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Abstract

For a given graph G, the Separator Problem asks whether a vertex or
edge set of small cardinality (or weight) exists whose removal partitions G
into two disjoint graphs of approximately equal sizes. Called the Vertex

Separator Problem when the removed set is a vertex set, and the Edge

Separator Problem when it is an edge set, both problems are NP-complete
for general unweighted graphs [6].

Despite the significance of planar graphs, it has not been known whether
the Planar Separator Problem, which considers a planar graph and a
threshold as an input, is NP-complete or not.

In this paper, we prove that the Vertex Separator Problem is in fact
NP-complete when G is a vertex weighted planar graph. The Edge Sep-
arator Problem will be shown NP-complete when G is a vertex and edge
weighted planar graph.

In addition, we consider how to treat the constant α ∈ R
+

of the
α-Separator Problem that partitions G into two disjoint graphs of size at
most (1 − α) |V (G)|. The α-Separator Problem is not NP-complete for
all real numbers α ∈ (0, 1/2], because it would imply uncountably many
Non Deterministic Turing Machines. We will present a general scheme for
treating a constant in computer arithmetic, by introducing the notion of
real numbers comparable with rationals in polynomial time. This approach
allows us to prove NP-completeness for each such real number α.
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1 Introduction

The Separator Problem questions whether a vertex or edge set of small cardinal-
ity (or weight) exists in a given graph G whose removal partitions G into two
disjoint graphs of approximately equal sizes. It is called the Vertex Separator
Problem when the removed set is a vertex set, and the Edge Separator Problem
when it is an edge set. Both are NP-complete for general unweighted graphs
[6].

This problem originated in the area of VLSI design, and has both theoret-
ical and practical importance, especially for planar graphs [2, 10]. When G is
planar, it is called the Planar Separator Problem. Recursively using an algo-
rithm/heuristics for the problem is a standard method of designing the layout
of a small VLSI chip [14]. In terms of theory, it is closely related to the Planar
Separator Theorem proven by Lipton and Tarjan in 1979 [9]. The theorem guar-

antees the existence of a vertex separator of size O
(

√

|V (G)|
)

in planar graph

G. Because of the amount and difficulty of the research carried out to date,
the class of planar graphs is recognized as one of the most significant classes
of graphs not only for the Separator Problem, but also for other important
questions in theoretical computer science.

Some polynomial time approximation algorithms for the Edge Separator
Problem are known [11, 12, 13]. Most notably, an algorithm of poly-logarithmic
approximation ratio has been discovered for the Graph Bisection Problem [5],
which is a variant of the Edge Separator Problem that partitions G into two
disjoint subgraphs of the exactly equal size.

Despite its significance and the efforts made by researchers, it has been
unknown whether the Planar Separator Problem is NP-complete or not. The
only specific hardness result of the Separator Problem except for the general
one is the hardness of approximating the Graph Bisection Problem within an
additive term [3].

In this paper, we prove that the Vertex Separator Problem is in fact NP-
complete when G is a vertex weighted planar graph. The Edge Separator Prob-
lem will be shown NP-complete when G is a vertex and edge weighted planar
graph.

In addition, we consider how to treat the constant α ∈ R
+

of the α-Separator
Problem that partitions G into two disjoint graphs of size at most (1 − α) |V (G)|.
The α-Separator Problem is not NP-complete for all real numbers α ∈ (0, 1/2],
because it would imply uncountably many Non Deterministic Turing Machines.

We will present a general scheme for treating a constant in computer arith-
metic by introducing the notion of real numbers comparable with rationals in
polynomial time. Denote by RQ the class of such real numbers. We will show
NP-completeness of the α-Separator Problems for each α ∈ (0, 1/2] ∩ RQ. By
Liouville’s Approximation Theorem known in number theory, we can see that
an algebraic number is comparable with rationals in polynomial time. As a
result, we will prove the NP-completeness for a much larger class of numbers
than (0, 1/2] ∩ Q.
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Section 2 of this paper provides general definitions. In Section 3, we will
define the notion of comparability with rationals in polynomial time and discuss
related facts. Section 4 proves the NP-completeness results. The last section
includes the conclusions and open problems.

