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Abstract. Consider an election in which each of the n voters casts a
vote consisting of a strict preference ranking of the three candidates A,
B, and C. In the limit as n→∞, which scoring rule maximizes, under
the assumption of Impartial Anonymous Culture (uniform probability
distribution over profiles), the probability that the Condorcet candidate
wins the election, given that a Condorcet candidate exists? We pro-
duce an analytic solution, which is not the Borda Count. Our result
agrees with recent numerical results from two independent studies, and
contradicts a published result of Van Newenhizen (1992).

1. Introduction

We wish to consider elections in which n voters select a winner from among
the three candidates A, B, and C. We assume that each voter expresses, as
his or her vote, a strict, complete, and transitive preference ranking of the
candidates; in particular, no voter expresses indifference between any two
candidates. Each voter chooses, then, from among six possible rankings:

n1 n2 n3 n4 n5 n6

A C C B B A
B B A A C C
C A B C A B

Here, each ni is equal to the number of voters who express the associated
ranking. Thus, any 6-tuple P = (n1, n2, n3, n4, n5, n6) of non-negative inte-
gers that sum to n tells us how many voters chose each of the rankings in a
given election. Such a tuple is known as a profile.

Numerous criteria have been suggested to help select which voting systems,
among various systems for choosing winners from profiles, best reflect the
cumulative will of the electorate. One of the most common of these is the
Condorcet Criterion. If U and V are candidates, let U >C V indicate that
candidate U defeats V in the pairwise majority election between these two
(strictly more voters ranked U over V than ranked V over U); we’ll use
U ≥C V for the corresponding weak relation. A candidate is the Condorcet
winner if she defeats each other candidate in pairwise majority elections.

Keywords: Condorcet efficiency, scoring systems, Borda count, Impartial Anonymous
Culture, voting. Subject classifiction: C67.

1



2 DAVIDE P. CERVONE, WILLIAM V. GEHRLEIN, AND WILLIAM S. ZWICKER

It is well known [3, 11] that a Condorcet winner need not exist. However,
many feel that a reasonable voting system should elect the Condorcet winner
whenever such a candidate exists; this is the Condorcet Winner Criterion.

The cost of completely meeting this criterion can be high, however, because
it forces us to sacrifice certain other desirable requirements [8]. So it has
become common to consider, as a measure of partial fulfillment, the Con-
dorcet efficiency of a voting system S, which is the conditional probability
that S elects the Condorcet winner, given that a Condorcet winner exists.

Condorcet efficiency depends, of course, on the underlying probability dis-
tribution describing the likelihood that various profiles are observed. Many
such distributions have been considered, but the two most common assump-
tions are:

Impartial Culture (IC): voters choose a preference ranking ran-
domly and independently with probability 1/6 of choosing any par-
ticular ranking.

Impartial Anonymous Culture (IAC): each possible preference pro-
file is equally likely.1

Further discussion of these two assumptions may be found in Berg [1],
Gehrlein [4], and Stensholt [12].

In the general discussion that follows, we will assume that the underlying
probability distribution is neutral — that is, it treats the candidates sym-
metrically.2 Both IAC and IC are neutral.

Our focus is on the Condorcet efficiency of scoring rules (also called weighted
scoring rules). For three candidates, a scoring rule is determined by a vector
〈α1, α2, α3〉 of real-number scoring weights satisfying both α1 ≤ α2 ≤ α3 and
α1 < α3. Each voter awards α1 points to her bottom-ranked candidate, α2

points to her second-ranked candidate, and α3 points to her most favored
candidate. The winner is the candidate with the highest number of total
points, and in fact the point totals determine a complete ranking of the
candidates (with ties possible).

It is has long been known that any order-preserving affine transform

〈α1, α2, α3〉 7→ 〈aα1 + b, aα2 + b, aα3 + b〉
1To appreciate the difference between these two assumptions, note that under IC the

probability distribution over profiles is not uniform; it has a peak at the central point
(1/6, 1/6, 1/6, 1/6, 1/6, 1/6). As n increases, more and more of the “area” under the
“curve” is concentrated very close to the central point, in such a way that the distribution
approaches a “spherically” symmetric one with a huge spike at the center. (We use
quotation marks here, because all the action is of course in a higher dimension.)

2Specifically, we assume that each permutation of the candidates leaves fixed the prob-
ability of any event described in terms of specific candidates.
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(where we require a > 0 and b to be real-number constants) produces a
second vector of scoring weights that induces the identical voting system;
for every profile, total score yields the same ranking of candidates using one
vector as it does using its transform. Thus, we can normalize any vector so
that α1 = −1 and α3 = 1. Under this normalization (others are possible)
the voting system is completely determined by the middle scoring weight,
which we term β and which satisfies −1 ≤ β ≤ 1. Two scoring systems are
particularly worth noting in this connection: plurality voting (β = −1) and
the Borda count (β = 0).

Let us introduce a bit of notation here. Suppose for a moment that our
profile P is fixed, and U and V are candidates. We’ll use Uβ to denote the
total of all points awarded to U using the scoring weights 〈−1, β, 1〉, and
we will write U >β V to mean Uβ > V β and U ≥β V to mean Uβ ≥ V β.
We are now ready to state the three questions that most naturally suggest
themselves for study, given our line of inquiry.

Question #1. Which value of β maximizes the probability that A >β B,
given that A >C B?3

(Interpretation: Which value of β maximizes the probability, for any two
candidates, that the scoring system will rank them in the same order as
pairwise majority?)

Question #2. Which value of β maximizes the probability that A >β B
and A >β C, given that A >C B and A >C C?

(Interpretation: Which value of β maximizes the probability that the scoring
winner will equal the Condorcet winner, given that a Condorcet winner
exists?)

Question #3. Which value of β maximizes the probability that A >β B >β

C, given that A >C B >C C and A >C C? 4

(Interpretation: Which value of β maximizes the probability that the scoring
ranking will equal the Condorcet ranking, given that a Condorcet ranking
exists?)

These interpretations may seem, at first, to be too general, but note (for
example, in question 2) that neutrality implies that the probability that a

3Here, as elsewhere, we are somewhat arbitrarily favoring strict inequalities over weaker
ones. This choice is of little account, because for any reasonable probability distribution,
as n→∞ the probability of a tie in either type of ordering (such as A ≥C B and B ≥C A)
becomes vanishingly small. Discounting ties becomes automatic when we later reduce the
problem to one of calculating volumes of polytopes, because the volume of such a region is
the same regardless of whether the region includes the appropriate sections of its bounding
hyperplanes or not, and it is exactly the points lying on these bounding hyperplanes that
correspond to ties.

4The last inequality is needed because >C may be intransitive; it would be redundant
for >β .
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particular candidate is the scoring winner, given that that candidate is the
Condorcet winner, is equal to the probability that the scoring winner is the
Condorcet winner, given that a Condorcet winner exists.

Question 2 is the most important to the current study. Van Newenhizen [14]
considered all three questions in an attempt to show that Borda Rule max-
imized all three of the associated probabilities under a family of probability
distributions for voter profiles, including IAC.

Question #4. Which value of β maximizes the probability that A >β C >β

B, given that A >C B >C C and A >C C?

The importance of question 4 is not obvious. As we will see, it helps to com-
plete a package that makes the answer to question 2 seem more reasonable
and, with the benefit of hindsight, almost predictable.

Gehrlein and Fishburn [6] consider question 2 with the assumption of IC. The
results of that study found the range of β values to maximize the associated
probability for small n, to show that Borda Rule was not included in the
range of those weights. However, as n → ∞ under IC, it was shown that
Borda Rule uniquely maximized the probability from question 2. Tataru and
Merlin [13] use the assumption of IC as n →∞ to develop a representation
for the probability that B >β A and C >β A, given that A >C B and A >C

C, and show that it is the same as the representation for the probability
that A >β B and A >β C, given that B >C A and C >C A. Their study
begins with notions of geometric models of voting phenomena, as developed
by Saari and Tataru [9], and then obtains probability representations by
applying results of Schläfli [10].

