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In Part I we saw that the works of Helmholtz, Hiilder, Campbell and Stevens 
contain the main ingredients for the analysis of the conditions which make 
(fundamental) measurement possible, but, so to speak, that what is lacking in the 
work of the first three is to be found in the work of the last, and vice versa. The 
first tradition focuses on the conditions that an empirical qualitative system must 
satisfy in order to be numerically representable, but pays no attention to the 
relation between possible different representations. The second tradition focuses 
on the study of scale types and the mathematical properties of the transformations 
that characterize the scales, but says nothing about the empirical facts these scales 
represent and the nature of such representation. Then, these two lines of research 
need to be appropriately integrated. In this Part II, we shall see how this 
integration is brought about in the foundational work of Suppes, the extensions 
and modifications which are generated around this work and the mature theory 
which results from all of this. 0 1997 Elsevier Science Ltd. 

6. Suppes’ Foundational Work 

The first author to appropriately integrate the two previous lines of research 

was P. Suppes, in a famous paper published in 1951 and entitled ‘A Set of 

Independent Axioms for Extensive Quantities’ where he lays the basis of the 

mature theory of metrization. Our statement that it is here that the two 

previous traditions converge is a posteriori and taking into account ‘the matter 

itself; it is not a statement about the explicit intentions of the author. Suppes 

does not explicitly set out to bring about such an integration, at least he says 

nothing suggesting such a thing. Nevertheless, whether or not Suppes was 
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aware of his position in relation to previous research, the work which he starts 
in this article de&c& integrates previously dispersed elements for the first time. 

In this paper, Suppes claims to attempt two things: first, to find a set of 
conditions (weaker than Holder’s and which avoid their problems) for an 
empirical domain to have a morphism representation over the set of real 
numbers; and secondly, to study what relation there is between all these 
morphisms. This first work only deals with ‘additive’ empirical domains of the 
type we have seen, i.e. extensive quantities, but it allows a natural generalization 
to be made to other types of empirical domains. 

The primitive notions are those of a domain A of objects, a binary relation 
Q over A, whose interpretation is ‘smaller or equal in magnitude than’, and a 
binary operation l on A of combination or concatenation. A structure E = <A, 

Q, l > is a system ofextensive quantities (in brief, SEQ) iff (Suppes, 1951, p. 65) 
it satisfies seven axioms, those of positivity, solvability, Archimedianity, closure 
of A under l and three other ones from which (together with previous ones) it 
follows that Q weakly orders A as well as associativity, commutativity, 
connectedness and monotonicity of 0. With Q, a coincidence relation C of 
alikeness or indifference can be defined: xCy i&r xQy and yQx. So defined C 
turns out to be an equivalence relation and the quotient set A/C is therefore a 
partition of A. 

Suppes proves two things: if the empirical system E is SEQ then: (1) the 
quotient system E/C is isomorphic to an additive semigroup of positive reals, 
i.e. there is a one-to-one function f of A/C into Ref such that f is an 
isomorphism of E/C into the mathematical system M=<Re+, I, +>; and (2) 
every pair of additive semigroups of positive reals which are isomorphic to E 
are related through a similar transformation, i.e. if f and g are two such 
isomorphisms then there is a>0 such that for every equivalence class [X]E A/C, 

f([x])=a.g([x]). The first part, which establishes the existence of a represen- 
tation, will be referred to as the Representation Theorem (RT), and the second, 
which establishes the relation between different possible representations, i.e. to 
what extent or in what sense the representation is unique, as the Uniqueness 
Theorem (UT).’ The reference to an isomorphism is not too strong here since 
the representation is proved for the quotient structure, numbers are assigned to 
equivalence classes of objects, which is the same as talking of homomorphism 
when numbers are assigned directly to objects. This second equivalent version, 
which will become prevalent, is somehow more natural since when we measure 
we assign numbers to objects, not to classes. 

Now, with this step made by Suppes, the question of the admissibility of the 
transformations of a scale can be dealt with satisfactorily. If f is a scale- 
representation for an empirical system E, a numerical function F is an 

‘As far as I know the first place where this terminology, which was to become standard, was used 
was in Suppes and Zinnes (1963). 
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admissible transformation for f iff the result of applying F to f, i.e. the 
composition F$ is also a homomorphism of E into the numerical system. 
Mathematical properties of function F define different types of transformations, 
and scale types are now defined (not circularly) by reference to the type of 
transformation admissible for the scale, in the previous, independently 
specified, sense of ‘admissible’. For instance, for the case above, every 
representation of a SME is a proportional or ratio scale, since it has been 
proved (UT) that the range of admissible transformations for such a represen- 
tation are similar transformations. This is the required link between the two 
approaches we saw in Part I: what characterizes the scale type is the numerical 
transformation that preserves the property of ‘to be a morphism (iso or homo, 
depending on the versions) of the empirical system into the numerical one’. So, 
what is relevant for the establishment of the scale type is not some purely 
mathematical property but certain empirical facts expressed by the conditions 
the empirical system satisfies and which determine the kind of mathematical 
transformations which preserves ‘representativeness under morphism’. And if 
things are regarded in this way, it is quite natural to generalize this schema to 
other empirical systems. For it is natural to raise the question of what other 
systems should be like for their representations to be scales of other types. 
Within this framework, the work initiated by Stevens appears to be essential, 
since it establishes the different scale types and hence how strong the different 
representations can be.* 

The above theorems require some additional comments. In the first place, RT 
proves only that certain conditions are sufficient for the existence of a 
homomorphism of E into M (although in this case they are also necessary). 
Second, these conditions are not categorical, since they have denumerable 
realizations as well as supernumerable. Thirdly, UT states that any two 
homomorphisms of E into M are related by a similar transformation but the 
converse can immediately be proved, i.e. every similar transformation of a 
homomorphism is also a homomorphism. Therefore, together with RT, what is 
proved is the following: 

RUT If E=<A, Q, l > is SEQ and M= 
<Re+ , I, +> then there existsf from A to Re+ 

such that for every g from A to Re+: 

g is a homomorphism of E into M iff g is a similar transformation off. 
‘In Part 1 we used the terms ‘numerical assignment’ and ‘scale’ as synonymous. We can now 

distinguish (as is usual in literature, see for example Suppes and Zinnes (1963) where for the first 
time the difference is explicitly formulated) between the assignation f of A into Re and the scale 
itself, which is the trio <E, M, p. As has been made clear, knowledge of the assignment is not 
enough to know its uniqueness. In order to know the uniqueness, the scale must be known, i.e. it 
must be known the systems in relation to which the assignation is a homomorphism. Once this point 
has been made clear, and providing that it does not cause confusion, we shall continue to use the 
term ‘scale’ ambiguously. 
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As we can see, RUT has the characteristic form of uniqueness theorems: 
3xV~~(cpb)@Rxy), where R is an equivalence relation (if R is identity, then 
existence is unique). Finally, the theorems prove that every representation of a 
SEQ is a proportional scale, but not that only representations of an SEQ are 
proportional scales. So, it will be interesting to see not only if other systems 
have scales of other types, but also if systems other than SEQ have proportional 
representations. 

As far as empirical applicability is concerned, Suppes’ systems eliminate some 
of the difficulties of Holder’s but, as he himself recognizes, not all of them. The 
main problem is that the condition that A is closed under l implies, together 
with other conditions, that the domain of a SEQ is infinite (and that there are 
arbitrarily large entities), which, he says, flagrantly violates the obvious finitistic 
requisites of empirical measurement (Suppes, 1951, p. 173). There is another 
consequence which, even though it is not so patently undesirable as the previous 
one, Suppes regards as being debatable in some cases: the indifference relation 
C, defined from Q, is transitive. Suppes states that, perhaps because of limits to 
the sensitivity of the procedures to determine order, there may be cases in which 
two objects coincide with another but not with themselves (p. 174). 

