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1 Introduction

... the dimension of New York’s 13th congressional district might not even
be an integer. The act of districting–dividing a state into the appropriate
number of congressional districts–is usually handled by a political and par-
tisan body, in particular the state legislature and governor. Unsurprisingly,
partisans will district in a way that they think will maximize the number
of representatives that their particular party will send to Congress. This
process called Gerrymandering, named after the Elbridge Gerry, governor
of Massachusetts in 1812, who famously approved a congressional district
that resembled a salamander.

Because of the sensitivity of congressional districting to personal bias,
such a relatively simple issue has become exceedingly complex over the years.
Gerry’s salamander of 1812 could not even hold a candle to such well-known
districts of today such as Louisiana’s ”the ’Z’ with drips,” or Pennsylva-
nia’s ”supine seahorse” and ”upside-down Chinese dragon” districts. Such
awkward and complex districts can often lose sight of the primary goal of
the House of Representatives as outlined in the US Constitution: to provide
regional representation to the people. As such, we have sought out to deter-
mine a ”fair” and ”simple” system of congressional districting which seeks
to maximize accessibility of all people to regional representation, while pro-
viding a partitioning of states into congressional districts which is insensitive
to partisan motives.

To accomplish this goal of fair districting, we define an objective function
F that when minimized gives what we define to be the best districting
(partition of state into districts). As an application, we apply this method
to district the state of New York and Ohio. We defend our method of
districting, so as to try to convince voters and politicians that this is a fair
way of handling the problem of congressional districting.
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2 Definitions

For the purposes of our paper, we define the following notions:

Block: A unit of area which corresponds to a fixed number of people. Since
population densities vary, block sizes vary, though by choosing a small
enough population size for each block, the overall size of the block
can be bounded. A block is marked in the plane by a pair of (x, y)
coordinates

District: A collection of a fixed number of blocks (thus having a constant pop-
ulation).

Capitol: A point within each district corresponding to the center of the district,
i.e. the average of the coordinates of each block in the district. Since
each block has unit population, the capitol is an approximation of the
center of the population.

“Fairly Simple”

Our notion of Fairness:

In the 1993 Supreme Court case Shaw v. Reno, court opinion men-
tioned that acceptable ways of districting a state include, but are not
limited to ”compactness, contiguity, [and] respect for political sub-
divisions or communities defined by actual shared interests2”. Here,
by compactness, the Justices are not alluding to a property that is
invariant under continuous transformations, but rather a vague no-
tion that congressional districts should be more like squares or circles
than ”spitting amoebas” (read: Maryland’s Third District). In order
to capture these 3 qualities that an acceptable congressional district
should have, we first define the following measures of ”compactness”
and ”respect for actual shared interests.”

Compactness: Suppose we have a given a district D containing n blocks ,zi, with
capitol c. We can define compactness as the variance of the spatial
distribution of the population:

C =
∑n

i=1 ‖zi − c‖2
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When C is small, we conclude that our district’s constituents live
within a relatively small area.

Shared Interests (S): Citizens want their personal interests to be acknowledged. For
example, suppose a large group of citizens in a single area are all inter-
ested secondary education. This is a shared interest. We can quantify
this interest in education by putting all people’s interest in education
on a scale from 1 to 10, with 1 being ”knowledge is the devil” and
10 being ”i would rather learn about the set of isomorphism classes
of two-dimensional compact nonsingular toric varieties than have a
meaningful relationship with that attractive girl next door”. Then, if
most people in D have an interest rating of about an 8, we can say
the people of D are fairly uniform with respect to education. Thus,
in election campaigns, education will be a high priority for such a dis-
trict, and therefore will get the attention its denizens desire.

