voting because it allows for an expression of voter intensity. For intermediate electorate sizes,

bids do not fully reveal values and, hence, bidding is not fully efficient, but it does improve

substantially on voting. Second, the predicted efficiency levels for bidding and voting are close

to their limit values for moderate electorate sizes, say, an electorate of size eleven (see the left

panel of Figure 1). This is a useful feature when designing an experiment.

9The equilibrium payoff under voting, π(v) = 1
2 |v|, is strictly less than the equilibrium payoff under bidding,

π(v) = v(2Φ(v)− 1) + 2φ(v)− 1/
√
π, for all v.

10We consider values between −4 and +4 (recall that the standard deviation is 1 so this captures 99.994% of
all values) on a discrete grid with 201 possible values: v ∈ {−4.00,−3.98, . . . , 0, . . . , 3.98, 4.00}. The numerical
process starts with some initial bidding function, say B(v) = v, and then computes the best response against
this initial bidding function for each value type. This yields a new bidding function against which the best
response is computed, etc., until there is no more change in the computed bids.
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4. Experimental Design, Procedures, and Hypotheses

Our interest is in testing bidding and voting when the limit results of Propositions 1 and 2

apply. An obvious difficulty is that we cannot study very large electorates because of physical

constraints (lab size) as well as financial constraints. Fortunately, moderately small electorate

sizes suffice to test the alternative mechanisms for two reasons. First, recall that efficiency

under voting falls with the number of voters. So testing majority voting with a smaller group

puts an upper bound on how well voting does with large electorates. Furthermore, a finite

electorate size can be chosen such that the predicted efficiency level only marginally exceeds

its limit value for an infinite electorate size. Second, it is possible to design environments with

a finite number of bidders for which the logic behind limit results of Proposition 2 applies and

bidding is fully efficient making everyone better off.

4.1. Design

We used a two-point value distribution (instead of normally distributed values) since it (i) is

much easier to understand for subjects, (ii) results in more separation between bidding and

voting, (iii) makes redistribution easier to analyze, and (iv) allows us to estimate a quantal

response equilibrium model using the individual bid data. In particular, voters are equally

likely to prefer one of two alternatives, labeled A and B, and their values for the preferred

alternative are low, vL = 10, with probability p = 0.75 and high, vH = 70, with complementary

probability. We refer to the low-value and high-value voters as “moderates” and “extremists”

respectively. For this value distribution, the open orange circles in the left panel of Figure 2

show the predicted efficiency levels under majority voting for various (odd) electorate sizes.

(This figure parallels Figure 1, which pertains to normally distributed values.) Voting is 100%

efficient when there is only a single voter but efficiency falls as the electorate size increases. For

the experiments, we chose a group size of eleven for which predicted efficiency is 71.1%, which

is within two percentage points of the limit efficiency (69.3%) indicated by the dashed line in

Figure 2. Since we are interested in how electorate size affects performance, we also considered

groups of size three for which the predicted efficiency is at least somewhat different (78.0%).11

A second departure from the theoretical setup discussed above is that we restricted possible

bids to the set {0, 1, . . . , 10} to avoid the possibility of erroneously high bids that could lead

to bankruptcies. To ensure that the equilibrium bids are within this set we scaled up the cost

function by a factor of 10 so that, in large electorates, the optimal bid is not equal to value, as

11Predicted efficiencies for other group sizes are rather close to that for n = 11 (or n =∞), which would make
any treatment effect unlikely. The exception is a group of size 1 but this would be too trivial an experiment.
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Figure 2. The left panel shows efficiency under voting (open orange circles) and bidding (filled blue
circles) by electorate size for the value distribution used in the experiment. Voting is efficient with a
single voter but efficiency falls quickly for larger electorate sizes. The experiments use electorates of
size three for which efficiency is 78.0% and eleven for which efficiency is 71.1%, which is close to the
limit value of 69.3% (as indicated by the dashed line). Bidding is predicted to be 100% efficient for
all electorate sizes. The right panel shows the equilibrium bids by electorate size for moderates (open
blue circles) and extremists (filled blue circles).

in Proposition 2, but rather to one-tenth of the value (1 for a moderate and 7 for an extremist).

This normalization results in a cost function C(b) = b2/3 for an electorate of size eleven.12 As

we explain in the Hypotheses section below, restricting the highest possible bid to 10 has no

consequence for the theoretical predictions (but precludes very costly mistakes).

Increasing the group size from three to eleven roughly halves the chance of being pivotal.