We shall discuss both these questions to a certain extent below. I want to 
mention now only that, not long afterwards, in his famous work Fundamentals 

of Concept Formation in Empirical Science, Hempel also points out that the 
domain cannot be required to be closed under the operation of concatenation3 
Hempel takes as primitives a relation P of strict precedence, a relation C of 
coincidence and the combination operation 0. The conditions imposed on l 

must be considered as only applicable to the objects ‘whose combination exists 
and belongs to the domain’ (Hempel, 1952, p. 86, f. 71). Hempel also makes two 
interesting points. The first is that there must be d@zrent coincident objects 
since it is necessary to dispose of standard series (consecutive combinations of 
coincident elements) and not every combination procedure enables an object to 
be concatenated with itself. The second refers to what he calls ‘the condition of 
commensurability’, according to which every object is such that it coincides 
with a finite concatenation of objects coincident with the chosen standard (i.e. 
coincides with a term of the standard series), or a finite concatenation of objects 
coincident with it coincides with the chosen standard. Although this condition 
could be considered to be empirically appropriate under certain idealizations, 
‘theoretical considerations strongly militate against its acceptance, for it 
restricts the possible values of those quantities to rational numbers, whereas it 
is of great importance for physical theory that irrational values be permitted as 

‘Hempel’s work was published one year after Suppes’, and although Suppes is mentioned in a 
note (fn. 71), Hempel does not follow his treatment. In particular, even though he informally 
reflects on the sufficiency of his conditions, at no time does he raise the questions of representation 
and uniqueness as Suppes does. 
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well’ (ibid., p. 68). For Hempel this proves that fundamental measurement does 
not give a complete definition, only a partial one, of the magnitudes. This 
partial interpretation has to be combined, via derived measurement, with the 
one supplied by the laws of the theory (in the way which became standard in the 
Received View in philosophy of science).4 

Suppes’ work (despite the above-mentioned problems) is the first conceptu- 
ally satisfactory analysis of the conditions which make (fundamental) additive 
measurement possible, a kind of measurement which is sufficient, with very few 
exceptional cases, for physics. On the other hand, in science, especially in the 
human sciences, non-proportional scales are also used to measure certain 
properties. The question which immediately comes up is whether the type of 
analysis developed by Suppes is also suitable for studying the conditions which 
make these other forms of measurement possible. Since Suppes’ general 
approach does not seem to depend on the specific nature of the empirical system 
nor on the resulting scale type, it is natural to think that the answer to this 
question is affirmative. During the 50s and at the beginning of the 60s a whole 
series of studies appeared with the aim of showing that this was indeed the case. 
These studies extended the formal, original nucleus of measurement theory and 
enlarged the domain of empirical situations accessible to it. We shall see first 
what is the general schema behind Suppes work and then some of its more 
notable extensions. 

7. General .Form of Suppes’ Model 

Suppes’ general schema is simple. Let A be a set of objects to which certain 
numbers are to be assigned representing the ‘quantity’ of a particular magni- 
tude that they have. The facts related to the magnitude are expressed by certain 
empirical relations R, , . . ., R, (some of them can be operations) between the 
objects. Because the objects possess the magnitude ‘in a more or less degree’ 
some of these relations will be of (some type of) order. The domain and the 
relations make up an empirical system E=<A, R,, . . . . R,> which expresses the 
essential nature of the property as a magnitude. Measurement assigns numbers 
to the objects, usually real numbers if the whole wealth of mathematics is to be 
applied. Empirical relations (and operations) R,, . . . . R, are represented by 
‘natural’ numerical relations S,, . .., S,, which along with a set N of numbers (N 
is Re or one of its notable subsets, such as Re+) constitute a mathematical 
system M=<N, S,, . . . . S,>. The statement that numerical relations Si represent 
empirical relations Ri means that M expresses with numbers what E expresses 
without them, i.e. that E is homomorphic to M. An analysis of how measure- 
ment is possible consists, then, in studying how such a homomorphism is 

4Later on, in Hempel (1958) (section 7,p. 62 ff.), he revises this conclusion and states that, if the 
underlying logical language is powerful enough (if it includes for instance the concepts of sequence 
and limit), it is possible to formally define metric concepts in such a way that they have irrationals 
as values. 



242 Studies in History and Philosophy of Science 

possible, i.e. investigating the conditions which E has to satisfy for there to be 
a homomorphism into M, and establishing the corresponding representation 

and uniqueness theorems. 
RT proves that certain conditions or axioms Ax,, . . . . Axp are sufficient for the 

existence of a homomorphism and UT establishes the relation between any 
such two homomorphisms.5 Taken together, what must be proved, then, is 
the following. Let E=<A, R,, . . . . R,> be an empirical system and M ‘N, 
S,, _.., S,,> a particular numerical system. If E satisfies Ax,, . . . . A.xp, then there 
exists a function f such that for every g, g is a homomorphism of E into M iff 
g is a T-transformation off. Here ‘g is a T-transformation of7 means that there 
is a function FE T such that g=F.f (‘0’ now denotes function composition), 
where T is a set of functions of N into N, i.e. T is the transformation group, and 
‘T-transformation’ names hence the transformation type (e.g. similar transfor- 
mations). If a particular empirical system E satisfies the conditions, one can 
proceed with the assignment-measurement, or, if it already exists, justify or 
establish its type. The proof of the existential part of the theorem also reveals 
how to carry out the assignment. 

The relations and operations in E must be empirically feasible, although this 
does not affect the purely formal part of the theory. The relations and functions 
in M must be, for the above-mentioned reasons, ‘natural’ (Part I, Section 1). 
This removes a certain amount of arbitrariness by eliminating possibly 
‘extravagant’ mathematical representations. However, it is important to point 
out that it does not remove all arbitrariness. The theorems assume a numerical 
system M as given. But why this particular one? There may be others which are 
also ‘natural’ and in relation to which there exists also a homomorphism. 
Indeed, for SEQ it is easy to show how this may be the case (in this topic, as in 
many others, additive measurement is a paradigmatic case of the theory). Every 
SEQ is homomorphic to M=<Re+ , 5, +> and so we have additive represen- 
tationsf(remember, such that u*bCc ifff(a)+f(b)=f(c)) which are proportional 
scales, unique up to similar transformations. But it is plain that they are also 
homomorphic to another ‘natural’ numerical system, M’= <( 1, co), I, .>, since 
M and M’ are isomorphic (in one direction with, e.g., the function x + e”, in the 
other with the inverse x -+ In x). So, SEQ also has multiplicative representations 

f; i.e. such that a*bCc iffj(a).j(b)=j(c). These representations are unique up to 

exponential transformations A? (n>O) and they are therefore logarithmic 

proportional scales. There is no formal reason for choosing some scales rather 

than others, M and not M’. It is an essential element of arbitrariness, which can 

‘Establishing the conditions and proving the theorems is a purely mathematical endeavour. The 
fact that such great effort is focussed on doing so is what. when studying the literature, gives the 
impression that research on metrization is characteristic of a purely mathematical-algebraic theory. 

60f course, the relation ‘g is a T-transformation off must be an equivalence relation. This 
implies that each Tgroup: (1) must have the identity function; (2) if it has a particular Fit must have 
its inverse; and (3) it is closed under composition. 
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only be removed by pragmatic considerations (e.g. of simplicity; or because of 
historical reasons, which in our case amounts to the same thing). The fact that 
the reasons for the choice, which of course are important, are pragmatic and 

not formal suggests that, as far as the formal aspects of the theory are 
concerned, the importance lies totally in the conditions that the empirical system 

must satisfy. 
This question will become somewhat more complicated when we look at 

some of the extensions of the original case. In some empirical systems, relations 
and operations cannot be interpreted immediately using a familiar numerical 
relation or function which is commonly used in the algebra of numbers. That 
is to say, although the qualitative empirical relations and functions have 
numerical interpretations, numerical relations and functions which interpret 
them (almost always combinations of other more basic ones) are not the ones 
contemplated in the well-known numerical systems which algebra usually deals 
with. To a certain extent, this is not a problem, since it is always possible to 
dejine mathematical relations, abbreviations of a combination of more basic 
ones, with which to form a numerical system and in relation to which the 
existence of a homomorphism can be proved. But in another sense, this strategy 
is somewhat artificial, because the numerical system thus obtained is not very 
‘usual’ or natural. So, although it is always possible to formulate the represen- 
tation theorem in the form which states the existence of a homomorphism of the 
empirical system into another numerical system, to do so in this way is 
sometimes somewhat forced. 

The most general form of the theorem, of which the homomorphism version 
is a special case, would then be the following: Let E=<A, RI, . . . . R,> be an 
empirical system. If E satisfies Ax,, . . . . AX*, then there exists J such that for 

every g: w(g, A, N, R,, . . . . R,, S,, . . . . S,) iff g is a T-transformation off (N is 
a numerical set, the Si are ‘typical’ numerical relations and T is the type of 
admissible transformations). But now, to prevent the numerical representation 
being extravagant, v/ must not be very complicated, and the Si, as well as being 
simple, must also be relatively basic. These requirements are really quite vague. 
Sure ry must ‘say’ that empirical facts expressed by relations Ri are represented 
by relations Si, but how to do it? One could think that this implies that yl must, 
at least, contain, for every empirical relation Ri, one conditional (or bicondi- 
tional?) of the form ‘for every x1, . . . . xj: if <x1, . . . . X~>E Ri then a(g(x,), . . . . g(Xj), 

s ,, . . . . S,)’ (wherej is the arity of Ri and a says what happens with the numerical 
images under g of the objects xi, . . . . xj). But even this is not always necessary. 
As we shall see below, the empirical qualitative facts of E which must be 
represented are sometimes quite complex facts expressed by a ‘combination’ of 
several R,. Hence it seems there are no formal constraints, nor even very weak 
ones, on the form of w. The constraints on ly imposed by the scientific 
community of MT are of a factual or pragmatic nature, in the sense that 
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workers in MT try de facto to find canonic interesting representations and not 

extravagant or banal ones.7 On the other hand, as in the case of additive and 

multiplicative representations for SEQ, we also find ourselves in this general 

form of RUT with the problem of alternative representations: if the theorem is 

true for a particular (u and T, it may also be true for another I$ and T’ (where 

t,u’ results from substituting one or more Si for other S;), and there are no 

formal reasons for choosing w against v/‘. 