To be precise, we assign a vector to each block, giving one component
to each interest, and attempt to minimize the sum of the variances of
the components over the district. That is, given vectors vi associated
with blocks zi and mean interest vector µ = 1

n

∑n
i=1 vi, the shared

interest is equal to:

S =
∑n

i=1 ‖vi − µ‖2

A Note on Shared Interest

Though race, gender, age and religion are important issues for many,
many legal ambiguities exist in the use of such measures. Because the ad-
vantage is yet unproven of either grouping together or dispersing such groups
amongst congressional districts, we have chosen to not use any of these data
in our calculation of shared interest. As well, though measuring political af-
filiation is an entirely legal and often implemented districting tool, we have
chosen to remain nonpartisan to avoid inadvertantly favoring one party over
another. It should be noted, however, that our model is well-equipped to
handle such data.
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3 Specific Formulation of Problem

With the above measures of compactness and shared interest, we can now
measure the fairness of a partition of a state into congressional districts.
We suppose we have some partition P = {D1, ...Dk} of blocks into con-
gressional districts, such that each district is contiguous and has the same
number of blocks. We define f (Di) = w1Ci + w2Si where the wn are some
positive weights which are constant for all districts. Globally, we define
F (P ) =

∑k
i f (Dj). Since the number of blocks is finite, and F (P ) is a

positive function, a global minimum exists.

Our goal, then, is to find the partition P∗ such that F (P∗) is the global
minimum.

4 Assumptions

We make the following assumptions:

• We are given accurate data regarding a state’s populational and geo-
graphical layout, and other relavant factors

• The amount of population that one of our blocks represents is small
enough to ensure that districts have negligably different populations

• The initial assignment of blocks to districts is random enough to as-
sure that the set of districts to which our algorithm converges is near
to the set corresponding to the global minimum

5 Background & Goals

The pursuit of ”fair” districting models has had nearly as long and rich
of a history as the pursuit of unfair models. Computers have proven to
be an invaluable tool in this process. Since they allow for districting to
be performed without ever requiring a person to look at a map, in theory
potential conflicts of interest can be avoided. Unfortunately, few politicians
would be willing to let their careers rest on a list of coordinates spit out on a
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computer screen, and thus nonpartisan partitioning techniques may forever
remain in the ”theory” and not in the ”practice” of political science.

In 1963, James Weaver and Sidney Hess set the standard for comput-
erized nonpartisan districting. Using integer programming methods, a set
of capitols (called ”LDs” in their paper) were matched with blocks (”EDs”)
in such a way as to minimize moment of inertia; i.e. ”C” in our case. Re-
peatedly, the LDs were relocated to the appropriate centers of mass and
then the EDs were redistributed to each LD until the moment of inertia hit
a local minimum. By repeating frequently with a large number of initial
conditions, they hoped to approximate the global minimum for moment of
inertia, and thus derive the most compact districting of a region. Though
precise, integer programming algorithms on large sets of data is extremely
time-consuming even for the fastest computers (so we can only imagine how
it ran on a fast computer in 1963). Though Weaver and Hess’s methods
found applicability at the county and small state level at best, their land-
mark work paved the way for the development of a variety of approaches to
state districting techniques.
As history has taught us to do, we sought out to create a model which
expanded on the fundamentals and set the following goals:

• Find the ideal partition P ∗, i.e. the one which minimizes F globally

• Method should be versatile: able to find the ideal partition for a wide
variety of shared interest functions S

• Method should be scalable: able to handle large quantities of data
quickly

6 Friendly Trader Method

Suppose our blocks are arranged into n districts. By our method, district z
attempts to give away blocks which are most beneficial to them (i.e. reduce
f(z) the most). However, as traders, our districts are ”friendly.” That is,
they will only conduct trades, giving away and receiving such blocks if overall
the districts are better off (i.e. reduces F ). These districts are so friendly, in
fact, that they will execute trades which raise f(z) so long as F decreases.
Since the composition of our districts changes after each trade, capitols
must be recalculated at each step. The problem of finding a minimum then
reduces to finding and executing all trades which reduce F until no more
exist.
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Figure 1: Flow chart describing the decision-making process in the Friendly
Trader Algorithm

Once a set of blocks are determined, initial districts are assigned, and
trades are then executed to completion.

How are blocks determined?

Demographic data is obtained from the US Census Bureau’s 2000 Cen-
sus. For the state of New York, data is partitioned into roughly 5,000 tracts,
each with a specific population and coordinates in latitude and longitude.
For each minor civil division, we assigned one block per 250 people, rounding
population to the nearest 250. We evenly spread these blocks within their
MCD. Thus, each block has the same population, and population density
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corresponds to block density.

How are districts initialized?

We try to come up with a first approximation to a partition with low F .
First, we arbitrarily chose a set of 29 blocks to be our initial district capi-
tols. Each capitol’s position is assumed to be the center of population and
its interests the mean interests of the district. One by one, capitols pick
districts that ”fit well” with the capitols location and interests. The process
is like a professional sports draft, where teams take turns picking players
that suit their particular team well. After all the blocks have been assigned
to capitols, trading of blocks between districts can begin.

