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Scope and Purpose—Given an area and its population units, we wish to divide the area into m districts such
that each district has almost the same population of eligible voters (within a given tolerance), is contiguous,
compact, and has a minimum number of split population units. This fair representation problem has been a great
concern of the public for decades. The districting problem is also used in the design of sales territories. Re-
districting occurs often because of population shifts or for political reasons. The purpose of this paper was to find
a practical and automated operations research computer solution method for this problem.

Abstract—For the political districting problem, I propose the following solution methodology: (a) use
Lagrangian relaxation to determine the centres of the districts, then, (b) use the transportation technique to assign
population units to centres, and finally, (c) resolve the splitting problem by solving a sequence of capacitated
transportation problems. This method is applied to the problem of determining the provincial districts for the
City of Saskatoon, Canada, and the results are compared with the actual districting done in 1993 by the Electoral
Boundaries Commission. Copyright © 1996 Elsevier Science Ltd

1. INTRODUCTION AND LITERATURE REVIEW

Given an area, e.g. a province or a city, and its population units, e.g. subdivisions or census tracts, we
wish to divide the area into m districts such that each district has almost the same population of eligible
voters (within a given tolerance, e.g. 5%). In addition, it is desirable that a district consists of contiguous
population units and to be compact (close to square or circle). Frequently, to obtain population parity
within the tolerance, population units have to be split between two or more districts. However, to reduce
the time-consuming task of actually splitting population units and the ensuing confusion of voters, this
splitting is to be minimized.

Political re-districting occurs frequently because of population shifts and because of political desires
to change the total number of representatives. This problem is related to a problem in marketing called
sales territory alignment. A computer method to solve political districting is desirable because (a)
constructing districts with population parity within the tolerance and (b) keeping the number of split
population units to a minimum are conflicting objectives which cannot be easily resolved manually.

The main literature on this problem started with Hess ez al. [1] who modelled it as a location—allocation
problem, but due to the computational difficulty solved it by the following heuristic: (a) start with an
arbitrary set of centres of districts (a set of population units), (b) use the transportation technique to
allocate population units to the centres, where the demand for each population unit is its population of
eligible voters, the supply of each centre is the population quota for each district, and the distance
between a centre and a population unit is the square of the Euclidean distance between their centres of
gravity, (c) assign any split population units to the centre supplying the largest fraction of its demand, and
(d) calculate the centre of gravity of each derived district and resolve the transportation problem with
these centres until convergence of centres occurs.

Fleischmann and Paraschis [2] used a similar method, except for the following heuristic used to resolve
the split population units in the solution of the transportation problem: (a) exclude the full and zero
assignments, and identify the subtree F consisting of the split population units and their suppliers, (b) for
each arc (i) in F, determine if supplier i, after adjustment to any other demands of k with (i,k) in F, needs
to supply to j to remain within the tolerance, or if demand point j, after adjustment to any other suppliers
k with (k) in F, needs to obtain supplies from i. If the answer is yes to either of these two questions, then
a (partial) assignment on (i) is performed, and (c) if the answer to both questions in (b) for every arc
(i) in F is negative, then a full assignment is made on (i,j) if the tolerance is not exceeded for supplier i.

+ Mehran Hojati is associate professor of Management Science in the Department of Finance and Management Science of the
College of Comerce at the University of Saskatchewan. He received a Ph.D. in Management Science from the University of
British Columbia. His research interests and publications are in the area of applications of Operations Research in networks and
finance.
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Thoreson and Liittschwager [3] used the following heuristic: (a) start with a reference population unit
A, (b) find another population unit B furthest away from A, (c) build a district around B, including the
closest population units to B until the district quota is just to be exceeded in which case include any
contiguous population unit which will result in a population of eligible voters as close to the district quota
as possible, (d) repeat with the furthest unassigned population unit B2 from A and build a district around
B2, and (¢) continue until all population units are assigned.

