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Students in elementary calculus classes learn that ln x has an antiderivative that is 
an elementary function: j\nxdx=x\nx-x + C. They are naturally curious about 
how to determine whether a given function can be integrated. For example, how 
can they know whether the error function fe~x dx is expressible as a finite 
combination of familiar functions? 

The Risch algorithm provides the ultimate answer, for certain functions, to the 

question of integration in finite terms. However, this algorithm and its proof 
require advanced techniques that are inappropriate for an elementary calculus 
class. Still, for determining if a function is integrable in finite terms there are 
methods that are accessible to those studying calculus. As a bonus, the study of 
these techniques provides interesting insights into the history of mathematics. 

In this paper we show how one can prove many integrals to be nonelementary, 
and we provide some interesting examples and methods of integration in finite 
terms. Most of our examples are suitable for the elementary calculus class. 

History 

The two principal inventors of calculus, Newton and Leibniz, had very distinct 

approaches to integration [4, pp. 266-267]. Newton allowed for infinite series 

solutions, although he did not consider integration solely in this way. In contrast, 
Leibniz favored solutions in finite terms. 

Newton rejected integration in terms of transcendental quantities like loga- 
rithms. His 1704 treatise, De Quadratura Curvarum, contains a list of infinite series 
solutions for integrals of functions like 

- and \a + bx + cx2 . 
a +bx 
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Newton's avoidance of nonalgebraic forms was very much in the tradition of 
Descartes, who favored functions with algebraic rather than transcendental repre- 
sentations. Leibniz pursued a different direction, admitting integration using 
transcendental functions. 

Well into the eighteenth century, mathematicians expressed different prefer- 
ences (finite vs. infinite series) for representations of indefinite integrals. In the 
nineteenth century, Laplace, Abel, Liouville, Chebyshev, Maximovich, and 
Roengsberger, among others, worked on the problem of discovering methods to 
calculate integrals in finite terms. By 1841, Joseph Liouville had developed a 
theory of integration that settled the question of integration in finite terms for 
many important cases [9], [11]. 

Much of the important work in the twentieth century on integration in finite 
terms has been based on Liouville's theory. In 1948, Joseph Ritt published 
Integration in Finite Terms: Liouville's Theory of Elementary Methods [18], a book 
that has come to be regarded as the classical account of integration in finite terms 
[7, p. 199]. In 1946, A. Ostrowski used the idea of field extension to generalize 
Liouville's theory to a wider class of functions. Ostrowski's work provided the germ 
of the algebraic approach that finally succeeded in solving the problem of integra? 
tion in finite terms. M. Rosenlicht, in 1968, published the first purely algebraic 
version of Liouville's theory [19], [20]. Finally in 1970, R. H. Risch, building on the 
work of Liouville, Ritt, Rosenlicht, and Ostrowski, showed that the general 
problem of integration in finite terms can be reduced to a decidable question in 
the theory of algebraic functions [16], [17]. Today, research continues on the topic 
of integration in finite terms and related questions (see [2, pp. 186-210]), which is 
an area of interest not only to mathematicians, but, because of the algorithmic 
nature of solutions, to computer scientists as well. 

Laplace's Theorem 

Our first theorem, which says that a rational function has an antiderivative that is 
the finite sum of a rational function and the logarithms of rational functions, may 
be familiar to the reader. 

Laplace's theorem (1812). The integral of a rational function is always an elemen? 
tary function. In fact, it is either rational or the sum of a rational function and a 

finite number of constant multiples of logarithms of rational functions. 

Laplace proved this theorem by decomposing the integrand into partial fractions 
with possibly complex number coefficients [5]. The following example illustrates 
Laplace's theorem. 

dx 

pgg THE COLLEGE MATHEMATICS JOURNAL 



Liouville's Theorems 

In this section we present some of the major theorems that serve as bases for 

determining whether a certain class of functions can be integrated in finite terms, 
and we give examples of functions whose nonintegrability in terms of elementary 
functions can be established using the given theorems. We begin with some 
definitions. 