How do we maximize compactness?

Suppose we have two districts D1 and D2 and a block bk ∈ D1. By moving
bk from D1 to D2 we form districts D′

1 and D′
2. Let us define

∆F (D1, D2, bk) = f(D′
1, D

′
2)− f(D1, D2).

Now, in order to determine which trades to make, we first find a block
b∗12 in D1 such that ∆F (D1, D2, b∗12) ≤ ∆F (D1, D2, bk) for all blocks bk in
D1. Let us call b∗12 the ”best block” from D1 to D2. The best block need
not be unique, as its name might suggest, but this is not relevant for our
purposes.

Now we can define a fully connected directed graph G with the vertices
of G corresponding to the districts Dj and the edge vi → vj having length
∆F (Di, Dj , b∗ij), b∗ij being the best block from Di to Dj . To find F re-
ducing trades, we search for cycles of negative length in this graph G. (The
length of cycle is defined to be the sum of the lengths of the edges compos-
ing the cycle, counting multiplicity if an edge appears more than once.) If a
cycle has negative length, then this cycle corresponds to a group of trades
of blocks between districts that is likely to reduce F . In particular, if for
example v1 → v2 → v3 → v1 is a cycle of negative length in G, then sending
b∗12, b∗23, b∗31 from D1 to D2, D2 to D3 and D3 to D1, respectively, should
decrease F . Hence, the problem of finding good trades of blocks between
districts reduces to finding cycles of negative length the digraph.
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Figure 2: The path from a to b passing through the negative cycle c,d,e can
be made arbitrarily short since the cycle has negative length
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The problem of finding negative cycles in the digraph reduces to the sim-
pler problem of finding the shortest length path between any two vertices.
To see this, consider Figure 2. The shortest path from a to b must contain
a negative cycle if one exists on the graph, since one can loop around the
cycle any number of times to make the path length arbitrarily short. The
Bellman-Ford-Moore algorithm exploits this property by modifying a stan-
dard shortest-path algorithm to find this cycle. It should be noted that this
algorithm will only find the first negative cycle encountered in a path from
vertex a, and thus gives no choice of cycle. Once a trade is found, it is com-
pleted, and capitols are recalculated. With such a method we are careful to
avoid any trade which after recalculation of capitols actually increases F .
Since we are only making trades which strictly reduce F , when F can no
longer decrease through trading, we have achieved a local minimum.

7 Results

We implemented a computer program that simulates the algorithm described
above (attached in an appendix). We picked up blocks of size 250 people,
and ran it until no further trades can be performed. We thus obtained
a local minimum. However, we noticed that no matter what the starting
configuration was, we always ended up with the same shape for the districts,
making us believe that the data set is big and diverse enough to always
converge to a unique global minimum.

Below are the results of our districting simulations. Four maps corre-
spond to New York, and three maps correspond to Ohio. These first two
maps constitute our official apportionment of New York. Due to the City’s
large population, a second map was needed to focus in on its congressional
districts.

This map and the one below it–the close up of New York City–show our
most basic apportionment of New York. It was calculated only to make the
regions most compact. (w2 = 0).

This second map of New York also used compactness as a guide, but the
objective function F was weighted toward preserving population density.

The next 3 maps are of Ohio. We decided to test our algorithm on a
state different in nature from New York so that we could check that our
method was in fact applicable in wide ranges of circumstances. In the first
map, Ohio is partitioned using only compactness as a guide, just as in the
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Figure 3: Map of congressional districts of the State of New York based
solely on compactness

Figure 4: Close up of Figure 3 on New York City
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Figure 5: Map of congressional districts of the State of New York based
both on compactness and population density

Figure 6: Close up of Figure 5 on New York City
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Figure 7: Districting of Ohio, solely based on compactness

first map of New York. Likewise, the second map of Ohio is just like the
second map of New York in that both use the same function F to deduce
the best partition.

To obtain Figure 10, our procedure was modified to attempt to not split
up counties between more than one congressional district. Counties are not
divided between congressional districts in the state of Ohio. We thus added
an a term in f(x) which takes into account county sepration. This idea can
easily be extended to natural boundaries like rivers and highways.

