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ON THE COMPLEXITY OF SOME COMMON GEOMETRIC 
LOCATION PROBLEMS* 

NIMROD MEGIDDOt AND KENNETH J. SUPOWITS 

Abstract. Given n demand points in the plane, the p-center problem is to find p supply points (anywhere 
in the plane) so as to minimize the maximum distance from a demo& point to its respective nearest supply 
point. The p-median problem is to minimize the sum of distances from demand points to their respective 
nearest supply points. We prove that the p-center and the p-media problems relative to both the Euclidean 
and the rectilinear metrics are NP-hard. In fact, we prove that it is NP-hard even to approximate the 
p-center problems sufficiently closely. The reductions are from 3-satisfiability. 
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1. Introduction. The goal of the present paper is to prove the NP-hardness of 
the following common problems in geometric location theory: 

PI. Euclidean p-center problem: Given a set X ={(XI, y I), (xz, yz), . . , (x,, yn)) 
of points in the plane, find a set S = ((21, tl), (22, tz), . . . , (z, tp)} of p points so as to 
minimize 

max min {(xi - z , ) ~  + (yi -ti)'). 
1 L i S n  l 5 j L p  

Intuitively, we wish to minimize the radius R such that the points (xi, yi) 
(i = 1,2, . . . , n)  can be enclosed by p circles of radius R. 

P2. Rectilinear p-center problem: Following the notation of Problem 1, we wish 
to minimize 

max min {Ixi - zi 1 + 1 Yi - ti 1). 
l d i S n  l d r L p  

In other words, we wish to minimize the number A such that all the points (xi, yi) 
(i = 1,2, . . . , n) can be enclosed within p squares of area A, the edges of each square 
forming angles of 45" with the axes. 

P3. Euclidean p-median problem: Following the notation of Problem 1, we wish 
to minimize 

n 

C min {J(xi - zi)2 + (yi -ti)*}. 
i,l 1 5 j S p  

P4. Rectilinear p-median problem : Here we wish to minimize 

We will prove that in fact it is NP-hard even to approximate P1 to within about 
15% and P2 to within 50%. 

We note that the analogous problems on the real line (instead of the plane) are 
both "easy": the p-center problem on the real line is solvable in O(n log n) time [lo], 
[2], and the p-median problem on the real line is solvable in 0 (n2p)  time [ll]. 
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The 1-median problem is also known as the Weber problem. No known algorithm 
finds the exact coordinates of the median (see [12] for a discussion of this difficulty). 

The graphic counterparts of the p-center and the p-median problems are easily 
shown to be NP-hard [6], [7], using a reduction from Minimum Dominating Set. It 
is usually more complicated to prove NP-hardness of a geometric problem than of its 
graphic counterpart (see [4] and [14]). 

Shamos 1161 conjectures that P1 is NP-hard. Papadimitriou [15] proved NP- 
hardness of a different Euclidean p-median problem, namely, that in which the points 
(z,, ti) ( j  = 1,2,  . . , p) must be selected from the set X. He mentioned the NP-hardness 
of both our Problems P1 and P3 as open. Previous versions of the proofs in the present 
paper were given in [18] and [8]. 

2. An overview of the proofs. In each of the proofs we establish a reduction 
from 3-satisfiability [5]. Formally, given a boolean expression 

E = E l ~ E 2 ~ " ' ~ E , ,  

where Ei =xi v yi v zj ({xi, y,, Z ~ } C  {UI, iil, u2, ii2, . . . , uq, iiq}), the 3-satisfiability 
problem is to decide whether there exists a set S c {ul, El, u2, ii2, . . . , uq, iiq} such 
that 

Sf l{xj ,y j ,z j}#0 ( j = 1 , 2 , - . . , m ) ,  

and 

IS fl {ui, ci)l = 1 (i = 1,2,  . . , q ) .  

The reduction from 3-satisfiability to a geometric prbblem will be established as 
follows. Each variable ui (i = 1,2,  - . , q )  will be represented by a "circuit" of objects 
(e.g. circles, squares, points) in the plane. There will be essentially two different ways 
to partition the objects of the circuit so that the solution of the location problem is 
close to optimal. These two different partitions correspond to the choice of truth value 
for ui. The clauses Ei ( j  = 1,2 ,  . . . , m )  are represented by "clause configurations" 
which determine how the different circuits meet each other. A clause configuration 
relates the property that a clause is satisfied to the property that a partition is efficient 
from the point of view of the location problem. 