Gehrlein [5] addresses the probability in question 2 for small n under the
assumption of IAC to find the range of β values to maximize that probabil-
ity. Results do not suggest that Borda Rule will maximize the probability as
n →∞ with IAC, as it did with IC. Lepelley, Pierron and Valognes [7] also
present computational results for large n to suggest that Borda Rule does not
maximize the probability from question 2 as n →∞ with IAC. These obser-
vations are not in agreement with the results given in Van Newenhizen [14],
as mentioned above. The current study considers the limiting case as n →∞
with the assumption of IAC, and develops closed-form representations for
the probabilities, to resolve the inconsistencies in these observations.

The rest of this paper is organized as follows. In section 2 we explain how
the problem may be reduced to one of pure geometry. Our main results are
detailed answers to questions 1, 2, 3, and 4, that are stated without proof
in section 3. Some subtleties of the problem, which seem to make the IAC
case somewhat more complex than the IC case, are discussed in section 4.
In section 5, we discuss the role of question 4 and of certain symmetry argu-
ments in providing some intuition for the main results. It seems, however,
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that these ideas are unlikely to yield short proofs that substitute fully for
the detailed geometrical analyses and proofs, which appear in section 6.

2. Geometrization

If we divide each of the vote counts, ni, that appears in our vote profile
P = (n1, n2, n3, n4, n5, n6) by the number of votes, n, we obtain a normalized
profile P̄ = (x1, x2, x3, x4, x5, x6) of numbers xi = ni/n that represent the
fractions of voters who favor each of the six strict preference rankings. Each
of the relationships we require can be expressed as easily in terms of the xi

as in terms of the ni. For example, A >C B if, and only if,

x1 − x2 + x3 − x4 − x5 + x6 > 0 (H1a)

and A >β B if, and only if,

(1− β)x1 − (1 + β)x2 + (1 + β)x3 − (1− β)x4 + 2(−x5 + x6) > 0. (H1b)

Note that each xi ≥ 0 and
∑

xi = 1, so the normalized profiles correspond
to those points in ∆5, the 5-simplex in R6, for which each coordinate is a
rational number that may be written with denominator n. These points form
a regular lattice in ∆5, in which each point spaced away from the boundary
has 6× 5 = 30 nearest neighbors. Under IAC, our probability measure puts
equal weight on each of these lattice points inside ∆5. In figure 1 we have
sketched the analogous situation for the 3-simplex in R3, showing first how
∆3 sits inside R3 and then illustrating the lattice for the case n = 5 (for
which each point spaced away from the boundary has 3 × 2 = 6 nearest
neighbors.)

(0,0,1)

(1,0,0)

(0,1,0)

PC = (1/3,1/3,1/3)

(0,0,1)

(1,0,0) (0,1,0)

(2/5, 1/5,2/5)

Figure 1. The 2-simplex, ∆2, in three-space, containing the central
point PC = (1/3, 1/3, 1/3) is shown on the left. On the right we show
the lattice points (for n = 5) within this simplex.

The entire region ∆5 in R6 is the graph of the solution set of the following
system T0 of linear equations and inequalities:

x1 + x2 + x3 + x4 + x5 + x6 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, and x6 ≥ 0.

(T0)
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Now consider the region we shall call R1 (because it is the principal region
of interest for question 1), defined as the graph of the solution set of the
system T1 consisting of T0 together with inequalities H1a and H1b, and also
consider region R1a similarly defined in terms of the system T1a consisting
of T0 with only inequality H1a added in. It is evident that the probability
for question 1 (of our scoring system ranking of two candidates being in
agreement with the pairwise majority outcome) is given by the following
expression:

lim
n→∞

number of lattice points in region R1

number of lattice points in region R1a

Because our regions are not complicated (they are solution sets of a linear
system) this limit agrees with5 the ratio

volume of region R1

volume of region R1a
(1)

where by volume we intend “5-volume”.

Furthermore, changes in β do not affect the volume of region R1a, so the
value of β maximizing ratio (1) is the same as that maximizing the volume
of R1. Thus, our original question 1 can be translated as follows:

Question #1 [volume equivalent form]. What value of β maximizes the
volume of region R1?

We can say more about these inequalities. Let M∆ be the hyperplane con-
taining ∆5, which has equation x1 + x2 + x3 + x4 + x5 + x6 = 1. We will
primarily be concerned with what goes on within this plane. Consider the
equality corresponding to inequality H1a:

x1 − x2 + x3 − x4 − x5 + x6 = 0. (P1a)

This hyperplane, P1a, intersected with M∆, forms a hyperplane M1a. Note
that M1a passes through the central point PC of ∆5, and that the solution
of the original inequality, H1a, (again, taken within M∆) forms a half-space
within M∆. (For notational purposes, if we have a half-space in six-space
given by the inequality Hx, its bounding hyperplane will be the equality
denoted Px, which intersects with M∆ to form a 5-dimensional hyperplane,
Mx.) The equality corresponding to inequality H1b,

(1− β)x1 − (1 + β)x2 + (1 + β)x3 − (1− β)x4 + 2(−x5 + x6) = 0, (P1b)

yields a second hyperplane M1b(β) that also passes through the central point
PC of ∆5. Thus R1 consists of a “wedge” cut out of ∆5 by a pair of hyper-
planes that pass through the middle of ∆5.

The first question can be rephrased informally, then, as follows:

5The necessary background for a proof of this assertion is given in [2].
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Question #1 [informal version]. As β varies from −1 to +1, the plane
M1b(β) swivels about the central point of the simplex. For which β does
this plane, together with the fixed plane M1a, cut the largest wedge R1 out
of ∆5?

A schematic depiction, using ∆2 in place of ∆5, appears as figure 2.

η

M1a

M1b

R1

Figure 2. A fixed line M1a and a moving line M1b cut a region R1 from
the 2-simplex that is largest when the angle η between the lines is largest.

Each of the other questions can be similarly expressed. The translation of
the second question is as follows:

Question #2 [informal version]. As β varies from −1 to +1, the planes
M2b1(β) and M2b2(β) both swivel about the central point of the simplex.
For which β do these two planes, together with the two fixed planes M2a1

and M2a2, cut the largest wedge R2 out of ∆5?

The equations of the half-spaces (in six-space that induce these planes in
M∆) together with the associated inequalities in terms of >C and >β , are
as follow:

(A >C B) x1 − x2 + x3 − x4 − x5 + x6 > 0 (H2a1)

(A >C C) x1 − x2 − x3 + x4 − x5 + x6 > 0 (H2a2)

(A >β B) (1− β)x1 − (1 + β)x2 + (1 + β)x3

− (1− β)x4 + 2(−x5 + x6) > 0 (H2b1)

(A >β C) 2(x1 − x2)− (1− β)x3 + (1 + β)x4

− (1 + β)x5 + (1− β)x6 > 0 (H2b2)

Each of the questions 3 and 4 give rise to three fixed hyperplanes (from the
inequalities A >C B, B >C C, and A >C C) and two moving hyperplanes
(from A >β B and B >β C, for question 3, and from A >β C and C >β B
for question 4). The equations for these are given in section 6.
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3. Statements of Main Results

Theorem 1. Consider elections using scoring systems for which there are
three candidates and n voters, and for which a vote consists of a strict pref-
erence ranking of the candidates. Assume that all profiles are equally likely
(IAC). Then for any two candidates, the limit, as n → ∞, of the value of
β maximizing the probability that the scoring system ranks these two in the
same order as they are ranked by pairwise majority is 0; that is, the Borda
count maximizes the limiting probability in this context. This number is the
unique value of β in [−1, 1] for which the function F1 given below satisfies
F ′

1(β) = 0.