2 General Definitions

Let S be a weighted finite set, i.e., S is associated with a weight function
w : S → N. The weight w is extended to a subset P of S in the natural manner,
i.e., w(P ) =

∑

x∈P w(x). A pair (P,Q) is called a partition of S if P ∪ Q = S
and P ∩ Q = ∅. It is an even partition if w(P ) = w(Q).

Denote by V (G) and E(G) the vertex and edge sets of a graph G, respec-
tively. Let G have the vertex weight wV : V (G) → N. It may be edge weighted.
If it is not, let every edge have weight one.

A pair (P,Q) is an edge separator of G if it is a partition of V (G). It is
called a vertex separator of G if P ∩ Q = ∅, P ∪ Q ⊆ V (G) and E(G) contains
no edge between P and Q. A separator is a vertex or edge separator. If (P,Q)
is an edge separator, it also denotes the set of the edges between P and Q. If it
is a vertex separator, we identify (P,Q) with V (G) − P − Q. Its weight is the
sum of the weights of the elements in (P,Q).

Let α ∈ (0, 1/2] and B ∈ Z
+

be given. A separator (P,Q) of G is an
α-separator if

max
(

wV (P ), wV (Q)
)

≤ (1 − α)wV (V (G)). (1)

An α-Separator Problem asks whether there exists an α-separator of weight
at most B in a (restricted) graph. The Planar α-Vertex and Edge Separator
Problems, which ask similar questions for planar graphs, are the α-Separator
Problems that we are most concerned with.

To prove NP-completeness of α-Separator Problems in Section 4, we will
show reductions from the Partition Problem. It is one of the classical NP-
complete problems [6], which asks whether a given weighted finite set has an
even partition.

A number α is called algebraic, if it is a root of a rational polynomial P . Its
degree is the minimum degree of P with root α. If α is irrational, d is at least 2.

3 Treatment of a Constant in Computer Arith-

metic

It will be shown NP-complete to ask whether there exists an α-vertex separator
of weight at most B in a vertex weighted planar graph G, for a given constant
α ∈ (0, 1/2]. One thing that must be considered carefully here is the general
question of how to treat constants in computer arithmetic.
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Observe that such α cannot be an arbitrary positive real number at most 1/2.
If it were the case, there would be uncountably many NP-complete problems,
each of which is computed by a Non Deterministic Turing Machine (NTDM).

The standard way to handle a constant in terms of computability is presented

in various articles [4, 8]. We say that α ∈ R
+

is polynomially computable if there
exists a Deterministic Turing Machine (DTM), which computes α̂ ∈ Q such that

∣

∣

∣
α − α̂

∣

∣

∣
≤ 2−n

in time bounded by a polynomial in n, for each given non-negative integer n.
The following theorem is well-known [8]:

Theorem 1 The class of polynomially computable real numbers forms a real
closed field.

Using classical numerical algorithms, we see that real algebraic numbers, i.e.,
real roots of rational polynomials, are polynomially computable, as are all the
values of expressions formed with integers and “elementary” functions such as
ln, sin, arctan etc.

However, it is possible that we need more than the notion of computability
of a real constant when we investigate a discrete structure. To prove that
an α-Separator Problem is in NP, we need to show Ineq. (1). If α is just a
polynomially computable real number, we have only an efficient algorithm to
approximate α to any desired accuracy. Suppose we obtain a real number r′

that approximates r = ⌊(1 − α)wV (V (G))⌋ by such an algorithm. Since we do
not know the sign of r′ − r, we can only compute r + ǫ for a truncation error
ǫ ∈ {−1, 0, 1}. There is no precise way to see if the inequality is true, without
further information about r. This is our motivation to consider the following
subclass of polynomially computable real numbers.

We say that α is comparable with rationals in polynomial time, if there exists
a DTM M that decides whether or not α ≤ p

q
in poly-logarithmic time of

max(|p|, q), for any two integers p ∈ Z and q ∈ Z
+
.

