
A Quantitative Version of the Gibbard-Satterthwaite
theorem for Three Alternatives

Ehud Friedgut∗ Nathan Keller † Gil Kalai ‡ Noam Nisan §

Abstract
The Gibbard-Satterthwaite theorem states that every non-dictatorial elec-

tion rule among at least three alternatives can be strategically manipulated.
We prove a quantitative version of the Gibbard-Satterthwaite theorem: a
random manipulation by a single random voter will succeed with a non-
negligible probability for any election rule among three alternatives that is
far from being a dictatorship and from having only two alternatives in its
range.

1 Introduction

A Social Choice Function (SCF), or an election rule, aggregates the preferences
of all members of a society towards a common social choice. The study of SCFs
dates back to the works of Condorcet in the 18th century, and has expanded greatly
in the last decades.

One of the obviously desired properties of an SCF is strategy-proofness: a
voter should not gain from voting strategically, that is, from reporting false pref-
erences instead of his true preferences (such voting is called in the sequel ma-
nipulation). However, it turns out that this property cannot be obtained by any
reasonable SCF. This was shown in a landmark theorem of Gibbard [Gib73] and
Satterthwaite [Sat75]:

Theorem 1.1 (Gibbard, Satterthwaite). Any SCF which is not a dictatorship (i.e.,
the choice is not made according to the preferences of a single voter), and has at
least three alternatives in its range, can be strategically manipulated.

∗ehudf@math.huji.ac.il, The Hebrew University of Jerusalem.
†nathan.keller@weizmann.ac.il, Weizmann Institute of Science. Work supported by the Koshland

center for basic research.
‡kalai@math.huji.ac.il, The Hebrew University of Jerusalem and Yale University. Work sup-

ported by an NSF grant and by a BSF grant.
§noam.nisan@gmail.com, The Hebrew University of Jerusalem



The Gibbard-Satterthwaite theorem implies that we cannot hope for full truth-
fullness in the context of voting, since any reasonable election rule can be manipu-
lated. However, it still may be that such a manipulation is possible only very rarely,
and thus can be neglected in practice.

In this paper we prove a quantitative version of the Gibbard-Satterthwaite the-
orem in the case of three alternatives, showing that if the SCF is not very close
to a dictatorship or to having only two alternatives in its range, then even a ran-
dom manipulation by a randomly chosen voter will succeed with a non-negligible
probability. Thus, one cannot hope that manipulations will be negligible for any
reasonable election rule.1

In order to present our results we need a few standard definitions. First we
formally define an SCF and a profitable manipulation.

Definition 1.2. An SCF on n voters and m alternatives is a function F : (Lm)n →
{1, 2, . . . ,m}, where Lm is the set of linear orders on m alternatives. A set of
preferences given by the voters, i.e., (x1, x2, . . . , xn) ∈ (Lm)n, is called a profile.
When we want to single out the ith voter, we write the profile as (xi, x−i), where
x−i denotes the preferences of the other voters.

A profitable manipulation by voter i at the profile (x1, . . . , xn) is a preference
x′i ∈ Lm, such that F (x′i, x−i) is preferred by voter i over F (xi, x−i). A profile is
called manipulable if there exists a profitable manipulation for some voter in that
profile.

Now we define the quantitative settings we consider. Throughout the paper, we
make the impartial culture assumption, meaning that the profiles are distributed
uniformly. While this assumption is certainly unrealistic in most scenarios where
SCFs are used, it is the natural choice for proving lower bounds.2 Under the uni-
form probability measure, the distance of F from a dictatorship is simply the frac-
tion of values that has to be changed in order to turn F into a dictatorship. Sim-
ilarly, in the case of three alternatives, the distance of F from having only two
alternatives in its range is the minimal probability that an alternative is elected.

We quantify the probability of manipulation in the following way:

Definition 1.3. The manipulation power of voter i on an SCF F , denoted by
Mi(F ), is the probability that x′i is a profitable manipulation of F by voter i at pro-
file (x1, . . . , xn), where x1, . . . , xn and x′i are chosen uniformly at random among
all full orders on Lm.

1We note that functions that are very close to being a dictatorship may have a very small number
of manipulable profiles (see e.g. [MPS04]). However, all of the prominent SCFs are far from being a
dictatorship.

2Note that we cannot hope for an impossibility result for every distribution, e.g. since for every
SCF one may consider a distribution on its non-manipulable profiles.
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We note that our notion of manipulation power resembles notions of power and
influence which play important roles in voting theory and in theoretical computer
science. Specifically, our reliance on the uniform probability distribution makes
our notion analogous to the Banzhaf Power Index from voting theory, and to Ben-
Or and Linial’s notion of influence [BL85]. While the latter two notions coincide
for monotone Boolean functions, the notion of Ben-Or and Linial deals also with
the influence of coalitions (i.e., larger sets of voters) and with much more general
protocols for aggregation. Similarly, the notion of manipulation power of one and
more voters can be of interest in much greater generality.

Finally, we define a notion related to Generalized Social Welfare Functions
which plays a central role in our proof.

Definition 1.4. A Generalized Social Welfare Function (GSWF) on n voters and
m alternatives is a function G : (Lm)n → {0, 1}(

m
2 ). That is, given the preference

orders of the voters, G outputs the preferences of the society amongst each pair of
alternatives.

A GSWF G satisfies the Independence of Irrelevant Alternatives (IIA) condi-
tion if the preference of the society amongst any pair of alternatives (A,B) depends
only on the individual preferences between A and B, and not on other alternatives.

Now we are ready to state our main theorem.

Theorem 1.5. There exist universal constants C,C ′ > 0 such that for every ε > 0
and any n the following holds:

• If F is an SCF on n voters and three alternatives, such that the distance of
F from a dictatorship and from having only two alternatives in its range is
at least ε, then

n∑
i=1

Mi(F ) ≥ C · ε6.

• If, in addition, F is neutral (that is, invariant under permutation of the alter-
natives), then:

n∑
i=1

Mi(F ) ≥ C ′ · ε2.

We note that the value of the constant C obtained in our proof of Theorem 1.5
is extremely low (see Remark 5.2), and thus the first assertion applies only in the
asymptotic setting. Unlike the value of C, the obtained value of C ′ is reasonable.