An algebraic function y =f(x) is a root of a polynomial in y whose coefficients 
are themselves polynomials in x with constant coefficients. Algebraic functions 
may be presented explicitly, such as 

lOx3 
f(x)=x2-5x + l and /(*) = -==, 

v x + 1 

or implicitly by an equation such as 

(x2+l)[f(x)]7-xf(x)+3 = 0 and [f(x)]3+x = l. 

An elementary function is a function of one variable that can be constructed, 
using that variable and constants, by a finite number of repeated operations of 
addition, subtraction, multiplication, division, composition, raising to powers, tak- 
ing roots, forming trigonometric functions and their inverses, and taking of 
exponentials and logarithms. In this paper, we assume real variables and complex 
coefficients. Some examples of elementary functions are 

sinx; arcsinx; x2-5x + l; 
xx = exp(x ln x); tan[cos2(x3/2 + 1) +x - 

l]. 

The basic differentiation rules (product rule, chain rule, etc.) imply that the 
derivative of an elementary function is also elementary. However, integration is a 
much harder problem than differentiation; the integral of an elementary function 
may or may not be elementary. Also, it is possible, for example, for the integral of 

f(x) + g(x) to be elementary when neither the integral of f(x) nor the integral of 
g(x) is elementary. Consider f(xx +xx ln x)dx =xx + C: The integral of xx and 
the integral of xx ln x are not elementary even though the integral of the sum of 
these two functions is elementary. The class of integrals that are elementary is very 
small compared with nonelementary integrals. 

Liouville's theorem is reminiscent of Laplace's theorem. It says that if an 
algebraic function is integrable in finite terms, its antiderivative is the finite sum of 
an algebraic function and the logarithms of algebraic functions. 

Liouville's 1834 theorem. If f(x) is an algebraic function of x and if (f(x)dx is 
elementary, then 

ff(x)dx 
= U0+ j:Cj\n(Uj) 7 = 1 

where the Cfs are constants and the Ufs are algebraic functions of x. 

The proof of this theorem is based on the fact that the derivative of an 

exponential term is exponential, and the derivative of a logarithmic term of order 

higher than one is logarithmic. Thus no exponential terms, and no logarithmic 
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terms except in linear form, can be part of the integral of the algebraic function 

f(x). Trigonometric functions present no new difficulties because, using complex 
variables, they can be written as exponential functions. [From Euler's identity, 
elx = cos x + / sin x, it follows that sin x = (eix - e~lx)/(2i) and cos x = (elx + 

e~lx)/2.] Consequently, the integral of an algebraic function cannot contain a 
trigonometric term. But, as we see in Example 1 and the following Example 2, the 
integral of an algebraic function can be an inverse trigonometric function, which 
can be written as the logarithm of an algebraic function. 

Example 2. /1/ Vl -x2 dx = arcsin x + C = -i \n(ix + Vl -x2) + C. To see why 
the last equality holds, replace sin y by x in the identity sin y = (eiy - e~iy)/(2i) 
to get e2iy ? 2ixeiy -1=0. The quadratic formula then yields 

eiy = ix + }/l-x2 . 

(For complex numbers the square root is two-valued.) Taking logarithms of each 
side then gives the required identity. 

For a more detailed proof of Liouville's 1834 theorem, see [18, p. 21]. 
In 1835, Liouville generalized this theorem to several variables, and thereby 

greatly extended the class of functions one can prove to have nonelementary 
integrals. 

Strong Liouville theorem (1835). 
(a) If F is an algebraic function ofx, y1,...,ym, where yl,...,ym are functions ofx 

whose derivatives dyl/dx,...,dym/dx are each algebraic functions of x,yx,...,ym, 
then \F(x, yl,y2,...,ym)dxis elementary if and only if 

(F(x,yi,y2,...,ym)dx = U,+ EC,.ln(?/y) 

where the Cfs are constants, and the Ufs are algebraic functions of x, yv..., ym. 
(b) // F(x, y v ..., ym) is a rational function and dyx/dx,..., dym/dx are rational 

functions of x,yx,.. .,ym, then the Ufs in part (a) must be rational functions of 
x,yv...,ym. 