Such M can be used to compute both ⌊qα⌋ and ⌈qα⌉ in time bounded by
a polynomial in ⌈log2 q⌉, the number of bits of q. Assume that α is irrational;

otherwise, the two integers can be computed easily. Since α is fixed and q ∈ Z
+

is given, we know the value of q ⌈α⌉ that is no less than both ⌊qα⌋ and ⌈qα⌉.
In other words, we know the maximum possible number k of bits of the two
integers. Using M for O (k) times, we can decide each bit of the two integers
in the topdown manner. The maximum integer p such that qα ≥ p is ⌊qα⌋,
and the minimum p such that qα ≤ p is ⌈qα⌉. Notice that qα 6∈ Z, since α is
irrational.

Denote by RQ the class of real numbers comparable with rationals in poly-
nomial time. We have the following basic properties on RQ:
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Lemma 1 If α is comparable with rationals in polynomial time,
i ) α is polynomially computable, and
ii) α−1, rα, α + r ∈ RQ for each rational number r.

Proof: i) Given a non-negative integer n, set q = 2n. We can compute ⌊qα⌋ /q
in polynomial time in n, since α ∈ RQ. The real number α is polynomially
computable.
ii) The comparability with rationals of rα and α + r is obvious. We show the
claim for α−1.

For each given p ∈ Z and q ∈ Z
+
, we want to decide if α−1 ≤ p

q
in time

O
(

logk max (|p|, q)
)

for some k ∈ Z
+
.

Since α ∈ RQ, there exists a DTM M that decides whether or not α−1 ≥ p′

q′

in poly-logarithmic time of max(|p′|, q′) for any two integers p′ ∈ Z and q′ ∈ Z
+
.

Using this M , compute
⌈

qα−1
⌉

in time O
(

logk max (|p|, q)
)

. Return true if
⌈

qα−1
⌉

≤ p, false otherwise.
This algorithm decides if α−1 ≤ p

q
in the desired time bound. 2

Lemma 2 A real algebraic number α is comparable with rationals in polynomial
time.

Proof: Assume α 6∈ Q. We use Liouville’s Approximation Theorem that is
known [1, 7] equivalent to

∃c ∈ R
+
, ∀p ∈ Z, ∀q ∈ Z

+
,

∣

∣

∣
α −

p

q

∣

∣

∣
> c · q−d.

Here d is the degree of α. Since α is irrational, d is at least 2. The difference
between z = qα and the integer closest to z is larger than ǫ = c · q−d+1. The
integer d and real number c are constants determined by α, and z is algebraic.
Compute an approximate value z′ of z with error smaller than ǫ. We have

⌊z⌋ = ⌊z′⌋. It takes O
(

logk max (|p|, q)
)

time for a constant k ∈ N to determine

whether or not z = αq ≤ p. The real number α is comparable with rationals in
polynomial time. 2

We will show NP-completeness of α-Separator Problems for every α ∈
(0, 1/2] ∩ RQ. Due to Lemma 2, the claims will cover a much larger class
of real numbers than (0, 1/2] ∩ Q for α.

4 NP-completeness of the Planar Separator Prob-

lems

In this section, we show NP-completeness of two α-Separator Problems. For-
mally, the following two are proven NP-complete. Let α ∈ (0, 1/2] be a fixed
real number that is comparable with rationals in polynomial time.
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1. Planar α−Vertex Separator

Instance: Planar graph G, weight function wV : V (G) → N,
and integer B ∈ N.

Question: Does G have an α−vertex separator of weight at most B?

2. Planar α−Edge Separator with Vertex and Edge Weights

Instance: Planar graph G, weight functions wV : V (G) → N, wE : E(G) → N,
and integer B ∈ N.

Question: Does G have an α−edge separator of weight at most B?