Garfinkel and Nemhauser [4] used the following exact method: (a) construct all sets of potential
districts which are contiguous, compact, and have a total electorate within the tolerance, and (b) use a set
partitioning integer linear programming model to minimize the maximum deviation of any chosen district
from the district quota.

Among other heuristic methods which iteratively interchange population units between two districts
are Bourjolly et al. [5] and Robertson [6]. Finally, Zoltners and Sinha [7] proposed a precedence network
for population units to prevent discontiguity in districts. However, they assume that the centres of the
districts are already fixed.

My approach is similar to [1] and [2], with the following differences: (a) I propose the use of
Lagrangian relaxation to determine the centres of the districts, and (b) to resolve the splitting problem I
propose the use of a sequence of capacitated transportation problems which at each stage tries to force
one more shipment in F to zero. These methods are tested by using data for the City of Saskatoon, and
the results are compared with the actual districting done in 1993 for the provincial legislature,

2. THE WAREHOUSE LOCATION MODEL
A warehouse location model for districting can be formulated as follows:

Let
N=number of population units
M=number of districts required
Q;=number of eligible voters in population unit j (=demand of j)
Q=district quotient (=sum of Q; M)
X,=proportion of demand of population unit j supplied by centre i (in population unit ). (N varia-
bles)
¢; =square Euclidean distance from centre of population unit i to the centre of population unit j. This
is similar to [1]. Other distance measures were also examined
¢;=Cy XQ;
Y,=indicator variable for population unit i:
=1 if population unit i is to be chosen as the centre of a district

=0 otherwise.
N N
Minimize ‘21 = ciX; )
i=] j=
Subject to:
Demand:
N
2 X;=1 Foreachj €]
Supply:
N
21 QX,;=QY, For each i 3
j=
N
21 Y=M 4
X,;<Y, For each j, for each i &)
0=<X,=<1 For each pair i, j (6)
Y,=0or1 Foreachi. )

Note that the population tolerance for each district is not used at this stage.
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3. THE LAGRANGIAN RELAXATION METHOD

The procedure used here is a simplified version of that given in Beasley [8] who relaxes both the
supply and the demand constraints.

First, normalize (3) by dividing it by Q. Let s; and ¢; be the multipliers associated with (2) and the
normalized (3). The Lagrangian lower bound programme (LLBP) is:

Minimize

M=

N

N N N N Q
cX;+ Zs|l— 2 X, W=Y+ Z |2 X;
j=1 i =\ 0

i=1 i=

()

Subject to: (4)—(7).

Defining
o)
Ci=c; sj+t,-( a’ )

LLBP becomes
Minimize

N N N N

2 ZCX;— 2tY+ X5 8)

i=1 j=1 i=1 j=1
Subject to: (4)—(7).

If Y;=0, then the contribution of X; and Y, to (8) is O (because X; will be set to 0 too), whereas if ¥;=1,
this contribution is given by

N
a,=—t;+ 2 min(0,C;)
j=1

because it is optimal to set X;;=1 if C;=>0, and X;;=0 if C;>0. Therefore, LLBP reduces to
Minimize

Subject to:

Y;=0or1 Foreachi.

This zero/one programme can be solved by inspection as follows: Sort the g; in ascending order and set
Y;=1 for the first M population units. Set X;=1 if ¥,=1 and C;=0, else set X;=0. Then, a valid lower
bound on the optimal solution is given by

The near-optimal values for 1, i=1, ..., N, and s;, j=1, ..., N, are determined iteratively by the following
subgradient optimization method:

Let
Z,.=maximum lower bound found
Z,g=an upper bound for (1) (e.g. choose an arbitrary set of M centres, solve by the transportation
technique, then set Z,; =objective value)
n=number of subgradient iterations since Z,, last increased
Jf=step length parameter.

