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Abstract

Aggregating the preferences of self-interested agents is a key
problem for multiagent systems, and one general method for
doing so is to vote over the alternatives (candidates). Unfor-
tunately, the Gibbard-Satterthwaite theorem shows that when
there are three or more candidates, all reasonable voting rules
are manipulable (in the sense that there exist situations in
which a voter would benefit from reporting its preferences in-
sincerely). To circumvent this impossibility result, recent re-
search has investigated whether it is possible to make finding a
beneficial manipulation computationally hard. This approach
has had some limited success, exhibiting rules under which
the problem of finding a beneficial manipulation isNP-hard,
#P-hard, or evenPSPACE-hard. Thus, under these rules, it
is unlikely that a computationally efficient algorithm can be
constructed thatalwaysfinds a beneficial manipulation (when
it exists). However, this still does not preclude the existence
of an efficient algorithm thatoftenfinds a successful manipu-
lation (when it exists). There have been attempts to design a
rule under which finding a beneficial manipulation isusually
hard, but they have failed. To explain this failure, in this pa-
per, we show that it is in fact impossible to design such a rule,
if the rule is also required to satisfy another property: a large
fraction of the manipulable instances are both weakly mono-
tone, and allow the manipulators to make either of exactly two
candidates win. We argue why one should expect voting rules
to have this property, and show experimentally that common
voting rules clearly satisfy it. We also discuss approaches for
potentially circumventing this impossibility result.

Introduction
In multiagent settings, it is of central importance to be able
to aggregate the preferences of multiple agents to arrive at
a joint decision. One general method for doing so is to let
the agentsvoteover the alternatives (candidates). Here, the
candidates can be potential political representatives (as in a
presidential election), but they can also be joint plans, alloca-
tions of tasks or resources,etc. One problem that can occur is
strategic voting (manipulation) where one or more voters do
not rank the candidates according to their true preferences,
but rather in such a way as to make the outcome more favor-
able to themselves. This may lead to the choice of an out-
come that is good with respect to the voters’ reported pref-
erences, but bad with respect to their true preferences. Un-
fortunately, a result known as the Gibbard-Satterthwaite the-
orem (Gibbard 1973; Satterthwaite 1975) shows that when
there are at least three candidates, every nondictatorial rule
for choosing the winning candidate is vulnerable to manip-
ulation, in the sense that there are some preferences of the
voters so that some voter is better off voting strategically.

In recent years, an approach that has been pursued to cir-
cumvent this impossibility result is to try to make manip-
ulation computationallyhard. The idea is that it does not
matter if a beneficial manipulation exists if the manipula-
tors do not have the computational power to find it. This
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idea was first investigated in the social choice literature,
where it was shown that two rules areNP-hard to manip-
ulate even by an individual manipulator, if the number of
candidates is unbounded (Bartholdi, Tovey, & Trick 1989a;
Bartholdi & Orlin 1991). In recent years, this idea has been
picked up in the AI literature. It has been shown that manipu-
lation by a coalition of weighted voters can beNP-hard even
when there are few candidates (Conitzer & Sandholm 2002;
Conitzer, Lang, & Sandholm 2003). It has also been shown
that adding a preround can make voting rules up toPSPACE-
hard to manipulate even by an individual, even when the orig-
inal rule is easy to manipulate (Conitzer & Sandholm 2003).
More generally, it has been shown thathybridizing voting
rules with each other can make manipulation harder (Elkind
& Lipmaa 2005a).

One weakness that all of these results have in common is
that they only showworst-casehardness. That is, the re-
sults show that it is unlikely that an efficient algorithm can
be designed that finds a beneficial manipulation inall in-
stances for which a beneficial manipulation exists. However,
this does not mean that there do not exist efficient manipu-
lation algorithms that find a beneficial manipulation inmany
instances. If such algorithms do in fact exist, then computa-
tional hardness constitutes a leaky barrier to manipulation at
best (though it is presumably still better than nothing).

A truly satisfactory solution to the problem would be
to have a rule that is hard to manipulate inall instances.
However, this is too much to ask for: for example, a ma-
nipulation algorithm could have a small database of in-
stances with precomputed solutions, and it would merely
need to check against this database to successfully manip-
ulate some instances. Still, we may ask whether it is possi-
ble to make (say) 99% of instances hard to manipulate. It
is generally agreed that this would have a much greater im-
pact on the design of voting rules in practice than merely
worst-case hardness (Conitzer, Lang, & Sandholm 2003;
Elkind & Lipmaa 2005b), but none of the multiple efforts
to achieve this objective have succeeded.