The function F1(β) defined on the interval [−1, 1] whose value is the limiting
conditional probability described above (i.e., the ratio of the 5-volume of
region R1 to that of region R1a) is given by the following formula:

F1(β) =

{
F̃1(−β)/V1 for −1 ≤ β ≤ 0

F̃1(β)/V1 for 0 ≤ β ≤ 1

where

F̃1(β) =
√

6
3840

· 131 + 131β − 47β2 − 11β3 + 4β4

(1 + β)(3− β)(3 + β)
and V1 =

√
6/240 is the volume of region R1a. This function is symmetric

about the y axis (β = 0), and its graph appears as figure 3. Although
the formula presented here was computed using the method described in
section 6, it was duplicated independently by the second-named author using
an algebraic partitioning of the space enclosed by the hyperplanes.

-1 -0.5 0 0.5 1

0.82

0.84

0.86

0.88

0.9

0.92

Figure 3. The graph of the function F1(β), which gives the conditional
probability of question 1. It is symmetric about the y axis and has a
unique maximum at β = 0.

Theorem 2. Consider elections using scoring systems for which there are
three candidates and n voters, and for which a vote consists of a strict pref-
erence ranking of the candidates. Assume that all profiles are equally likely
(IAC). Then the limit, as n → ∞, of the value of β maximizing the proba-
bility that the scoring winner of the election is the Condorcet winner, given
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that a Condorcet winner exists, is β = −0.25544 (which is correct to five
decimal places); in particular, the Borda count does not maximize the lim-
iting probability in this context. This number is the unique value of β in
[−1, 1] for which the function F2 given below satisfies F ′

2(β) = 0.

The function F2(β) defined on the interval [−1, 1] whose value is the limiting
conditional probability described above (i.e., the ratio of the 5-volumes of
the corresponding regions R2 and R2a) is given by the following formula:

F2(β) =

{
F−

2 (β)/V2 for −1 ≤ β ≤ 0

F+
2 (β)/V2 for 0 ≤ β ≤ 1

where

F−
2 (β) =

√
6

155,520

(
3321− 10449β + 9558β2 − 1152β3

(1− β)3(9− β2)

+
−1467β4 + 191β5 + 28β6 + 2β7

(1− β)3(9− β2)

)
and

F+
2 (β) =

√
6

155,520

(
3321 + 19440β + 35073β2 + 18810β3 − 7083β4

(1 + β)3(9− β2)(1 + 3β)

+
−6518β5 + 1381β6 + 844β7 + 12β8

(1 + β)3(9− β2)(1 + 3β)

)
and V2 =

√
6/384 is the volume of the region R2a that is the intersection of

the simplex ∆5 and the two fixed hyperplanes H2a1 and H2a2 . This function
is not symmetric about the y axis (β = 0), nor is it symmetric about the
line β = −0.25544. Its graph appears as figure 4.

-1 -0.5 0 0.5 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Figure 4. The graph of the function F2(β), which gives the conditional
probability of question 2. It is not symmetric and has a maximum at
approximately β = −0.25544.
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Theorem 3. Consider elections using scoring systems for which there are
three candidates and n voters, and for which a vote consists of a strict pref-
erence ranking of the candidates. Assume that all profiles are equally likely
(IAC). Then the limit, as n → ∞, of the value of β maximizing the proba-
bility that the ranking of candidates by total score agrees with the transitive
ranking by pairwise majorities, given that the pairwise majorities do yield
a transitive ranking, is 0; that is, the Borda count maximizes the limiting
probability in this context. Zero is the unique value of β in [−1, 1] for which
the function F3 given below satisfies F ′

3(β) = 0.

The function F3(β) defined on the interval [−1, 1] whose value is the limiting
conditional probability described above (i.e., the ratio of the 5-volumes of
the corresponding regions R3 and R3a) is given by the following formula:

F3(β) =

{
F̃3(−β)/V3 for −1 ≤ β ≤ 0

F̃3(β)/V3 for 0 ≤ β ≤ 1

where

F̃3(β) =
√

6
311,040

(
2997 + 17982β + 32643β2 + 16074β3 − 7767β4

(1 + β)3(9− β2)(1 + 3β)

+
−5926β5 + 1241β6 + 926β7 + 6β8

(1 + β)3(9− β2)(1 + 3β)

)
where V3 =

√
6/768. This function is symmetric about the y axis (β = 0),

and its graph appears as figure 5.

-1 -0.5 0 0.5 1

0.55

0.6

0.65

0.7

0.75

0.8

Figure 5. The graph of the function F3(β), which gives the conditional
probability of question 3. It is symmetric about the y axis and has a
unique maximum at β = 0.

Theorem 4. Consider elections using scoring systems for which there are
three candidates and n voters, and for which a vote consists of a strict pref-
erence ranking of the candidates. Assume that all profiles are equally likely
(IAC). Then the limit, as n → ∞, of the value of β maximizing the proba-
bility that the ranking of candidates by total score agrees, in terms of the top
candidate, with the transitive ranking by pairwise majorities, but disagrees
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in terms of the ordering of the second and third ranked candidates, given that
the pairwise majorities do yield a transitive ranking, is −1; that is, plurality
voting maximizes the limiting probability in this context.

The function F4(β) defined on the interval [−1, 1] whose value is the limiting
conditional probability described above (i.e., the ratio of the 5-volumes of
the corresponding regions R4 and R4a) is given by the following formula:

F4(β) =

{
F−

4 (β)/V4 for −1 ≤ β ≤ 0

F+
4 (β)/V4 for 0 ≤ β ≤ 1

where

F−
4 (β) =

√
6

155,520

(
162− 1215β + 4131β2 − 6876β3 + 4878β4

(1− β)3(9− β2)(1− 3β)

+
−667β5 − 893β6 + 422β7 − 6β8

(1− β)3(9− β2)(1− 3β)

)
and

F+
4 (β) =

√
6

155,520

(
162 + 729β + 1215β2 + 1368β3 + 342β4

(1 + β)3(9− β2)(1 + 3β)

+
−296β5 + 70β6 − 41β7 + 3β8

(1 + β)3(9− β2)(1 + 3β)

)

and V4 =
√

6/768. The graph of F4(β) is decreasing on the interval from −1
to 0.63311 and increasing on the interval from 0.63311 to 1. This function
is not symmetric about the y axis (β = 0), nor is it symmetric about the
line β = 0.63311. Its graph appears as figure 6.

-1 -0.5 0 0.5 1

0.05

0.1

0.15

0.2

0.25

0.3

Figure 6. The graph of the function F4(β), which gives the conditional
probability of question 4. It is not symmetric and has a maximum at
β = −1.
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4. The Arguments in Van Newenhizen [1992]

Much of the intuition behind our results arises from an understanding of
what goes wrong in the approach of Van Newenhizen [14], here termed the
basic approach, which is the natural one that might first suggest itself. Be-
cause question 1 entails only one fixed plane and one moving plane, we begin
by considering this question. The basic approach considers the angle η be-
tween the two hyperplanes M1a and M1b(β) (see figure 2), shows that when
β = 0 the angle η is maximized, and concludes that when β = 0 the volume
of the resulting wedge R1 is also maximized.

Figure 2 certainly suggests that a larger value of η yields a wedge R1 that
strictly contains (as a set of points) the version of R1 arising from a smaller
η value. However, figure 2 is a schematic representation of a more complex
situation in a higher dimensional space. The two hyperplanes M1a and
M1b(β) each contain the central point PC , so their intersection contains PC

as well. In figure 2 it appears as if PC is the only point in this intersection,
from which it would follow that this intersection is fixed as β varies. In fact,
the intersection, inside M∆, of these two 4-dimensional hyperplanes is itself
a 3-dimensional object that swivels about PC as β varies. Consequently the
R1 for some β value corresponding to a certain angle η is likely to neither
contain nor be contained by the R1 for a different β value corresponding to
a larger or smaller angle η. As β varies, some points are added to R1 and
other points are removed, as we show in section 6.4.