The proof of the strong Liouville theorem is basically the same as the proof of 
the 1834 theorem. For details, see [18]. 

Example 3. The strong Liouville theorem, part (a), applies to the integrand 

F(x,yx,y2,..., y7) = F(x,ex,\n x,exp e*,ln(ln x),sin x,cos x,cose*) 

where F is an algebraic function of its arguments, since 

dy4 _ 1 

dx xy2' 

? = -yi^-yj 
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Note that the strong Liouville theorem, part (b), does not apply to F because 
the derivative of its last argument is not a rational function of x,yx,y2,...,y1. 
However, if we choose 

G(x, yx, y2,..., y6) = G(x,ex,\n x,exp ex, ln(ln x),sin x,cos x) 

where G is a rational function of its arguments, then part (b) of the strong 
Liouville theorem applies to the integrand G. In this case the integral of G is 
elementary if and only if 

n 

fG(x,y1,y2,...,y6)dx 
= U0+ ECyln(*yy) 

y=i 

where C/s are constants and U/s are rational functions of x, yx, y2,..., y6. 
As an exercise, determine whether the following arguments meet the criteria for 

part (a) and for part (b) of the strong Liouville's theorem. 

1) F(x,sinx) 2) F(x,sin x,cos x) 3) F(x,ex,sin x) 

4) F(x,ex, ln x) 5) F(x,ex,sin x,cos x,\n x) 

Answers: 1) Part (a) only; 2) both parts; 3) part (a) only; 4) both parts; 5) both 

parts. 
The strong Liouville theorem was the basis of much of the work done on the 

problem of integration in finite terms during the twentieth century. Its value rests 
on the fact that it gives a condition that is necessary for the integrability in finite 
terms of any one of a rather large class of functions. Using this theorem, we can 
determine whether certain functions belong to the class of functions that cannot 
be integrated in finite terms. 

To better appreciate the strong Liouville theorem, it is instructive to formulate 
and consider special cases. The first special case we consider is 

jf{x)e8{x)dx 

where f(x) and g(x) are rational functions. This integral is of the form required 
by part (b) of the strong Liouville theorem where F(x,yx)=xyx and yx =e8(x\ 
The integrand satisfies the assumptions of the strong Liouville theorem, part (b), 
since 

dvi d 

~dt= ~dbc{e8ix)) =z'(x)e8{x)=z,(x">y^ 

is a rational function of x and yv The theorem therefore asserts that if ff(x)e8(x) dx 
is elementary, then it must be the sum of a rational function of (x,e8{x)) and a 
finite number of logarithms of such functions. Further analysis shows that in fact it 
must be of the form R(x)e8{x) + C for some rational function R(x). The formal 

proof of this last statement uses advanced mathematics. We refer the interested 
reader to [9, p. 114] which uses the idea of analytic branches, or to [18, p. 47] which 
uses ideas from the theory of differential fields. Conversely, 

d r ? 
[R(x)egM + C] =f{x)e8{x\ 

The following special case of the strong Liouville theorem results. 
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Strong Liouville theorem (special case, 1835). // f(x) and g(x) are rational 

functions with g(x) nonconstant, then jf(x)e8{x)dx is elementary if and only if there 
exists a rational function R(x) such that f(x) = Rr(x) + R(x)gf(x). 

We are now in a position to prove that certain integrals are nonelementary using 
this special case of the strong Liouville theorem. 

Example 4. fx2neax dx, for n an integer, is nonelementary for a ?= 0, because 
x2n =R'(x) + 2axR(x) has no rational solution R(x) in the field of rational 
functions over C (proof below.) For n = 0 and a = -1, this is the error function 
mentioned at the beginning of this article. 