8. Extensions 

This general model of analysis which we have seen applied to SEQ was 

extended during the 1950s and at the beginning of the 1960s to other empirical 

systems. We do not intend to deal with all the extensions here, only with the first 

and most important ones. Nor shall we treat them exhaustively; in this context 

only their most general aspects are of interest. 

8. I 

The first extension to be considered is the one corresponding to the so called 

diflerence, or interval, systems.8 For some magnitudes, such as thermometric 

temperature, direct procedures of comparison between two objects which display 

the magnitude, give rise only to ordinal scales. The main reason for this 

limitation is that there is no empirical procedure of concatenation for them that 

corresponds to (i.e. with the properties of) addition. However, if certain 

conditions are satisfied, representations can be found for them which are 

stronger than mere ordinal scales, although not as strong as proportional 

scales. What allows such representations is the existence, and certain properties, 

of a direct procedure of comparison between pairs of objects. One object is not 

compared with another but a pair of objects with a different pair. The pairs 

represent qualitative intervals of the magnitude for the objects in question. So, 

the primitive order relation is not a binary relation on A but a tetradic relation 

D on A (or binary on A x A). The intended interpretation of (ab)D(ccl) is that 

a exceeds h in magnitude to the same or a lesser extent than c exceeds d, and, 

of course, this comparison is direct, it is not based on a previous comparison 

between a and b on the one hand and c and d on the other. 

It can be proved (RT) that if an empirical system <A, D> satisfies certain 

conditions, then there is a functionf’from A to a numerical set N (usually the 

set Re of reals) so that (ab)D(cd) ifff(a)-,f(b)If(c)-f(d), and (UT) that this 

function is unique up to linear transformations. Sofis an interval scale. The key 

‘A good example of non interesting representation are merely ordinal scales, One can imagine 
that, if all the representations that the theory can produce were of such interest, MT would have 
disappeared long time ago. 

“The first studies on this subject are Suppes and Winet (1955), Davidson and Suppes (1956) 
Suppes (1957, Chapter 12) and Scott and Suppes (1958). Cf. also Debreu (1960) and Lute and 
Suppes (1965). 
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of the proof is that for the pairs or intervals it is possible naturally to define a 
concatenation operation l that, together with D and A x A, forms a SEQ.9 
From the proportional scale for pairs of objects a scale of intervals for the 
objects is easily derived. 

This characterization is too general, and somehow inappropriate because of 
its uniformity since difference systems are subdivided in turn according to 
whether or not they are finite, absolute, positive or equally spaced. Although we 
cannot present the details here, the general idea is the following. In these 
systems the pairs (ab) express the difference in magnitude between objects a and 
b, but this qualitative difference can be expressed numerically in several 
different ways depending on what the properties of the empirical system are. 
Each pair (ab) is represented by a number ma), f(b)), where f asigns 
mathematical entities to the objects and G is a d@rence measure mathematical 
function. The representation establishes then that there are f and G such that 
(ab)D(cd) iff C;Cfla), f(b)) I WC), f(d)). Different interval systems may require 
different measure difference functions G. In the simplest case G is the 
subtraction x-y, but in other cases it may be the absolute value of the 
subtraction 1x - yl or even something more complicated, such as .I($ -~2). 

Difference systems illustrate the question with which we concluded the 
previous section. In interval metrization, as we have just seen, it is not exactly 
proved that a certain empirical system which satisfies certain conditions is 
homomorphic to another given numerical system. The representation is proved 
by proving a certain fact I+V between the components of the empirical system 
and mathematical relations and functions. This is not a specially drastic 
case because the simplicity and ‘naturalness’ of v/ here allows RUT to be 
reconverted immediately to the homomorphism version. If we define a 
tetradic numerical relation S on Re x Re such that (xy)S(zt) iff x--y=z - t, then 
RUT proves the existence of a homomorphism between an empirical system 
E=<A, D> and the numerical system M=<Re, S>. But in other cases the 
reconversion may not be so natural. 

8.2 
The second extension has to do with one of the limitations which, as we saw, 
SEQ had for Suppes, namely, that the induced coincidence or indifference 
relation is always transitive. In some situations, the indifference relation is not 
perfectly transitive but this does not, however, prevent its having a numerical 
representation. In these cases, it is inappropriate to require the primitive order 
relation to be a (non-strict) weak order, that is, strongly connected and 
transitive. In these situations the order is, so to say, even weaker, it is what is 

9When the intervals have coincident ‘borders’ l is immediate: (ab)-(&)=(a~); when they have not 
it is somewhat more complicated but equally possible. 
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known as semiorder. The intended interpretation of a relation P of semiorder 
’ ‘... it is noticeably greater” than . ..’ and its formal conditions are the following 

tf. Scott and Suppes, 1958, p. 5 1, a simplification of Lute, 1966, p. 181): (1) not 
xPx; (2) if xPy and ZPW then either XPW or zPy; (3) if xPy and ZPX then either 
wPy or ZPW. Semiorders (which are always strict) are between partial and weak 
orders (both strict), every strict weak order is a semiorder and every semiorder 
is a strict partial order.12 Now, an indifference relation I can be naturally 

defined from P: xly iffdef not xPy and not yPx. Although relation I is not one 
of equivalence because it is not transitive, it is also possible to define from P a 
weak order relation R, and an equivalence relation E, which are useful for 
proving the representation. 

The representation of semiorders is quite special, for what is proved is (RT) 
that if an empirical system E=<A, P> is a semiorder,’ then there exists a 

functionffrom A to Re such that aPb iff for some a>OAa)>f(b)+& that is, E 
is homomorphic to some numerical system M=<Re, >a> (&O), where x>ay 
iffdef x>y+a. The uniqueness of the representation here is not clear, because 
neither is the type of transformation which gives rise to other homomorphisms 
into the same numerical system (i.e. for the same a). 

Semiorder systems are introduced to account for measurement in circum- 
stances in which the order is not perfectly transitive. One must ask oneself, 
however, if all the cases of intransitivity of alikeness or indifference relations are 
of the same type and deserve the same treatment. Some may be due to ‘the 
property itself’ (e.g. comparison of subjective utility by means of preferences 
judgements) while others are only due to the accuracy limits of the comparison 
instruments (e.g. comparison of mass using balances). If there were sound 
reasons to distinguish the two cases (and I think there are), the semiorder device 
may be appropriate for the first case but not for the second, the analysis of which 
would correspond rather to the study of idealizations and the problem of error. 

8.3 
Another type of system is the one accounting for measurement of probability.r4 
In the simplest case, unconditioned probability, the conditions refer to an order 

“‘The first place in which the notion of a semiorder is introduced is Lute (1966) subsequently 
simplified in Scott and Suppes (1958). Krantz (1967) applies it to extensive systems (and 
sophisticates the representation with two bounds). Adams (1965) studies the intransitivity of 
ordinal, interval and extensive comparative systems, although from a different perspective. 

“In this section we have been using the converse sense “lesser than” to refer to orders. Although 
in systematic studies the same mode of reference should be used, for the present historiographic 
purpose I shall use the mode of reference present in the literature. 

“A strict weak order is asymmetric and negatively transitive: if not xRy and not )‘I& then 
not xRz. 

“Suppes and Zinnes prove this for finite systems, and they leave open the question for the infinite 
ones (cf. Suppes and Zinnes, 1963, pp. 31-34). 

14Works in this field goes back to De Finetti (1937). The conditions which he discusses 
only characterize probability qualitatively, they are not sufficient to guarantee a quantitative 

footnote continued on p. 247 
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R on a set F which is an algebra (or an s-algebra) of sets on the set A.15 The 
objects to which numbers are assigned are the elements of F, usually interpreted 
as events. The conditions which the system E=<A, F, R> must satisfy 
guarantee the existence of a function f of F into (0, 1) which satisfies 
Kolmogorov’s axioms, that is, such that <A, F,fi is a (finitely or denumerably, 
depending on whether f is an algebra or an s-algebra) additive probability 
space. The representation f is in this case an absolute scale, its transformation 
group is the identity, Any two representations are the same, i.e. there exists only 
one representation. 

Unlike other systems, whose name does not refer to any specific magnitude, 
probability systems seem devoted to accounting for the measurement condi- 
tions of a particular magnitude, probability. ‘6 This does not pose any problem 
since, after all, it only means that this type of system has been established with 
the aim of analyzing a particular magnitude. But it is important to leave open 
the theoretical possibility that these systems, the same formal conditions, be 
applicable to other magnitudes. Which magnitude is to be measured cannot be 
determined by the set of conditions which define the system but by the specific 
empirical procedures by means of which order is established in the basic 
domain, A different thing is that, as a matter of fact, these conditions are 
satisfied only by one empirical procedure. 