Suppose, however, that the wedge R1 were cut from a ball (solid sphere),
rather than from a simplex, by a pair of hyperplanes passing through the
center of the sphere. Then thanks to spherical symmetry, the largest volume
would necessarily correspond to the largest angle η between the planes,
regardless of whether or not each R1 with a larger η contained as a subset
each R1 with a smaller η. For the actual case at hand, however, we are faced
with the following plausible scenario: perhaps as β varies it happens that
while η is decreasing the position of R1 is swinging around in such a way
that the portion of the wall of our simplex that forms part of the boundary
of R1 is becoming more distant from the central point.

Let us sum up. The probability distribution under consideration is not
spherically symmetric. Hence, it does not follow that the largest η yields the
largest volume, unless one can show that the intersection of the hyperplanes
is fixed as β varies. But this intersection is not fixed, so there is a gap in
the basic approach. This same flaw is inherent in the application of these
methods to questions #2 and #3, as well.

In the case of questions #1 and #3, the result obtained by the basic ap-
proach turns out to be correct, so conceivably there is some way to patch
the argument, rather than starting from scratch. This seems as if it would
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be difficult to do. In the case of question 2, the result obtained from the
basic approach turns out to be incorrect. Could the flaw discussed in the
previous paragraph explain why this approach yields the wrong answer to
question 2?

The answer is not immediately apparent. Because question 2 (as well as #3)
entails more than two planes, a second type of difficulty arises. To focus on
this second issue, let us temporarily move the first issue off the table by
ignoring the simplex (and all its bounding hyperplanes), and pretending in-
stead that our probability distribution is the uniform distribution, inside
M∆, over the solid ball centered at the point PC that is common to all re-
maining hyperplanes. The basic approach considers two of these angles and
shows that these are each maximized when β = 0. But as there are several
planes and more than two angles involved, the subtleties of higher dimen-
sional geometry are such that it is not immediately clear which condition
on these angles is the appropriate one, given our temporary assumption of
spherical symmetry.

Does β = 0 maximize the spherical variant of region R2? To answer this,
we look first at a three-dimensional analogue: two planes cutting a wedge
out of a three-ball. If the planes pass through the center of the ball, their
intersection forms a line, L, passing through antipodal points on the sphere,
and the wedge is in the shape of an “orange slice”. The volume of this slice
is maximized when the area of the piece of “orange peel” on the slice is
maximized. This area is in the form of a spherical wedge known as a lune.
Note that planes perpendicular to the line L cut the lune in circular arcs,
with the longest arc for the plane through the center of the sphere (i.e., an
“equatorial” arc). The lune of greatest area will be achieved by the two
planes that form the longest equatorial arc.

The corresponding higher-dimensional situation has four hyperplanes pass-
ing through the center of the 5-ball in the five-dimensional space M∆. They
intersect in a line, L, and cut a five-dimensional wedge from the 5-ball. This
wedge is maximized when the corresponding four-dimensional lune cut from
the 4-sphere is maximized. The hyperplanes perpendicular to L slice the
four-dimensional lune in three-dimensional spherical regions, in this case,
spherical tetrahedra whose four faces correspond to the four original hyper-
planes. Again, the largest tetrahedron is the equatorial one, and the volume
of the five-dimensional wedge is maximized when the three-dimensional vol-
ume of this equatorial tetrahedron is greatest.

The basic approach argues that the greatest volume occurs for β = 0 by
looking at one angle between two of the four slicing hyperplanes and a
second between the other two hyperplanes, but this does not seem sufficient
justification for the claim. On the other hand, it turns out that for any two
of the four hyperplanes, their maximal angle occurs when β = 0. Now the
angles between the hyperplanes are actually the angles between the faces of



14 DAVIDE P. CERVONE, WILLIAM V. GEHRLEIN, AND WILLIAM S. ZWICKER

the spherical tetrahedron, and it seems reasonable that the volume of this
tetrahedron would be largest when its angles are largest. Thus the maximal
volume for the spherical R2 region does appear to be at β = 0.

The result is that although the reasoning is not sufficient, the conclusion
reached by the basic approach is nonetheless correct in the case of a spher-
ically symmetric region. Thus the original issue discussed above (namely
that the region is not spherically symmetric, and so a larger wedge does
not necessarily cut a larger volume) seems to be the fatal flaw in the basic
approach.

5. Symmetry and the Role of Question #4

The detailed geometrical analysis in section 6 proves that, in the context of
this paper, the Borda count is not the most Condorcet efficient among scor-
ing systems, yet it is the “best” scoring system in the sense of questions #1
and #3. However, the material in section 6 does not provide a short and
intuitively satisfying “story” explaining why things turn out this way, or
why the value of β is closer to −1 than to 1 in the most Condorcet efficient
scoring system. Does such a story exist? The answer seems to be “Yes, to
a limited extent.”

We begin with a short and self-contained argument explaining why the func-
tions F1(β) and F3(β) must be symmetric about the line β = 0. (This argu-
ment does not rest on the formulae for these functions, which were derived
through the longer geometrical analysis.) We discuss why the same argu-
ment does not apply to F2(β). Of course, symmetry does not show that the
maximum is located at β = 0 (because there might exist several maxima
located symmetrically about the line β = 0). Then we turn to the role of
question 4 in providing a plausibility argument for why the value of β is
closer to −1 than to 1 in the most Condorcet efficient scoring system.
Theorem 5. The functions F1(β) and F3(β) are each symmetric about the
line β = 0.

Proof. We’ll show F3(β) is symmetric and leave the proof for F1(β) to the
reader. Consider the probability p1 that

A >β B and B >β C (2)

given that
A >C B, B >C C and A >C C. (3)

We’ll show that p1 is equal to the probability p2 that

C >−β B and B >−β A, (4)

given that
C >C B, B >C A and C >C A. (5)
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For reasons we have already discussed, p1 = F3(β) and p2 = F3(−β), so it
will follow that F3(β) = F3(−β), as desired. Now we have

p1 =
Volume of Region R3

Volume of Region R3a

and
p2 =

Volume of Region R∗3
Volume of Region R∗3a

where region R3a is defined by the inequalities in T0 (for the simplex) to-
gether with (3), while for R3 we add (2) as well. Similarly, region R∗3a is
defined by the inequalities in T0 (for the simplex) together with (5), while
for R∗3 we add (4) as well.

Next, consider the function G : ∆5 → ∆5 by

G(x1, x2, x3, x4, x5, x6) = (x2, x1, x4, x3, x6, x5).

As a map from ∆5 to ∆5, G is clearly a volume-preserving bijection, so it
follows that

p1 =
Volume of Region G(R3)
Volume of Region G(R3a)

The regions G(R3) and G(R3a) are described by the inequalities obtained
by transforming the earlier inequalities (2) and (3) via G. It remains only,
then, to show that these transformed inequalities are (4) and (5), and it will
follow that G(R3) = R∗3 and G(R3a) = R∗3a, whence p1 = p2.