Circuits must cross each other, without interfering with each other's properties; 
this requires that we design the "junctions" carefully. A schematic view of the circuits 
and their relations to the clause configurations is shown in Fig. 1. The details for each 
of the four problems are given in the succeeding sections. 

3. The Euclidean p-center problem. We shall establish the NP-hardness of the 
Euclidean p-center problem by proving the following problem to be NP-hard: 

Circle Covering. Given n unit circles in the plane and an integer p > 0, decide 
whether there exist p points such that each circle contains at least one point (we say 
that a circle contains a point if the point lies on, or in the interior of, the circle). 

We now reduce 3-satisfiability to Circle Covering. In the reduction each variable 
ui will be represented by a circuit of circles (see Fig. 2) C' = {c;, c;, . - , c:,}, where 
Ch = C;,, ri is even and C; fl C: # 0 if and only if Ik - 11 5 1 (mod ri). We say that a 
set of points Z covers a set of circles C if each circle in C contains at least one point 
in 2. Thus, at least ri/2 points are required to cover c'. There are essentially two 
different ways to cover all the circles, namely, either all the points belong to C; fl c:+~ 
for k = 0,2 ,4 ,  . , or all belong to C; fl C;+l for k = 1,3 ,5 ,  - . In the former case, 
corresponding to the assignment of "true" to ui, the points are called true points; in 
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FIG.  1 .  A schematic view of the reductions. 

FIG.  2 .  A circuit in the reduction for circle covering. 

the latter case, corresponding to the assignment of "false" to ui, the points are called 
false points:We note that circuits may have to cross each other; we specify later how 
the "junctions" are designed. 

Each clause Ej is represented in the reduction by a configuration of four circles 
as shown in Fig. 3. Specifically, there is one central circle that intersects the intersection 
of every two other circles of the configuration. However, the intersection of all four 
circles is empty. These properties imply that two points are both necessary and sufficient 
to cover all four circles, namely, one point to cover the central circle and two other 
circles, and another point to cover the remaining circle. Denote the central circle by 
D' and the other three by D',, D', and D',, corresponding to the literals xi? yj and 
tj, respectively. The circle D',, for example, intersects precisely two circles C;, c:+~, 
where i is such that xi E {ui, Ci}. Moreover, D', fl C; fl Cik+l # 0. If xi = ui then k is 
even; otherwise (xi = Ci) k is odd. Thus, if the assignment of a truth value to ui implies 
that some point in C; fl c:+~ is selected, then this point may be selected so as to 
belong to DL as well. It thus follows that if the overall truth assignment satisfies Ej, 
then at least one of the circles D',, D',, D', can be covered by a true or a false point. 
The circle D' can never be covered by such a point; thus we need precisely one more 
point per satisfied clause to guarantee that all the corresponding clause configurations 
are covered. 
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FIG. 3 .  A clause configuration in the reduction for circle covering. 

We now discuss junctions. In each junction, a vertical segment of one circuit 
crosses a horizontal segment of another; the exact structure is shown in Fig. 4. Formally, 
a junction common to the circuits corresponding to ui and to u, has the following 
characteristics: Suppose that the circuits meet at a circle C; (of the circuit correspond- 
ing to ui) which is identical with a circle c'; (of the circuit corresponding to u,). We 
insist that both k and 1 be odd numbers. This ensures that the segments of circuits 
between consecutive junctions have equal numbers of true points and of false points. 

C 

FIG. 4. A junction in the reduction for circle covering. 

Furthermore, the junction is designed so that the central circle C;  = C'I intersects the 
following nonempty sets: ckPl fl c'I-!, cik-1 fl c'I+I, ,c:+~ fl c ' I - ~  and C:+I fl c ' I + ~ .  
Note that the requirement fl C;+l = CjPl fl C:+l = 0 is satisfied. These facts 
imply that one point may be saved at each junction. Specifically, a point of the 
intersection c:+~ fl CL fl C ' I - ~ ,  for example, is both a false point for the circuit of ui 
and a true point for the circuit of up Thus if we assign false to ui and true to uj then 
the points marked with arrows in Fig. 4 constitute a cover for the two circuits that 
complies with this truth assignment. We denote the number of junctions by J. 
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Letting 

we claim that E is satisfiable if and only if there exists a set Z of p points covering 
our entire structure. First, assume that E is satisfied by a truth assignment T. For 
i = 1,2,  . . . , q, if r(ui) = true, then include in Z the true points of the circuit for ui; 
otherwise include in Z the false points of the circuit for ui. Since one point is saved 
per junction, Z so far contains Cq_, 512-J points. Since each clause is satisfied, 
include in Z only one more point per clause in order to cover the central circle as 
well as the at most two more circles of the clause configuration not covered by a true 
or a false point. Thus Z contains p points and covers the complete structure. 