For this reason the costs of buying votes in the bidding mechanism should be twice as high

in groups of three compared to groups of eleven. Hence, we implemented a cost function

C(b) = 2b2/3 for groups of size three. Of course, turnout in real elections (and previous voting

experiments) suggests that voters’ perceptions of being pivotal may be biased. For instance,

there is ample evidence that subjects tend to overestimate small probabilities (as in models

of probability weighting). To address this possibility, we also ran a treatment with groups of

size eleven and high costs C(b) = 2b2/3, thus ignoring the (theoretically predicted) drop in the

chance of being pivotal when increasing the group size from three to eleven.

The three treatments are labeled “3H,” “11H,” and “11L,” where the number indicates

group size and the letter indicates whether costs are low or high (see Table 1). All three

treatments used two parts of twenty periods each, for a total of forty periods. In each of these

forty periods, subjects were randomly assigned a preferred alternative, A or B, and a private

value for that alternative using the two-point value distribution described above.13 In the first

12The exact cost function is C(b) = 10/(2
√

5πσ)b2 where σ =
√

3
4 (1)2 + 1

4 (7)2, which yields C(b) = 0.349b2.

With a discrete bid space, equilibrium bids are unaffected by small changes in the cost function and we decided
to use the cost function C(b) = b2/3 to simplify the instructions.

13Subjects knew their own preferred outcome and their own value, but they knew only the distribution of
others’ preferred outcomes and values. We used the same value draws in treatments 11H and 11L.
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Treatment Values Cost Group Number of Part 1 Part 2 Optimal Bids
Name {vL, vH} Function Size Groups Bid and Vote Bid or Vote {b∗L, b∗H}
11L {10, 70} b2/3 11 10 20 periods 20 periods {1, 7}
3H {10, 70} 2b2/3 3 10 20 periods 20 periods {1, 5}
11H {10, 70} 2b2/3 11 10 20 periods 20 periods {1, 5}

Table 1. The experimental design consists of three treatments that vary group size and the cost of

buying votes. In the first 20 periods, subjects make choices under both bidding and voting. Then they

collective decide by majority vote which mechanism applies in the final 20 periods. Subjects’ values

are low, vL = 10, with probability p = 3/4 and high, vH = 70, with complementary probability.

twenty periods, subjects made choices under both the bidding and voting mechanism (subjects’

screens were split in two parts and for each subject it was randomly determined whether voting

or bidding appeared on the left part of the screen for the entire first part). Then they decided

by majority vote which mechanism would apply in the final twenty periods.14 For completeness

we summarize the rules of both mechanisms.

Voting Mechanism: subjects chose to vote for either A or B. The outcome with the most

votes was selected as the group outcome (ties are not possible with odd-sized groups). A subject

received her value if the group outcome matched her preferred outcome, otherwise she received

the negative of her value.

Bidding Mechanism: subjects chose to bid for either A or B and they chose a bid amount.

Integer amounts from 0 to 10 were allowed. The outcome with the largest total bid amount was

selected as the group outcome (in the event of a tie, each outcome had an equal chance of being

selected). A subject received her value if the group outcome matched her preferred outcome,

otherwise she received the negative of her value. Bidding is costly and irreversible. Irrespective

of the group outcome, a subject who bid b paid C(b) = 2b2/3 in the high cost treatments (3H

and 11H) and C(b) = b2/3 in the low cost treatment (11L). In addition, each subject received

a rebate equal to the average of others’ payments.

4.2. Procedures

We used ten groups per treatment for a total of 250 subjects who were recruited at the Uni-

versity of Zürich and the neighboring ETH. The experiment was computerized using zTree

(Fischbacher, 2007). Each session started with two unpaid practice periods followed by 20 paid

periods in part 1 and another 20 paid periods in part 2. Subjects were not informed about

14This decision could not be made by bidding since subjects did not know their values for the second part.
To not favor voting or bidding we used a simple majority rule rather than a super-majority or unanimity rule.
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part 2 until they had completed part 1. In the first part, subjects made decisions under both

bidding and voting and received the sum of their earnings from both mechanisms. After finish-

ing the first part, they collectively decided by majority vote which mechanism would apply in

the second part.15 In this second part, subjects only made decisions for, and received earnings

from, the selected mechanism. Sessions lasted about 60-75 minutes, including instructions and

payment. The conversion rate from experimental points to Swiss Francs was 30:1 for groups of

size three and 15:1 for groups of size eleven. Average earnings were 43.4 Swiss Francs including

a 15 Franc show-up fee.

4.3. Hypotheses

We have not yet discussed in detail the predictions for the bidding mechanism. The left panel

of Figure 2 shows full efficiency under bidding for all electorate sizes. This result obtains when

bidding costs are scaled such that they roughly fall with the square root of the electorate

size.16 One of the treatments (11H) purposefully deviates from this scaling law to explore the

(behavioral) assumption that subjects may overestimate the probability of being pivotal. As

a result, the equilibrium bids for this treatment are not equal to one-tenth of the value but

instead are b∗L = 1 for a moderate voter and b∗H = 5 for an extremist voter. These bids are also

the equilibrium bids for treatment 3H while for treatment 11L the equilibrium bids are b∗L = 1

and b∗H = 7, see the final column in Table 1.