Step 1. Initialize Z,,,,=—®; n=0; f=2; 1,=0, i=1, ..., N; s;=c;, j=1, ..., N.
Step 2. Solve LLBP with the current set of multipliers’ and let the solution be Z, g, (¥)), and (X). If

CAOR 23:12-8
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Zy>Z,,,,setn=0,and Z_, =7 ;. Else, set n=n+1.

Step 3. If n=30, then 30 iterations of the subgradient procedure have been performed without an increase
in Z,,,. Hence, halve the step length parameter f by setting f=£/2 and set n=0. Use the solution Z,g, (Y,
and (X)) corresponding to the best lower bound Z,,,, obtained so far.

Step 4. Calculate the subgradients G; and H, using
N
Gj=1_ E]le j=1,...,N

and
N Q
.=—-Y. = m (= cen
H, '+j§1(Q)X" i=1,..,N

N N
Step 5. If El G+ EI H?=0 or £<0.005, go to Step 7.
l= =

Step 6. Define the step size T by

T__(f)(zus —Zip)
N N
s g
j= i=

Update the Lagrange multipliers using
5;=5;+TG; j=1,...,N
t=t;+TH;, i=1,..,N

and go to Step 2.

Step 7. Solve the solution (Y;) associated with the current maximum lower bound Z, using a
transportation technique. Terminate.
4. RESOLVING THE SPLITS

After determining the centres of districts by Lagrangian relaxation and solving the district composition
problem by the transportation technique, the solution obtained will have at most m — 1 population units
which are split between two or more districts.

Lemma 1. The solution of the transportation technique will have at most m — 1 split population units.

Proof. Because there are at most m+N — 1 basic cells in this solution, at most m —1 demand points
(population units) can have two or more cells in their associated columns, leaving at least N—m+1

o

5o >@& &)

Fig. 1. The two-partition reduction to (SRP) used in the proof of Lemma 2.
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Table 1. Population units (PU), number of
eligible voters (1993), and the coordinates
of centres of population units

PU Voters X coordinate Y coordinate
1 4880 1L.5 1.5
2 2350 10.5 25
3 3445 10 1
4 3455 8 1.5
5 4020 75 k)
6 4550 4 35
7 3090 5 5
8 2990 5 6
9 3315 3 5
10 2665 2 5
11 1205 7 55
12 2330 8 55
13 3440 15 4.5
14 4585 9 4
15 2635 11.5 35
16 2365 10.5 4
17 2235 11.5 5
18 4050 13 5
19 3205 14.5 5
20 2605 13 35
21 5155 13 2
2 3670 15 25
23 3070 12 75
24 3835 13.5 7
25 1725 15 715
26 505 13 9
27 3475 9.5 55
28 3950 8.5 7
29 1255 7 6.5
30 2665 6 6
31 2615 4 7
32 2630 2 6
33 3825 2 7
34 2510 3 8.5
35 2150 5 8
36 3110 6 15
37 3480 7 8.5
k1] 3120 8 9
39 3920 10 10
40 3540 " 11
41 3310 10.5 1.5
42 3935 10.5 12.5
42
m U
38 40
34 0
(39 23 o 25
-~
€ 31 3J @
35 @ 17 (19
32 1 (18]
@ s 27
« 30
@ (9 P
D0 o SillNG =,
2 <
4 1
6 3

Fig. 3. The optimal solution to the transportation probiem; suppliers are bold-faced; each supplier supplies its
own population unit (not shown).
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Fig. 4. The F subtree corresponding to the split population units in the solution of Fig. 3.

columns having exactly one basic cell. This is because 2(m — 1)+ (N —m+1)=N+m — 1. If a population
unit is split among more than two districts, then the number of split population units will be less than
m—1.0

The split-resolution problem (SRP) can be formulated as follows:

Let
(x;)=solution of the transportation technique (in number of eligible voters not proportion)
J' =set of split population units
I' =set of centres adjacent to any split area
F=the graph with vertex set I’ UJ’ and the above adjacency [a forest since (x;) is a basic solution]
U,=set of vertices adjacent to vertex v of F
A =0(1 +tolerance), tolerance, e.g., =0.05
ALi.=0(1 —tolerance)
a;=size of district / without split population units.