To prove the converse, let Z be a set of p points that covers the entire structure. 
We will construct a truth value r satisfying E. To that end, we will count the number 
of points available and conclude that the points selected for covering each circuit are 
either all true points or all false points. Consider a segment of a circuit between two 
consecutive junctions, i.e. a maximal set of circles of the form {c:+~, c ;+~ ,  . , ~ f - 2 1 ,  

where k and 1 are odd and for each s, k + 2 S s 5 1 - 2, C: is not involved in any 
junction. It follows that the length of each segment is odd, and that segments are 
pairwise disjoint. Furthermore, there are 2 J  of them, since each junction touches four 
segments and each segment touches two junctions. The total length of the segments 
is equal to 

Since there are 2 J  segments, each of odd length, it follows that 

points are required to cover all of them. It is easy to verify that within each segment, 
except for at most one point, either all the selected points are true, or all are false 
(provided that all of the segments are covered with no more than C ri/2 - 2 J  points). 
We are therefore left with only 

more points with which to cover the rest of the circles (i.e, the junctions and the 
clause configurations), possibly with the aid of the previous points. However, the 
central circle of each junction and the central circle of each clause configuration are 
not covered by any point that covers a circle of a segment; hence we need to allocate 
precisely one more point for each junction and for each clause configuration. However, 
this implies that the aid from the previous points must be organized carefully. 

Consider first the junctions. Each junction consists of five circles. The point which 
covers the central circle can cover at most two more circles; thus two circles per 
junction need to be covered with the aid of points covering the segments. However, 
each segment may assist in covering at most one circle of the junction; hence each 
segment must assist by covering precisely one such circle. Moreover, the assistance 
at each junction must come from segments of two distinct circuits, since the point 
that covers the central circle of the junction also covers two more circles belonging 
to distinct circuits. It finally follows that at each junction the two segments of the 
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same circuit involved must be covered with the same truth-value type of cover. This 
implies that the points selected for the cover induce an assignment T of truth value 
to the literals. 

Now consider any clause configuration. The point that covers the central circle 
cannot cover all three other circles; hence at least one of the other three is covered 
with the aid of points covering the segments. The particular way of constructing the 
clause configuration ensures that its corresponding clause is satisfied by 7. This 
completes the proof that 3-satisfiability is reducible to Circle Covering. It is easy to 
verify that the reduction is polynomial. 

An interesting consequence of this reduction applies to the NP-hardness of finding 
an approximate solution to the p-center problem. Suppose that instead of unit circles 
we draw circles of radius R 2 1 centered at the centers of the circles used in the 
reduction. We claim that as long as R < 2/&, the same intersection relations hold 
among the circles; that is, the minimum numbg of points reguired to cover all the 
circles is independent of R when 1 S R < 2/J3 (if R = 2/J3  then the intersection 
of all the four circles in a clause configuration is nonempty and hence p points suffice 
even if E is not satisfiable). It follows that an approximate solution to the p-center 
problem less than 2/d3 times the optimal is necessarily an optimal solution. This 
implies that if P # NP then no polyno_mial-time algorithm for the p-center problem 
always gives a solution less than 2/43 = 1.15 times the optimal; in other words, it 
is NP-hard to approximate the p-center problem with a relative error of less than 
about 15%. 

4. The rectilinear p-center problem. We now prove the NP-hardness of the 
rectilinear p-center problem, which is more surprising that the NP-hardness of the 
Euclidean problem because of the following facts: 

(i) The rectilinear 1-center problem is trivially solvable in linear time [3], while 
the Euclidean problem requires much more sophisticated tools [I], [13], [17], [9]. 

(ii) The rectilinear problem seems to decompose into two one-dimensional prob- 
lems. This is true in the case p = 1, but turns out to be false in general, in view of our 
NP-hardness result. 

As in the Euclidean case, we will consider a "covering" problem. In the present 
case, instead of circles, we deal with squares that are all identically oriented; without 
loss of generality we may assume that their boundaries are parallel to the axes. 