It is easy to see how the equilibrium bids for treatment 3H guarantee full efficiency. When-

ever two moderates are on one side but an extremist voter is on the other side, bidding yields

the efficient outcome, since 5 > 1+1, while voting is inefficient, since 1 < 1+1. Other scenarios

can be checked similarly. In a sense, it is relatively easy for a bidding mechanism to improve

on voting in small groups of size three.

The fact that bidding is fully efficient in treatment 11L is for an entirely different reason,

i.e. because the influence of any bid is small enough such 2G(b) − 1 is approximately linear

over the range of feasible bids. This claim is illustrated in Figure 3. The left panel shows

2G(b)− 1 for bids between −70 and 70, where negative (positive) numbers correspond to bids

for alternative A (B). Since there are ten others who potentially could each bid 7 for either

alternative, 2G(b) − 1 is equal to 1 (−1) only when a bid of 70 (−70) or more (less) is made.

The right panel zooms in and shows 2G(b) − 1 for the range of feasible bids, were it is well

15After they cast their vote, but prior to knowing the majority choice, subjects had an opportunity to briefly
state a reason for their choice.

16In particular, the cost function used to generate Figure 2 is C(b) = c2n+1b
2 for an electorate of size 2n+ 1,

where c3 = 2
3 , c5 = 1

2 , c7 = 2
5 , c9 = 7

20 , c11 = 1
3 , and c13 = 3

10 . Other parameter values that are close and
roughly follow the same scaling result in the same optimal bids and full efficiency.
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Figure 3. The left panel shows 2G(b) − 1 for bids in the range −70 ≤ b ≤ 70 in treatment 11L
assuming others bid b∗L = 1 when they are moderate and b∗H = 7 when they are extremist. The right
panel zooms in on the set of feasible bids −10 ≤ b ≤ 10 for which 2G(b)− 1 is well approximated by
the linear function b/15 as shown by the orange straight line.

approximated by the orange line that represents the linear function b/15. Hence, in treatment

11L, a voter’s expected payoff can be written as

π(v, b) = v
( b

15

)
− 1

3
b2

and the first-order condition for profit maximization yields B(v) = v/10.

From a theoretical viewpoint, restricting the set of feasible bids to {0, 1, . . . , 10} can be

done without loss of generality. Suppose, for instance, that the voter’s value is positive and

consider any positive bid. The left panel of Figure 3 shows that the win probability is concave

for any positive bid and, hence, so is the voter’s profit function. As a result, there is a unique

maximizer, b∗L = 1 or b∗H = 7, which is contained within the feasible range. Bids outside this

range are never optimal and, hence, can be discarded without affecting theoretical predictions.

Behaviorally, setting a maximum bid has the advantage of ruling out very costly mistakes.

To summarize, while full efficiency in treatment 3H is due to a “small numbers effect,” treat-

ment 11L effectively implements a setting for which the limit results of Proposition 2 apply.

Truthful bidding is not in equilibrium in treatment 11H, but the optimal bids of 1 and 5 are

such that predicted efficiency is still very high (99.7%). We can now state our hypotheses.

Hypothesis 1. In all treatments, bidding is more efficient than voting.

Hypothesis 2. In all treatments, moderates and extremists are better off under bidding.

Hypothesis 3. In all treatments, bidding is more often selected for part 2 of the experiment.

Hypothesis 4. Moderates bid the same in all treatments. Extremists bid the same in treat-

ments 3H and 11H and more in treatment 11L. Hence, the bid ratio (extremist’s bid divided
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by moderate’s bid) is the same in treatments 3H and 11H and higher in treatment 11L.

These hypotheses are based on Bayes-Nash equilibrium predictions. We also state one behav-

ioral hypothesis that motivates treatment 11H and provides an alternative to Hypothesis 4.

Suppose subjects ignore the effect of group size on the chance of being pivotal and that instead

their behavior is driven by the total cost they are willing to incur (as a fraction of their value).

Hypothesis 4-Alt. Moderates bid the same in treatments 3H and 11H and more in treatment

11L. The same is true for extremists. The bid ratio is the same in all treatments.