The proof of the theorem consists of three steps:
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1. Reduction from low manipulation power to weak dependence on irrel-
evant alternatives: We show that if

∑n
i=1 Mi(F ) is small, then in some

sense, the question whether the output of F is alternative A or alternative
B depends only a little on alternatives other than A and B. Specifically,
the probability of changing the outcome of F from A to B by altering the
individual preferences between all other alternatives (and leaving the pref-
erences between A and B unchanged) is low. This reduction is obtained by a
directed isoperimetric inequality, which we prove using the FKG correlation
inequality [FKG71] (or, more precisely, using Harris’ inequality [Har60]).

2. Reduction from an SCF with weak dependence on irrelevant alterna-
tives to a GSWF with a low paradox probability: We show that given
an SCF F on three alternatives with weak dependence on irrelevant alterna-
tives, one can construct a GSWF G on three alternatives which satisfies the
IIA condition and has a low probability of paradox (a paradox occurs if for
some profile, the society prefers A over B, B over C and C over A). Fur-
thermore, the distance of G from dictatorship and from always ranking one
alternative at the top/bottom is roughly the same as the distance of F from
dictatorship and from having only two alternatives in its range, respectively.

3. Applying a quantitative version of Arrow’s impossibility theorem: We
use the quantitative versions of Arrow’s theorem obtained by Kalai [Kal02]
(in the neutral case), Mossel [Mos09], and Keller [Kel10] to show that since
G has low paradox probability, it has to be close either to a dictator or to
always ranking one alternative at the top/bottom. Translation of the result to
F yields the assertion of the theorem. We note that the proofs of the quanti-
tative Arrow theorem are quite complex and use discrete Fourier analysis on
the Boolean hypercube and hypercontractive inequalities.

For a fixed value of ε, Theorem 1.5 implies lower bounds of Ω(1) and Ω(1/n)
on

∑
i Mi(F ) and maxi Mi(F ) respectively. It is easy to see that the lower bound

on
∑

i Mi(F ) cannot be improved (up to the value of C and the dependence on ε),
and that the lower bound on maxi Mi(F ) cannot be improved to Ω(1). The latter
follows since for the plurality SCF on n voters, only an O(1/

√
n) fraction of the

profiles can be manipulated at all by any single player, and thus Mi(Plurality) =
O(1/

√
n) for all i. However, it is still possible that one can obtain a better lower

bound than Ω(1/n) on maxi Mi(F ), and we leave this as our first open problem.
Our second open problem concerns the case of more than three alternatives,

m > 3. While some parts of our proof extend to this case (see Section 6), we were
not able to extend all required parts of the proof. After the preliminary version of
this paper was written, several papers tried to resolve this case, and the most notable
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result is by Isaksson, Kindler, and Mossel [IKM10], who obtained a quantitative
Gibbard-Satterthwaite theorem for m > 3 alternatives, under the only additional
assumption of neutrality (see Theorem 2.1 below). However, the case of general
SCFs on more than three alternatives is still open, and we leave it as our second
open problem. We do conjecture that the theorem generalizes to m > 3, perhaps
with the exact form of the bound decreasing polynomially in m (like the bound
obtained by Isaksson et al. in the neutral case).

Our result can be viewed as part of the study of computational complexity as
a barrier against manipulation in elections. A brief overview of the work in this
direction, several follow-up results, and a short discussion of their implications is
presented in Section 2. In Sections 3, 4, and 5 we present the three steps of our
proof. Finally, we discuss the case of more than three alternatives in Section 6.

2 Related Work

Since the Gibbard-Satterthwaite theorem was presented, numerous works studied
ways to overcome the strategic voting obstacle. The two most well-known ways
are allowing payments (see, e.g., [Gro73]) and restricting the voters’ preferences
(see [Mou80]).

Another way, suggested in 1989 by Bartholdy, Tovey, and Trick [BTT89], is
to use a computational barrier. That is, to show that there exist reasonable SCFs
for which, while a manipulation does exist, it cannot be found efficiently, and thus
in practice, the SCF can be considered strategy-proof. Bartholdy et al. [BTT89]
constructed a concrete SCF for which they proved that finding a profitable manipu-
lation is NP -hard as an algorithmic problem. This approach was further explored
by Bartholdy and Orlin [BO91] who proved that manipulation is NP -hard also for
the well-known Single Transferable Vote (STV) election rule. In a related line of
research, several papers showed that for various SCFs, the problem of coalitional
manipulation (i.e., when a coalition of voters tries to coordinate their ballots in or-
der to get their favorite alternative selected), is NP -hard for some SCFs, even for
a constant number of alternatives (see [CS03, CSL07, EL05, FHH09, HHR07]).

However, while the results in this direction are encouraging, the computational
barrier they suggest against manipulation may be practically insufficient. This is
because all the results study the worst case complexity of manipulation, and show
that manipulation is computationally hard for specific instances. In order to prac-
tically prevent manipulation, one should show that it is computationally hard for
most instances, or at least in the average case.

In the last few years, several papers considered the hardness of manipulation
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in the average case [CS06, PR07, PR07b, XC08b, ZPR09].3 Their results suggest
that unlike worst-case complexity, it appears that various SCFs can be manipulated
relatively easily in the average case – that is, for an instance chosen at random
according to some typical distribution. However, all these results consider specific
SCFs, and manipulation by coalitions rather than by individual voters.

Our results yield a general impossibility result in the case of three alternatives,
showing that average-case hardness of manipulation by a single voter cannot be
achieved for any reasonable SCF.

2.1 Follow-Up Work

Since the preliminary version of this paper [FKN08] appeared in FOCS’08, three
follow-up works generalized its results to more than three alternatives, under vari-
ous additional constraints.

The first follow-up work is by Xia and Conitzer [XC08], who use similar tech-
niques to show that a random manipulation will succeed with probability of Ω(1/n)
for any SCF on a constant number of alternatives satisfying the following five con-
ditions:

1. Homogeneity – The outcome of the election does not change if each vote is
replaced by k copies of it.

2. Anonymity – The SCF treats all the voters equally.

3. Non-Imposition – Any alternative can be elected.

4. Cancelling out – The outcome is not changed by adding the set of all possible
linear orders of the alternatives as additional votes.