In this paper, we present an impossibility result that makes
it seem unlikely that such an objective can be achieved by any
reasonable voting rule. This is not the first such impossibil-
ity result: a previous result (Procaccia & Rosenschein 2006)
shows that a specific subclass of voting rules is usually easy
to manipulate when the number of candidates is constant and
a specific distribution over instances is used (where the distri-
bution is chosen to have certain properties that would appear
to make manipulation more difficult). By contrast, our result
does not require any restriction on the voting rule, number of
candidates, or distribution over instances. Our result states
that a voting rule/instance distribution pair cannot simultane-
ously be usually hard to manipulate, and have certain natural
properties (which depend on the rule and distribution).



Definitions
Voting rules
In a voting setting, we have a set ofm candidates,C. Every
voteri (1 ≤ i ≤ n) casts avote, which consists of a ranking
ri of all the candidates. We use the notationc1 Âri

c2 to
denote thatc1 is ranked ahead ofc2 in voteri. A voting rule
is a mapping that takes as input a vector of votes (one for
each voter), and produces as output a single candidate (the
winner). We will consider the following common rules:
• Scoring rules. Let ~α = 〈α1, . . . , αm〉 be a vector of

integers. For each vote, a candidate receivesα1 points if it
is ranked first in the vote,α2 if it is ranked second,etc. The
candidate with the most points wins. TheBorda rule is the
scoring rule with~α = 〈m − 1,m − 2, . . . , 0〉. Theplurality
rule is the scoring rule with~α = 〈1, 0, . . . , 0〉. Thevetorule
is the scoring rule with~α = 〈1, 1, . . . , 1, 0〉.
• Single transferable vote (STV). This rule proceeds

through a series ofm − 1 rounds. In each round, the candi-
date with the lowest plurality score (that is, the fewest votes
ranking it first among the remaining candidates) is eliminated
(and each of the votes for that candidate “transfers” to the
next remaining candidate in the order given in that vote). The
winner is the last remaining candidate.
• Plurality with run-off. In this rule, a first round elimi-

nates all candidates except the two with the highest plurality
scores. Votes are transferred to these as in the STV rule, and
a second round determines the winner from these two.
• Maximin (aka. Simpson). For any two candidatesi and

j, let N(i, j) be the number of votes that preferi to j. The
maximin scoreof i is s(i) = minj 6=i N(i, j)—that is, i’s
worst performance in apairwise election.
• Copeland. For any two candidatesi andj, let C(i, j) =

1 if N(i, j) > N(j, i), C(i, j) = 1/2 if N(i, j) = N(j, i),
andC(i, j) = 0 if N(i, j) < N(j, i). TheCopeland scoreof
candidatei is s(i) =

∑
j 6=i C(i, j).

• Bucklin. For any candidatei and integerl, let B(i, l) be
the number of votes that rank candidatei among the topl can-
didates. The winner isarg mini(min{l : B(i, l) > n/2}).
That is, if we say that a voter “approves” its topl candidates,
then we repeatedly increasel by 1 until some candidate is ap-
proved by more than half the voters, and this candidate wins.

Sometimes votes areweighted; a vote of weightK counts
as K votes of weight1. All of the rules above allow for
ties between candidates, so it is necessary to specify some
tiebreaking rule. In this paper, we will simply assume that
ties are always broken in favor of the lower-indexed candi-
date (although our results do not depend on this).

We will also consider theCondorcetcriterion, which states
that if there is a candidatei that is preferred to any other can-
didate by a majority of the voters (that is,N(i, j) > N(j, i)
for all j 6= i), then candidatei wins. Note that this is a cri-
terion, not a rule: in many instances, there is no such candi-
datei, in which case the Condorcet criterion does not specify
which candidate should win. The Condorcet criterion is per-
haps the best-known criterion that voting rules are sometimes
expected to satisfy; nevertheless, only a few of the above
rules satisfy it (maximin and Copeland).