Proof that x2n = R'(x) + 2axR(x) has no rational solution. Assume x2n = R'(x) + 
2axR(x), where R(x) =p(x)/q(x), for p(x) and q(x) relatively prime polynomi? 
als. Since 

?? x pf(x)q(x)-p(x)q'(x) 
R(x) 

=-SUT)-' 
we get 

x2nq2(x) =p'(x)q(x) -p(x)qf(x) + 2axp(x)q(x). (1) 

This can be written as 

[x2"q(x) -p'(x) - 
2axp(x)]q(x) = -p(x)q'(x). (2) 

If x0 is a zero of multiplicity k > 1 of q(x), then x0 is a zero of the left side of (2) 
with multiplicity greater than or equal to k. But since p(x) and q(x) are relatively 
prime, x0 is a zero of multiplicity k - 1 of the right side of (2). This is a 

contradiction, so q(x) has no zeros; i.e., q(x) is a constant. 
Without loss of generality, let q(x) = 1. Then (1) becomes 

x2n=p'(x) +2axp(x). (3) 

We will show (3) has no solution by comparing coefficients. Since p is a polynomial 
in x, then for n>\, the degree of p(x) must be 2n - 1. Let p(x) = 

JL21q1CjXj. 
Substituting this in (3) we get 

2/1-1 2n-l 
2n= E ;V"1+ ? 2aCjxJ 

+ l 

7=o ;=o 
2n-2 2n 

= H (y+1)cy+i^y+ Y<2acj-ixJ 
7=0 7=1 

2n-2 
= ci+ E [0'+ l)cJ + l + 2acj_l]xj + 2ac2n_2x2n~l + 2ac2n_xx 

7=1 

2/7 

We must conclude that cx = 0, c2n_2 = 0, 2ac2n_l = 1, and (/ + l)cj+l + 2acJ_l 
= 0 

for j = 1,2,..., 2n ? 2. These last equations imply that since c1 = 0 then c3 = 0, 
c5 = 0,. ..,c2n-i = 0. But this contradicts the third equation: c2n_x = l/(2a). So 
there is no polynomial p(x) satisfying (3) for n > 1. If n < 0 then clearly (3) does 
not have a polynomial solution. Hence there is no rational function R(x) satisfying 
the given differential equation. ? 

For a shorter proof that uses concepts from complex analysis, see [18]. 
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Example 5. jx~necx dx, for n a positive integer and c a nonzero constant, is 
nonelementary since x~" =R'(x) +cR(x) has no solution R(x) in the field of 
rational functions over C. 

Proof that x~n = Rf(x) + cR(x) has no rational solution. Assume x~n = R'(x) + 
cR(x), where R(x) =p(x)/q(x), for p(x) and q(x) relatively prime polynomials. 
Then l/x" = (prq - qrp)/q2 + cp/q which can be written as 

q(-q+xnpf + cxnp) =xnpq'. (4) 

Assume that the degree of q is positive. Let x0 be a zero of q(x) with multiplicity 
r. If x0 ?= 0 then x0 is a zero of the left side of (4) of multiplicity at least r, while 

x0 is a zero of multiplicity r - 1 of the right side of (4). This is a contradiction. 
Thus x0 must be zero and q(x) = kxf for some nonzero constant k. Substituting 
q = kxr into (4) we get 

x\-kxr +p'xn +cpxn) =rpxn+r~l. (5) 

Case 1: If n < r then zero is a root of multiplicity at least r + n for the left side of 
(5) while it is a root of multiplicity n + r - 1 for the right side of (5). This is a 
contradiction. 
Case 2: If n>r and n ?= r + 1 then zero is a root of multiplicity 2r for the left 
side of (5) while it is a root of multiplicity n+r -1 for the right side of (5). So 
2r = n + r - 1, again a contradiction. 
Case 3: If n = r + 1 then (5) reduces to xp' = k + rp - cxp. But the two sides of 
this equation are polynomials of different degrees, another contradiction. 