Square Covering. Given n unit squares in the plane, each of whose boundaries 
are parallel to the axes, and an integer p > 0, decide whether there exist p points such 
that each square contains at least one point. 

As an aside, we note that our squares have the property of interval intersection, 
namely, a set of such squares has a nonempty intersection if and only if every two 
squares in the set intersect. We now define the concept of a square-intersection graph, 
which extends the notion of an interval-intersection graph. Specifically, an undirected 
graph is a square-intersection graph if there is a one-to-one correspondence between 
the vertices of the graph and a set of squares in the plane (whose boundaries are 
parallel to the axes) such that two squares intersect if and only if their corresponding 
vertices are linked with an edge. Obviously, two such squares intersect if and only if 
their intervals of projection on the axes intersect. However, the problem of minimum 
cover by cliques is easily seen to be polynomial on an interval-intersection graph and, 
as follows from our results, NP-hard on a square-intersection graph. 

The proof of NP-hardness for square covering is an . adaptation . of that for circle 
covering. First, variable u, is represented by a circuit {Sb, S;, - . . , sf ,) ,  of squares as 
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is shown in Fig. 5; ri is even. Two squares of a circuit intersect if and only if they are 
adjacent. A clause configuration is shown in Fig. 6. The intersection of two squares 
may have positive measure. Each clause E, is represented by a single square Sj that 

- 
FIG. 5 .  A circuit in the reduction for square covering. 
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FIG. 6 .  A clause configuration in the reduction for square couering. 

touches the three circuits involved (this differs from the proof for circle covering, in 
which each clause was represented by four extra circles; see Fig. 3). A junction is 
illustrated in Fig. 7. In a junction we simply coalesce a square of one circuit with a 
square of the other circuit. The coalesced squares must each be odd indexed in its 
respective circuit so that there will be an odd number of squares between consecutive 
junctions of a circuit. The four corners of the junction square correspond to the four 
combinations of possible truth values for the corresponding variables. Thus, in order 
to cover all the circuits, we need p =C r i / 2 -  J points, where J is the number of 
junctions. If E is satisfiable then p points suffice for covering the clause configurations 
as well as the circuits if the type of cover in each circuit is chosen appropriately. 
Conversely, suppose that p points suffice to cover the entire structure. Then consider 
segments of circuits between consecutive junctions: {s:+z, ~ : + 3 ,  + a - , where S: 
and sf are consecutive junction squares in the circuit for u,. As in the Euclidean case, 
we need C r i / 2  - 2J  points in order to cover all these segments. We are therefore left 
with only J more points with which to cover the junctions and the clause configurations. 
By arguments analogous to those used in the Euclidean case, it follows that the cover 
with p points induces truth values that satisfy E. 
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FIG.  7 .  A junction in the reduction for square covering. 

An example of the entire structure of squares in the reduction is illustrated in 
Fig. 8. 

As in the Euclidean case, the problem of finding an approximate solution is 
NP-hard. More precisely, the intersection relations among squares remain the same 
even if we enlarge their sizes by any factor less than !. Indeed, if the two unit squares 
of a circuit which touch a square representing a clause have 50% overlap (see Fig. 
6), then by inflating each square by a factor of ! we obtain nonempty intersections of 
squares belonging to distinct circuits. This implies that, assuming P # NP, no poly- 
nomial-time algorithm for the rectilinear problem always gives solutions less than 2 
times the optimal. 

FIG.  8. The complete structure for a sample square-covering reduction. 
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5. The rectilinear p-median problem. We reduce 3-satisfiability to the rectilinear 
p-median problem. Here clause Ei is represented by a single point P:, while variable . . 
ui is represented by a circuit C' of points {Pb, Pi ,  - . - , Pf,), such that ~6 = P:;, and 
ri = O  (mod 3). Denoting the rectilinear distance by d, we also require that if k = O  
(mod 3) then d(Ph, P ~ + I )  = 1, and that otherwise d(P:, = b >> 1. Moreover, if 
Ik - 11 > 1 (mod ri) then d(PL, PI) > b. An example of a circuit is shown in Fig. 9. 

FIG. 9. A circuit in the reduction for rectilinear p-median. The triangles indicate points P; such that 
k G O  (mod 3); hence the dotted lines indicate a true partition. 