5. Experimental Results

Our two-part design has two important advantages: it allows us to study the preference of

groups over institutions (voting or bidding) and it provides subjects with the opportunity to

learn in the first part making equilibrium behavior in the second part more likely. Subjects

indeed learned over time. The percentage of votes (bids) against the preferred alternative

dropped from 1.04% to 0.56% (1.88% to 1.16%) from the first 10 periods to the second 10

periods in part 1. These mistakes were made by very few subjects. Only 2.4% subjects voted

against their preferred alternative more than once. 90% subjects never made a single mistake.

Figure 4 reports the observed vs. predicted efficiency calculated at the group level, averaged

across the second 10 periods in part 1. The horizontal axis is the predicted efficiency under

voting, given the actual value draws in the experiment. The predicted bidding efficiency is

always 100%. The size of the marker corresponds to the number of observations in each data

point. Typically there is one data point for each group. A larger marker has two groups and

the largest has three groups in one data point. Points on the 45 degree line represent groups

where the observed efficiency equals the predicted efficiency under voting, and points above

(below) the line are groups performed better (worse) than prediction. In all treatments, the

observed voting efficiencies align nicely with the theoretical predictions (orange circle). The

observed efficiencies under bidding (blue dot) are higher than under voting most of the time

and the differences are significant at 1%. 17 Figure 5 shows the aggregate data at the treatment

level.

Given that bidding is significantly more efficient than voting, did subjects collectively choose

to apply bidding in part 2? We analyze the group choice for either voting or bidding that

17A Wilcoxon signed-rank test that compares the efficiency levels (p = 0.0095 for all treatments, p = 0.051
for 3H and p = 0.093 for 11H). All reported tests are two-sided and based on group level data (unless otherwise
stated).
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Figure 4. Observed vs. predicted efficiency at the group level for periods 11-20 by treatment. The
orange circle is the observed voting efficiency and blue dot is the observed bidding efficiency. The size
of the markers corresponds to the number of observations. The horizontal axis depicts the predicted
voting efficiency while the predicted bidding efficiency is always 100%.

immediately followed the first part. A total of 30 groups participated in the experiments (see

Table 1) and 20 of them made more money, as a group, under bidding (p = 0.098) in part 1.

Furthermore, 22 groups preferred bidding while only 8 groups preferred voting for the second

part (p = 0.016). We thus find strong support for Hypothesis 3, especially with large electorates.

Result 1. The bidding institution is selected more frequently for part 2 of the

experiment. In particular, with electorates of size eleven, 18 out of 20 groups chose

bidding, and with an electorate of size three, 4 out of 10 groups chose bidding.

Besides the higher earnings accrued under bidding in the first part, subjects mentioned that they

preferred bidding because it “provided them with more influence” while with voting “chance

decides.” In addition, subjects positively commented on the redistribution that occurs under

bidding in the form of rebates. Subjects criticized the free-riding that is possible with bidding

(e.g. by submitting a zero bid), which has a bigger impact in small electorates. In 3H, extremists

never free ride in part 1 in the four groups that later chose the bidding mechanism in part 2. In

the other 6 groups, 7.4% bids submitted by the extremists were zero and these groups selected

the voting mechanism for part 2. Also in groups of three, 24.50% of the time the same preferred
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Figure 5. Observed efficiencies under voting (white bars) and under bidding (blue bars) averaged
across periods and groups, by treatment. The predicted efficiencies under voting are 76.24%, 62.44%
and 62.44% for treatment 3H, 11L and 11H respectively.

alternative was assigned to everyone in the group. This only occurred 0.5% in groups of eleven.

These differences may explain why bidding was less frequently selected with groups of size three

in part 2.

Comparing to part 1, observed efficiencies under bidding were higher in the second part

for all three treatments.18 In the subsections below, we use the data from the second part to

compare bidding and voting in terms of efficiency (Section 5.1) and the distribution of earnings

(Section 5.2). In Section 5.3 we analyze the bid data in more detail.

5.1. Efficiency

Figure 6 plots the observed vs. predicted efficiency at the group level in part 2. For electorates

of size eleven, we have only two groups that selected voting (orange circle) and eighteen groups

that selected bidding (blue dots), which makes it difficult to compare bidding and voting using

non-parametric tests. For this reason, we compare the observed efficiencies under bidding

with the predicted efficiencies under voting assuming perfectly optimal behavior in the voting

mechanism. In other words, we give voting its best chance. The assumption of perfect behavior

under voting is reasonable from an empirical viewpoint since only 0.7% of all votes were against

the alternative in part 2. Also, for the six groups that selected voting with a group size of three,

the observed efficiency is exactly as predicted (perfectly aligned on the 45 degree line), i.e. if

there were any mistakes they were not pivotal. For electorates of size three, it thus does not

18A Wilcoxon signed-rank test that compares the efficiency levels in parts 1 and 2 for the 22 groups that
selected bidding yields a significant difference (p = 0.088).
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Figure 6. Observed vs. predicted efficiency at the group level given the endogenous group choice
of applying voting or bidding mechanism in part 2. by treatment. The orange circle is the observed
voting efficiency and blue dot is the observed bidding efficiency. The size of the markers corresponds
to the number of observations. The horizontal axis depicts the predicted voting efficiency while the
predicted bidding efficiency is always 100%.

matter whether we compare efficiency under bidding with the predicted or observed voting

efficiencies. Overall, only two groups had lower efficiencies under bidding than the predicted

voting efficiency (below the line).