Min. number of arcs (i,j) in F with x;>0
Subject to:

2 x=Q; jinJ
ier

App=a+ 2 x;=A,, iinl (SRP)
jeU;

X;=0 iinl',jinJ'.
Lemma 2. (SRP) is NP-hard.

Proof. We will reduce the NP-complete two-partition problem to (SRP). Given n real numbers B,, B,, ...,
B,, the two-partition problem asks if there is a set SC {1, ..., n} such that

3 B=3B,

jes jes

This problem is equivalent to a (SRP) with total number of suppliers in F=2n, supplier s; having
Apw—a;=B, and A, —a;=B, i=1, ..., n; supplier s, having A, —a,=B, and A, — a,=0, i=1, ..., n;
demand point d; having Q;=B,;, j=1, ..., n, and demand point d having demand

0= 280

and the relationship as depicted in Fig. 1. B
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(SRP) can be formulated as a zero/one integer linear programme. Fleischmann and Paraschis [2] used the
following heuristic to solve a problem which is equivalent to (SRP):
(a) For any arc (i,j) in F, an obligatory partial assignment x;= 6 takes place if

d;=max(4,,8,)>0

where

81 = Qj - 2 (Amnx - ah)

heUphsti

82=Amin - ai - 2
ke Uyksj
Then, g; and Q, are updated by a,=a;+x; and Q;=Q; — x;, and another arc (k,]) is examined.

(b) If for every arc (i) in F, §,;=0, then an arbitrary full assignment can take place for any arc (i,j)
if a;+Q;=A,,,. After this, repeat steps (a) (some &; may become positive) and (b) until all arcs are
assigned.

The application of Fleischmann and Paraschis heuristic may not reduce the number of arcs in F with

COST 410 a7 d3eé 4a3sg dag 413 di4 d1s

s33 .00000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 95.0000 s33
s833e .00000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s33e
s9 .00000 .00000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s9
s%e .00000 .00000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 sSe
s8 9.0000 .00000 .00000 9.0000 9.0000 9.0000 9.0000 9.0000 s8
s8e 9.0000 .00000 .00000 9.0000 9.0000 9.0000 9.0000 9.0000 s8e
837 9.0000 9.0000 .00000 .00000 .00000 9.0000 9.0000 9.0000 837
s37e 9.0000 9.0000 .00000 .00000 .00000 9.0000 9.0000 9.0000 s37e
841 9.0000 9.0000 9.0000 .00000 9.0000 9.0000 9.0000 9.0000 s41
s4le 9.0000 9.0000 9.0000 .00000 9.0000 9.0000 9.0000 9.0000 sdle
812 9.0000 9.0000 9.0000 9.0000 .00000 .00000 9.0000 9.0000 sl12
sl2e 9.0000 9.0000 9.0000 9.0000 .00000 .00000 9.0000 9.0000 sl2e
85 9.0000 9.0000 9.0000 9.0000 9.0000 .00000 .00000 9.0000 85
s5e 9.0000 9.0000 9.0000 9.0000 9.0000 .00000 .00000 9.0000 sSe
816 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 .00000 .00000 sl6

sl6e 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 .00000 .00000 si6e
s18 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 .00000 s18
sl8e 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 .00000 sl8e
824 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s24
s24e 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s24e
s21 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 95.0000 9.0000 s21
s2le 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s2le
DEMAND 2665.0 3090.0 3110.0 3920.0 3950.0 3440.0 4585.0 2635.0 DEMAND
COosT 410 a7 da3e d3s da8 d13 a4 di15

Fig. 5. Continued overleaf.
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COoSsT dis d22 DD SUPPLY