5. A stability condition – There exists a stable profile which stays stable after
one given alternative is uniformly moved to different positions.

While the fifth condition looks a bit restrictive, Xia and Conitzer show that it
holds for several well-known SCFs, including all positional scoring rules, STV,
Copeland, Maximin, and Ranked Pairs.

The second follow-up work is by Dobzinsky and Procaccia [DP09]. They con-
sider the case of two voters and an arbitrary number m of alternatives, and show
that if an SCF is ε-far from a dictatorship and satisfies Pareto optimality (i.e., if
both voters prefer alternative A over B, then B is not elected), then a random

3It should be noted that the success probability of a random manipulation for SCFs with a small
number of voters and alternatives was studied a long ago in a paper of Kelly [Kel93].

6



manipulation will succeed with probability at least ε/m8. The techniques used in
the proof of [DP09] are relatively simple, and the authors believe that their result
can be generalized to any number of voters, by modifying an inductive argument
of Svensson [Sve99] that extends the proof of the classical Gibbard-Satterthwaite
theorem from two voters to n voters, for any n.

The most recent, and most notable, work is by Isaksson, Kindler and Mos-
sel [IKM10] who prove a quantitative version of the Gibbard-Satterthwaite theo-
rem for a general number of alternatives, under the only additional assumption of
neutrality.

Theorem 2.1 (Isaksson, Kindler, and Mossel). Let F be a neutral SCF on m ≥ 4
alternatives which is at least ε-far from a dictatorship. Consider a random ma-
nipulation generated by choosing a profile and a manipulating voter at random,
and replacing four adjacent alternatives in the preference order of that voter by a
random permutation of them. Then

Pr[ The manipulation is successful ] ≥ ε2

109n4m34
.

The techniques used by Isaksson et al. are combinatorial and geometric, and
essentially contain a generalization of the canonical path method which allows to
prove isoperimetric inequalities for the interface of three bodies.

The result of Isaksson et al. shows that for any neutral SCF which is far from
a dictatorship, a random manipulation by a single randomly chosen voter will suc-
ceed with a non-negligible probability. Thus, a single voter with black-box access
to the SCF can find a manipulation efficiently.

However, this result still does not imply that the agenda of using computa-
tional hardness as a barrier against manipulation is completely hopeless, for three
reasons:

1. The result relies on the assumption that the votes are distributed randomly.
It is possible to argue that in real-life situations, the distribution of the votes
is far from random, and thus the result does not apply.

2. The result applies only to neutral SCFs.

3. While the result implies that with a non-negligible probability, a random
manipulation by a randomly chosen voter succeeds, it is still possible that for
most of the voters, manipulation cannot be found efficiently (or even at all),
while only for a polynomially small portion of the voters a manipulation can
be found efficiently. Thus, it is possible that only a few voters can manipulate
efficiently, while most voters cannot.
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For an extensive overview of the study of computational complexity as a barrier
against manipulation, and a further discussion on the implication of our results and
the results of the follow-up works, we refer the reader to the survey [FP10] by
Faliszewsky and Procaccia.

3 Reduction from Low Manipulation Power to Weak De-
pendence on Irrelevant Alternatives

In this section we show that if F is an SCF on three alternatives such that the ma-
nipulation power4 of the voters on F is small, then in some sense, the dependence
of F on irrelevant alternatives is low. We quantify this notion as follows:

Definition 3.1. Let F be an SCF and let a, b be two alternatives. For a profile
x ∈ (L3)n, denote by xa,b ∈ {0, 1}n the vector which represents the preferences
of the voters between a and b, where xa,b

i = 1 if the ith voter prefers a over b,
and xa,b

i = 0 otherwise. The dependence of the choice between a and b on the
(irrelevant) alternative c is:

Ma,b(F ) = Pr[f(x) = a, f(x′) = b],

where x, x′ ∈ (L3)n are chosen at random, subject to the restriction xa,b = (x′)a,b.

By the definition, Ma,b(F ) measures how often a change of the individual
preferences between the alternative c and the alternatives a, b leads to changing the
output of F from a to b or vice versa. Thus, the notion measures how much the
(irrelevant) alternative c affects the question whether a or b is elected.

We note that Ma,b can be also viewed as kind of a manipulation, where all
the voters together attempt to change the output of F to be b rather than a by re-
choosing at random all their preferences – except for those between a and b. How-
ever, this definition does not require that anyone in particular gains from changing
the output.

The result we prove is the following:

Lemma 3.2. Let F be an SCF on three alternatives. Then for every pair of alter-
natives a, b,

Ma,b(F ) ≤ 6
n∑

i=1

Mi(F ).

4See Definition 1.3.

8



In order to prove Lemma 3.2, we define a certain combinatorial structure and
relate it both to Ma,b(F ) and to

∑
i Mi(F ).

We begin with a convenient way to represent a profile x ∈ (L3)n, given the
individual preferences between a and b (denoted by xa,b). Note that for every spe-
cific value of za,b of xa,b, there are exactly 3n possible values of x that agree with
it. Indeed, the agreement of x with za,b fixes the preferences of all voters between
a and b in x, and each voter may choose one of three locations for c: above both a
and b, below both of them, or between them. Thus, for every fixed za,b we can view
the set {x|xa,b = za,b} as isomorphic to {0, 1, 2}n = {above, between, below}n.
We use v = (v1, . . . , vn) to denote a point in this space. Thus, once xa,b

i is fixed,
vi ∈ {0, 1, 2} encodes both xb,c

i and xc,a
i . For example, xa,b

i = 0 and vi = 0
encodes the preference c �i b �i a.

Next, we define two sets which are closely related to the definition of Ma,b(F ).

Definition 3.3. For every value of za,b, let

A(za,b) = {x|xa,b = za,b, F (x) = a}, and

B(za,b) = {x|xa,b = za,b, F (x) = b}.

Both A(za,b) and B(za,b) are viewed as residing in the space {0, 1, 2}n.