Probability systems exemplify, better than difference systems, the issue we 
referred to concerning the form of RUT. In this case it would be extremely 
forced to present this theorem as if it stated the existence of a homomorphism 
between an empirical system and a given numerical system. As we shall see, the 
following extensions will again confirm this point. 

8.4 
The next modification of the original model corresponds to what is known as 
conjoint measurement.*7 This extension aims to account for situations in 

footnote continued from p. 246 
measurement. Conditions which are sufficient to do so, when the base set is finite, are offered in 
Kraft et al. (1959) and simplified in Scott (1964). Other conditions, inspired in Savage (1954) are 
offered in Lute (1967) for unconditioned probability and Lute (1968) for the conditioned case. 
Other studies of interest are Lute and Suppes (1965) and Suppes (1969). 

lSF is an algebra of sets on A iff F is a collection of subsets of A closed under complement and 
union; if it is closed under countable unions it is an s-algebra. 

‘6Although the nature of probability has been the subject of innumerable discussions in 
philosophy, here we shall not make any comment on its various interpretations, either in its 
objective or subjective sense. Most studies on the measurement of probability refer mainly to 
subjective or psychological probability but the formal conditions of these systems do not depend on 
it. If it is a question of subjective or objective probability it will depend on the specific nature of the 
procedures to establish the order R on F Cjudgements of the subjects, observed frequencies, etc.). 

“It goes back to several analyses of utility carried out during the first half of the century in 
economic theory. Some important formal results, though from a different viewpoint than the one 
which concerns us here, are to be found in Adams and Fagot (1959) and Debreu (1960). The first 
study in the framework of measurement theory is Lute and Tukey (1964), subsequently modified 
in some respects in Krantz (1964), Lute (1966) and Tversky (1967). 
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which two attributes are simultaneously measured. In these cases, empirical 
comparison procedures give rise to an order between pairs of objects, each 
of which is regarded as displaying one of the two attributes. So the order 
between pairs of objects is not derived from two already known orders 
between each component of the pair, and a number is not assigned to each 
pair by combining already available assignments for the components of the 
pair. The assignments for the pair and for each of the components are 
obtained at the same time, that is the compound and each component 
are measured simultaneously. So in principle it is not a case of derived 
measurement. 

Conjoint metrization analyzes the conditions which make such measure- 
ment possible. In this case the empirical systems are made up of two sets A, 
and A, and an order relation R between pairs of elements of both, that is, R 

is an order on A,xA,. The intended interpretation of <ap>RCbq> is that the 
‘conjunction’ of the attributes in a and p exceeds or is the same as the 
conjunction in b and q. The conditions for the representation of the system 
E= <A,, A,, R> are not only those which make possible the existence of a 
function J’ of A, x A, into a specific numerical set N such that <ap>R<bq> 

iff f(<ap>)>,fl<bq>). If this were the case, it would not really be different 
from some of the previous ones. What is characteristic about this case is that 
the representation is made ‘through, but simultaneously with’ assignations on 
the Ais. The conditions have to be such that if E satisfies them, then there 
exist ,f, of A, into N, ,f2 of A, into N and F of N x N into N such that 

A<ap>)=FU1(a), .f;@l), that is, <aPR<bq> iff FUi(aX J;@>)2F(f, @I, 
f;(q)). The main requirement that is usually imposed is that the attributes be 
essentially independent from each other. Independence means here that if two 
pairs with a common component are related under R in a certain way, they 
shall also be related in the same way if any other element is the common 
one: if <ap>R<bp> for some p of A,, then <ap>R<bp> for every p of A,, 

and the same with A,. If independence is satisfied, relations R, on A, and R, 

on A, can be defined in such a way that they are also orders. With these 
orders at hand, and if other conditions are satisfied, we can establish the 
existence of functions J;, f2 and F for the representation. Among these 
additional conditions, a specially important one is that of relative solvability. 

The core idea this property expresses is that elements of one component have 
an ‘equivalent’ or ‘projection’ in the other component and also that pairs 
themselves have an equivalent or projection in each component. We do not 
give the formal expression here for, although the idea is the same for all 
types of conjoint systems, its formal version depends on specific features of 
each type. 

In the way we have presented the desired representation, the problem of its 
possibility conditions seems almost trivial since it demands nothing of the 
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function F. l8 Actually, desired representations are obtained for particular cases 
of F. The first to be studied was the one for which F is addition. The systems 

for which this representation is possible are called ‘additive conjoint structures’. 
If a system E= ~4 1, A,, R> satisfies the conditions which define additive 

conjoint structures, then (RT) there existf, of A, into Re and& of A, into Re 
such that <ap>R<bq> ifff,(a)tfJp)>f,(b)+f,(q), and (UT) the same bicon- 
ditional is true for any linear transformations off, and f2 with the same 
coefficient, that is up to, respectively, transformations ax+b, and ax+b, (a>O); 

f, and fi are then interval scales related in a specific way. l9 
Additive structures are only one type of conjoint structures. Every type of 

conjoint representation is characterized by a specific F (x+y, x-y, x.y, (x.y2)/2, . ..) 
and the different groups of conditions which make the different types of 
representation possible define different types of conjoint structures. This must 
be viewed with caution, since it allows some cases of independent representa- 
tions to be fictitiously presented as cases of conjoint representation. Let us 
suppose that we have two magnitudes m, and m2 with independent representa- 
tions fi and f2, e.g. mass m and velocity v. So we can define a new function 
f=Fcfi, f2) for a particular F, e.g. moment=m.v, kinetic energy=(m.v2/2). 
Formally, it seems that this situation can be reconstructed as a case of conjoint 
measurement whose conditions we must find,zO for a system E= <A,, AZ, R> 

suitable for the representation can always be construed. But the procedure is 
somewhat fictitious unless the relation R can be previously determined without 
any help of the orders which makef, and f2 possible. If this is not possible, the 
type of situation described corresponds more to a case of derived measurement. 
It may be interesting to study the extent of its alikeness with fundamental 
conjoint measurement, but it is not a case of conjointness. 

To conclude conjoint measurement, a final comment about its significance. 
When we introduced conjoint systems E= <A,, A,, R>, we did not say, 
contrary to what should be expected, that sets A,, A, represent difirent 

attributes the objects have. Although this is the most natural interpretation, we 
did not say so because it is not clear that conjoint measurement is always a case 
of measurement of different attributes for the same objects. It seems that 
sometimes what we have is one and the same attribute displayed by objects of 
a different type. For example, if A, are amounts of money and A, consumer 

‘*Nevertheless, even if nothing is required of F, the question is not a trivial one. The requirement 
that there be only one function for each component is restrictive, and there are systems that do not 
comply with it (cf., in this respect, Foun&ations 1, p. 248). Tversky (1967) studies some general 
properties for the cases in which F is simple polynomial. 

“For similar reasons to the ones we saw in the SEQ, it is obvious that additive conjoint 
structures also have ‘multiplicative’ representations (i.e. there are f,‘...fi’ ._. such that iff 
f,‘(a)%‘@) >f,‘(b)%(q)) unique up to transformations a,.? and uzx” (a,>O, n>O) cf,’ and fz are 
logarithmic interval scales). 

% Foundations 1 pp. 246 and 267 the case is presented as an example of conjoint measurement. 
Later on, however, he authors make some considerations that are similar to ours (p. 277). 
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goods (or, in general, two different types of consumer goods) and R is a 
preference relationf, and_& measure the utility of the objects of each type and 
f=F(f , fJ (for a particular F of Re’ into Re) measures the utility of pairs of 
objects. It is not clear in this case that the different utilities are different 
attributes. Perhaps the most natural interpretation would be to regard F as 
expressing a law that establishes the relation between utilities (in both cases the 
same attribute) of objects of different kinds, a law which relates the utility of 
components with the utility of the compound. 

This suggests a further caution against fictitious cases of conjoint measure- 
ment. If we have a domain of concatenable objects, the concatenation of two 
objects could be interpreted as a pair of objects to be measured conjointly. For 
example, it can be proved that if <A, Q, l > is a SEQ then the system <A, A, 

R>, with R defined so that <xy>R<zw> iff z*wQx*y is an additive conjoint 
structure.21 It seems quite clear, however, that to describe such a case as one of 
conjoint measurement is misleading. 