833 9.0000 9.0000 9.0000 .00000 833
s3le 9.0000 9.0000 .00000 915.00 s33e
s9 9.0000 9.0000 5.0000 3449.0 s9
s9%e 9.0000 9.0000 .00000 1190.0 sS%e
s8 9.0000 9.0000 9.0000 2211.0 s8
s8e 9.0000 9.0000 .00000 1190.0 s8e
837 9.0000 9.0000 9.0000 4712.0 837
s37e 9.0000 9.0000 .00000 1190.0 s37e
s41 9.0000 9.0000 9.0000 503.00 s41
sdle 9.0000 9.0000 .00000 1190.0 s4le
812 9.0000 9.0000 9.0000 4319.0 512
sl2e 9.0000 9.0000 .00000 1190.0 sl2e
85 9.0000 9.0000 9.0000 3796.0 s5
sSe 9.0000 9.0000 .00000 1190.0 sb5e
s8l6 9.0000 9.0000 9.0000 3156.0 s16
slée 9.0000 9.0000 .00000 1190.0 slée
s18 .00000 .00000 9.0000 2416.0 s18
sl8e .00000 .00000 .00000 1190.0 sl8e
824 .00000 9.0000 9.0000 2161.0 s24
s24e .00000 9.0000 .00000 1190.0 s24e
s21 9.0000 .00000 9.0000 1277.0 s21
s2le 9.0000 .00000 .00000 1190.0 s2le
DEMAND 3205.0 3670.0 6545.0 DEMAND
COST 419 d22 DD SUPPLY

Fig. 5. The capacitated transportation model for F (arc capacities not shown).

x;>0, as will be seen in Section 6. Therefore, I propose the following heuristic for (SRP).

(a) Identify all arcs (i,j) in F with §;=0, and call this set NA. These arc will always have a positive
flow in them.

(b) Give all arcs in F an infinite capacity.

(c) Choose an arc (i) in F not in NA, set its capacity to zero, and solve a capacitated transportation
problem as described below.

(d) If the problem obtained is feasible, go to next step; else reset the capacity of (/) back to infinity
and continue.

(e) Choose another arc (k,/) in F not in NA, set its capacity to zero, and solve the capacitated
transportation problem. Repeat as in (d) until all arcs in F not in NA are examined.

5. THE CAPACITATED TRANSPORTATION PROBLEM

The following formulation is similar to that given by Marlin [9], who used it to solve a (servicemen)
districting problem with fixed district centers. Note that Marlin did not solve the split area problem. To
represent the split resolution problem (which has a minimum and a maximum for each supplier) as a
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1128

@ 3110

Fig. 6. The F subtree resulting from my heuristic.

transportation problem, we divide the shipments of a supplier i into two types: regular shipments x;; which
is part of the minimum supply A, — a;, and the extra shipments xj; (if needed, upto a total of A, — Apn)-
Therefore, for each supplier s;, we introduce a duplicate supplier s{. Also, in addition to all demand points
J', we introduce a dummy demand point DD to receive any extra shipments xj; which is not shipped to
any demand point in J'. Demand of DD is equal to (number of suppliers in F)(A,, — Apin)/2.

Let
x;=shipment from s; to d; to satisfy (part of) A, — a;
x;;=shipment from s to d;
X pp=shipment from s to DD

c;=9 if (i;j) not in F (any positive cost will work)
=0if i) in F

c5;=9 if (i) not in F
=0 if (iy) in F or j=DD

Minimize 2 ot X cpxg+ 2 CippXipp
iel'jer il jel ier

Fig. 7. The F subtree resulting from Fleischmann and Paraschis heuristic.
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42

40

Fig. 8. The final solution (after split resolution heuristic).

Subject to:

S x;+ 2 x;=Q; ForeachjinJ'

iel'jeJ' Y iel'jeJ' Y

2 Xipp=Il'1 X (A = A2

—A . - -
,-ezr x;=An,—a; Foreachiin]

EJ Xj+Xipp=Ama —Amin Foreachiinl’
je
Each cell's shipment is capacitated.