So our assumption that q has positive degree is no longer valid. Thus q must be 
a constant. Without loss of generality, let q = 1. Then (4) becomes 

xnp' + cxnp = l. (6) 

No polynomial p(x) satisfies (6), since n is positive. Consequently x~n =R'(x) + 
cR(x) has no rational solution. ? 

Examples 4 and 5 treat two special cases of integrals of the form 

jxneax'n 
dx (7) 

where a is a nonzero constant and m and n are integers. In fact, using the Euler 
or hyperbolic identities, many other integrals such as 

j x" cos( axm) dx, fx" cosh( axm) dx, and jx" sin^ (axm) dx 

can be expressed as sums of integrals in the form (7). For example, 

jxn cos(axm) dx = Re 
jxneiax'"dx 

and 

jxn cosh{axm) dx = 
-jxneax'"dx+ 

- 
fxne~axmdx. 
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The interested reader can find the necessary condition(s) on m and n that will 
make the integral (7) nonelementary. Once we see that an integral cannot be 
expressed in terms of a finite number of elementary functions, we can view it as a 
new transcendental (i.e., nonalgebraic) function. For example, f(x) = fex dx is 
transcendental, as there is no rational function R(x) such that 1 = R'(x) + 3x2R(x). 
The interested reader should verify this. 

Many integrals can be reduced to the special forms discussed in Examples 4 and 
5, by a change of variable, by applying integration by parts, or by separating the 
real and imaginary parts of complex-valued functions. For instance, the following 
examples are shown to be nonelementary by reducing them to jt2neat dt, n an 
integer, a =? 0 (Example 4) by the indicated change of variable. 

Example 6. H\n x dx = 
j2t2et2 dt, where t2 = ln x. 

Example 7. / ,- dx = 2er dt, where t2 = ln x. 

eax 
Example 8. j?j= dx = 

j2eat2 dt, where t2 = = x. 

The following examples are shown to be nonelementary by Example 5: 

r < re' 
Example 9. ee dx = ? dt, where t = ex. 

r 1 ret 
Example 10. /-dx = / ? dt, where t = ln x. 

J ln x J t 

Example 11. / ln(ln x) dx = x ln(ln x) - \-dx. (Use integration by parts and 
J J ln x 

Example 10.) 

, sin x I r elx \ 
Example 12. /-dx = Im / ? dx\. (Use the Euler identity, and notice that 

if the integral of f(x) is elementary, then both its real and imaginary parts are 

elementary.) 

We next consider another special case of the strong Liouville theorem, where 
the integrand has the form f(x)\nx, for a rational function f(x). Set yx = \nx 
and F(x,yx) =f(x)yv Notice that F is a rational function of its arguments and 

dyx/dx = 1/x is a rational function of x. By the strong Liouville theorem, part (b), 
if the integral of F is elementary, then 

n 
i f(x) ln xdx = U0(x,\n x) + ]T C; ln^^ln x)) 

7 = 1 

where all the U/s are rational functions of their arguments. Differentiating both 

sides, we get 

/(*)ln*=- U0(x,lnx)+ ?C,ln(?7,0,lnx)) (8) 
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Consider the Taylor's expansion of U0(x,ln x) about zero for its second argument: 

1 
U0(x,lnx) = U0(x,0) + D2U0(x,0)lnx + ?D2U0(x,0)(lnx) + ? ? ? 

+ -D^U,{x,0){lnx)n + ] DrlU0(x^)(\nx)n 
+ l 

(9) n\ yn + 1)! 

where ? is between 0 and ln x, and D2U0 denotes the kth partial derivative of UQ 
with respect to its second variable. On the left-hand side of (8), ln x occurs only in 
linear form multiplied by a rational function. It is not hard to see from (8) and (9) 
that then UQ(x,ln x) must be of the form 