In terms of these definitions, we clearly have:

Ma,b(f) = Ex∈(L3)n

[
|A(xa,b)|

3n
· |B(xa,b)|

3n

]
. (1)

In order to relate Mi(F ) to the sets A(xa,b) and B(xa,b), we endow the set
{0, 1, 2}n with a structure of a directed graph, whose edges correspond to (some
of) the profitable manipulations by voter i. For each fixed value of xa,b, for each
i ∈ {1, 2, . . . , n}, and for each v−i ∈ {0, 1, 2}n−1, the graph has three directed
edges in direction i between the possible values of vi: 0 → 1, 1 → 2, and 0 → 2.
The following definition counts the directed edges going “upward” from a subset
of {0, 1, 2}n.

Definition 3.4. Let A ⊆ {0, 1, 2}n. The upper edge border of A in the ith direc-
tion, denoted by ∂iA, is the set of directed edges in the ith direction defined above
whose tail is in A and whose head is not in A. That is,

∂iA = {(v−i, vi, v
′
i) | (v−i, vi) ∈ A, (v−i, v

′
i) 6∈ A, vi < v′i}.

The upper edge border of A is ∂A =
⋃

i ∂i(A).
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We now relate Mi(F ) to the upper edge borders in the ith direction of A(xa,b)
and B(xa,b).

Lemma 3.5. For any 1 ≤ i ≤ n, we have:

Mi(f) ≥ 1
6
· 3−n · Ex∈(L3)n

[
|∂iA(xa,b)|+ |∂iB(xa,b)|

]
. (2)

Proof. We compute a lower bound on Mi(F ) by choosing x and x′ at random,
differing only (possibly) in the preferences of the ith voter, and providing a lower
bound on the probability that the ith coordinate of x′ is a profitable manipulation
of x. We perform the random choice as follows: First we choose at random xa,b

−i ∈
{0, 1}n−1, xa,b

i ∈ {0, 1}, and x′a,b
i ∈ {0, 1}. With probability 1/2, we have x′a,b

i =
xa,b

i , and the rest of the analysis is conditioned on this event indeed occurring (a
conditioning that does not affect the distribution chosen). We next choose v−i ∈
{0, 1, 2}n−1, and finally we choose vi ∈ {0, 1, 2} and v′i ∈ {0, 1, 2}.

We claim that if (v−i, vi, v
′
i) ∈ ∂iA, then either x′i is a manipulation of x or xi

is a manipulation of x′.
Indeed, note that by the definition of ∂iA, the condition (v−i, vi, v

′
i) ∈ ∂iA

implies that when moving from xi to x′i, voter i lowered his relative preference of
c without changing his ranking of the pair (a, b), and this changed the output of F
from a to some other result t ∈ {b, c}. We have two possible cases:

1. If, according to xi, voter i prefers t to a, then x′i is a manipulation of x.

2. If xi ranks a above t, then this is definitely true for x′i too, since when moving
from xi to x′i, a’s rank relative to b did not change, whereas it improved
relative to c. Thus, xi is a manipulation of x′.

Thus, in both cases either x′i is a manipulation of x or xi is a manipulation of x′,
as claimed.

The claim implies that every edge in ∂iA corresponds to a different pair (x, x′)
for which the ith coordinate of x′ is a profitable manipulation of x. Since each
such edge is chosen with probability 1

2 · 3
−n · 1

3 , the total contribution of such pairs
to the lower bound on Mi(F ) is 1

6 · 3
−n · Ex[|∂iA(xa,b)|. A similar contribution

comes from the case (v−i, vi, v
′
i) ∈ ∂iB.

Summing the two sides of Equation (2) over i, we get:

n∑
i=1

Mi(F ) ≥ 3−n

6
· Ex∈(L3)n

[(
|∂A(xa,b)|+ |∂B(xa,b)|

)]
. (3)
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Now we are ready to establish the relation between
∑

i Mi(F ) and Ma,b(F ). Re-
call that Equation (1) above states:

Ma,b(f) = Ex∈(L3)n

[
|A(xa,b)|

3n
· |B(xa,b)|

3n

]
.

By combination of these two equations, the application of the following proposition
to the sets A(xa,b) and B(xa,b) yields the assertion of Lemma 3.2.

Proposition 3.6. For every pair of disjoint sets A,B ⊂ {0, 1, 2}n, we have:

|∂(A)|+ |∂(B)| ≥ 3−n|A||B|.

Proof. We start by “shifting” both A and B upward, using a standard monotoniza-
tion technique (see, e.g., [Fra87]). The shifting is performed by a process of n
steps. We denote A0 = A, and for each i = 1, . . . , n, at step i we replace Ai−1

by a set Ai of the same size that is monotone in the i’th coordinate (which means
that if v ∈ Ai and v′i ≥ vi then (v−i, v

′
i) ∈ Ai). This is done by moving every v

with vi < 2 to have vi = 2 if the obtained element is not already in A, and then
moving every v that remained with vi = 0 to have vi = 1 if the obtained element
is not already in A. Clearly such steps do not change the size of the set, and thus
|Ai| = |A| for all i. As usual in such operations, it is not hard to check that the step
operation does not increase ∂jA for any j, and in particular, does not destroy the
monotonicity in previous indices (see, e.g., [Fra87] for similar arguments). Hence,
the sequence |∂j(Ai)| is monotone decreasing in i for all j.

Let A′ and B′ be the sets we obtain after all n steps. We claim that A′ \A, the
set of “new” elements added in the monotonization process, satisfies

|A′ \A| ≤ |∂(A)|. (4)

Indeed, it is clear that every new element added in the ith step of the monotoniza-
tion corresponds to either one or two edges in ∂i(Ai−1) and these edges are disjoint.
Thus, denoting by mi the number of new elements added in the ith step, we get by
the monotonicity of the sequence |∂j(Ai)|, that:

|A′ \A| ≤
n∑

i=1

mi ≤
n∑

i=1

|∂i(Ai−1)| ≤
n∑

i=1

|∂i(A)| = |∂(A)|.

Similarly, we have
|B′ \B| ≤ |∂(B)|. (5)
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Since both A′ and B′ are monotone in the partial order of the lattice {0, 1, 2}n,
they are “positively correlated”, by Harris’ theorem [Har60], or by its better known
generalization, the FKG inequality [FKG71]. This means that

|A′ ∩B′|/3n ≥ |A′|/3n · |B′|/3n = |A| · |B|/3n.