As the effect of applying G to a profile is to have each voter flip his or her
preference ranking upside down, it is immediate that applying G to any
inequality of form U >C V transforms it into the inequality V >C U . Also,
the total score Uβ(P ) for a candidate U under a profile P is easily seen to
satisfy that Uβ(P ) = −U−β(G(P )) from which it follows that applying G to
any inequality of form U >β V transforms it into the inequality V >−β U .
Now it is immediate that G transforms (2) into (4) and (3) into (5), which
completes the proof. �

It is interesting to observe what happens when the above argument is applied
to question 2, asking which value of β yields the most Condorcet efficient
scoring system, or equivalently, which value of β maximizes the probability
that A >β B and A >β C, given that A >C B and A >C C. Applying
the same transform G to the question tells us that the question 2 answer is
the same as the value of β maximizing the probability that B >−β A and
C >−β A, given that B >C A and C >C A. In this case, the transformed
question is not equivalent to the original: it asks us which value of −β
maximizes the probability that the scoring loser is the Condorcet loser,
given that a Condorcet loser exists.

We cannot conclude that F2(β) is symmetric. But the argument does yield
some information when thus applied — it tells us that if we were to plot
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“Condorcet loser efficiency” as a function of β, its graph would be the re-
flection across the line β = 0 of the graph of F2(β).

We turn next to a discussion of theorem 2. The most surprising result in
this paper is certainly the fact that the Borda count (β = 0) is not most
Condorcet efficient among scoring systems. Should we have expected this,
and might we have guessed that efficiency is maximized with a negative β
value? We offer a qualified “yes,” one certainly aided by hindsight, in what
follows.

Assume that A is the Condorcet candidate in an election with three candi-
dates, so that A >C B and A >C C. Then there is no cycle, so there exists
a Condorcet ranking. Ignoring the possibility of ties (see footnote 1), either

Case 1: A >C B >C C with A >C C, or
Case 2: A >C C >C B with A >C B.

By symmetry, the probabilities of these two cases holding are equal. We will
work on case 1; our reasoning applies just as well for case 2.

The desired outcome — that A is the scoring winner with A >β B and
A >β C — can happen in two ways. Either

Case 1.1: A >C B >C C (with A >C C) and A >β B >β C, or
Case 1.2: A >C B >C C (with A >C C) and A >β C >β B.

Given that we are in case 1, the probability that case 1.1 holds is maximized
when β = 0 (Borda count); this is precisely what theorem 3 states.

Theorem 4 tells us that the value of β maximizing the probability of case 1.2,
given that case 1 holds, is β = −1 (plurality voting). We will return to
theorem 4 in a moment. Now the probability that case 1 occurs (equivalently,
the volume of a certain 5-dimensional region) is equal to the sum of the
probabilities for the exclusive cases 1.1 and 1.2 (equivalently, the case 1
region is partitioned into the disjoint case 1.1 and 1.2 subregions, so that
its volume is the sum of the volumes of these subregions). Given that one
probability (or subregion volume) is maximized when β = 0 and the other
is maximized when β = −1, it seems reasonable that the sum might be
maximized by some compromise value of β between −1 and 0.

We did wonder whether it is possible to bypass the computational geometry
of section 6 by making the above argument rigorous. However, the directions
that we explored seem to point towards showing that the volume of the
region for question 4 steadily decreases as β varies from −1 to +1. This will
not be possible to show, since, in fact, F4 is increasing for β > 0.63311, as
illustrated in figure 7.
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Figure 7. The graph of F4(β) appears to be decreasing, but there is a
small rise to the right of β = 0.63311, shown here with an exaggerated
scale on the vertical axis.

6. Proofs of Theorems 1–4

In this section, we give the details of the calculations that lead to the for-
mulae for the volumes given in section 3. The method used is described
in general terms in section 6.1. To carry out the process, the combinatorial
structure of the region whose volume is to be computed must be determined;
this is done in detail in section 6.2 for the region R1 associated with theo-
rem 1. This result is used in section 6.3 to compute the volume of R1, and
the fact that the maximum volume occurs at β = 0 is verified in section 6.4.
The data needed to perform similar computations for the regions R2, R3

and R4 are given in section 6.5, but the details are left to the reader.

6.1. The Volume of a Convex Region. One way to determine the vol-
ume of a region is to break it into smaller pieces, whose volumes can be
computed more readily, and then add up the results. In our case, since the
region is convex, we can select one of its vertices and decompose the region
into a collection of pyramids having this vertex as their apex and the various
faces of the region as their bases. We need only consider the faces that don’t
contain the selected vertex, as the volume will be zero if the base contains
the apex of the pyramid. A three dimensional example would be the decom-
position of a cube into three congruent square-based pyramids with apexes
directly above a corner of their square bases (figure 8); the three pyramids
meet along a long diagonal of the cube.

The volume of a pyramid in dimension n is given by 1
nV h where V is the

(n − 1)-dimensional volume of the base, and h is the height of the apex
above the base. In two dimensions, this reduces to the usual formula 1

2bh
for the area of a triangle of base b and height h, and in three dimensions to
the formula 1

3Ah for the volume of a pyramid (or cone) of height h whose
base has area A. To use this formula in general, however, we need to be
able to compute the (n − 1)-volume of the base. In our case, the bases
are faces of a convex object and so are themselves convex, hence we can
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Figure 8. A cube can be divided into three square-based pyramids
having a common apex.

compute their volumes by breaking them into pyramids in dimension n− 1
and adding up the volumes of these pyramids exactly as we did with the
original region. This generates a recursive procedure for computing the
volume of the region. The base case for the recursion is the 2-dimensional
case, where the “pyramid” is a triangle, and the “base” is a line segment;
the “volume” of the base is then just the length of this line segment, which
can be computed using the distance formula.

v

Figure 9. A vector perpendicular to the base can be obtained by sub-
tracting the projection of the vector onto the plane of the base.

To use the volume formula for a pyramid, we also need to know the height
of the apex over the hyperplane containing the base. One way to get this
is the following: consider the vector v, from a point in the hyperplane (say
a vertex of the base) to the apex (figure 9); subtract from v the projection
of v onto the base hyperplane to obtain a vector perpendicular to the base
that points to the apex. The length of this perpendicular vector is the
height, h. If we know orthogonal unit vectors that span the base hyperplane,
then the projection of v can be computed as the sum of the projections
onto the orthogonal basis vectors. Notice that in finding the height, we
compute a vector perpendicular to the base hyperplane, so we can extend
the orthonormal basis for the base to an orthonormal basis for one dimension
higher (i.e., for the space containing the pyramid). This fits in nicely with
our recursive procedure, since the pyramid may be part of the base of a
higher-dimensional pyramid whose volume we are computing, and we’d need
this enlarged basis to get the height of that larger pyramid. (The process is
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really just Grahm-Schmidt orthonormalization with volume computations
mixed in.)

In this way, the volume of a convex polyhedral object in any dimension can
be computed effectively, provided the structure of its faces is known. We
turn now to our specific region and analyze its shape more carefully.

6.2. The Structure of the Region R1. To describe the region we need
some terminology. For each i = 1, . . . , 6, define Pi to be the hyperplane
xi = 0; recall that M∆ is the plane

∑
xi = 1. Suppose we let ui be the

point in R6 that has a 1 in the i-th coordinate and 0’s everywhere else.
Note that the Pi and M∆ intersect to form a regular 5-simplex in six-space
having the ui as its vertices. (The corresponding object in three-space is
the equilateral triangle having vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), lying in
the plane x+ y + z = 1 shown in figure 1.) The region R1 is the intersection
of this 5-simplex with two additional halfspaces, H1a and H1b defined in
section 2, having P1a and P1b as their bounding hyperplanes

Note that the hyperplane P1a cuts off a section of ∆5 that does not depend on
β, while the hyperplane P1b then cuts off another section that does depend
on β. Recall that R1a is the result of intersecting ∆5 with the halfspace H1a,
so R1 is then the result of intersecting R1a with H1b. To compute the volume
of R1, we look more closely at how these intersections occur.