W{x) + V(x)lnx + U(x)(lnxf 

where U, V, and W are rational functions of x (i.e., terms of degree higher than 
two in the Taylor series (9) must vanish). With a little more work, we see that the 
Lf-'s must be rational functions of x only; in fact 

n M 

?CJln(UJ(x,lnx)) 
= ? fcyln(;t-?y) 

y=i y=i 

where the b/s and a/s are constants. Therefore 

M 

ff (x)ln xdx = U(x)(ln xf + V{x)\n x + W{x) + ? bj ln(x - 
a^) (10) 

y=i 

Differentiating the right-hand side and comparing it with the integrand, we get 

2U(x) V(x) m b- 
U'(x)=0, ??-^-+Vf(x)=f(x), ^-^-+W\x)+ Z ?_? =0. 

Integrating the first and third of these equations to find U(x) and W(x), and 
substituting the results into (10), gives 

r C 2 rv(x) 
f(x)\n xdx = ? (ln x) + V(x)\n x ? I-dx 

where C is a constant. By Laplace's theorem the integral on the right-hand side is 
elementary since V(x) [and hence V(x)/x] is a rational function. This special case 
of the strong Liouville theorem was obtained by G. H. Hardy [5, p. 60], and may be 
stated as follows [giving the rational function V(x) a new name, g(x)]. 

Liouville-Hardy theorem (1905). If f(x) is a rational function, then ff(x)\nxdx 
is elementary if and only if there exists a rational function g(x) and a constant C such 
that f(x) = C/x + gf(x). 

We still need to show that if f(x) = C/x + g'(x), the integral ff(x)\nxdx is 
elementary. But this is easy. Integration by parts on the second term in the integral 
of (C/x + g'(*))ln x gives 

rlC \ C 2 rl 
I l ? ln x + g'(x)ln x \ dx = ? (ln x) + g(x)ln x - 

?g(x) dx. 
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The last term, j(\/x)g(x) dx, is elementary by Laplace's theorem since the 
integrand is a rational function. 

The Liouville-Hardy theorem provides us with another test for integrability in 
finite terms. Consider this example: 

r ln x 
Example 13. /-dx, where a is a nonzero constant, is nonelementary. J x ? a 

Proof l/(x ? a) = C/x + g'(x) implies g(x) = \n(x ? a) ? C ln x + c, which is 
not a rational function of x for any value of C. ? 

We can generalize Example 13 to treat 

f(x)= TKx-ajV1 
7 = 1 

for distinct nonzero a/s. Thus, decomposing by partial fractions, it can be shown 
that 

/ 

is nonelementary, since 

N 

Yl(x-aj)~l 
7=1 

ln xdx 

N 

E bj ln( x ? 
a}:) 

? C ln x + c 
7 = 1 

is not a rational function for any constants C and c. Taking, for example, at = i 
and a2 = ? i, we have that 

, ln x 
I ?z-dx 

J x2+l 

is nonelementary. Once we know this, we can prove that /(arcsec x)2 dx is 
nonelementary. Using integration by parts, 

^~ 
9 r arcsec x 

arcsec x) dx =x(arcsec x) - 2 ?j=- dx J \x2 - 1 

= x(arcsec x) ?2jt see tdt 

2 /-lns 
= x(arcsecx) + 4 / ?5-ds, v J J s2+ 1 

with the change of variables t = arcsec x and s = elt. 
Note that a common thread in the special cases of the strong Liouville theorem 

is that the given integral is elementary if and only if a certain associated differen- 
tial equation has a rational solution. 
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Chebyshev's Theorem 

For what choices of k (k a. rational number) is the are length of y = xk integrable 
in finite terms? To answer this question, we turn to a result of P. L. Chebyshev, 
whose work in the area of integration of algebraic functions was closely associated 
with the work of Abel and Liouville. While Liouville focused on general algebraic 
functions, Chebyshev dealt with specific forms of algebraic functions. In an 1853 
paper, Chebyshev gave a complete solution for the logarithmic part of 

/ 
/(*)r,, ,,-1/n 

8(x) 
[h(x)]~l/ndx 

where /, g, and h are polynomials in x and n is a positive integer [1]. [See part (a) 
of the strong Liouville theorem.] The following binomial-type integral theorem of 
Chebyshev, which we can use to solve the are length problem stated above, 
generalizes an earlier result of Newton. 