However, by assumption A and B are disjoint and thus A′∩B′ ⊆ (A′\A)∪(B′\B).
Therefore, by Equations (4) and (5), we have:

|∂(A)|+ |∂(B)| ≥ |(A′ \A) ∪ (B′ \B)| ≥ |A′ ∩B′| ≥ |A|/3n · |B|/3n.

This completes the proof of the proposition, and thus also of Lemma 3.2.

4 Reduction from an SCF with Weak Dependence on Ir-
relevant Alternatives to an Almost Transitive GSWF

In this section we present a reduction which allows to pass from an SCF with
weak dependence on irrelevant alternatives to a GSWF to which one can apply
a quantitative version of Arrow’s impossibility theorem. In order to present the
results, we need a few more definitions related to GSWFs and to the quantitative
Arrow theorem.

Recall that a GSWF on m alternatives is a function G : (Lm)n → {0, 1}(
m
2 )

which is given the preference orders of the voters, and outputs the preference of
the society amongst each pair (a, b) of alternatives. The output preference of G
between a and b for a given profile x ∈ (Lm)n is denoted by Ga,b(x) ∈ {0, 1},
where Ga,b(x) = 1 if a is preferred over b, and Ga,b(x) = 0 is b is preferred over
a. G satisfies the IIA condition if for any pair (a, b), the function Ga,b(x) depends
only on the vector xa,b ∈ {0, 1}n (which represents the preferences of the voters
between a and b), and not on other alternatives.

As was shown by Condorcet in 1785, a GSWF based on the majority rule
amongst pairs of alternatives can result in a non-transitive outcome, that is, a situ-
ation in which there exist alternatives a, b, c, such that a is preferred by the society
over b, b is preferred over c, and c is preferred over a. The seminal impossibil-
ity theorem of Arrow [Arr50, Arr63] asserts that such non-transitivity occurs in
any “non-trivial” GSWF on at least three alternatives satisfying the IIA condition.
Since we would like to use quantitative versions of Arrow’s theorem on three al-
ternatives, we use the following notation:

Notation 4.1. For a GSWF G on three alternatives, let

NT (G) = Pr
x∈(L3)n

[G(x) is non-transitive ].
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The family of all GSWFs on three alternatives satisfying the IIA condition
whose output is always transitive (i.e., those trivial GSWFs for which the con-
clusion of Arrow’s theorem does not apply) was partially characterized by Wil-
son [Wil72], and fully characterized by Mossel [Mos09]. It consists exactly of all
the dictatorships and the anti-dictatorships (i.e., GSWFs whose output is either the
preference order of a single voter or its inverse), and the GSWFs which rank a
fixed alternative always at the top (or always at the bottom). (See Theorem 6.1 for
the exact formulation.) Clearly, all such GSWFs are undesirable from the point of
view of Social choice theory, and one may assume that a reasonable GSWF is “far”
from being contained in this set. To quantify this notion, we denote

TR3 = { All GSWFs on 3 alternatives which satisfy IIA and are always transitive },

and for a GSWF G on three alternatives, denote by

Dist(G, TR3)

the minimal number of output values that should be changed in order to make G
always transitive, while maintaining the IIA condition. The quantitative versions
of Arrow theorem which we use in the next section assert that if NT (G) is small
(i.e., G is almost transitive), then Dist(G, TR3) must be small as well (and thus,
G is close to the family of “bad” GSWFs).

Finally, we introduce a definition which will be used in the proof:

Definition 4.2. For a GSWF G on m alternatives, and a profile x ∈ (Lm)n, we
say that an alternative a is a Generalized Condorcet Winner (GCW) at profile x if
for any alternative b 6= a, we have Ga,b(x) = 1. A Generalized Condorcet Loser
(GCL) is defined similarly.

Now we are ready to present our result.

Lemma 4.3. Let ε1, ε2 > 0, and let F be an SCF on three alternatives, such that:

• Ma,b(F ) ≤ ε1 for all pairs (a, b).

• F is at least ε2-far from a dictatorship and from an anti-dictatorship (i.e., an
SCF which always outputs the bottom choice of a fixed voter).

• For each alternative a, Prx∈(L3)n [F (x) = a] ≥ ε2.

Then one can construct a GSWF G on three alternatives, such that:

1. G satisfies the IIA condition.

13



2. Dist(G, TR3) ≥ ε2 − 3
√

ε1.

3. NT (G) ≤ 3
√

ε1.

Proof. Given F , we define the GSWF G as follows:

Definition 4.4. For each pair of alternatives a, b, and a profile x ∈ (L3)n, we set
Ga,b(x) = 1 if

Pr
x′

[F (x′) = a | x′a,b = xa,b] > Pr
x′

[F (x′) = b | x′a,b = xa,b],

and Ga,b(x) = 0 if the reverse inequality holds. In the case of equality we break
the tie according to the preference of some fixed voter between a and b.

Intuitively, Ga,b(x) considers all profiles x′ which agree with x on the prefer-
ences of the voters between a and b, and checks whether F (x′) = a occurs more
often then F (x′) = b or the opposite, while ignoring all cases where F (x′) equals
some other alternative. It is clear from the definition that G satisfies the IIA condi-
tion, and that if F is neutral (i.e., invariant under permutation of the alternatives),
then G is neutral as well.

In order to analyze G, we introduce an auxiliary definition:

Definition 4.5. A profile x ∈ (L3)n is called a minority preference on the pair
of alternatives (a, b) if F (x) = a while Ga,b(x) = 0, or if F (x) = b while
F a,b(x) = 1. x is called a minority preference if it is a minority preference for at
least some pair (a, b). For a fixed pair of alternatives a, b, denote

Na,b(F ) = Pr
x∈(L3)n

[x is a minority preference on (a, b)].

It is easy to relate Na,b to Ma,b, using the Cauchy-Schwarz inequality:

Proposition 4.6. For every SCF F and every pair of alternatives a, b we have

Ma,b(F ) ≥ (Na,b(F ))2.