8.5 
The next extension of the model concerns the mathematical system into which 
the representation is carried out. So far, the mathematical entities assigned to 
the (simple or complex) empirical objects were always numbers. However, we 
have already seen that Helmholtz had called attention to certain cases in which 
the same physical combination operation gives rise to the simultaneous 
conjunction of various magnitudes, and he mentioned ‘vectorial magnitudes’ as 
typical examples, taking each of the components of the vector as one 
magnitude. These cases belong to what in the present context is called 
‘multidimensional representation’.22 

In multidimensional representation the mathematical entities assigned to the 
objects are n-dimensional vectors on Re (when IZ= 1 we obtain the usual 
numerical representation). The mathematical structures M are in this case 
(vectorial) n-dimensional numerical systems with a domain V of n-dimensional 
vectors and some relations and functions on L’.23 The formal scheme of the 
representation does not vary: if E is of a particular type, then it is homomorphic 
to a specific M system; in general, if E satisfies certain conditions, there isfof 
A into a set V of vectors such that a certain empirical state of affairs between 
objects of A occurs iff a certain vectorial state of affairs occurs between their 
f-images. Despite the formal resemblance to genuine metrization, not every case 

*‘This possibility has already been contemplated in measurement literature, informally in Lute 
and Tukey (1964, sec. VII) and, formally, in Narens (1985, p. 174); see also Foundations 3, p. 81. 

“The first place in which it is studied from this perspective, although on a very superficial level, 
is in Suppes and Zinnes (1963, pp. 4748). The analysis emerges from vectorially reinterpreting the 
numerical representation of some of Coombs’ preference systems (cf. Coombs, 1950, 1960; Bennet 
and Hays, 1960). 

Z30f course functions must be internal (operations like scalar product or the norm cannot 
represent empirical operations between those objects to which vectors are assigned). 
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of multidimensional or vectorial representation can be regarded as a real case 
of representation of magnitudes (properties capable of instantiation degree) 
and, hence, as relevant to our Measurement Theory. When we discuss, below, 
the vectorial part of the second volume of Foundations, we shall see the reasons 
that, in my opinion, militate against including the vectorial representations 
which analytic geometries make of synthetic (i.e. qualitative) geometries as 
genuine cases of metrization. 

8.6 

The last important family of modifications we shall consider has to do with the 
empirical operation of combination 0. We saw that in SEQ one requirement was 

that A is closed under l and that this requirement (together with other 
reasonable ones) has the unpleasant consequence that there are no finite SEQ. 
For extensive systems to be finite their conditions must be weakened, in 
particular closure under l . This can be done basically in three ways. First,z4 we 
can substitute in E: (i) the operation l by a set F of subsets of A (closed under 

union and complement); and (ii) the relation Q on A by another relation R on 
F. The idea is to take the elements of F as the objects-arguments for assignment 
(F always has the ‘concatenation’ {x, JJ} of two objects {x}, {y> belonging to it). 
If such a system satisfies certain conditions (which now does not imply that 
there are necessarily infinite objects) the desired additive representation, i.e. 
f({x. ~})=f({x})+~{y}), can be found (in general, for A, B in F with AnB=0, 

j(AuB)==f(A)+f(B)). The second possibility25 is to substitute l by a ternary 
relation, which is a function but not necessarily defined for every pair of 
members of A, and give appropriate conditions for making the representation 
possible. The third way26 , similar to the previous one, consists of keeping l in 

the system but relativizing its conditions to a subset B of A x A which contains 
the pairs of elements whose concatenation exists. 

These modifications again illustrate the comment we made above about the 
way in which RUT is formulated. It is clear that to present the possibility of 
representation for these systems as being homomorphic to a numerical system 
is, because of the artificial nature of the numerical systems required, absolutely 
unnatural. For cases such as these it is more natural to present RUT in its 
general form, namely, if the empirical system satisfies certain conditions then 
there exists an assignment such that certain ‘natural’ statement (about the 
empirical relations, the assignment and mathematical relations) is true. 

24As far as I know the first place where extensive systems arc presented in this way is Adams 
(1965) (he discusses the reasons on pp. 207-208). Other places where this idea is taken up are Krantz 
(1967), Suppes (1969, pp. 48) and Suppes (1972). As the reader will appreciate, the empirical 
systems here are of the same type that we saw previously for probability systems. Adams and 
Krantz do not link both types of system, but Suppes does. 

z%uggested in Suppes and Zinnes (1963, p. 45) and developed in Lute and Marley (1969) 
2hThis is the way that will be followed in Foundations (cf. Vol. 1, set 3.4). 
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The closure of l is inadequate to account for many empirical situations, and 
so the above modifications are necessary. But the fact that most cases of 
additive conjunction require such a weakening does not imply that the closure 
condition is always inadmissible. On the contrary, there are situations in which 
not only it is not inadequate but it is necessary. This is the case of ‘periodic’ 
magnitudes such as angles. The conditions which must be satisfied for the 
appropriate representation to be possible in these cases define a new type of 
system, the extensive closed periodic structures (cf. Lute, 1971). The represen- 
tation in this case is periodic in a cycle, and ‘additive’ if we take the addition in 
the modular sense: f(a*b)=f(a)+,f(b) (with x+, y=z iffdef there is an integer 
n such that x+y=(n~~)+z, that is, z is the remainder of x+y divided by a). 
Another type of extensive system, the essential muximum structures,2J accounts 
for cases in which the (non-closed) concatenation operation has a limit or 
maximal element, i.e. there is an object such that it is never exceeded by the 
concatenation of others (e.g. for relativistic velocity, the speed of light). 

In the last two cases, although the representation still has a certain spirit of 
additivity, it is not additive strict0 sensu (i.e. f(a*b)=fla)+flb)). They are only 
some of the systems with essentially non-additive representations (i.e. such that 
f(&)=FCf(a), _@)), where F is not the addition).28 Different conditions for the 
physical combination l give rise to other non-additive systems. Of particular 
interest are cases such as the combination of temperatures or densities, in which 
l is not positive but idempotent (a-a coincides with a) and internal (if a and b do 
not coincide, their combination lies between them). 

Up to this point l has always been interpreted as a physical combination 
(although in some cases it does resembles numerical addition, or even does not 
satisfy positivity). Nevertheless, there may be operations on the domain of 
objects which are empirically meaningful and which make interesting represen- 
tations possible but which cannot be interpreted as a combination of objects in 
any reasonable sense of the term. Bisection (or bisymmetric) systems are a 
paradigmatic case of this situation. 29 In such systems the intended interpret- 
ation of a-6 is ‘the mid-point between a and b’ (e.g. the subject is asked to 
choose a stimulus which is equidistant from two given ones). The representation 
in these cases becomes quite complex and, again, it is completely unnatural to 
present it as the possibility of a homomorphism into a given numerical system. 

These are the main modifications of the original Suppesian model. The 
review has been very schematic, each modification gives rise to a whole family 

*‘Cf. Lute and Marley (1969). In these systems the Archimedean axiom must be relativized to 
non-maximal elements. 

28‘Essentially’ because, as we saw, there are systems (e.g. SEQ) with both additive and 
non-additive representations. Another typical case of essentially non-additive representation is the 
combination of resistances in parallel, for which F is (xy)l(x-+y). 

*‘The bisection method has a long tradition in psychophysics. Pfanzagl (1959) introduces, by 
reformulating some of the Aczels’ (1948) bisymetrical operations (of which the psychophysical 
procedure of bisection is one) and the corresponding structures. 
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of increasingly complex cases and there are also mixed and cross-linked cases. 
We do not intend to go into these additional complications now. What we have 
already seen is enough for our present introductory purposes before tackling 

the mature theory. 

9. The Mature Theory 

Research on metrization crystalizes, from the end of the 1960s in a series of 
works that systematize, organize and, in some cases, extend the previous results. 
The most important is undoubtedly the opus magnum, Foundations of Measure- 
ment: (1971, 1989 and 1990 respectively each of its three volumes-Krantz et al. 
(1971), Suppes et al. (1989) and Lute et al. (1990)). Others which also deal with 
the conditions that make fundamental measurement possible are Ellis (1966), 
Pfanzagl (1968), Roberts (1979), Berka (1983), Kyburg (1984) and Narens 
(1985).30 Of course, we do not intend to summarize, even briefly, these studies. 
Because the relevance of these works for our story is variable, we shall only 
point out the most important aspects for our present concerns. 

Basic Concepts of Measurement by Ellis (1966), is one of the few studies on 
measurement with a more philosophical than mathematical approach. Ellis’ 
general aim in this study is to attack a certain metaphysical realist view of 
magnitudes arguing in favour of the essentially relational character of metric 
concepts.31 This is not the place to discuss this issue, but some comments which 
he makes (which are advanced in Ellis (1960, 1961) are of interest for the 
analysis of fundamental metrization. Ellis defends (p. 32) the view that the 
identity criteria for magnitudes come from the order relation, extensionally 
considered. Several logically or intensionally independent ordering procedures 
may correspond to the same magnitude, generate the same extensional order; 
hence metric concepts are ‘cluster concepts’ which cannot be defined by 
reference to particular ordering procedures. If this is so, then measurement is 
more arbitrary than is commonly admitted. The arbitrariness of, for example, 
extensive magnitudes is not limited only to the choice of the unit or standard, 
since they have scales which are not related by a similar transformation. The 
reason is that, as we are going to see, different modes of additive combination 
can exist for the same magnitude. 