Chebyshev's theorem (1853). If p, q, and r are rational numbers and a, b are real 
numbers with a, b, r ?= 0, then fxp(a + bxr)q dx is elementary if and only if at least 
one of (p + \)/r, q, or (p + \)/r + q is an integer. 

Proof Proof of sufficiency (due to Goldbach and Euler) proceeds from letting 
bxr = at and neglecting the constant factor. The integral reduces to jtm(\ + t)q dt, 
where m = (p + \)/r - 1, which is a rational number. 

i) If (p + \)/r (and hence m) is an integer and q = h/k where h is an 
integer, make the substitution 1 + t = uk. 

\\) If q is an integer and m = j/k where j and h are integers, make the 
substitution t = uk. 

iii) If (p + l)/r + q (and hence m + q) is an integer, and q = h/k, make the 
substitution 1 + t = tuk. 

In each case ftm(l + t)q dt transforms into an integral whose integrand is a 
rational function of u. Hence, it is elementary by Laplace's theorem. The proof of 
necessity (due to Chebyshev) is more involved and uses the idea of analytic 
branches. For this we refer the interested reader to [18, pp. 37-39]. ? 

Example 14. /vl + x2 dx is nonelementary by Chebyshev's theorem. Here, p = 0, 
r = 2, and q = 1/3, so (p + l)/r, q, and (p + \)/r + q are all nonintegral. 

Chebyshev's theorem provides tests for determining whether the integrals for are 
length and for the surface area of solids of revolution of functions of the form xk, 
k rational, are elementary. Examples 15 and 16 describe these tests. 

Example 15. Consider the are length of the graph of f(x)=xk, given by 

/Vl + k2x2k~2 dx. This integral is elementary if and only if either 1/(2/: - 2) or 

1/(2A: - 2) + 1/2 is an integer, where k ?= 1. Thus, the related are length integral 
for f(x) =xk is elementary if and only if k = 1 or k = 1 + 1/n, where n is an 

integer. It follows that, for example, /vl +x3 dx and /vl +x~4 dx are nonele? 
mentary integrals. [This last integral is the are length integral for f(x) = 1/x.] 
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Example 16. A similar calculation can be performed for integrals representing 
the area of the surface obtained by revolving the graph of f(x)=xk about the 
x-axis. These integrals are elementary if and only iffc = lorfc=l + 2/n, where n 
is an integer. 

Example 17. /Vsin x dx and /Vcos x dx are nonelementary by Chebyshev's theo? 
rem. This can be seen by a change of variable. We can, for example, use sin x = u 
to get jVsin x dx = jux/2(l - u2Yx/2du. 

In fact, if m and n are integers, one can easily prove the following [23]: 

1. /(I ?xn)l/m dx is elementary if and only if m = ? 1, or n = +1, or m = n = 

2, or m = ?n. 
2. /(sin x)w(cos x)n dx is elementary if and only if m is odd, or n is odd, or 

both m and n are even. Since these are all possible cases, the integral is 
elementary for all integral m and n. 

Example 18. /Vtan x dx is elementary by Chebyshev's theorem. (Let u2 = tan x.) 

Example 19. We can even use Chebyshev's theorem to prove Fermat's Last 
Theorem for polynomial functions: If n is an integer greater than 2 then there are no 
polynomial functions, p(t), q(t), and r(t), where p/r and q/r are nonconstant 
rational functions, such that [p(t)]n + [q(t)]n = [r(t)]n. 