Manipulation
The computational problem of manipulation has been defined
in various ways, but typical definitions are special cases of

the following general problem: given the nonmanipulators’
votes, can the manipulator(s) cast their votes in such a way
that one candidate from a given set of preferred candidates
wins? In this paper, we study a more difficult manipulation
problem: we require that the manipulator(s) find the set of
all the candidates that they can make win (as well as votes
that will bring this about). This stronger requirement makes
our impossibility result stronger: we will show that even this
more powerful type of manipulation cannot be prevented.

Definition 1 A manipulation instance is given
by a voting rule R, a vector of nonmanipulator
votes v = (rNM

1 , . . . , rNM
n ), a vector of weights

vs = (dNM
1 , . . . , dNM

n ) for the nonmanipulators, and
a vector of weightsws = (dM

1 , . . . , dM
k ) for the manipula-

tors. A manipulation algorithmsucceedson this instance if
it produces a set of pairs{(wi1 , ci1), . . . , (wiq

, ciq
)} such

that 1) if the manipulators cast the vector of voteswij
, then

cij
wins, and 2) if a candidatec does not occur in this set as

one of thecij
, then there is no vector of manipulator votesw

that makesc win.

An instance ismanipulableif the manipulators can make
more than one candidate win. Nonmanipulable instances are
easy to solve: any algorithm that is sound (in that it does not
produce incorrect(wij

, cij
) pairs) and that returns at least

one(wij
, cij

) pair (which is easy to do, by simply checking
what the rule will produce for a given vector of votes) will
succeed. Hence, we focus on manipulable instances only.

To investigate whether voting rules areusuallyeasy to ma-
nipulate, we also need a probability distribution over (manip-
ulable) instances. Our impossibility result does not require
a specific distribution, but in the experimental section of the
paper, we study a specific family of distributions.

Weak monotonicity

Informally, a rule ismonotoneif ranking a candidate higher
never hurts that candidate. All the rules mentioned before,
with the exceptions of STV and plurality with runoff, are
monotone. We now formally define a weak notion of mono-
tonicity that is implied by (but does not imply) standard no-
tions of monotonicity. (We omit the details of the implica-
tions due to space constraint.) We note that we want our def-
inition of monotonicity to be as weak as possible so that our
impossibility result will be as strong as possible. We define
when aninstanceis weakly monotone, so that even rules that
are not (everywhere) weakly monotone can be (and typically
are) weakly monotone on most instances.

Definition 2 We say that a voting ruleR is weakly monotone
for manipulators with weightsws and nonmanipulator votes
v with weightsvs if for every pair of candidatesc1, c2, one
of the following conditions holds: 1)c2 does not win for any
manipulator votes; or 2) if all the manipulators rankc2 first
andc1 last, thenc1 does not win.

Impossibility result

We now present an algorithm that seeks to identify two can-
didates that can be made to win. The algorithm is universal in
that it does not depend on the voting rule used, except for the
places in which it calls the rule as a (black-box) subroutine.



Find-Two-Winners(R,C, v, vs, ws)
choosean arbitrary manipulator vote vectorw1

c1 ← R(C, v, vs, w1, w
s)

for every c2 ∈ C, c2 6= c1 {
choosew2 in which every vote ranksc2 first andc1 last
c ← R(C, v, vs, w2, w

s)
if c1 6= c return {(w1, c1), (w2, c)} }

return {(w1, c1)}
If voting ruleR can be executed in polynomial time, then so
canFind-Two-Winners.

Theorem 1 Find-Two-Winners will succeed on every in-
stance that both a) is weakly monotone and b) allows the
manipulators to make either of exactly two candidates win.

Proof: Find-Two-Winners is sound in the sense that it
will never output a manipulation that is incorrect. It will
certainly find one candidate that the manipulators can make
win (c1). Thus, we merely need to show that it will find the
second candidate that can be made to win; let us refer to this
candidate asc′. If the algorithm reaches the iteration of the
for loop in whichc2 = c′, then in this round, eitherc 6= c1,
in which case we must havec = c′ because there are no
other candidates that can be made to win, orc = c1. But
in the latter case, we must conclude thatc2 = c′ cannot be
made to win, due to weak monotonicity—which is contrary
to assumption. Hence it must be thatc = c′. If the algorithm
does not reach the iteration of thefor loop in whichc2 = c′,
it must have found a manipulation that produced a winner
other thanc1 in an earlier iteration, and (by assumption) this
other winner can only bec′.