First, let N1a = 〈1,−1, 1,−1,−1, 1〉, a vector normal to the bounding hy-
perplane, P1a, for H1a. Let x = (x1, x2, x3, x4, x5, x6) be an arbitrary point
in six-space; then x will lie in the halfspace H1a provided N1a · x ≥ 0. In
particular, we can check the six vertices ui of the 5-simplex to see which
vertices are cut off by P1a. Since ui is all zeros except for a 1 in the i-th
coordinate, N1a ·ui is just the i-th coordinate of N1a; when this is positive,
the vertex remains within the region, otherwise it is cut off. From this, we
see that vertices u1, u3, and u6 are in R1a, while u2, u4 and u5 are cut off.
Let S+ = {u1,u3,u6} and S− = {u2,u4,u5}.

New vertices are formed for R1a when the hyperplane P1a intersects one of
the edges of the 5-simplex. This occurs when the two vertices of the edge
are on opposite sides of the hyperplane; that is, when one vertex is in the
set S+ and the other is in S−. Since the 5-simplex has an edge for each
pair of its vertices, this means that there are nine new vertices created by
slicing the simplex by this hyperplane. We can compute the locations of
these vertices by parameterizing the points along the edge with vertices p0

and p1 by pt = p0 + t(p1−p0) and solving for the t where N1a ·pt = 0; i.e.,
N1a · (p0 + t(p1 − p0)) = 0, or t = N1a · p0/(N1a · p0 −N1a · p1). Since p0

and p1 each are one of the ui, N1a · pi is always one of the coordinates of
N1a, so will be 1 or −1; but since N1a ·p0 and N1a ·p1 must be of opposite
sign (the vertices are on opposite sides of the hyperplane), it must be that
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N1a · p0 = −N1a · p1. So t = N1a · p0/(N1a · p0 + N1a · p0) = 1/2, no
matter which edge we consider. Thus each of the nine edges are cut exactly
in half, and the new vertices formed in R1a are

v12 = 1
2(1, 1, 0, 0, 0, 0) v23 = 1

2(0, 1, 1, 0, 0, 0) v26 = 1
2(0, 1, 0, 0, 0, 1)

v14 = 1
2(1, 0, 0, 1, 0, 0) v34 = 1

2(0, 0, 1, 1, 0, 0) v46 = 1
2(0, 0, 0, 1, 0, 1)

v15 = 1
2(1, 0, 0, 0, 1, 0) v35 = 1

2(0, 0, 1, 0, 1, 0) v56 = 1
2(0, 0, 0, 0, 1, 1)

where vij is the vertex half-way between ui and uj .

The fact that we have three vertices on each side of the hyperplane, and that
the edges between them are cut exactly in half, suggests that there may be
a symmetry involved here, and indeed that is the case; the two halves of the
5-simplex are congruent, so P1a divides the simplex exactly in half. To see
this algebraically, we can give a transformation that maps the hyperplanes
that form one half onto those that form the other half. The system T0

together with H1a intersects to form R1a; if we introduce halfspace −H1a as
x1 − x2 + x3 − x4 − x5 + x6 ≤ 0, then T0 together with −H1a intersect to
form the other half of the 5-simplex. The halfspace −H1a can be rewritten
as −x1 + x2 − x3 + x4 + x5 − x6 ≥ 0; then exchanging x1 with x2, x3 with
x4, and x5 with x6 in all the hyperplanes converts T0 and −H1a into T0

and H1a, hence this also transforms one half into the other. This exchange
represents the composition of three reflections; it is a rigid motion, and so
is shape preserving.

To form the final region of interest, R1, we must now slice R1a by P1b, the
hyperplane for H1b. As above, we first determine which vertices of R1a are
inside and which outside H1b, and then compute the positions of the new
vertices obtained from slicing the edges whose vertices are on opposite sides
of P1b. Our job is made more complicated since P1b changes with β. Note,
however, that the two R1 regions obtained for β and −β are congruent: if
−β is substituted for β in H1b, and if we exchange x1 with x3 and x2 with x4,
the result is the original H1b, while this exchange leaves H1a and the original
5-simplex unchanged. Thus, by symmetry, we need only be concerned with β
in the range 0 ≤ β ≤ 1. (Note the close connection between these arguments
and the ones in theorem 5.)

Let N1b = 〈1− β,−(1 + β), 1 + β,−(1− β),−2, 2〉, a normal vector for the
hyperplane P1b bounding the halfspace H1b. Then when we intersect R1a

with H1b, a point x of R1a remains in R1 if, and only if, N1b · x ≥ 0. We
can compute N1b · x for each vertex in R1a and determine the values of β
(if any) for which the vertex still lies in the region. For example, u1 is a
vertex of R1a, and N1b · u1 = 1 − β, so N1b · u1 ≥ 0 only when 1 ≥ β.
This is true for all β in our range of interest, so u1 remains in R1 for all
β. On the other hand, v12 is a vertex of R1a, but N1b · v12 ≥ 0 only when
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0 ≤ 1
2(1 − β) − 1

2(1 + β) = −β; i.e., when β ≤ 0. So v12 is cut off by P1b

for all β of interest (except β = 0). Finally, v14 is a vertex of R1a and
N1b ·v14 = 1

2(1−β)− 1
2(1−β) = 0. This is true for all β, so v14 lies on the

slicing hyperplane for all β (and so remains within the region R1).

Carrying out this process for all the vertices of R1a, we find that u1, u3,
u6, v26, v34 and v46 all remain inside the region, v14, v23 and v56 lie on
the slicing hyperplane itself, and v12, v15, v35 are removed by H1b. This is
true for all values of β between 0 and 1, so the combinatorial structure of
R1 does not change for 0 < β < 1.

To find the new vertices of R1, we find where the slicing hyperplane intersects
the edges that have one vertex on each side, as we did before. In this case,
however, not all possible edges are present. There are 30 edges in R1a:
the three original edges between u1, u3 and u6; the nine half edges from
the edges having one endpoint in S+ and one in S−; nine edges formed by
cutting the triangles having one vertex in S+ and two in S−; and finally,
nine more from the triangles having two vertices in S+ and one in S−. The
only ones of these that are sliced by P1b are the ones between u1 and v12,
u1 and v15, u3 and v35, v12 and v26, and v34 and v35; thus there are five
new vertices.

As above, the new vertex between p0 and p1 can be computed from p0 +
t(p1−p0) where t = N1b ·p0/(N1b ·p0−N1b ·p1). We obtain the following
five new vertices that depend on β:

v1
12 = 1

2(1 + β, 1− β, 0, 0, 0, 0)

v1
15 = 1

3−β (2, 0, 0, 0, 1− β, 0)

v3
35 = 1

3+β (0, 0, 2, 0, 1 + β, 0)

v12
26 = 1

2(1+β)(1− β, 1 + β, 0, 0, 0, 2β)

v34
35 = 1

2(1+β)(0, 0, 1 + β, 1− β, 2β, 0).

The region R1 is the convex hull of the these vertices together with the ones
from R1a that are inside or on H1b. Thus R1 is the convex hull of u1, u3,
u6, v14, v23, v26, v34, v46, v56, v1

12, v1
15, v3

35, v12
26 and v34

35.

At this point, we know the vertices of R1, but to use the method outlined
in section 6.1 to compute its volume, we need to know about its faces as
well. Each face will be a 4-dimensional region lying either within one of the
hyperplanes Pi, P1a or P1b. For each of these hyperplanes, we can determine
which vertices lie in that face (they are the ones that satisfy the equation
of the hyperplane), and so the face will be the convex hull of those vertices.
For example, to be in the hyperplane P1, a point’s first coordinate must be
zero, hence u3, u6, v23, v26, v34, v46, v56, v3

35 and v34
35 lie in this hyperplane.

Thus these are the vertices of one of the 4-dimensional faces of R1; call it F .