Proof. It is sufficient to show that for n > 2, there are no nonconstant rational 
functions, f(t) and g(t) such that [f(t)]n + [g(t)]n = 1. If there are such rational 
functions f(t) and g(t), then gU)f'(t) is a rational function, and its integral is 
elementary by Laplace's theorem. Consider 

fg(t)f(t) at = 
/(i 

- 
[f(t)]n)1/nf'(t) dt = 

/(i -nl/n df. 

By Chebyshev's theorem, the integral on the right side of the equation is elemen? 
tary only if 1/n or 2/n is an integer. This is not possible since n > 2. ? 

Integrals of Inverse Functions 

Our final result is an interesting application of integration by parts. Let f(x) and 

f~l(x) be inverses of one another on some closed interval [a,b]. Then, using 
integration by parts, we get 

ff(x) dx =xf(x) - fxff(x) dx 

= 
xf(x)-ff-\f(x))f'(x)dx 

= xf(x)-G(f(x)) 

where G(x) = ff~l(x)dx. The origin of this observation is not known to us. It was 
known to Liouville in writing his 1841 paper on the Riccati equation [10, p. 4], and 
it also appears in Parker [14], Staib [22], and a recent note by Key [8]. We state it 
as follows. 
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Integrals of inverse functions theorem. 
(a) If f and f~l are inverses of one another on some closed interval then 

ff(x)dx=xf(x)~G(f(x)), where G(x)= ff~l(x)dx. 
(b) Iff andf~1 are elementary functions over some closed interval, then ff(x) dx 

is elementary if and only if ff~l(x) dx is elementary. 

The following examples illustrate this theorem. 

Example 20. /\/ln x dx is nonelementary since the integral of the inverse function 
of its integrand, fex dx, is nonelementary by our first special case of the strong 
Liouville theorem. See Example 4 and compare Example 6. 

Example 21. /1/ln xdx is nonelementary since jel/x dx is nonelementary by our 
first special case of the strong Liouville theorem. (See Example 5 and use the 
change of variable u = 1/x to transform the integral into / ? u~2eu du.) 

Example 22. ff(x)dx is elementary when, for example, y =f(x) is a solution of 
any of the following equations: y - ey =x, y5 - xy =x + 1, or yey =x. 

Example 23. By Example 5, Jf(x)dx is nonelementary when, for example, 
y =f(x) is a solution of ey =xy. 

Example 24. By Example 4, ff(x)dx is nonelementary when, for example, 
y =f(x) is a solution of x =y2ey . 

The integrals of inverse functions theorem not only establishes a test of integra- 
bility in finite terms, it also provides a practical method for integrating certain 
functions by means of their inverses. 

Example 25. \yjx/(\ ?x) dx is elementary by Chebyshev's theorem. To evaluate 
this integral we use the formula ff(x)dx =xf(x) - G(f(x)) obtained earlier in 

deriving the theorem. We get 

x2 
G(x) = 

ff-\x)dx=fY^-2dx 

= [ 1-~ \ dx = x - arctan x + C. 

Thus 

j]/x/(l -x) dx = (x - 
l)\/*/(l ~x) + arctan(/x/(l ~x)j + C. 

Conclusion 

We have reviewed several theorems that can be used to determine whether a wide 
variety of functions can be integrated in finite terms. Many of these results are 
accessible to students of calculus, and we recommend that instructors introduce 
them to their students. The theory of integration in finite terms and the methods 
we have described can be used to show calculus students that mathematics is an 

evolving discipline, with a history and a future (see e.g. [21] and [2, pp. 186-210]), 
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and that results determined in one century can provide direction for research and 
useful techniques in centuries that follow. We include a reference list that should 
serve as a good starting point for future reading. 
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Lead Kindly Light 

A teacher in Sumatra, enraged by complaints from his pupils thay they did 
not understand his mathematics lesson, beat two children unconscious and 
injured thirteen others. 

The London Times (Australia), March 23, 1981 
Contributed by Kay Wagner, 

Northern Kentucky University, Highland Heights, KY 
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