Proof. Given F, a, b, and a vector xa,b ∈ {0, 1}n representing the preferences of
the voters between a and b, define pa(xa,b) = Pr[F (z) = a] and pb(xa,b) =
Pr[F (z) = b], where the probabilities are taken over a random profile z ∈ (L3)n

whose preferences between a and b agree with xa,b. In these terms,

Ma,b(F ) = Exa,b∈{0,1}n [pa(xa,b) · pb(xa,b)],

while
Na,b(F ) = Exa,b∈{0,1}n [min{pa(xa,b), pb(xa,b)}].
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Thus, by the Cauchy-Schwarz inequality,

Ma,b(F ) = E[pa · pb] ≥ E[(min{pa, pb})2] ≥ (E[min{pa, pb}])2 = (Na,b(F ))2,

as asserted.

We are now ready to prove that G satisfies the desired properties.
Consider a profile x that is not a minority preference and denote a = F (x).

Note that by the definition of a minority preference, for all b we must have that
Ga,b(x) = 1 and thus, a is a Generalized Condorcet Winner of G at x.

This immediately implies that G satisfies Condition 3 above. Indeed,

NT (G) = Pr
x

[ G does not have a GCW at x ]

≤ Pr[ x is a minority preference of F]

≤
∑
a,b

Na,b(F ) ≤
∑
a,b

√
Ma,b(F ) ≤ 3

√
ε1,

as asserted.
In order to prove Condition 2, let Dist(G, TR3) = ε, and let H ∈ TR3 be

such that G can be transformed to H by changing only fraction ε of the values. We
consider four cases:

1. Case 1: H always ranks alternative a at the top. In this case, Pr[ a is a GCW of G ] ≥
1− ε. Note that by the argument above, if x is not a minority preference and
a is a GCW of G at x then F (x) = a. Hence,

Pr[F (x) = a] ≥ (1−ε)−Pr[ x is a minority preference of F ] ≥ 1−ε−3
√

ε1.

However, by the assumption,

Pr[F (x) = a] ≤ 1− Pr[F (x) = b] ≤ 1− ε2,

and thus, ε ≥ ε2 − 3
√

ε1, as asserted.

2. Case 2: H always ranks alternative a at the bottom. In this case, Pr[ a is a GCL of G ] ≥
1 − ε. As in the previous case, if x is not a minority preference and a is a
GCL of G at x then F (x) 6= a. Thus,

Pr[F (x) = a] ≤ ε + 3
√

ε1.

However, by assumption we have Pr[F (x) = a] ≥ ε2, and thus ε ≥ ε2 −
3
√

ε1, as asserted.
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3. Case 3:H is a dictatorship of voter i. For a profile x, denote the top alter-
native in the preference order of voter i by xtop(i). We have

Pr[xtop(i) is a GCW of G at x ] ≥ 1− ε.

As in the previous cases, this implies that

Pr[F (x) = xtop(i)] ≥ 1− ε− 3
√

ε1.

However, since by assumption, F is at least ε2-far from a dictatorship of
voter i, we have ε + 3

√
ε1 ≥ ε2, and the assertion follows.

4. Case 4:H is an anti-dictatorship of voter i. By the same argument as in
the previous case, if xbot(i) is the bottom alternative in the preference order
of voter i, then

Pr[F (x) = xbot(i)] ≥ 1− ε− 3
√

ε1.

However, since F is also at least ε2-far from anti-dictatorship of voter i, the
assertion follows.

This completes the proof of Condition 2 and of Lemma 4.3.

Remark 4.7. We note that a certain converse of Lemma 4.3 is true as well. If we
have an GSWF G satisfying the IIA condition such that Pr[ G has a GCW ] ≥ 1−ε,
then we can define a SCF F to be equal to the GCW of G(x) if such GCW exists,
and to the top choice of a fixed voter if the GCW does not exist. Since G satisfies
the IIA condition, the event F (x) = a and F (x′) = b with xa,b = x′a,b can occur
only if either G(x) or G(x′) does not have a GCW, and thus, Ma,b(F ) ≤ 2ε.

5 Application of a Quantitative Arrow Theorem

The only ingredient left for concluding the proof of Theorem 1.5 is a quantitative
version of Arrow’s impossibility theorem. In order to get the optimal result for
various assumptions on the SCF F , we use two such versions, due to Kalai [Kal02],
and to Keller [Kel10].

Theorem 5.1. Let G be a GSWF on three alternatives which satisfies the IIA con-
dition. Then:

1. If Dist(G, TR3) ≥ ε, then NT (G) ≥ C1 · ε3, where C1 is a universal
constant. [Keller,2010]
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2. If, in addition, G is neutral and is at least ε-far from a dictatorship and an
anti-dictatorship, then NT (G) ≥ C2 · ε, where C2 is a universal constant.
[Kalai,2002]

Now we are ready to present the proof of Theorem 1.5.

Proof. Let F be an SCF on three alternatives, and assume on the contrary that:

• The distance of F from a dictatorship is at least ε,5

• For each alternative a, Pr[F (x) = a] ≥ ε, but

•
∑

i Mi(F ) < C0 · ε6 (where C0 is a constant that will be specified below).

By Lemma 3.2, it follows that for each pair of alternatives a, b, we have Ma,b(F ) <
6C0 · ε6. By Lemma 4.3, it then follows that there exists a GSWF G on three alter-
natives which satisfies the IIA condition, and

• Dist(G, TR3) ≥ ε− 3
√

6C0ε6 ≥ ε/2. (The second inequality holds for C0

sufficiently small.)

• NT (G) < 3
√

6C0ε6 = 3
√

6C0 · ε3.

However, for C0 small enough (concretely, C0 ≤ C2
1/3456 where C1 is the con-

stant in Theorem 5.1), this contradicts the first version of Theorem 5.1 above. This
proves the first assertion of Theorem 1.5. The second assertion follows similarly
using the second version of Theorem 5.1 instead of the first one (note that by the
construction of G, if F is neutral then G is neutral as well and thus Kalai’s version
of the quantitative Arrow theorem can be applied). This completes the proof of
Theorem 1.5.