Figure 7 shows the observed efficiencies under bidding (blue bars) and the associated pre-

dicted efficiencies under voting (white bars) by treatment. The numbers represent averages

over all twenty periods and across groups that selected bidding for the second part. Predicted

efficiencies under voting are 78.6% in 3H, 71.0% in 11L, and 71.2% in 11H.19 Observed efficien-

cies under bidding are much higher: 93.0% in 3H, 84.8% in 11L, and 89.1% in 11H.20 We thus

find strong support for Hypothesis 1.

Result 2. Bidding is significantly and substantially more efficient than voting.

Support. For electorates of size three, we can compare the observed efficiencies for the six

groups that selected voting with the observed efficiencies for the four groups that chose bid-

19Close to the ex ante expected efficiencies of 78.0% for 3H and 71.1% for 11H and 11L.
20A Kruskal-Wallis test shows no difference among the bidding efficiencies for the three treatments (p = 0.39).
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Figure 7. Predicted efficiencies under voting (white bars) and observed efficiencies under bidding
(blue bars) for the draws used in the experiment and averaged across periods and groups. The left
panel is based on four groups that selected bidding in 3H, the middle panel is based on nine groups
that selected bidding in 11L, and the right panel is based on nine groups that selected bidding in 11H.

ding. A Mann-Whitney rank-sum test shows that efficiency under bidding is significantly higher

(p = 0.01).21 Alternatively, we can compare the four observed bidding efficiencies with the pre-

dicted efficiencies under (perfect) voting. A Wilcoxon matched-pair signed-rank test confirms

that bidding is significantly more efficient (p = 0.069).22 For electorates of size eleven, we

compare the observed efficiencies for the nine groups that selected bidding with the predicted

efficiencies under (perfect) voting. A Wilcoxon matched-pair signed-rank test shows that bid-

ding is significantly more efficient in 11H (p = 0.01) and 11L (p = 0.02).23 �

To glean some intuition for why voting performs worse, consider those cases where the mean

and median value are misaligned. For example, suppose there is a majority of moderate voters

that prefer A and a few extremists that prefer B. In this case, outcome A will be selected

under voting even though it might be optimal to implement outcome B. Figure 8 shows ob-

served efficiency levels under bidding when the mean and median value are on opposite sides

21The six observed efficiency levels under voting are (77.8%, 76.2%, 80.0%, 81.8%, 76.2%, 77.3%) and the
four observed efficiency levels under bidding are (89.3%, 100.0%, 96.3%, 86.5%).

22The predicted efficiency levels under voting are (73.2%, 78.7%, 81.5%, 80.8%).
23The nine observed efficiency levels under bidding in 11H are (88.8%, 69.0%, 96.9%, 94.9%, 82.4%, 98.1%,

86.4%, 92.4%, 93.3%) and for 11L they are (80.0%, 93.0%, 86.7%, 83.5%, 98.9%, 90.5%, 76.1%, 94.4%, 59.8%).
We used the same value draws in treatments 11H and 11L so the predicted vote efficiencies are the same.
However, the group that did not select bidding in 11H used different values than the one that did not select
bidding in 11L. Hence, we list the predicted vote efficiencies for all ten groups (72.8%, 76.0%, 67.0%, 72.5%,
72.5%, 65.2%, 67.6%, 69.3%, 69.6%, 73.0%). In 11H, group 6 did not select bidding, and in 11L, group 3 did
not select bidding.
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Figure 8. Observed efficiency levels under bidding when the mean and median value are on opposite
sides (dark bars) or on the same side (light bars). Under voting, predicted efficiency is −100% when
the mean and median value are on opposite sides and 100% when they are on the same side.

(dark bars) or on the same side (light bars). Bidding efficiency is near perfect (> 90%) for the

“easy” case when the mean and median value are on the same side but less so when they are

on opposite sides (55% with high costs and 43% with low costs). This performance, though,

is much better than predicted under voting even if we assume no mistakes are made: when

the mean and median value are on the same side voting is predicted to be 100% efficient, but

voting is −100% efficient when they are on opposite sides.24

5.2. Who Benefits?

Figure 9 shows the predicted payoffs, in Francs, of moderates and extremists under voting

(white bars) and bidding (blue bars). The predicted payoffs are based on the value draws for

those groups that selected bidding in part 2. Comparing the white and dark blue bars illustrates

the effects of redistribution under bidding and confirms that voters of all types are predicted

to be better off (Proposition 2). The green bars in Figure 9 correspond to the observed payoffs

under bidding. We find partial support for Hypothesis 2.