Consider the p-median problem on the circuit Ci with p = ri/3. The circuit may 
be partitioned into triples of points of the form (x, y, z), where d(x, y) = 1, d(y, z )  = b 
and d(x, z)  = b + 1. We claim that the optimal solutidn of the p-median problem on 
C' is obtained by partitioning into such triples and allocating one point per triple. 
Formally, let f(S) denote the minimum of the 1-median problem on a subset S of a 
circuit c'. The p-median problem on C' may be rephrased as: Partition C' into p sets 
S1, S,, . . . , S,, so as to minimize C f(Si). Now consider the function g, where 

g(1) = 0, g(2) = 1, g(k) = (k -2)b + 1 for k 2 3 .  

It can be verified that for every subset S of c', f(S) zg(]S1). Considering the problem 
of minimizing C g(sj) subject to C sj = 3p, we observe that the optimal solution is sj = 3, 
j = 1,2, . . . , p. Thus, the value p(b + 1) is a lower bound on the minimum of C f(Si). 
Note that there are two different partitions that yield the same value of p(b + 1). These 
are the partitions into triples P:-~, P:, where either k S O  (mod 3) for every k 
(this is called the true partition) or k = 1 (mod 3) for every k (this is called the false 
partition). The solution points coincide with the middle points Pik of the triples. Note 
that every other selection of solution points does not achieve the lower bound of 
(b + l)ri/3 on a circuit. 

We now discuss the clause configurations. For each clause Ej =xi v yi v zi, we 
allocate one point P: that is situated at a distance of b from three points, one from 
each circuit related to the clause Ej (see Fig. 10). The point of a circuit that is nearest 
to P? is chosen according to the relation of the corresponding literal to Ei. For 
example, if xi = ui, then the point Ph of the circuit of ui that is nearest to P? is such 
that k = 0 (mod 3); if xi = Pi then k = 1 (mod 3). The second nearest point is at a 
distance of b + 1 from PT and each other point is at a distance of at least 2b. Suppose 
that S is a set of points that contains precisely one "clause point" P: and 0 or more 
circuit points (we have not yet introduced junctions). Consider the minimum sum of 
distances f (S) in the 1-median problem on the set S. We claim that f (S) 2 h (IS/), where 
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1 1 '  -.-*---' 
F I G .  10. A clause configuration in the reduction for rectilinear p-median. 

In particular, the minimum f ( S )  when IsI = 4 is attained at sets of the form S = 
Pf ,  P f+ l ,  PT), where PI is closest to P:, in which case f(S) = 26 + 1 (the solution 

point coincides with ~ f ) .  Our strategy is to enforce that if the truth values are chosen 
so that Ei is satisfied, then there is a solution point at a+distance of b from P:. 

We now describe the junctions. As in the previous problems, a junction is 
established when a vertical piece of one circuit meets a horizontal piece of another. 
A junction of the circuits C' and C' is shown in Fig. 11. The junction occurs at a unit 

I 

I..-&.-; 

FIG. 1 1 .  A junction in the reduction for rectilinear p-median. 
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square whose vertices are the points P;, Pi, such that k, I =O (mod 3). The 
points P:-1, PI-1, Pic2 are each at a distance of b -* from some vertex of this 
square. Note that the sum of rectilinear distances from the vertices of a unit square 
to any point on the square is equal to 4. Suppose that S is a set of points of our 
structure that contains at least one junction point. Then f (S) L e( l~I) ,  where 

Consider now the p-median problem on the entire structure we have defined, 
where p = 1 r i / 3  - J. Note first that there is a set of p solution points such that each 
of the points P: with k = 2 (mod 3) and each clause point PT has a solution point at 
a distance not greater than b + 1 from it, while each other point has a solution point 
at a distance not greater than 1 from it. Thus, if b is sufficiently large, then an optimal 
solution for the p-median problem must yield a total distance less than (C r i / 3  + m)b + 
A, where A is some constant independent of b. By considering the segments between 
consecutive junctions (as in the previous problems), we find that we must allocate 
precisely one solution point per junction. 

More formally, let 

First, assume that E is satisfied by a truth assignment 7 ;  we will construct a solution 
to our p-median problem of value T. 7 induces a set of solution points at locations 
on the circuits and on one edge per junction square such that every point P;  (k = 
2 (mod 3)) has a solution point at a distance of b from it (see Fig. 11). The same is 
true for the clause points Pi*. We thus manage to have a total distance of 

To show the converse, assume that there is a set Z of p points such that 

Note that the p-median problem amounts to partitioning our set of n = C ri + m points 
into p = 1 r i / 3  - J sets S1, S2, . . . , Sp and then solving a 1-median problem of each 
Si. We know that the partition is into sets of the following types: 

(i) m sets each containing precisely one clause point and no junction points. If 
S is of this type then f(S) L ~(IsI). 