: s : x ∈ S : y ∈ S’

Figure 1: Construction for Problem 1

The basic proof scheme for NP-completeness of the two problems is the
following: We reduce the Partition Problem to Problem 2. Given a weighted
finite set S, construct a vertex and edge weighted planar graph G, whose vertex
set V (G) consists of S and a special vertex s. The weight of each x ∈ S is w(x),
the original weight, and that of s is r =

(

1
2α

− 1
)

w(S). Let us assume that r
is an integer at this moment. Connect s to every x ∈ S, so that the weight of
(s, x) is w(x). The finite set S has an even partition if and only if T has an
α-edge separator of weight at most 1

2w(S) when r ∈ N.
The case of α = 1

2 is trivially NP-complete for vertex as well as for edge
separators. Just consider the graph G = (S, ∅) with the given weights on S and
with B = 0. In both cases, a 1

2 -separator of weight 0 exists if and only if S has
an even partition. From now on, we assume α < 1

2 .
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To prove NP-completeness of Problem 1 for general r, replace the edge
(s, x) for each x ∈ S in the above construction by a path of length two, say
{(s, y), (y, x)}. Denote the set of all y by S′, and let f : S → S′ be the bijection
with f(x) = y. Let wV : V (G) → N be the vertex weight of G. We define

wV (s) =

⌊

(L + 1)

(

1

2α
− 1

)

w(S)

⌋

= (L + 1)

(

1

2α
− 1

)

w(S) − ǫ with 0 ≤ ǫ < 1

wV (x) = L · w(x) for each x ∈ S, and

wV (y) = w
(

f−1(y)
)

for each y ∈ S′

(2)

where L > 0 is a sufficiently large positive integer, e.g.,

L = max

(⌊

2α

1 − 2α

⌋

,
1

2
w(S) + 1

)

.

Figure 1 illustrates the construction.
Assuming α ∈ RQ, the above weight is computable in polynomial time in |S|

due to Lemma 1 ii). Notice that it has been the convention to regard the weight
w to be bounded by 2p(|S|) for some rational polynomial p [6]. Otherwise, it
would take super-polynomial time to fetch it. We will also use the comparability
of rationals of α to show that the problems belong to NP for each α ∈ (0, 1/2]∩
RQ.

We will prove that the constructed graph G has an α-vertex separator of
weight at most 1

2w(S) if and only if S has an even partition. If we choose L
much larger than w(S), it “absorbs” the sum of w(y) = wV (y) for all y ∈ S′. To
see this more clearly, consider a vertex separator of G such that only elements
in S′ are removed. Let (P,Q) be the corresponding partition of S such that Q
and s belong to the same component of the separator.

If wV (Q) > wV (P ), it means wV (Q) ≥ wV (P )+L. Since L is large, it cannot
be an α-vertex separator, no matter how wV (y) for y ∈ S′ are distributed in
both components. If wV (P ) > wV (Q), the removed vertex set contains the
elements in S′ that correspond to all x ∈ P . The size of the vertex separator is
larger than 1

2w(S). As a result, if suffices to consider only when S is partitioned
into exact halves.

In the actual proof, we will find that the above value of L is large enough.
We are now ready to prove our main claim.

Theorem 2 Planar α−Vertex Separator is NP-complete for each fixed number
α ∈ (0, 1/2] ∩ RQ.

Proof: It is in NP. Suppose we are given a planar graph G with vertex weight
wV : V (G) → N, and its vertex separator (P,Q). Since α is in RQ, there exists
a DTM that decides whether qα ≤ p in poly-logarithmic time of max(|p|, q), for

every p ∈ Z and q ∈ Z
+
. Since log wV is bounded by a polynomial in |V (G)|,
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one can decide whether or not (1) holds in polynomial time. The problem
belongs to NP.

To prove its NP-hardness, we show a reduction from the Partition Problem
to this problem. Given a finite set S with weight w : S → N, construct a vertex
weighted planar graph G (defined in Figure 1) with wV : V (G) → N as follows:
Duplicate S into S′ (with the bijection f : S → S′). The vertex set of G is
S ∪S′ ∪{s}. Set wV by (2). The weighted planar graph is constructible in time
bounded by a polynomial in |S|.

It suffices to show the following lemma:

Lemma 3 This α-Vertex Separator instance has a solution if and only if the
weighted set S has an even partition.

Proof: Let S have an even partition (P,Q), i.e.,

∑

x∈P

w(x) =
∑

x∈Q

w(x).