Result 3. Moderates are better off under bidding in all treatments. Extremists

are better off under bidding in groups of size three but not in groups of size eleven.

Support. For treatment 3H, comparing observed payoffs in the six groups that chose voting

to the observed payoffs in the four groups that selected bidding shows that moderates and

24Of course, the event where the mean and median value are on the same side is more likely, which is why
the overall predicted efficiency for the voting mechanism is positive.
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Figure 9. Predicted per-capita earnings for moderates and extremists under voting (white bars) and
bidding (blue bars) as well as observed per-capita earnings under bidding (green bars). Earnings are
in Swiss Francs and are based on groups that selected bidding in part 2.

extremists are better off.25. Additional support can be obtained by comparing observed ex-

tremists’ payoffs under bidding to their predicted payoffs under (perfect) voting for the four

groups that selected bidding in the second part, which shows that they are better off under

bidding (p = 0.068). Comparing observed payoffs under bidding to predicted payoffs under

voting shows that moderates are better off in treatments 11L (p = 0.008) and 11H (p = 0.008),

but extremists are equally well off in treatment 11L (p = 0.95) and worse off in treatment 11H

(p = 0.038). �

The theoretical prediction that moderates benefit more than extremists in all three treatments

is confirmed. The comparative statics predictions of Bayes-Nash theory are thus corroborated

by the data, but less so its point predictions.

5.3. Bidding Behavior

Figure 10 shows the observed average bids by treatment for the extremists (lower right panel)

and moderates (lower left panel) as well their ratio (top panel). The data favor behavioral Hy-

pothesis 4-Alt, which assumes that bidding behavior is mainly driven by costs, over Hypothesis

25Mann-Whitney test, one-sided p = 0.068 for moderates and p = 0.067 for extremists; Robust Rank Order
test, one-sided p = 0.038 for moderates and p = 0.043 for extremists
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Figure 10. The top panel shows the observed bid ratio (extremist bid/moderate bid) by treatment.
The bottom panels show the average bids of moderates (left panel) and extremists (right panel) by
treatment. Averages are across groups and periods.

4, which is based on Bayes-Nash theory.

Result 4. Moderates bid the same in treatments 3H and 11H and they bid higher

in treatment 11L. The same is true for extremists. The bid ratio is the same in

treatments 3H and 11H and lower in treatment 11L.

Support. Comparing treatments 3H and 11H shows no differences between the average bids

submitted by either moderates (Mann-Whitney test, p = 0.64) or extremists (p = 0.22).26

Moderates’ bids in treatment 11L are significantly higher than those in treatment 3H (p = 0.02)

and treatment 11H (p = 0.05).27 Likewise, extremists’ bids in treatment 11L are significantly

higher than those in treatment 3H (p = 0.04) and treatment 11H (p < 0.001). Finally, the bid

ratio is the same in treatments 3H and 11H (p = 0.28), the same in treatments 3H and 11L

(p = 1.00), and lower in treatment 11L than in treatment 11H (p = 0.058). �

The observed bid ratios differ substantially form the theoretically predicted ratios: 5 in the

26The average bids in treatment 3H are (1.53, 1.62, 1.13, 2.14) for moderates and (4.53, 5.93, 3.75, 3.33)
for extremists while in treatment 11H the averages are (1.99, 1.57, 1.87, 1.81, 1.85, 1.40, 1.52, 1.76, 1.56) for
moderates and (4.93, 4.15, 5.22, 5.84, 5.45, 5.55, 5.19, 5.22, 5.16) for extremists.

27The average bids in treatment 11L are (2.51, 2.16, 2.56, 2.35, 1.98, 1.95, 2.42, 2.76, 1.92) for moderates and
(4.23, 5.65, 6.21, 6.57, 6.29, 5.67, 6.20, 4.69, 6.38) for extremists.
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Figure 11. This figure plots the average cost moderates and extremists incurred to pay for their bids
as a fraction of their value in each treatment. The fraction is calculated as 1

3b
2/v in treatment 11L

and 2
3b

2/v in treatments 3H and 11H. Averages are calculated first over 20 periods per subject and
then across 10 groups by treatment.

high-cost treatments and 7 in the low-cost treatment.28 The reason is that moderates bid

significantly more than 1 in all treatments while extremists bid less than 5 in 3H, bid 5 in

treatment 11H, and they less than 7 in treatment 11L.