Remark 5.2. Since the value of the constant C1 in the first version of Theorem 5.1
is extremely low (i.e., of order exp(2−10,000,000) ), for certain values of n and ε,
a better result can be obtained by using another version of the quantitative Arrow
theorem. In that version, obtained by Mossel [Mos09], the lower bound C · ε3 is
replaced by (1/36000) · ε3n−3. Applying Mossel’s theorem instead of the version
we used above, we get the lower bound∑

i

Mi(F ) ≥ C ′ · ε6/n6,

where C ′ ≈ 10−8. While this bound depends also on n, for certain values of the
parameters it is still stronger, due to the bigger value of the constant.

5We note that there is no need to add the condition that F is far from an anti-dictatorship, since
an SCF which is close to an anti-dictatorship can be clearly manipulated by the “anti-dictator”.
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6 SCFs with More than Three Alternatives

In this section we consider SCFs with more than three alternatives. We show that
the second step of our proof (reduction from an SCF with low dependence on
irrelevant alternatives to an almost transitive GSWF) can be generalized to SCFs on
m alternatives, and that the third step (application of a quantitative Arrow theorem)
can be generalized under an additional assumption of neutrality. However, we
weren’t able to generalize the first step (reduction from low manipulation power to
low dependence on irrelevant alternatives), and thus we do not obtain any variant
of the main theorem for more than three alternatives.

We would like to mention again two related follow-up works. Xia and Conitzer
[XC08] showed that the first step of our proof can be generalized to any constant
number of alternatives under several additional assumptions (see Section 2.1). Fur-
thermore, Isaksson et al. [IKM10] obtained a quantitative Gibbard-Satterthwaite
theorem for any number of alternatives under a single additional assumption of
neutrality, using a different technique.

Despite these two works, we decided to present the partial generalization of our
proof to more than three alternatives, hoping that the technique can be extended to
obtain a quantitative Gibbard-Satterthwaite theorem without the neutrality assump-
tion.

6.1 Reduction from an SCF with Low Dependence on Irrelevant Al-
ternatives to a GSWF which Almost Always has a Condorcet Win-
ner

In order to present the results of this section, we have to generalize the notions of
TR3 and NT (G) defined in Section 4 to GSWFs on m alternatives.

The class TRm of all GSWFs on m alternatives which satisfy the IIA con-
dition and whose output is always transitive, was partially characterized by Wil-
son [Wil72], and fully characterized by Mossel [Mos09] in the following theorem:

Theorem 6.1 (Mossel). The class TRm consists exactly of all GSWFs G on m
alternatives satisfying the IIA condition, for which there exists a partition of the set
of alternatives into disjoint sets A1, A2, . . . , Ar such that:

• For any profile, G ranks all the alternatives in Ai above all the alternatives
in Aj , for all i < j.

• For all s such that |As| ≥ 3, the restriction of G to the alternatives in As is
a dictatorship or an anti-dictatorship.
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• For all s such that |As| = 2, the restriction of G to the alternatives in As is
an arbitrary non-constant function of the individual preferences between the
two alternatives in As.

While the notion NT (G) makes sense also for GSWFs on m alternatives, we
use here a different notion which coincides with NT (G) in the case of three alter-
natives:

Notation 6.2. Let G be a GSWF on m alternatives. The probability that G does
not have a Generalized Condorcet Winner (GCW) is denoted by

NGCW (G) = Pr
x∈(Lm)n

[ G does not have a GCW at x ].

Similarly, GCW (G) denotes the probability that G has a GCW.

Under these definitions, Lemma 4.3 generalizes directly to the case of m alter-
natives. We get:

Lemma 6.3. Let ε1, ε2 > 0, and let F be an SCF on m alternatives, such that:

• Ma,b(F ) ≤ ε1 for all pairs (a, b).

• F is at least ε2-far from a dictatorship and from an anti-dictatorship.

• For each alternative a, Prx∈(Lm)n [F (x) = a] ≥ ε2.

Then one can construct a GSWF G on m alternatives, such that:

1. G satisfies the IIA condition.

2. Dist(G, TRm) ≥ ε2 −
(
m
2

)√
ε1.

3. NGCW (G) ≤
(
m
2

)√
ε1.

Furthermore, if F is neutral, then G is neutral as well.

The proof of Lemma 6.3 is essentially the same as the proof of Lemma 4.3, and
thus is omitted here.

6.2 Generalization of the Quantitative Arrow Theorem

The quantitative versions of Arrow’s theorem presented in [Mos09, Kel10] apply
also to GSWFs on m alternatives, and assert that if Dist(G, TRm) is not too small,
then NT (G) is also not too small. However, the reduction given by Lemma 6.3
yields a bound on NGCW (G) rather than on NT (G), and thus we need a lower
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bound on NGCW (G) (the probability of not having a Generalized Condorcet
Winner), which may be much lower than the probability of being non-transitive.

In this subsection we prove a generalization of the quantitative Arrow theorem
which allows to obtain a lower bound on NGCW (G). However, we require the
additional assumption that G is neutral (i.e., invariant under permutation of the
alternatives), and our proof relies heavily on this assumption.

Before we present the generalization, we recall a few properties of neutral
GSWFs. Let G be a GSWF on n voters and m alternatives denoted by {1, 2, . . . ,m}.
If G satisfies the IIA condition, then its output is determined by

(
m
2

)
Boolean func-

tions Gi,j : {0, 1}n → {0, 1}, which are given the individual preferences between
alternatives i and j and output the preference of the society between them. If, in ad-
dition, G is neutral, then all the functions Gi,j are equal, and thus we denote them
by a single function g : {0, 1}n → {0, 1}, and write G = g⊗(m

2 ). Note that the neu-
trality assumption implies also that g is an odd function, that is, g(a1, . . . , an) =
1 − g(1 − a1, . . . , 1 − an), and in particular, Pr[g = 1] = 1/2. We denote the
distance of g from a dictatorship or an anti-dictatorship by Dist(g,DICT2).

We are now ready to present our result. We start with an equivalent formulation
of Kalai’s version of the quantitative Arrow theorem [Kal02].

Theorem 6.4 (Kalai). There exists a constant C3 > 0 such that the following
holds. Let G = g⊗(3

2) be a neutral GSWF on n voters and 3 alternatives satisfying
the IIA condition. Then

NGCW (G) ≥ C3 ·Dist(g,DICT2).