Campbell pointed out that both the combination of wires in series and in 
parallel are additive, but that they are so with respect to different orders (in this 
case converse orders), and therefore they are additive combinations of different 
(although related) magnitudes. Ellis describes a case in which two different 

30As in Foundations, the works by Roberts and Narens deal exclusively with fundamental 
metrization. In the others, this topic is treated as part of a broader analysis of measurement. 

‘IRecently (Ellis 1987) he has abandoned this position and has become a defender of a certain 
type of metaphysical realism about ‘quantitative properties’, similar to that of Swoyer (1987) (cf. for 
this topic, also Forge (1987) Armstrong (1987, 1988)). 
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modes of combination are both additive with the same order and so, accord- 
ing to him, for the same magnitude (Ellis 1966, p. 79; cf. also Ellis 1960, 
pp. 4446). The example he gives is about length. Let l be the usual linear 
combination of rods. Let 0’ be their orthogonal combination.32 Let R be the 
usual order: aRb iff when putting a and h on a straight line with their origins 
coincident, the end of b coincides with or is after the end of a. A domain A of 
objects with an order R constitutes an extensive system both with l and with l ‘, 
so there are for these systems, respectively, representationsfandf both additive 
in the very same strict sense, i.e. the assignment to the compound is the sum of 
the assignments to the components. But now f andf’ are not related by a similar 

transformatioqf is not proportional tof but tof2 .33 According to Ellis, because 
the magnitude involved here is the same as the order, we have as a result two 
non-proportional scales for the very same magnitude, length. The mode of 
combination is an element of arbitrariness which cannot be eliminated.34 The 
choice of one of the modes, and therefore of one of the types of scale, can only 
be based on reasons of simplicity; the whole of physics could be rewritten with 
f instead off; the only difference would be in complexity (p. 82; but he adds 
that, nevertheless, even some parts of physics would be simplified by takingf). 

Ellis also poses another question, which he calls ‘the second problem of 
fundamental measurement’ (cf. 1960 and 1966, pp. 8688) and which we shall 
only mention because it has to do more with measurement than with 
metrization. Once the mode of combination has been chosen, the standard must 
be chosen before proceeding with the assignment. Generally speaking, the 
choice of the standard is regarded as being unproblematic, but this is not at all 
evident. Let us suppose a world in which the objects which display a particular 
magnitude are divided into two groups in such a way that the elements of each 
set, with respect to the magnitude, behave stably with each other but unstably 
with the elements of the other set. In such a world, the form of physical laws 
would be affected by the choice of the group to which the standard belongs, 
and, once again, the only reason to choose one or another, would be 
simplicity.35 

72The ‘resulting rod’ in this case is not straight but this does not matter; if it is required to be 
straight, the resultant can be considered to be the straight line which joins the origin of one with the 
end of the other, that is, the diagonal of the resultant in the previous sense. 

“We have for <A, R, *> a functionfsuch thatf(&)=f(a)+f(b) and for <A, R, -‘> a functionf 
such thatf(a*‘h)=f’(a)+y(b). It is easy to see that for every aE Af (a)=fz(a). (This does not mean, 
of course, thaty(a*‘b)=f(a*b), but f(a*‘b)=f(u*‘b); it is obvious thatf(a*‘b)=f(a*b) - 2flaZf(b).) 

“‘Of course, to describe this situation as the existence of two non-proportional scales for the same 
magnitude it must not be considered that only one of the modes of combination is essentially linked 
to the magnitude. If every magnitude had only one mode of combination essentially associated to 
it there would not be non-proportional different representations of the same magnitude. 

‘5Conceptually, this question is the same one that Hempel refers to (Hempel, 1952, pp. 73-74) 
when he mentions (attributing the example to Schlick) the possibility of taking the Dalai Lama’s 
pulse as the standard for the measurement of duration. This problem was also considered by 
Carnap (cf. Carnap, 1966, Chapter 8.) 
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Ellis (1966) does not make any substantive contribution to the formal 
conditions which make measurement possible, nor does he deal exhaustively 
with the various systems which these conditions define. The first to gather 

together and present most of the results that we saw in the previous section was 
Pfanzagl. Pfanzagl (1968) is the first work which systematically studies the 
different algebraic properties of empirical systems and possible types of 
representation. 

In the presentation of the systems, instead of a single ‘less than or equal to’ 
relation, Pfanzagl uses two relations, one < of strict order and one - of 
coincidence, which is an equivalence relation (therefore he does not deal with 
semiorders). He also studies and presents in a general way a whole series of 
operations (only some of which can be interpreted as combination) and the 
systems which they give rise to. His presentation of the systems is sometimes 
peculiar36 and RUT is always offered in the homomorphism version, so the 
mathematical systems which are taken for the theorem are often really very 
unnatural.37 On the other hand, for most of his systems he requires excessively 
strong structural conditions (which enable him, for example, to do often 
without the Archimedean axiom). 

Apart from it being the first summa, this work is important for some specific 
results. It studies interval scales based on operations (Chapter 6) and the 
relation between systems with operations and the usual difference systems 
(Section 9.2). It gives (Chapter 7) psychophysical applications of some of the 
operations studied, among which are those that ‘divide’ a stimulus in half 
(middling) and interpolate a stimulus between two others (bisection), and the 
corresponding generalizations for division into n parts and n-interpolation. It 
generalizes systems of conjoint measurement38 for cases in which there are more 
than two attributes to be measured simultaneously (k-dimensional conjoint 

measurement system, p. 149) and proves that the case with three or more 
compounds is essentially different from the usual one with two compounds 
(p. 140). Finally, his analysis of the empirical status of some of the axioms 
should be given special mention (Sections 6.6 and 9.5); this analysis had been 
initiated by Adams, Fagot and Robinson in a 1965 study which is the origin of 
Adams et al. (1970). 

Pfanzagl’s work is quite unsatisfactory in completeness of treatment and 
systematism of presentation. The same cannot be said of Foundations of 

36E,g. he defines difference systems with two order and two equivalence relations, one between 
pairs of objects and the other between objects (p. 143) or he introduces into the systems a relation 
L of ‘limit of a sequence’ (p. 78). 

37E.g. theorem 6.1.1.; the version of RIJT with a homomorphism must be understood as being 
a mere abbreviation, defining a numerical system, of a more complex formulation, not as the 
‘alikeness’ of an empirical system with another mathematical natural system. 

“In Chapter 12 Pfanzagl analyzes simultaneous measurement of utility and subjective prob- 
ability in detail, but its relation with the general analysis of conjoint measurement (Chapter 9) is not 
clear. 
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Measurement, the first volume of which was published in 1971. The second (and 
almost mythical) volume was finally to appear twenty years later divided into 
two more parts. This overwhelming work (1500 pages and nearly 400 defini- 
tions and main theorems) is undoubtedly intended to become the essential work 
of reference on metrization. Nevertheless (and apart from the fact that its 
enormous amount of information makes it sometimes difficult to read in a 
unitary way), it is not always clear which parts are directly connected with 
measuring conditions of an empirical system or with other different but related 
topics.39 

The first volume basically deals with extensive, difference, probability and 
conjoint systems. The basic order relation is +, whose intended interpretation 
is ‘greater than or equal to’ (semiorders, which as we saw cannot be analyzed 
by this type of order, are studied in a later volume and in the context of error). 
In extensive systems, B is on a domain A and a concatenation operation l is 
also added. Several possibilities are studied, depending on whether the 
operation is closed or not, whether it has maximums or not and whether the 
order is connected or not. In difference systems, & is on the Cartesian product 
A x A of the basic domain A, and they are distinguished depending on whether 
the intervals are positive, absolute or equally spaced. About probability 
systems, the authors study those which correspond to unconditioned and 
conditioned probability and some modifications are introduced for specific 
cases. Finally, in conjoint measurement, first they study conjoint systems with 
two components, mainly additive systems but also those with essentially 
non-additive representations, and afterwards the results are generalized to 
systems with II components, with both additive and, generally speaking, 
polynomial representations. The relation > is in this case on the product A,x 

. . . xA, of the basic domains Ai. RUT does not have always the form of the 
existence of a homomorphism; when the numerical systems would be very 
unnatural, what is proved is the existence of a numerical assignment that 
complies with certain conditions. 

We cannot here discuss this scheme, or even mention the main contributions 
of the various parts of the book. I shall confine myself to mentioning just one 
especially interesting point concerning the general form of the Archimedean 
condition. As we have seen, the Archimedean axiom requires no element to be 
‘infinitely greater’ than another. In extensive systems, for example, this means 
that if h is greater than a, concatenating a with itself (or with some other one 
similar to a) a finite number of times, we can ‘reach’ or surpass b. In other 
words (and defining na recursively as follows: lu=a, na=(n- l)a*a): if b is 
greater than a, the set of integers n such that b is greater than na, is finite. 