Since the faces of R1 are 4-dimensional regions, they have 3-dimensional
faces of their own. A similar analysis can be used to determine these faces.
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For example, of the nine vertices in face F , u6, v26, v46 and v56 lie in P3,
so these four form one of the 3-dimensional faces of F . The 3-dimensional
faces in turn have 2-dimensional faces, and so on. The complete structure
of R1 can be determined by recursively taking each n-dimensional face and
calculating its (n− 1)-dimensional sub-faces.

6.3. Computing the Volume. The volume-computation algorithm de-
scribed in section 6.1 has us break the region R1 into smaller regions by
choosing one of its vertices and forming pyramids over the faces of R1 that
don’t contain that vertex. It is to our advantage to choose a vertex that
is included in the most faces so that we have the fewest pyramids to form.
There are eight faces all together, and vertex v23 lies in six of them (the
ones formed by P1, P4, P5, P6, P1a and P1b), so R1 can be broken into two
pyramids having v23 as their apex, and the faces lying in P2 and P3 as their
bases.

To compute the volume of these two pyramids, we need to compute the vol-
umes of the faces that form the bases of the pyramids. This entails choosing
a vertex in each 4-dimensional base and breaking each into 4-dimensional
pyramids. The bases of these smaller pyramids are 3-dimensional regions,
which can again be broken into 3-dimensional pyramids over 2-dimensional
faces. Such a breakdown for R1 is shown in figure 10. The left-most ver-
tex is our initial choice of v23, and to its right are the vertices chosen in
the 4-dimensional bases of the pyramids having v23 as their apexes. To
the right of these are the vertices chosen in the 3-dimensional bases of the
4-dimensional pyramids, and to the right of these are the 2-dimensional faces
that are the bases of the resulting 3-dimensional pyramids. These are given
as the vertices of polygons listed in order around each polygon.

In order to determine the volume, we start by calculating the areas of the
2-dimensional faces at the right of the diagram and work our way left. The
non-triangular faces can be broken into triangles (taking the “pyramid”
process one step further) and the areas of the triangles summed to get the
area of the polygon. To compute the area of a triangle abc, let v1 = b− a
and v2 = c − a be the vectors along two sides of the triangle. Let e1 be
the unit vector in the direction of v1, and let e2 be the unit vector in the
direction of v2− (v2 ·e1)e1; then e1 and e2 are orthogonal unit vectors that
span the plane containing abc. We can compute the area of the triangle by
using b = v1 · e1 as the base and h = v2 · e2 as the height.

To find the volume of a pyramid over this triangle having d as its apex, we
let v3 = d − a and let e3 be the unit vector in the direction of the vector
v3 − (v3 · e1)e1 − (v3 · e2)e2. This determines an orthonormal basis for the
three-space containing the pyramid. Then the height of the apex is v3 · e3,
and the volume can be computed as one third the area of the triangle times
this height.
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u1 = (1, 0, 0, 0, 0, 0)

u3 = (0, 1, 0, 0, 0, 0)

u6 = (0, 0, 0, 0, 0, 1)

v14 = 1
2
(1, 0, 0, 1, 0, 0)

v23 = 1
2
(0, 1, 1, 0, 0, 0)

v26 = 1
2
(0, 1, 0, 0, 0, 1)

v34 = 1
2
(0, 0, 1, 1, 0, 0)

v46 = 1
2
(0, 0, 0, 1, 0, 1)

v56 = 1
2
(0, 0, 0, 0, 1, 1)

v1
12 = 1

2
(1 + β, 1− β, 0, 0, 0, 0)

v1
15 = 1

3−β
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Figure 10. The pyramid structure of the region R1 for theorem 1. The left-
most vertex in the diagram is the apex of two pyramids that form the region
R1. The 4-dimensional bases of these pyramids are each divided into two
pyramids with apexes given by the second column in the diagram. The third
column gives the apexes of the 3-dimensional pyramids that form the bases of
the 4-dimensional pyramids. The bases of these 3-dimensional pyramids are
the 2-dimensional polygons listed at the right.

We continue this process by adding new basis vectors as we move left in the
diagram of figure 10, adding together the results to form the total volume
of the base at the next level. When the left of the diagram is reached, the
result is the formula for the complete volume of the region R1. Performing
this process with the vertices we determined above for R1 yields the formula
for F̃1(β) for β in [0, 1] given in section 3. By the symmetry, the volume for
−β is also F̃1(β); this leads to the formula for F1 given after theorem 1.

6.4. The Maximum Volume. We have computed the volume of the region
as a function of the parameter β. For what value of β is this volume at a
maximum? The derivative for F̃1(β) is

F̃ ′
1(β) = −

√
6β

960
· 146 + 49β − 52β2 − 18β3 + 2β4 + β5

(1 + β)2(3− β)2(3 + β)2
.

Since F̃ (β) is valid only for β between 0 and 1, −
√

6β/960 is always negative
(or zero), and the denominator of the right-hand fraction is positive. Since
β ≥ 0, we know β5 + 2β4 + 49β ≥ 0, and since β ≤ 1, −β ≥ −1, and
−18β3 ≥ −18 while −52β2 ≥ −52. Thus 146+49β−52β2−18β3+2β4+β5 ≥
149 − 52 − 18 = 79 > 0. The numerator is positive, hence F̃ ′(β) ≤ 0 for
0 ≤ β ≤ 1. This means the volume is decreasing as β goes from 0 to 1, so
the maximum volume is when β = 0. We saw before that the region for −β
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is congruent to the region for β, so if we consider β in the range −1 ≤ β ≤ 0,
the maximum again will be at β = 0. Thus the largest volume for any β in
−1 ≤ β ≤ 1 is at β = 0.

Although this value agrees with the one produced by Van Newenhizen, her
argument (as described in section 4) based on the angle between the planes
is insufficient to justify this. It would require that the R1 region for larger
angles be a superset of R1 for smaller angles. We can use the structure given
in the previous section to show that this can not be the case. If we take
R1(β) to be the region R1 for a given β, then we will show that R1(1/2)
neither contains nor is contained by R1(1/3).

To begin with, let p0 equal v1
15 for β = 1/3, that is, p0 = 1

4(3, 0, 0, 0, 1, 0).
Note that p0 is within R1(1/3) since it is a vertex of R1(1/3). Now consider
β = 1/2 and let p1 = v34

35 = 1
6(0, 0, 3, 1, 2, 0). Again, p1 is in R1(1/2).

Recall that p1 is in H1b if, and only if, N1b · p1 ≥ 0. Now when β = 1/3,
N1b = 2

3 〈1,−2, 2,−1,−3, 3〉, so N1b · p1 = −1/9. Thus p1 is not contained
in H1b, and therefore is not within R1(1/3). This means p1 ∈ R1(1/2) but
p1 /∈ R1(1/3), and so R1(1/2) 6⊆ R1(1/3), as claimed.

On the other hand, for β = 1/2, N1b = 1
2 〈1,−3, 3,−1,−4, 4〉, so in this case

N1b · p0 = −1/8. Thus p0 is not contained in H1b, and therefore is not in
R1(1/2). This means R1(1/3) 6⊆ R1(1/2), as desired.

6.5. Adding More Planes. The process used to compute the volume of
R1 above did not depend on the number of planes involved in forming the
region. If additional planes are used, we can determine which vertices are
cut off and which remain as we did above, with the new vertices being
calculated as before. In order to do this, we need to know which edges exist
in the region being sliced by the plane. We can determine the edges by
finding the 1-dimensional “faces” of the region using the recursive process
that was outlined at the end of section 6.2. Once we have the vertices that
remain after all the planes have been included, we break the object into
pyramids as in section 6.3, and compute the volume as before.