We prove the following generalization:

Theorem 6.5. For any ε > 0, and for every m ≥ 3, there exists a constant δm(ε) >

0 such that the following holds. Let G = g⊗(m
2 ) be a neutral GSWF on n voters

and m alternatives which satisfies the IIA condition. If Dist(g,DICT2) ≥ ε, then
NGCW (G) ≥ δm.

Moreover, for m = 3, 4, 5, we can take δm = C · ε, where C is a universal
constant.

Before we present the proof of the theorem, we note that if a neutral GSWF
G = g⊗(m

2 ) on m alternatives is at least ε-far from a dictatorship and from an
anti-dictatorship, then Dist(g,Dict2) ≥ ε/

(
m
2

)
. Thus, Theorem 6.5 implies im-

mediately the following corollary.

Corollary 6.6. For any ε > 0, and for every m ≥ 3, there exists a constant
δ′m(ε) > 0 such that the following holds. Let G be a neutral GSWF on m al-
ternatives satisfying the IIA condition. If G is at least ε-far from a dictatorship and
from an anti-dictatorship, then NGCW (G) ≥ δ′m.
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Moreover, for m = 3, 4, 5, we can take δ′m = C · ε, where C is a universal
constant.

Proof. (of Theorem 6.5) The case m = 3 is exactly Kalai’s theorem above. We
first give a direct proof of the cases m = 4 and m = 5, and then show a general
inductive argument that allows to leverage the result to any m > 5.

6.2.1 GSWFs on four and five alternatives

We begin by considering the case m = 4. For 1 ≤ i, j ≤ 4, let Xij be the random
0/1 variable that indicates the event Gi,j(x) = 1, where the profile x is chosen
at random. Note that by the neutrality assumption, the probability GCW (G) is
precisely four times the probability that alternative 1 is a GCW of G. Hence,

GCW (G) = 4 · E[
4∏

j=2

X1j ] = 4 · E[
4∏

j=2

(1−Xj1)]. (6)

Before expanding this equation, we make three observations. First, from the neu-
trality of G it follows that g is balanced (i.e., Pr[g = 1] = 1/2), and thus, for all
j ∈ {2, 3, 4} we have

E[Xj1] = 1/2.

Next, for any pair i, j ∈ {2, 3, 4}, we can apply Kalai’s theorem to the GSWF G′

which is the restriction of G to the alternatives {1, i, j} to get:

E[Xj1Xi1] =Pr[ 1 is a GCL of G’ ]

=
1
3
·GCW (G′) ≤ 1

3
(1− C3 ·Dist(g,DICT2)).

Finally, from neutrality, the probability that alternative 1 is a GCW is precisely
equal to the probability that he is a GCL, and thus,

E[
4∏

j=2

X1j ] = E[
4∏

j=2

Xj1].

Using these observations we expand Equation (6) and get:

GCW (G) = 4(1− 3 · 1
2

+ 3 · 1
3
·GCW (G′)− 1

4
·GCW (G)),

and thus, by Kalai’s theorem,

GCW (G) = 2GCW (G′)− 1 ≤ 1− 2C3 ·Dist(g,DICT2), (7)
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which yields the assertion of the theorem for m = 4 with δ4 = 2C3 · ε.

Next we consider the case m = 5. Unfortunately, the first natural step, gener-
alizing the inclusion-exclusion type formula (6) to get

GCW (G) = 5 · E[
5∏

j=2

(1−Xj1)],

does not help, due to an annoying prosaic reason: the two terms E[
∏5

j=2(X1j)]
and E[

∏5
j=2(1 − Xj1)] which appear on the two sides of the equation have the

same sign, and cancel out. To remedy this we consider a neutral GSWF G6 on
six alternatives, and denote its restrictions to five, four, and three alternatives by
G5, G4, and G3, respectively. We start with the expansion

GCW (G6) = 6 · E[
6∏

j=2

(1−Xj1)],

which gives:

GCW (G6) =6(1− 5
2

+
(

5
2

)
GCW (G3)

3
−

−
(

5
3

)
GCW (G4)

4
+

(
5
4

)
GCW (G5)

5
− GCW (G6)

6
).

Rearranging, and using Equation (7), we get:

GCW (G6)
3

+
5 ·GCW (G3)

3
− 1 = GCW (G5).

Since GCW (G6) ≤ 1 and GCW (G3) ≤ 1− C3 ·Dist(g,DICT2), this yields

GCW (G5) ≤ 1− 5
3
C3 ·Dist(g,DICT2),

which is the assertion of the theorem for m = 5 with δ5 = 5
3C3 · ε.

6.2.2 GSWFs on more than five alternatives

The assertion of the theorem for all m > 5 follows from the cases m = 3, 4, 5
using full induction.

Assume that we already proved the assertion for m1 and m2, and let G =
g⊗(m1+m2

2 ) be a GSWF on m1 + m2 alternatives, such that Dist(g,Dict2) = ε.
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Applying the assertion to the restrictions of G to the first m1 alternatives and to
the last m2 alternatives, we get that with probability at least δm1 , there is no GCW
among the first m1 alternatives, and with probability at least δm2 there is no GCW
among the last m2 alternatives. The key point here is that these two events are
independent since the voter preferences within two disjoint sets of alternatives are
totally independent of each other. Thus, the probability that there is no GCW at all
is at least δm1 · δm2 .

Starting with δm = C · ε for m = 3, 4, 5, we get δm ≥ (Cε)bm/3c for general
m. (Luckily, every integer m > 5 can be represented as m = 3a + 4b, with a and
b nonnegative integers.)

This completes the proof of Theorem 6.5.

Remark 6.7. We note that the value of δm obtained in our proof for general values
of m decreases as εO(m). However, we conjecture that for a fixed ε > 0, not
only that δm need not decrease with m, it actually tends to 1. This conjecture
is supported by a recent work of Mossel [Mos10] who calculated the asymptotic
value limm limn[1− δ(m)] = Θ(1/m) for the case when Ga,b : {0, 1}n → {0, 1}
is a low-influence function (e.g., the majority function) on xa,b for all a, b ∈ [m].
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