3’Cf e.g. Chapters 12 and 13 on multidimensional representation or Chapter 16 on threshold 
representations; for a review and general assessment of Volumes 2 and 3 of Foundations from the 
perspective of a theory of metrization, cf. Diez (1993). 
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Expressed in yet another way: should the condition not be complied with, then 
there is a sequence a, 2a, 3a, . . . which is strictly bounded, by b, and infinite. A 
similar condition must be a requirement in other systems.40 In Vol. 1 of 

Foundations, a general form of the Archimedean axiom is given which has the 
same form for all systems, although it is relativized to a certain element which 
changes from system to system. The general form, which should be clear if we 
heed the third of the characterizations we have given for the extensive case, is: 
Every strictly bounded standard sequence, i.e. progressive and equally spaced, 
is finite. Now it is only necessary to specify what a standard sequence is in each 
case. We already know it for extensive systems. For difference systems, for 
example, it is a sequence a,, a2, . . . such that each term forms with the previous 
one an interval which is equivalent to the one it forms with the following term 
(remember that in this case the order, and consequently the derived equivalence 
relation, is between pairs or intervals). In this manner, Foundations 1 establishes 
the idea of Archimedean property in a general way for different measurement 
systems. 

Of the works which appear in the almost twenty years between the first 
volume of Foundations and the two last volumes, the most important is 
Narens (1985). Before considering this work at some length, let us mention a 
few other writings of this period. Roberts (1979) is basically an excellent 
up-to-date exposition of previous results which pays special attention to 
applications in psychology and the social sciences. Roberts always uses a 
strict (i.e. ireflexive) order R as a primitive relation for the empirical systems, 
and with R he defines an indifference relation Z (alb iff not aRb and not bRa) 

which, generally speaking, although not always (remember semiorders), is 
one of equivalence .41 Berka (1983) is an analysis of measurement in general 
which does not contain new elements of interest for our present concerns. 
Berka mainly makes a critical review of measurement literature, but some- 
times he also defends his own philosophical thesis, explicitly grounded (cf. 
e.g. pp. 53 and 217) on a Marxian perspective, which we are not going to 
deal with here. Kyburg (1984) gets away from the representational theory of 
measurement, at least from the common way in which the theory has 
developed. Kyburg gives a central role in his analysis to the topic of error, 
which forces, according to him, the traditional approach to be refocussed 
since it is incapable of dealing adequately with such a phenomenon. Exactly 
how he develops his theory using the construction of two ‘languages’ does 
not interest us here. The essential thing is that the theory is construed on 

4”About the possibility of representation without Archimedianity, see below the comments on 
Narens (1985). 

4’This procedure is almost always equivalent to the one followed in Foundations. ‘Almost’ 
because in Foundations there are some systems, cf. Section 3.12, in which the ‘greater than or equal 
to’ relation is not necessarily connected, and in Roberts this relation (‘R or P) is of course 
connected, given the definition of I. 
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two levels, one which includes judgements on observed relational states of 
affairs and the other which expresses certain idealizations of these states 
of affairs. The conditions with which traditional representational theory 
characterizes the various empirical systems are on this second leve1,42 so 
strictly speaking-according to Kyburg-such systems would not after all be 

empirical. 
Narens (1985) book Abstract Measurement Theory is undoubtedly the other 

basic reference in measurement theory and the best example of how the theory 
sometimes acquires a purely mathematical appearance. Besides impeccably 
presenting most of the results which we already know, this work contains more 
material, much of which appeared at the end of the 1970s and beginnings of the 
1980s as a result of the collaboration between Narens himself, Lute and Cohen. 
We shall mention here only the most important results. 

The first one (cf. also Lute and Narens, 1985) is the generalization of 
extensive systems of Foundations to cases in which concatenation is not 
commutative and/or associative. The result is a very general type of structure, 
the positive concatenation structures. These may become even weaker if 
positivity is not required, which seems desirable in some cases, specifically, 
when the combination operation is intensive. 

The main novelty included in the book has to do with a new way of 
characterizing the various systems and their relation to scale types (cf. also 
Cohen and Narens (1979), Narens (1981 a,b), Lute and Cohen (1983) and 
Lute and Narens (1985)). The basic idea is to define the type of a system not 
directly by giving a list of axioms about the constituents of the systems, but 
by means of certain properties that the group of automorphisms of the 
system satisfies .43 These properties basically refer to the number of points 
(parameters or degrees ofjieedom) necessary for the preservation of certain 
facts (which must be specified) in the group. The properties are uniqueness 

and homogeneity. The group of automorphisms of a system X=<X, 3, R,, 

R,... >, where b is a total order, satisfies n-uniqueness iff for every auto- 
morphism f, g, if there are different a,, a2, . . . . a,, in X such that Ja,)=g(a,) 

(for every i= I, 2, . . . . n), then f=g; i.e. any two automorphisms which 
coincide on n different points coincide on the rest, are identical. The group 
satisfies n-homogeneity iff for any two series of n different points a,, a*, . . . . a,, 

and b,, b,, . . . . b, such that a, t a2 > . . > a,, and b, > b, z . . . > b,, there is an 
automorphism f in the group such that ,f(aJ=f(bJ (for every i= 1, 2, . . . . n), i.e. 
for any II different points and for any other n different points there is an 
automorphism in the group which ‘moves’ the first ones to the second, with 

“This remark is related with, but has greater scope than, the discussion in representational 
theory about the descriptive or normative character of the axioms for some relations, such as the 
preference between goods or events, typical of the social sciences (cf. e.g. Roberts, 1979, pp. 34). 

41An automorphism of a system E is an isomorphism of E onro E. If it is a homomorphism into 
itself then it is an endomorphism; ail automorphisms are, hence, endomorphisms. 
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the only condition that the second ones preserve the order of their originals. 
Different types of system are then defined by reference to these properties: X 

is a . . . structure iff its automorphism group is . ..-homogeneous and . ..-unique. 
for example, X is a scalar structure iff its group of automorphisms is 
l-homogeneous and l-unique (Narens, 1985, def. 2.4.6, p. 48). 

The representation and uniqueness theorem now takes a special form, 
establishing the relation between the degrees of freedom of a system and its 
representation. Firstly, scale types are abstractly defined (as before, scale 
types are linked to transformation types): let X be a relational system, F is a 
scale for X of type a iff there is a concrete numerical system M (no matter 
how unnatural it may be) such that: (i) F is the set of all homomorphisms of 
X into M; (ii) F is not empty; (iii) if f is in F then every T-transfotmation of 
f is in F (i.e. F is closed under 7’-transformations); and (iv) iffand g are in F 
then one is a T-transformation of the other (i.e. all the elements of F are 
equivalent according to the T-transformation). For example, for M=<Re’, 
2, . ..> and T being similar transformations we obtain the definition of the 
ratio scale for X (def. 2.4.1, p. 42); as can be seen, now scales are not 
homomorphisms but sets of them. RUT now has the following form: if X is 
an n-homogeneous and m-unique structure (for certain n, m) then it has a 
scale of type a (for a certain type a); sometimes, with additional conditions, 
we may also prove the converse. For example, X is a scalar structure (i.e. its 
automorfism group is l-homogeneous and l-unique) and all of its endo- 
morphisms are automorphisms iff there exists F such that F is a ratio scale 
for X and some element of F is onto Re’ (theorem 2.4.4, p. 49). 

This characterization of the systems is more general than the traditional 
one (which Narens also deals with) in the sense that d@zrent systems in the 
traditional sense may have the same properties of homogeneity and 
uniqueness. The reason is that these properties are more closely linked to 
representational possibilities than the traditional ones. These results, and the 
approach based on analysing the groups of automorphisms on which the 
results are inspired, are undoubtedly of great mathematical interest, but their 
function in a non-purely mathematical measurement theory is debatable. Not 
only because they require formal assumptions that are too strong (such as 
total ordering), but mainly because it is difficult to find a direct empirical 
interpretation of homogeneity and uniqueness properties without ‘passing 
through’ the traditional ones. 

Narens does not always follow the strategy based on analyzing groups of 
automorphisms and most of his work fits the traditional approach. This part of 
his work follows, in general, the lines that are familiar to us, and I shall not 
insist on this here. There is, however, one part of it that is new and that, though 
worthy of a more detailed discussion, I shall only mention. It is the possibility 
of representing structures in which the Archimedean condition, or any other 
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stronger condition, is not required (cf. before Narens (1974) also Skala (1975)). 
The motivation for studying this type of system is two-fold. On the one hand, 
this condition is not first-order axiomatizable;M on the other, in some systems 
it may be reasonable to admit the existence of infinite or infinitesimal elements, 
that is, infinitely bigger or smaller than others.45 Narens studies several 
extensive and conjoint non-Archimedean systems. These systems are not 
generally representable on the reals, but they are on a ultrapower of the reals 
and the last part of the book deals with this kind of representation following the 
techniques of non-standard analysis. 