(ii) J sets containing four junction points (one whole junction) and no clause 
points. If S is of this type then f (S) L e (ISI). 

(iii) p - m - J sets containing neither junction points nor clause points. These 
sets satisfy f(S) 1 g( l~I) .  

Now consider the optimization problem of finding a vector s = (sl, sz, . , s,) SO as 
to minimize 
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subject to 1 sj = n. Consider Table 1, showing "marginal costs". It follows from Table 
1 that by letting 

we obtain an optimal solution to the optimization problem. The value of this solution 
is 

which is, of course, a lower bound on the solution of the p-median problem. We have 
already seen that it is realizable if E is satisfiable. Hence the solution induced by the 
truth values is optimal. Moreover, if this bound is realizable then necessarily every 
set of four points of type (i) must have a total distance of l b  + 1, and this is possible 
if and only if each clause point has a solution point that reflects the fact that the clause 
is satisfied. The characteristic that a solution with total distance of T must induce 
truth values is established by considering the segments of circuits between junctions 
as in the previous problems. In summary, E is satisfiable if and only if the optimal 
solution of the p-median problem is T. 

6. The Euclidean p-median problem. The proof that the Euclidean p-median 
problem is NP-hard is very similar to that for the rectilinear case. Note that if the 
angles of the polygon corresponding to a circuit are greater than or equal to 120•‹, 
then solution points around the polygon coincide with circuit points (see Fig. 12). A 
clause configuration is shown in Fig. 13. We note that the 1-median problem on a 
set of three points of a circuit P i ,  P i i l ,  ~ : + 2  (where k = 0 (mod 3) or k = 1 (mod 3)) 
has an optimal value of b + 1. Moreover, the function g of the preceding section is 

FIG. 12. A circuit in the reduction for Euclidean p-median. The triangles indicate points P; such that 
k = 0 (mod 3 ) ;  hence the dotted lines indicate a true partition. 
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The problems 
follows that, fc 

FIG.  13 .  A clause configuration in the reduction for Euclidean p-median. 

valid for lower bounding in the present section. The same is true for the function h, 
i.e. lower bounding for a set S that contains a clause point (there are sets of four 
points for which f (S) = h(4) = 26 + 1; see Fig. 13). 

The situation with junctions (shown in Fig. 14) is a little more delicate in the 
present section. Points P i ,  P'; and P';,, form a unit square. The distance between 
a point (k = O  (mod 3)) and a corner of the square equals b. We now need to 
revise the definition of the lower-bounding function e(k) of the preceding section. 
We define e(k) to be the minimum of the optimal solutions of 1-median p r o b l e ~ s  
on sets S such that IS1 = k and S contains four junction points. Then e(4) = 2J2. 

Furthermore, i 

and 

These facts ar 
problem of mi 

(subject to C 
1 , 2 , .  ,m), 
2, . . . , p ) .  Tht 

The optimal v 

F I G .  14. A junction in the reduction for Euclidean p-median. 
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SOME COMMON GEOMETRIC LOCATION PROBLEMS 

The problems corresponding to e(5), e(6) and e(7) are shown in Fig. 15(a, b, c). It 
follows that, for b sufficiently large, 

b + 2 & ~ e ( 5 ) ~ b + 2 & + 0 . 5 .  

FIG, 15. Covering points near a junction for Euclidean p-median. 

Furthermore, as b + a, 

and 

e(7)-e(5)+2b + 1. 

These facts are sufficient for deducing that an optimal solution to the optimization 
problem of minimizing 

m + J  i h(sj)+ z e(sj) + E g(sj) 
j=1 j = m + l  j = m + J + l  

(subject to EL, si = n )  is the same as in the preceding section, i.e., sj = 4  ( j  = 

1 , 2 , . . . , r n ) ,  s j = 6  ( j = r n + l , r n + 2 ; . . , r n + J ) ,  s j = 3  ( j = r n + J + l , r n + J +  
2, . , p). The value of the optimal solution is asymptotically equal to 

The optimal value is realizable in the p-median problem if and only if E is satisfiable. . 
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