It is not possible to extend the algorithm so that it also
succeeds on all weakly monotone instances in whichthree
candidates can be made to win. When three candidates can
be made to win, even under monotone rules, it is possible
that one of these candidates can only win if some manipu-
lators vote differently from the other manipulators. In fact,
the problem of deciding whether multiple weighted manipu-
lators can make a given candidate win isNP-complete, even
when there are only three candidates and the Borda or veto
rule is used (both of which are monotone rules) (Conitzer &
Sandholm 2002; Conitzer, Lang, & Sandholm 2003). Any al-
gorithm that does succeed on all weakly monotone instances
in which at most three candidates can be made to win would
be able to solve thisNP-complete problem, and thus cannot
run in polynomial time (or it would show thatP = NP).

The impossibility result now follows as a corollary.

Corollary 1 For anyp ∈ [0, 1], there does not exist any com-
bination of an efficiently executable voting ruleR and a dis-
tribution d over instances such that

1. the probability of drawing an instance that is both a)
weakly monotone, and b) such that either of exactly two
candidates can be made to win, is at leastp; and

2. for any computationally efficient manipulation algorithm,
the probability that an instance is drawn on which the al-
gorithm succeeds is smaller thanp.

This impossibility result is relevant only insofar as one ex-
pects a voting rule to satisfy Property 1 in the corollary (high
probability of drawing a weakly monotone instance in which
either of exactly two candidates can be made to win). Before
we argue why one should in fact expect this, it is helpful to

consider how a skeptic might argue that an impossibility re-
sult such as this one is irrelevant. At a minimum, the skeptic
should argue that one of the properties required by the result
is not sufficiently desirable or necessary to insist on it. The
skeptic could make her case much stronger by actually ex-
hibiting a voting rule that satisfies all properties except for
the disputed one, and that still seems intuitively desirable.
(For example, Arrow’s impossibility result (Arrow 1963) is
often criticized on the basis that theindependence of irrele-
vant alternativesproperty is unnecessarily strong, and this is
the only property that common voting rules fail to satisfy.)

Conversely, we will first argue directly for the desirability
of Property 1 in Corollary 1. We will then provide indirect
evidence that it will be difficult to construct a sensible rule
that does not satisfy this property, by showing experimentally
that all common rules satisfy it very strongly (that is, a large
fraction of manipulable instances are weakly monotone and
such that only two candidates can be made to win).

Arguing directly for Property 1
In this section, we argue why one should expect many manip-
ulable instances to be both a) weakly monotone and b) such
that the manipulator(s) can make either of exactly two candi-
dates win. We first make a simple observation: if manipula-
ble instances are usually weakly monotone, and they usually
allow the manipulator(s) to make either of exactly two candi-
dates win, then a significant fraction of manipulable instances
have both of properties a) and b). More precisely:

Proposition 1 If the probability of drawing a weakly mono-
tone instance isp, and the probability of drawing an instance
in which either of exactly two candidates can be made to win
is q, then the probability of drawing an instance with both
properties is at leastp + q − 1.

Proof: The remaining proofs are omitted to save space.

With this in mind, we will now argue separately for each
of the two properties a) and b).

The argument for Property a)—most manipulable in-
stances should be weakly monotone—is easy to make. The
reason is that if the manipulators rank certain candidates
higher, this should, in general, benefit those candidates. If
this were not the case, then the manipulators’ votes would
lose their natural interpretation that they support certain can-
didates over others, and we are effectively asking the manipu-
lators to submit a string of bits without any inherent meaning.
(Incidentally, if this does not bother us, it is easy to design
rules that are always hard to manipulate: for example, we
can count an agent’s vote only if part of its vote (represented
as a string of bits) encodes the solution to (say) a hard factor-
ing problem. Of course, this is not a very satisfactory voting
rule.) It should also be noted that most common voting rules
are in fact monotone (on all instances), and the few rules for
which nonmonotone instances can be constructed are often
severely criticized because of this (even if the rule is in fact
monotone on most instances).