Many of the results contained in Naren’s work are included, extended and 
brought up to date in the third volume of Foundations. Here extensive systems 
are generalized by using concatenation structures (Chapter 19)46 and the new 
characterization of the systems using the properties of their automorphism 
groups and their relation to scale types (Chapter 20) is presented. Of the two 
remaining chapters in this third volume, Chapter 21 is not, with respect to MT, 
so much theoretical as metatheoretical, for it deals with several issues concern- 
ing axiomatizability. Actually, most of it is simply standard model theory and 
axiomatization in formal languages, and only at the end (cf. 21.7 and 21.8) is 
the topic applied to MT. The last chapter is devoted to invariance (a subject 
which had been partially dealt with in Found&ions I, Chapter 10) and the 
problem of meaningfulness. Three concepts of invariance, referential, structural 

and transformational, are introduced and the importance of each one and the 
logical relations between them are discussed. The notion of invariance is 
directly linked to the meaningfulness problem, that is, what legitimate or 
meaningful use can we make of representations-measurements? Once we have a 
representation of a certain system-magnitude, not every quantitative statement 
involving the magnitude is legitimate or meaningful, in the sense of depending 
only on ‘the objective facts of the system’, and not on our conventions. So, for 
example, ‘the probability of this event is 0.7’ is meaningful, but ‘the mass of this 
object is 4.3’ is not; and ‘the mass of this object is 1.5 times the mass of that 
one’ is meaningful whereas ‘the (thermometric) temperature today is twice 
yesterdays’ is not. The first method of tackling this question, which goes back 
to Stevens, made meaningfulness depend on invariance under the admissible 
transformations of the morphism-representation, i.e. under changes of scale. In 

&This is a consequence of the compactness theorem (cf. Narens, 1985, p, 318 ff.). As is pointed 
out in Foundations 3 (p. 248) the importance of this fact for measurement theory must be qualified, 
because if, as is usual in metrization, set theory is taken as the basic language, the Archimedean 
axiom is on a par with the others. 

‘sKyburg (1988, p. 182) relativizes the importance of this possibility. On the other hand, Narens 
deals with this possibility in general. It has nothing to do with some concrete systems with 
‘insuperable’ elements, such as systems with an essential maximum which we have seen above (see 
Section 3.6). 

4hThis generalization and systematization is, however, still partial; for a posterior canonical 
reconstruction of all types of combination systems, cf. Diez (1997, Chapter 6) and Moulines and 
Diez (1997). 
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this chapter, the authors review the evolution of this criterion and other 
subsequent ones, and discuss its application in the two main areas studied in 
measurement literature, dimensional analysis and statistics. 

The second volume of I;oundutions is devoted mainly to analyzing multi- 
dimensional representation (Chapters 12-15) and error (16-17). About the 
latter, rather than with error in the representation properly speaking, they deal 
with the various representational possibilities for systems in which some central 
condition of standard cases fails. The classical case and the one on which they 
focus is transitivity, which we discussed in Section 8.2 and with respect to which 
the authors add here a more probabilistic approach (Chapter 17) to the usual 
algebraic analysis of these systems. This part on the theme of ‘error’ contains 
few new elements worthy of mention. More interesting, because it reveals the 
extremely, and sometimes exceedingly, broad concept the authors have of a 
theory about the foundations of measurement, is the section on what they call 
multidimensional representations. We shall conclude with some comments on 
this issue. 

After what we have seen up to here, one would expect multidimensional 
metrization to deal with the conditions that an empirical system E=<A, R,, . . . . 

R,> must satisfy to be homomorphic to a certain vectorial system, or 
geometry, V= CRe”, S,, . . . . S,,,>; or, in general, for there to be a functionfof 

E into Re” for which a (‘natural’ and interesting) formula w relatingf, the Ri 
and certain relations and operations on Re”, is true. However, this is found in 
only a very few places in the four chapters which make up this section. 

First, the various representative structures, i.e. the various analytical geo- 
metries, are introduced.47 Then, several synthetic geometries, i.e. systems which 
are characterized using qualitative axioms about relations on the qualitative 
domain, are presented (e.g. projective, affine, absolute, Euclidean, hyperbolic, 
elliptical spaces). It is proved that they are isomorphic (in each case) to a 
specific analytical geometry. This is where we find the above-mentioned scheme 
most clearly. To what extent this topic properly belongs to a theory of 
measurement of empirical systems, or whether it is simply a task of reducing 
synthetic to analytical geometries, is debatable. It is true that it fits the general 
pattern of the formal part of the theory: if a certain qualitative structure 
satisfies certain conditions, then there is a (now multidimensional) represen- 
tation which is unique to a certain extent. A different issue is whether such 
systems have an empirical application and, above all, whether their represen- 
tation can be properly regarded as a genuine case of measurement, that is, a 
representation of magnitudes. In this respect, it is important to point out that 
the qualitative structures here represented, the synthetic geometries, lack a 

%deed, Chapter 12 is basically an analysis of the axiomatic foundations of analytical geometry. 
At least one of these geometries is somewhat peculiar as ‘representor’ system, for it contains an 
external operation (Minkowski geometry, def. 12.9, p. 43; the operation is the norm). 
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comparison relation. But this seems quite strange from a measurement point of 
view. If we are talking of measurement in the strict sense, i.e. quantitative 
representation of qualitative magnitude systems, and if magnitudes are char- 
acterized as being properties with ‘more or less’ instantiation or instantiation 
degrees, it should be expected, contrary to what is the case in geometrical 
representations, that every qualitative system ‘containing’ a magnitude 
essentially exhibits a primitive order comparison relation. Actually, nobody 
thinks that in geometrical representation we are representing magnitudes in the 
sense here specified. What is going on is that the authors have in mind an 
extremely broad, and in my opinion inappropriate, idea of what a measurement 
theory is, for they seem to put every kind of quantitative representation of an 
empirical system in the very same bag (cf. on this topic the historical comments 
they make in Foundations II, pp. l-2). Although it is certainly interesting to 
develop a General Representation Theory,48 with measurement and geometric 
(and perhaps other) representations as special cases, I think that MT is not such 
a theory, for not every case of representation is a case of measurement in the 
strict, I mean appropriate, sense of the word, i.e. a case of representation of 

magnitudes. 

One last question should be mentioned, the surprising inclusion of 
the structures for the measurement of proximity or distance (cf. Proximity 

Measurement, Chapter 14) in this part devoted to multidimensional metrica- 
tion. These structures are of the type <A, k > with k on AxA (of the same 
type, therefore, as the difference systems we saw in Section 8.1). Their 
conditions guarantee the existence of a function a of AxA into Re which 
preserves order and, among other things, is a metric, i.e. (i) a(x, x)=0, (ii) 3(x, 
y) 20, and (iii) 3(x, y)+a (y, z) 2 a( x, z). When A is factorial, that is 

A=A,x...xA,, the representation may in some cases ‘decompose’. This can be 
done in two ways. Some groups of conditions guarantee the existence of 
functionsfi of AixAi into Re and F of Re” into Re such that a(a, 6)=a(<a,, . . . . 
a,>,<b,, . . . . b,,>)=F(fi(<a,, b,>), . . . . fn(<un, b,>)). Other groups guarantee 
that there are functions gi of Ai into Re, G of Re2 into Re and F of Re” into Re 
such that L3(a,b)=a(<a,, . . . . a,', %> --.v ~,')=FtC(g,(~,), g,Wl, -.-3 G(g,fG, 
g,,(b,)) (sometimes 3 is no longer a metric although it still preserves order). If 
any of these cases can be described as multidimensional it is surely the last one, 
since it may be considered that we assign to each element of A an n-tuple of 
reals, an n-dimensional vector <x,, .,., x,,>, and that the ‘distance’ between two 
elements is the result of operating in a specific way with their assignations- 
vectors (here xi is the value that gi assigns to the ith-component of the element; 
remember A is factorial). Anyway, it is perhaps more appropriate to describe 
this case as a special type of interval-conjoint metrication; and indeed most of 
the tools used in its analysis do come from both types of metrication. 

?3ee, for instance, the works by Mundy, speciatty Mundy (1986). 
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Here we close the review of the most significant contributions of Foundations. 

In this opus magnum, the theory whose first stone was laid by Hehnholtz a 
century before, reaches full maturity. But, surely enough, it still has to progress 
in different ways in the future. As in any other theory, normal science, in the 
Kuhnian sense, does not stop for MT, and since the not so remote publication 
of the last volume of Foundations, there is already an enormous amount of new 
writings on the subject. But, despite this impressive production, a long time is 
sure to pass until we see another summa comparable to Foundations. Although 
some of its parts deviate a little from a theory about the foundations of 
measurement, in the strict sense of the word, and others should have a better 
metatheoretical structure, there is no doubt that this book will be for a long 
time the basic reference for anybody interested in the theory of measurement. 
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