The bid ratio is an important determinant of efficiency. For example, if the bid ratio is 1,

bidding is no more efficient than voting. But even though observed bid ratios are less extreme

than predicted, they are substantial enough to result in highly efficient outcomes. For instance,

in treatment 3H, if all moderates bid 1.61 and all extremists bid 4.39 (which are the observed

averages) then predicted efficiency would be 100%. Similarly, for treatments 11L and 11H, the

assumption of homogenous behavior results in predicted efficiencies of 96% or more when using

the observed average bids.

To better understand what drives the bidding behavior, we examine the amount moderates

and extremists paid for their bids as a fraction of their value. The fraction is calculated as 1
3
b2/v

in treatment 11L and 2
3
b2/v in treatments 3H and 11H on individual level. Figure 11 reports

the group average of these fractions by treatment. In treatments 3H and 11H, moderates and

extremists on average spent roughly the same amount proportional to their value to bid for

their preferred alternative.29 In treatment 11L, moderates incurred significantly higher cost

28Not surprisingly, these differences are statistically significant. A sign test yields p = 0.068 in treatment 3H,
p = 0.008 in treatment 11H, and p = 0.008 in treatment 11L.

29Mann Whitney tests comparing moderates with extremists report no significant difference in 3H (p = 1.00)
and in 11H (p = 0.89).
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Figure 12. This figure compares the actual cumulative bid distributions (blue lines) with the pre-
dicted quantal response distributions (red lines) for moderates (top panel) and extremists (bottom
panel) by treatment. The Nash equilibrium bids for moderates and extremists in high cost treatments
are 1 and 5 and in low cost treatment are 1 and 7 respectively.

relative to their value than extremists (p = 0.038). This again indicates that bidders mainly

consider the cost of bidding instead of the chance of being pivotal in forming their bidding

strategy. Moreover, pairwise comparison across three treatments indicates no difference for the

relative amounts paid by moderates. For extremists, the only difference was observed when

comparing 11H with 11L.30

Another reason that may explain the small observed efficiency loss under bidding is that

there is substantial heterogeneity, or “noise,” in decision making. To this end we estimate a

quantal response model where we allow subjects to overestimate the chance of being pivotal.

Figure 12 compares the actual cumulative bid distributions with the quantal response distri-

butions. Using a KolmogorovSmirnov test, the null hypothesis that the data are generated by

the theoretical distribution, cannot be rejected at the 5% level.

30Mann Whitney tests comparing 3H with 11L, 3H with 11H and 11L and 11H report p = 0.44, p = 0.22, p
=0.31 for moderates, respectively and p = 0.88, p = 0.12, p = 0.002 for extremists.
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6. Conclusion

In this paper we have demonstrated the inefficiency of elections, i.e. their inability to achieve

socially optimal outcomes in situations without a clear ex ante winner (Proposition 1). We have

also shown that a simple bidding mechanism yields higher overall welfare and better outcomes

for all voters. These bidding mechanisms therefore represent practical implementations of

Wicksell’s idea of “unanimity and voluntary consent in taxation,” i.e. the insight that if a

proposal yields a common outcome with a positive net value to society then there exists a

compensation scheme by which those that gain from the proposal can compensate those that

lose and the proposal can be approved unanimously.31

A common objection to bidding mechanisms vis-à-vis a simple one man - one vote mechanism

is that those that care a lot more may try to“buy the election” at the expense of more moderate

voters. One reason to doubt this argument is that buying the election is typically very costly and

the payments required imply substantial redistributions that benefit all. Indeed, Proposition

2 shows that all voters may benefit when voting is replaced by a bidding mechanism. And

the laboratory data show that moderate voters benefit most, especially under the simpler

bidding mechanism. Another reason is that in many prominent elections, those that care a lot

are trying to buy the election via excessive campaign contributions. And, unlike the budget

balanced mechanism studied in this paper where monetary bids are redistributed to the general

public, these campaign contributions often represent wasteful rent-seeking of little or no social

value (e.g. buying TV time for negative and uninformative advertisements about an opponent

or proposition). In this sense, our results about the inefficiency of elections would be further

strengthened in a model that incorporates the possibility of vote buying through rent-seeking

activities.

Our theoretical predictions about the inefficiency of elections are corroborated by results

from controlled experiments. The laboratory data provide empirical proof that the proposed

bidding mechanisms are not just of theoretical interest but are simple enough to work in prac-

tice. Observed behavior in the bidding mechanisms mimics equilibrium behavior closely enough

to ensure that they outperform the voting mechanism. In the bidding mechanism, for instance,

most choices are truthful resulting in a 15-20% increase in efficiency.