Arguing for Property b)—most manipulable instances
should be such that the manipulators can make either of ex-
actly two candidates win—is somewhat more difficult. For
simplicity, consider rules that produce a score for every can-
didate. As the number of voters grows, typically, candidates’
scores tend to separate. This is especially the case if some



candidates systematically tend to be ranked higher than oth-
ers by voters,e.g.because these candidates are intrinsically
better. (One interpretation of voting that dates back at least
to Marquis de Condorcet (Condorcet 1785) is the following:
everyone has a noisy signal about the relative intrinsic quality
of the candidates, and the purpose of an election is to maxi-
mize the probability of choosing the intrinsically best candi-
date.) Thus, given a large number of nonmanipulators, it is
unlikely that the scores of the two leading candidates will be
close enough to each other that a few manipulators can make
either one of them win; but it is significantly more unlikely
that the scores of thethree leading candidates will be close
enough that the manipulators can make any one of them win.
So, even given that some manipulation is possible, it is un-
likely that more than two candidates can be made to win. This
argument suggests that it is likely that most common voting
rules in fact satisfy Property b). But it is also an argument for
why we shouldrequirea voting rule to have this property, be-
cause, especially when we think of voting as being a process
for filtering out the noise in voters’ individual preferences to
find the intrinsically best candidate, wewant the candidates’
scores to separate.

In the next section, we show experimentally that common
voting rules in fact strongly satisfy properties a) and b).

Arguing experimentally for Property 1
In this section, we show experimentally that for all the com-
mon voting rules, most manipulable instances are in fact
weakly monotone and such that either of exactly two candi-
dates can be made to win. Because most of the rules that we
study are in fact monotone on all instances, this mostly comes
down to showing that at most two candidates can be made to
win in most manipulable instances. Unfortunately, for quite
a few of these rules, it isNP-hard to determine whether more
than two candidates can win (Conitzer & Sandholm 2002;
Conitzer, Lang, & Sandholm 2003). Rather than trying to
solve theseNP-hard problems, we will be content to provide
a lower boundon the fraction of manipulable instances in
which either of exactly two candidates can be made to win.
We obtain these lower bounds by characterizing, for each rule
that we study, an easily computable sufficient (but not neces-
sary) condition for an instance to be such that either of ex-
actly two candidates can be made to win. (We omit the defi-
nitions of the conditions due to space constraint.) For at least
some rules, the lower bound is probably significantly below
the actual fraction (which only strengthens the relevance of
the impossibility result).

One useful property of these lower bounds is that they are
independent of how the manipulators’ total weight is dis-
tributed. Because of this, only the manipulators’ total weight
matters for the purpose of our experiments, and we can as-
sume, without loss of generality, that each manipulator has
weight 1.

For a given number of candidates, number of nonmanip-
ulators, and number of manipulators, we generate instances
as follows. We assume that there is a “correct” rankingt of
the candidates (reflecting the candidates’ unknown intrinsic
quality), and the probability of drawing a given voter is pro-
portional topa(r,t)(1 − p)m(m−1)/2−a(r,t), wherea(r, t) is
the number of pairs of candidates on whose relative ranking
r and t agree (they agree if eitherc1 Âr c2 andc1 Ât c2,
or c2 Âr c1 andc2 Ât c1). p is a given noise parameter; if

p = 1 then all voters will produce the correct ranking, and
if p = 0.5 then we are drawing every vote (independently
and uniformly) completely at random. This distribution is
due to Condorcet (Condorcet 1785), and one way to interpret
it is as follows. To draw a vote, for each pair of candidates
c1, c2, randomly decide whether the vote is going to agree
with the correct ranking on the relative ranking ofc1 andc2

(with probabilityp), or disagee (with probability1−p). This
may lead to cycles (such asc1 Â c2 Â c3 Â c1); if so,
restart. Interestingly, Young (Young 1995) observed that a
voting rule proposed by Kemeny (Kemeny 1959) produces
the maximum likelihood estimate of the “correct” ranking
under this distribution.

These distributions often produce nonmanipulable in-
stances. Ideally, we would discard all nonmanipulable in-
stances, but this requires us to have an algorithm for detect-
ing whether an instance is manipulable. If we know that the
instance is weakly monotone, we can simply use algorithm
Find-Two-Winners for this purpose. However, a few of the
rules that we study (STV and plurality with runoff) are not
monotone on all instances. In fact, for these rules, it isNP-
hard to tell whether the instance is manipulable (Conitzer &
Sandholm 2002; Conitzer, Lang, & Sandholm 2003). For
these rules, we use simple sufficient (but not necessary) con-
ditions to classify an instance as nonmanipulable. We will
classify each nonmanipulable instance that does not satisfy
this condition as having more than two potential winners, so
that our results are still lower bounds on the actual ratio.