Let P ′ = f(P ) and Q′ = f(Q). We will show that the set P ′ forms an α-vertex
separator. On one side, we have P with weight

wV (P ) = L · w(P ) =
L

2
· w(S),

on the other side, we have Q̃ = Q ∪ Q′ ∪ {s} with weight

wV (Q̃) = wV (Q) + wV (Q′) + wV (s)

= L · w(Q) + w(Q) + (L + 1)

(

1

2α
− 1

)

w(S) − ǫ

=
1

2
(L + 1)

(

1

α
− 1

)

w(S) − ǫ.

The total weight of G is

wV (V (G)) = wV (S) + wV (S′) + wV (s)

= (L + 1)
1

2α
w(S) − ǫ.

The weight of Q̃ does not exceed (1 − α)wV (V (G)), because

wV (Q̃) ≤
1

2
(L + 1)(

1

α
− 1)w(S) − (1 − α) ǫ

= (1 − α)wV (V (G)).

Trivially,

vV (P ) ≤
1

2
wV (V (G))

≤ (1 − α)wV (V (G)).
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Hence, P ′ is an α-vertex separator.

Now assume we have an α-vertex separator P ′ of weight at most B = 1
2w(S).

Then w(P ) = wV (P ′) ≤ 1
2w(S). We will show that w(P ) has an exact weight

of 1
2w(S). From the definition of L, we know that

L ≥
2α

1 − 2α
− 1

implying

(L + 1)

(

1

2α
− 1

)

≥ 1

and therefore

wV (s) =

⌊

(L + 1)

(

1

2α
− 1

)

w(S)

⌋

≥ w(S) >
1

2
w(S) = B.

Hence, s cannot be in an α-vertex separator of weight at most B. Furthermore,
no vertex x ∈ S can be in an α-Vertex Separator of weight B, because

wV (x) ≥ L >
1

2
w(S) = B.

Q

Q‘

PP‘

s
x  ∈ S

y ∈ S’

Figure 2: When |P ′| ≤ 1
2w(S).
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Thus our separator P ′ contains only vertices of S′. Let the separator P ′ produce
the partition (P,Q ∪ Q′ ∪ {s}) with P,Q ⊆ S, P ′ = f(P ) and Q′ = f(Q).

As the separator P ′ has a weight at most B, we obtain

w(P ) = wV (P ) ≤ B =
1

2
w(S),

implying

wV (P ) + wV (P ′) = L · w(P ) + w(P ) ≤
1

2
(L + 1)w(S).

P ′ being an α-vertex separator with P on one side implies

wV (P ) + wV (P ′) ≥ αwV (V (G))

=
L + 1

2
w(S) − αǫ.

Therefore, we obtain

w(P ) =
1

L + 1
(wV (P ) + wV (P ′))

≥
1

2
w(S) −

α

L + 1
ǫ

>
1

2
(w(S) − 1).

Hence, w(P ) = 1
2w(S) and (P,Q) is an even partition of S. 2

This completes the proof of Theorem 2. 2

Now, it is clearly true that

Corollary 1 Planar α−Edge Separator with Vertex and Edge Weights is NP-
complete for each α ∈ (0, 1/2] ∩ RQ.

Notice that the two problems remain NP-complete even if we restrict G to be
a weighted tree.

5 Conclusions

We have introduced the notion of a real number comparable with rationals in
polynomial time, and have shown that the Planar α-Vertex Separator Problem
for a vertex weighted planar graph G is NP-complete for every fixed real number
α ∈ (0, 1/2] that is comparable with rationals in polynomial time. The Planar
α-Edge Separator Problem for vertex and edge weighted G has also been proven
NP-complete.

Future research may ask whether the α-Separator Problems remain NP-
complete, when G is an unweighted planar graph. We do not believe that
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NP-completeness can be proven for a planar graph with no vertex weight. It
may be possible to show that the Edge Separator Problem is NP-complete when
G is only vertex weighted.

Moreover, it may be worthwhile to investigate whether some special number
such as π is comparable with rationals in polynomial time.
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