The one man-one bid mechanism applies more broadly than just to political elections (the

electorate). For example, the one share-one vote principle governs the shareholders democracy.

The connection between shareholder voting and the bidding mechanism is emerging as an

31The connection to Wicksell’s original work is highlighted by Smith (1977) and Oprea, Smith, and Winn
(2007).
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importation issue in the study of corporate governance and corporate control (see Burkart and

Lee, 2010).

We are currently exploring a number of possible extensions that could enhance the results

of this paper in interesting ways. Regarding the laboratory experiments we plan to replicate

the experiments with bigger groups, and implement asymmetric treatments where more voters

favor one outcome but the minority group cares more (keeping the expected value of both

outcomes the same). In this case, the optimal voting rule is a super-majority rule but, as in

the symmetric case, it is incapable of achieving full efficiency.

Another possible extension is to introduce uncertainty about the distribution of voters’ pref-

erences. Suppose, for instance, that there are “left” and “right” voters and that, in expectation,

both groups are of the same size. But there is uncertainty about which group cares more – say,

it is equally likely that the left care more or the right care more. In this case, it is easy to see

that no (threshold) voting can achieve optimality whereas a bidding mechanism can be used to

discover which group is more intense. We leave this and other explorations for future work.

27



References

Andreoni, J. and H. Varian (1999) “Pre-Play Contracting in the Prisoner’s Dilemma,” Proceed-

ings of the National Academy of Sciences, 96, 10933-10938.

Arrow, K. (1979) “The Property Rights Doctrine and Demand revelation under Incomplete

Information,” in Boskin (ed.), Economics and Human Welfare, New York, NY: Academic

Press, 23-39.

Attiyeh, G., R. Franciosi and R. M. Isaac (2000) “Experiments with the Pivot Process for

Providing Public Goods,” Public Choice, 102, 95-114.

Burkart, M. and Lee, Samuel (2008) “One Share - One Vote: the Theory,” Review of Finance,

12, 1-49.

Carroll, G. (2011) “A Quantitative Approach to Incentives: Application to Voting Rules,”

working paper, MIT.

Casella, A. (2005) “Storable Votes,” Games and Economic Behavior, 51, 391-419.

Casella, A., A. Gelman, and T. R. Palfrey (2006) “An Experimental Study of Storable Votes,”

Games and Economic Behavior, 57, 123-154.

Chen, Y. and R. Gazzale (2004) “When Does Learning Generate Convergence to Nash Equi-

libria? The Role of Supermodularity in an Experimental Setting,” American Economic

Review, 94, 1505-1535.

Clarke, E. (1971) “Multi-part Pricing of Public Goods,” Public Choice, 11, 17-33.

d’Aspremont, C., and L. A. Gérard-Varet (1979a) “Incentives and Incomplete Information,”

Journal of Public Economics, 11, 25-45.

d’Aspremont, C., and L. A. Gérard-Varet (1979b) “On Bayesian Incentive Compatible Mech-

anisms,” in J.-J. Laffont (ed.), Aggregation and Revelation of Preferences, Amsterdam:

North-Holland, 269-288.

Krishna, V., and M. Perry (1998) “Efficient Mechanism Design,” Working Paper, Penn State

University.

Ledyard, J. O. and T. R. Palfrey (2002) “The Approximation of Efficient Public Good Mecha-

nisms by Simple Voting Schemes,” Journal of Public Economics, 83, 153-171.

Mailath, G. and A. Postlewaite (1990) “Asymmetric Information Bargaining Problems with

Many Agents,” Review of Economic Studies, 57, 351-367.

Oprea, R. D., V. L. Smith, and A. M. Winn (2007) “A Compensation Election for Binary Social

Choice,” Proceedings of the National Academy of Sciences, 104(3), 1093.

28



Smith, V. L. (1977) “The Principle of Unanimity and Voluntary Consent in Social Choice,”

Journal of Political Economy, 85, 1125-1139.

Varian, H. (1994) “A Solution to the Problem of Ecternalities When Agents are Well-Informed,”

American Economic Review, 84, 1278-1293.

Weyl, E. G. (2012) “Quadratic Vote Buying,” working paper, University of Chicago.

Wicksell, K. (1896) in Musgrave RA (ed.), Classics in the Theory of Public Finance, Peacock

AT (St Martin’s, New York), 72-118.

29


	Introduction
	Related Approaches
	Organization

	Inefficient Voting
	Efficient Bidding
	Experimental Design, Procedures, and Hypotheses
	Design
	Procedures
	Hypotheses

	Experimental Results
	Efficiency
	Who Benefits?
	Bidding Behavior

	Conclusion