In the experiments below, we draw 1000 manipulable in-
stances at random (by drawing and discarding instances as
described above), and for each voting rule, we show our
lower bound on the number of instances in which the ma-
nipulators can make either of exactly two candidates win.
For rules that are not monotone everywhere, we also show
a lower bound on the number of such instances that are
alsoweakly monotone (indicated by “<rule> - monotone”).
We also consider the Condorcet criterion, and show a lower
bound on the number of instances for which these properties
are satisfied foranyrule satisfying the Condorcet criterion.

In our first experiment (Figure 1), we have three candi-
dates, one manipulator, and significant noise in the votes
(p = 0.6). For all the rules under study, the fraction of
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Figure 1: p = 0.6, one manipulator, three candidates.

instances satisfying the property approaches 1 as the number
of nonmanipulator votes grows.

Next, we show what happens when we maximize noise
(p = 0.5), so that votes are drawn completely at random
(Figure 2). Even under such extreme noise, the fraction of
instances satisfying the property approaches 1 or at least be-
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Figure 2: p = 0.5, one manipulator, three candidates.

comes very large (> 0.7) for every one of the rules. However,
it is no longer possible to say this forany rule satisfying the
Condorcet criterion (although the specific common rules that
do satisfy this criterion satisfy the property for a very large
fraction of instances).

Next, we show results when there are multiple (specifi-
cally, 5) manipulators (Figure 3). The results are qualitatively
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Figure 3: p = 0.6, five manipulators, three candidates.

similar to those in Figure 1, although for smaller numbers of
nonmanipulators the fractions are lower. This makes sense:
when the number of nonmanipulators is relatively small, a
large coalition is likely to be able to make any candidate win.

Finally, we experiment with an increased number of can-
didates (Figure 4). Now, the lower bound on the fraction
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Figure 4: p = 0.6, one manipulator, five candidates.

of instances satisfying the property approaches1 for all rules
but STV. The lower fraction for STV is probably at least in
part due to the fact that the lower bound that we use for STV
is relatively weak. For example, any instance in which the

manipulators can change the eliminated candidate in at least
two rounds is counted as having more than two candidates
that the manipulators can make win. This is extremely con-
servative because changes in which candidate is eliminated
in a given round often do not change the winner.

Can the impossibility be circumvented?
One may wonder whether there are ways to circumvent the
impossibility result presented in this paper. Specifically, one
may still be able to construct voting rules that are usually hard
to manipulate by considering a larger class of voting rules, a
class that contains rules that do not satisfy the preconditions
of the impossibility result. In this section, we discuss var-
ious approaches for circumventing the impossibility result,
and their prospects.

Allowing low-ranked candidates to sometimes win
The impossibility result is only significant if in a sizable frac-
tion of manipulable instances, only two candidates can be
made to win. One may try to prevent this by using a voting
rule that sometimes chooses as the winner a candidate that in
fact did not do well in the votes (according to whatever cri-
terion), thereby increasing the number of candidates that can
be made to win in manipulable instances. Of course, having
such a candidate win is inherently undesirable, but if it oc-
curs rarely, it may be a price worth paying in order to achieve
hardness of manipulation.

If we take this approach, and in addition allow for the rule
to be randomized, then we can construct reasonable voting
rules that are in fact strategy-proof (that is, no beneficial ma-
nipulation is ever possible). Consider, for example, the fol-
lowing voting rule:

Definition 3 The Copeland-proportionalrule chooses can-
didate c as the winner with probability proportional toc’s
Copeland score.

An alternative interpretation of this rule is the following:
choose a pair of candidates at random; the winner of their
pairwise election wins the entire election. (If the pairwise
election is tied, choose one of the two candidates at random.)

Theorem 2 Copeland-proportional is strategy-proof.

Gibbard has shown that a randomized voting rule is
strategy-proof only if it is a probability mixture of unilat-
eral and duple rules (Gibbard 1977). (A rule isunilateral
if only one voter affects the outcome, andduple if only two
candidates can win.) The Copeland-proportional rule only
randomizes over duple rules (namely, pairwise elections).