This method can be used to find the formulae for the volumes for the other
theorems. For theorem 2, there are two new planes that slice R1, namely

x1 − x2 − x3 + x4 − x5 + x6 > 0 (H2a)

2x1 − 2x2 − (1− β)x3 + (1 + β)x4

− (1 + β)x5 + (1− β)x6 > 0. (H2b)

Note that there is no symmetry between −β and β, so we must consider the
entire range of values of β. The structure of the resulting region changes at
β = 0 (where the slicing planes pass through vertices of the object), so two
different formulae are needed, one for β < 0 and another for β > 0. The
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vertices together with the breakdown of the region into pyramids is given in
figure 11 for β < 0 and figure 12 for β > 0. The resulting volume formulae
are given as F−

2 (β) and F+
2 (β) in section 3.

A graph of these two volumes is shown in figure 4. Note that the shape is not
symmetric about β = 0, and the maximum occurs for a β less than zero. We
can locate this β by finding the zeros of the derivative of F2. This involves
finding the roots of a ninth-degree polynomial, so we can’t do it algebraically.
We can determine them numerically, however, to as many digits of precision
as required. Doing so yields one zero in the range −1 ≤ β ≤ 1, namely
β = −0.25544192.

For theorem 3, there are three new planes in addition to the ones that formed
R1; two fixed and one varying with β:

x1 − x2 − x3 + x4 − x5 + x6 > 0 (H3a1)

x1 − x2 − x3 + x4 + x5 − x6 > 0 (H3a2)

(1 + β)x1 − (1− β)x2 − 2x3 + 2x4

+ (1− β)x5 − (1 + β)x6 > 0. (H3b)

In this case, there is again a symmetry between β and −β: exchanging −β
with β, x3 with x5 and x4 with x6 interchanges H1a with H3a2 and H1b with
H3b while leaving H3a2 unchanged. As before, this means that the volume
for −β is the same as the volume for β, so we need only consider 0 ≤ β ≤ 1.
(Again, note the close connection between the geometry here and the voting
theory in theorem 5.)

The vertices and pyramid structure for the resulting volume are shown in
figure 13. Carrying out the computations as before yields the volume given
as F̃3(β) in section 3.

The derivative of this formula is negative for 0 < β ≤ 1, which means that
the maximum value must be at β = 0. As was the case with theorem 1,
since the volume for −β is the same as for β, this means that the maximum
volume for −1 ≤ β ≤ 1 occurs at β = 0.

For theorem 4, we have the same three fixed hyperplanes as in theorem 3,
but with the following two hyperplanes that vary with β:

2x1 − 2x2 − (1− β)x3 + (1 + β)x4

− (1 + β)x5 + (1− β)x6 > 0 (H4a)

− (1 + β)x1 + (1− β)x2 + 2x3 − 2x4

− (1− β)x5 + (1 + β)x6 > 0. (H4b)

As was the case with theorem 2, there is no symmetry between −β and β,
and the structure of the region changes at β = 0. The vertices together with
the breakdown of the region into pyramids is given in figure 14 for β < 0
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and in figure 15 for β > 0. The resulting volume formulae are given as F−
4

and F+
4 in section 3.

A graph of these two volumes, normalized by the volume of the fixed region,
is shown in figure 6. Note that the shape is not symmetric about β = 0.
Although the graph appears to be decreasing, this turns out not to be the
case, as mentioned in section 3. The graph actually has a minimum at
approximately β = .63311, and is increasing for β > .63311, as illustrated
in figure 7. As a check that no algebraic mistakes have been made, one can
verify that F2 = 2(F3 + F4), as expected from the argument in section 5.

7. Conclusion

Several lessons may be drawn from our work here. First, when dealing
with IAC, the subtleties of higher-dimensional geometry are considerable.
In particular, for the case of three candidates the five- and six-dimensional
geometry is sufficiently complex that we see, at this time, no simple argu-
ment that can completely replace the exact calculations in explaining why
the value of β that maximizes Condorcet efficiency is less than zero. For
four candidates, analogous calculations would need to be done in twenty
three and twenty four dimensions, and it seems that some new idea would
be needed to settle the general question for m candidates.

More broadly, our results support the Borda Rule as a strong contender for
“best” scoring rule, when the goal is to have the ranking of three alternatives
by scoring rule match the ranking obtained by pairwise majority rule. The
assumptions of IC and IAC have some subtle differences, but as n → ∞
Borda maximizes the probability of this coincidence for both assumptions.

The issue of which scoring rule is “best” at selecting the Condorcet winner,
when there is one, is more problematic, however. We find that with IAC,
as n → ∞ the scoring rule that maximizes the conditional probability of
selecting the Condorcet winner, given that there is a Condorcet winner, is
not the Borda rule.

What are we to make of this conclusion? Some may argue that, by de-
throning the mathematically more natural Borda rule in favor of a rather
odd choice of scoring weights, IAC has shown itself to be unrealistic; the
assumption of equally likely profiles puts too much weight on profiles that
are actually very unlikely to occur. Others may never have thought of either
IC or IAC as being realistic distributions in the first place, but rather cast
them in the role of mathematically natural extreme cases (in which case,
the more such test cases available, the better) or view them as contenders
for the distribution best representing a state of a priori ignorance as to how
people will vote.
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In this connection, consider the arguments in Lepelley, Pierron and Val-
ognes [7]. They use some observations of Berg [1] that show IC and IAC
to be specific instances of a class of probability contagion models. Here, IC
displays complete independence between the preferences of different voters,
while IAC exhibits a small amount of dependence. Based on numerical cal-
culations of probabilities for a number of special cases with finitely many
voters, they conjecture that, in the limit, the Borda Rule only maximizes
the probability of selecting the Condorcet winner when voters are assumed
to have independent preferences.

The authors would like to thank Vincent Merlin for suggestions that improved an earlier
draft.
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Figure 11. The pyramid structure for the region for theorem 2 that is formed
by intersecting the 5-simplex with two additional fixed planes plus two that
vary with β. This table is valid for −1 < β < 0, and can be interpreted in the
same fashion as the previous figure. Note that although there is no symmetry
between β and −β, the region is self-symmetric; the symmetry interchanges x1

with x6, x2 with x5 and x3 with x4. This exchanges the planes P1a and P2a

and the planes P1b and P2b. (Note that the vi form symmetric pairs.)
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Figure 12. The pyramid structure for the region for theorem 2 that is formed
by intersecting the 5-simplex with two additional fixed planes plus two that
vary with β, this time for 0 < β < 1. The structure can be interpreted in the
same fashion as the previous figures. Again, for any fixed β, the region itself is
symmetric; the symmetry interchanges x1 with x6, x2 with x5 and x3 with x4.
This exchanges the planes P1a and P2a and the planes P1b and P2b. Thus the
vertices also form symmetric pairs. The fact that there are more vertices in
this case than when β < 0 is one way to see that there is no symmetry between
the positive and negative β.
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Figure 13. The pyramid structure for the region for theorem 3 that is formed
by intersecting the 5-simplex with three additional fixed planes plus two that
vary with β, for 0 < β < 1. The structure for negative β is symmetric to this
one, where β is replaced by −β, and where x3 and x5 are interchanged, as are
x4 and x6. The pyramid structure can be interpreted in the same fashion as
the previous figures.
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Figure 14. The pyramid structure for the region for theorem 4 that is formed
by intersecting the 5-simplex with three additional fixed planes plus two that
vary with β, for −1 < β < 0. The pyramid structure can be interpreted in the
same fashion as the previous figures.
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Figure 15. The pyramid structure for the region for theorem 4 that is formed
by intersecting the 5-simplex with three additional fixed planes plus two that
vary with β, this time for 0 < β < 1. The pyramid structure can be interpreted
in the same fashion as the previous figures. The fact that it is different from the
structure in the previous figure indicates that there is no symmetry between
the positive and negative values of β.