8 Analysis of Results

Our results are primarily visual and not numerical. As we identify, one
weakness of our method is the lack of quantifiable data for comparison.
True, our final value for F is one means for comparison, but since F is itself
a variable function, normalizing it for use from one application to another
is far from trivial. In addition, the remarkable reproducibility of our results
given a wide variety of initial conditions almost entirely eliminated the need
for separate numerical data.
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Figure 8: Districting of Ohio, using both compactness and population den-
sity

In Figures 3, 4 and 7, one can see the boundaries of each district clearly
demarcated. After the sorting of blocks, we connected a line surrounding
all boundary blocks in a district and softened the line to make it smooth.
As compared to the current congressional districts it is immediately clear
that our algorithm is a vast improvement in simplicity, corresponding to a
reduction in C by a factor of 7 for Ohio and by a factor of about 22 for
New York (10042200 vs. 73042325 and 13345270 vs. 268847395). Since
our model evaluates districting through distance in this case, it promotes
star-shaped districts (in which the capital is connected to every point in
the district by a straight line) rather than fully concave districts, improving
accessibility and reducing complexity of the districts. In this instance, our
model handled the problem of districting the states wonderfully, achieving a
very simple, reasonable result. However, our interest-weighted models were
the cases in which our model really shined.

Since we chose not to gauge common interest by potentially controver-
sial factors such as race or age, we decided to choose the tamest quantity
possible: population density at each block (nobody will ever be calling us
biased!) We felt that this quantity would be useful to group districts by,
since urban issues tend to differ from rural issues, and thus both city slickers

13



Figure 9: Districting of Ohio, attempts to preserve county lines
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and farmers alike could obtain representation for their greivances.
In some ways, our model already favored uniform population density

across districts. Since blocks in urban areas are more densely packed, they
naturally migrate to the same district. Our adjustment then merely in-
creased the population density component, producing a noticeable change
in the districting of Ohio, which tightened districts around the major cities
of Columbus in the center, Cincinnati in the Southwest, and Cleveland in
the Northwest, as well as a tightening of the districts around the densely
populated Bronx and Queens in New York City (Figures 6 and 9). These
solutions were yet again improvements in compactness and uniformity of
population density compared to current congressional districting (quite un-
surprisingly), but also demonstrated the existence of a range of reasonable
solutions which satisfy our goals of compactness, simplicity, and fairness.

In some states (Ohio being one), congressional districts are designed
with preserving county lines in mind. Since many states have independent
county governments (including New York and Ohio), we ran an alternative
solution set for Ohio in which we tried to preserve county lines. Our mean
interest vector µ assigned a direction for each county tabulating the number
of blocks in each. We then were able to similarly weight our solution with
the goal of preserving county lines. Figure 10 shows the great success of
this solution. In most districts, boundaries coincide almost perfectly with
county lines. The advantage of the county-based districting solution is clear:
since citizens pay taxes to and receive services from county governments,
allowing counties to have exclusive congressional representation allows for
the easier handling of issues on the local level. Surprisingly, such lines
can be taken into consideration with little consequence on compactness or
simplicity. However, since some states have no county government, this
delineation is of small consequence.

Since different states and people have different needs, we sidestep the
choice of a specific solution and claim that all are valid.

9 Why Our Model is Fair

It is clear that the aforementioned model produces simpler congressional
districts, but the question of fairness is much more difficult. To give an ex-
ample of this challenge, we consider the Fourteenth Amendment of the US
Constitution which clearly states that all races, genders are strictly equal
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under the law. However, the Voting Rights Act of 1965 states that the gov-
ernment will assist in facilitating the voting of minority areas. Thus, even
the government itself has trouble deciding whether ”fair” involves helping
the often disadvantaged to realize their own rights or involves giving every
person exactly the same treatment. We argue that our model is fair because
it remains passive and uninvolved. It only takes a set of directives (i.e. the
function F ) and produces a solution which divides the region into relatively
uniform districts with respect to F . If nonpartisan goals are desired, such as
uniform population density or compactness, a nonpartisan solution arises.
However, any component of data can be (and likely has been) misused. For
example, African Americans tend to be affiliated with the Democratic Party,
while those in rural areas tend to be Republican. Thus, race and population
density can be delicately used to achieve partisan aims.
Our model is fair because it assigns no judgment to any of these considera-
tions. Rather, it is designed to improve the citizen’s accessibility to attentive
and diligent representation in order to maximize every individual’s rights
and powers.