6. AN APPLICATION

The City of Saskatoon is to be partitioned into 11 provincial constituencies (districts). The population
units were chosen to be census tracts, see Statistics Canada [10]. A census tract is generally a local
community of population between 1000 to 5000 residents. The 42 census tracts were numbered
population unit 1 to 42 as shown in Fig. 2.

The number of eligible voters in each census tract was obtained by summing all age groups 20 years
or older residing in the tract from [10], and the city was grided horizontally and vertically to determine
the coordinates of the centres of each census tract, see Table 1.

Then, the square Euclidean distance between all centres were computed, and all data were input to a
computer programme which performed the Lagrangian relaxation method. The solution i.e. centres of
districts, after 35 min on a 486 personal computer, in terms of population unit numbers is:

5.8,9,12, 16, 18, 21, 24, 33, 37, and 41.

Then, a transportation software was used with the above centres as suppliers each having a capacity of
Q=130 865/11=11 896.8, demands as given in Table 1, and square Euclidean distances. The optimal
solution is displayed in Fig. 3.

Next, the split resolving method was used. The F subtree corresponding to split population units in the
above solution and their split shipments are displayed in Fig. 4. The first capacitated transportation model
to solve the split problem is displayed in Fig. 5. Note the tolerance was 5% or 595 voters.

Applying Fleischmann's §; results in Step (a) identified the following arcs (the set NA):
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(59,d10), (s9.d7), (s37,d39), (s41,d39), (s12,d28), (s12,d13),
(s5,d14), (s16,d14), (s16,d15), (s18,d22), (s24,d19), (s21,d22).

Finally, the capacitated transportation model was repeatedly solved as follows (feasible has the objective
value=0, infeasible has objective value>0):

Iteration Capacity=0 Result

(s33,d10) feasible

(s8,d7) infeasible (reset capacity =)
(s36,d8) feasible

(537,d36) infeasible (reset capacity =)
(s37,d28) feasible

(s5,d13) infeasible (reset capacity =)
(s18,d15) feasible

(s18,d19) infeasible (reset capacity =)

00~ NN B W =

The F subtree has now changed to that displayed in Fig. 6. The number of split population units has
been decreased by four, which happens to be the optimal solution to (SRP) in this case. In contrast, the
Fleischmann and Paraschis heuristic results in a solution (see Fig. 7) with no elimination of arcs of F,

The final solution including the full assignments and those assignments given by my heuristic in Fig.
6 is displayed in Fig. 8. This solution is displayed in terms of city area in Fig. 9. The actual constituencies
determined by the Electoral Boundaries Commission [11] are displayed in Fig. 10.

The following statistics compare the two solutions:

My Solution Actual Solution

Maximum deviation from quotient 5% 1%
Compactness measure 15 20
No. of discontiguous districts i 0

No. of split areas 6 17

m
where compactness is measured as X IL;~ W), L,=maximum length of district i, W;=maximum width
i=1

of district i.
7. CONCLUSION

For the political districting problem I have proposed the following three-step solution methodology: (a)
use Lagrangian relaxation to determine the centres of the districts, then, (b) use the transportation
technique to assign population units to centres, and finally, (c) resolve the splitting problem by solving
a sequence of capacitated transportation problems. The contributions of this paper are, (i) the use of
Lagrangian relaxation to determine the centres of districts in the districting problem is new, and (ii), the
use of a sequence of capacitated transportation problems to resolve the split area problem is also new.

As can be seen in Section 6, this three-step method is efficient and practical. It resulted in more
compact districts and considerably less split areas (6) than the actual districts implemented (17). Compact
areas are more convenient for the voters and the elected representatives in terms of travelling distances.
A smaller number of split areas would mean reduced administrative costs in terms of record keeping and
organisation of the district. Furthermore, our method needs a minimum number of manual intervention
and is least affected by local politics.
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