Of course, the Copeland-proportional rule is still not ideal.
For instance, even a Condorcet winner has a probability of
only (m − 1)/(m(m − 1)/2) = 2/m of winning under
this rule. (However, this rule will at least never choose a
candidate that loses every pairwise election.) Thus, it may
be worthwhile to try to construct voting rules that are usu-
ally hard to manipulate, and that are more likely to choose a
“good” winner than Copeland-proportional.

Expanding the definition of a voting rule
The impossibility result may cease to hold when the rule can
choose from a richer outcome space. As in the previous sub-
section, this may prevent problems of manipulability com-
pletely, by allowing the construction of strategy-proof rules.



For example,if payments are possible and the agents have
quasilinear utility functions, then a payment scheme such as
the VCG mechanism can induce strategy-proofness. As an-
other example that does not require these assumptions, sup-
pose that it is possible to exclude certain voters from the ef-
fects of the election—as an illustrative example, in an elec-
tion for a country’s president, suppose that it is possible to
banishcertain voters to another country, in which it will no
longer matter to those voters who won the election. (It does
not matter whether living in the other country is otherwise
more or less desirable than in the original country.) Then, we
can augment any voting rule as follows:

Definition 4 For any voting rule (in the standard sense)R,
thebanishingrule B(R) always chooses the same winner as
R, and banishes every pivotal voter. (A voter ispivotal if,
given the other votes, it can make multiple candidates win.)

Theorem 3 For any rule R, the banishing ruleB(R) is
strategy-proof.

However, this scheme also has a few drawbacks. For one,
it may not always be possible to completely exclude a voter
from the effects of the election. Another strange property of
this scheme is that no voter is ever capable of affecting its
own utility, so thatanyvote is strategically optimal. Finally,
it may be necessary to banish large numbers of voters. In
fact, the following lemma shows that for any rule, the votes
may turn out to be such that more than half of the voters must
be banished.

Theorem 4 For any responsive voting ruleR, it is possible
that more than half the voters are simultaneously pivotal. (We
say that a voting rule isresponsiveif there are two votes
r1, r2 such that everyone votingr1 will produce a different
winner than everyone votingr2.)

Rules that are hard to execute
The impossibility result only applies when an efficient al-
gorithm is available for executing the rule, because algo-
rithm Find-Two-Winners makes calls to such an algorithm
as a subroutine. Thus, one possible way around the impos-
sibility is to use a rule that is hard to execute. Indeed, a
number of voting rules have been shown to beNP-hard to
execute (Bartholdi, Tovey, & Trick 1989b; Hemaspaandra,
Hemaspaandra, & Rothe 1997; Cohen, Schapire, & Singer
1999; Dworket al. 2001; Ailon, Charikar, & Newman 2005).
Of course, we do actually need an algorithm for executing the
rule to determine the winner of the election; and, although we
cannot expect this to be a worst-case polynomial-time algo-
rithm, it should at least run reasonably fast in practice for
the rule to be practical. But if the algorithm does run fast in
practice, then it can also be used by the manipulators as the
subroutine inFind-Two-Winners. Therefore, this approach
does not look very promising.

Conclusions
Aggregating the preferences of self-interested agents is a key
problem for multiagent systems, and one general method for
doing so is to vote over the alternatives (candidates). Unfor-
tunately, the Gibbard-Satterthwaite theorem shows that when
there are three or more candidates, all reasonable voting rules
are manipulable (in the sense that there exist situations in
which a voter would benefit from reporting its preferences

insincerely). To circumvent this impossibility result, recent
research has investigated whether it is possible to make find-
ing a beneficial manipulation computationally hard. This ap-
proach has had some limited success, exhibiting rules under
which the problem of finding a beneficial manipulation is
hard in the worst-case sense. However, this still does not pre-
clude the existence of an efficient algorithm thatoftenfinds
a successful manipulation (when it exists). There have been
attempts to design a rule under which finding a beneficial
manipulation isusually hard, but they have failed. To ex-
plain this failure, in this paper, we showed that it is in fact
impossible to design such a rule, if the rule is also required to
satisfy another property: a large fraction of the manipulable
instances are both weakly monotone, and allow the manip-
ulators to make either of exactly two candidates win. We
argued why one should expect voting rules to have this prop-
erty, and showed experimentally that common voting rules
satisfy it. We also discussed approaches for potentially cir-
cumventing this impossibility result, some of which appear
worthwhile to investigate in future research.
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