10 Strengths and Weaknesses of Model

Our model effectively achieved all of the goals we set initially. It was fast
and could handle large quantities of data, but also had the flexibility we
desired. Though we did not test all possibilities, we showed that our model
optimizes state districts for any of a number of variables. If we had chosen to
input income, poverty, crime or education data into our interest function, we
could have produced high-quality results with virtually no added difficulty.
As well, our method was robust. Moreover, we were able to divide areas into
fairly simple, contiguous, and uniform regions, as defined by our own stan-
dards and many others, particularly those of voters, who want accessible,
attentive, and nonbiased representation. Our model also consistently led us
to useful minima, whether data was inputted at random or with some sort
of organization.

The primary weakness of our model was the absence of good nicknames
for our districts - somehow districts such as ”egg” and ”sort of diamond-
shaped thing” didn’t raise any eyebrows. However, we chose to blame this
error on our own dull imaginations rather than on our model. In all seri-
ousness, the chief caveat to any user of our model should be to remember
that this is a model. Though we achieved solid equilibria, our model in no
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way guarantees that it will ever find a global solution. To see this, consider
a rectangle with different sides, and assume we have 10 points at each of its
vertices. Moreover, let initially the districts be the long sides. It is easy to
check that no trade will occur, and thus this configuration is a local, but
not a global minimum.

The other primary weakness of our model is our lack of metrics for com-
parison. Though compactness and shared interest levels are appropriate
measures for comparison of two models within a state, we lack invariant
metrics for assessing the quality of one districting versus another. Finally,
as a more minor weakness, our model does discretize continuous data and
makes numerous approximations; this weakness is expected in any model,
and ours handles such approximations quite well.

11 Food for Thought

Given the proper data, our model can do much more than merely political
districting. At heart, it simply attempts to group regions into smaller parts,
unified by whatever characteristics desired. For example, if a governing
body wanted to determine where to build police stations or hospitals, he
or she could input weighted crime, health, poverty and/or age statistics
into the model. The model could then quickly and effectively partition a
state or township into small regions, united by not only spatial relations
but also by needs and desires. Thus, our model could help politicians and
authorities most effectively deploy public resources and services. Ironically,
our nonpartisan partitioning method could be a politician’s best friend. Not
only that, but by inputting political affiliation data, politicians could identify
partisan strongholds in order to most effectively plan campaigns. Though
excruciatingly simple, our partitioning technique exceeded even our own
expectations in its versatility and dynamic.

12 Conclusion

In this paper we have set forth an algorithm to determine congressional
disctricts, given data on location, population, and any other factors desired.
The algorithm is intended to be fair, or nonpartisan: it is in stark contrast
to the political process of gerrymandering. Characteristics that we consider
to be fundamental in the division of a state into congressional districts in-
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clude contiguousness, compactness, and sometimes the possibility of shared
interests or concerns among a districts citizens.

We have assumed that a state could be divided into blocks of small con-
stant population, and then interpreted the problem of congressional district
apportionment as the distribution of these blocks to the districts in such a
way that each district contained a fixed nubmer of blocks (and therefore all
districts have the same population). Furthermore, we defined an objective
function F that measures the quality of a given distribution of blocks into
districts. With such an F , finding good partitions of a state into districts
is equivalent to finding distributions of blocks into districts corresponding
to low values of F . Our goal, therefore, with the above interpretation of
the districting problem, was to find the partion of a state into congressional
districts that minimized F . This is a useful formulation of the problem be-
cause, if all agree to use this method beforehand, the existence of a global
minimum of F (our problem is finite) gaurantees that if this minimum is
found, there can (should) be no partisan squablling as to the legitimacy of
the solution obtained.

Admittedly, our algorithm for districting a state is only gauranteed to
find local minima of F . However, simulations done with random initial
starting values seem to converge to the same final apportionment, suggest-
ing that the local minima that our algorithm finds are close to the global
minimum. Additionally, while we have implemented certain particulars to
quantify shared interests of citizens in a district, our procedure for deter-
mining congressional districts is flexible; a simple change in the particulars
and it can partition blocks into districts under other criteria.
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