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Abstract — We bound the tail probability for a sum X1 +X2 + · · ·+XN of N bounded random variables. The variables

are not assumed to be independent, but the mean and upper and lower bounds on each Xn are assumed independent

of all the other Xm.

Keywords —

In 1963 Hoeffding [1] (as his “theorem 2” on page 16) gave an excellent bound on the tail probability of a sum of independent
bounded random variables.

We now improve this situation by showing that the same bound still holds under a much weaker independence assumption.

Let S = X1 + X2 + · · · + XN be the sum of N random variables.

We assume each random variable Xi is has a mean µi = E(Xi) and is bounded: Ai ≤ Xi − E(Xi) ≤ Bi. We shall not

assume that the xn are independent, but we do assume this amount of “independence”: the mean µn of each Xn, and the
lower and upper bounds An and Bn on it, are unaffected by (i.e. valid regardless of) what the other Xm do.

One way this scenario often arises is this. The Xn each are bounded by |Xn| < Bn and have mean µn = 0; and although the
Xn are quite interdependent, the sign of Xn is gotten by a coin toss independent of all the other Xm.

Theorem 1 (Main result). Let E denote expectation. For t ≥ 0

Prob (S − E(S) ≥ t) ≤ exp

(

−2t2
∑N

i=1(Bi − Ai)2

)

. (1)

Proof: We first prove the theorem under the assumption that the Xn are independent; our proof follows Hoeffding [1] page
22.

Consider the indicator variable 1S−E(S)≥t. This indicator variable is dominated by exp ((S − E(S) − t)h) for any constant
h > 0. So

Prob (S − E(S) ≥ t) = E(1S−E(S)≥t) ≤ E exp ((S − E(S) − t)h) = exp(−ht)E exp (S − E(S)) (2)

= exp(−ht)

N
∏

n=1

E exp (hXn − hE(Xn)) (due to independence) (3)

We now upper-bound E exp (hXn − hE(Xn)) by using the inequality (a special case of Jensen’s inequality for convex-∪
functions arising when the function is ex)

EehX ≤
B − EX

B − A
ehA +

EX − A

B − A
ehB. (4)

Let µn = EXn. Then the proof continues

. . . ≤ exp(−ht)
N
∏

n=1

E

(

Bn − µn

Bn − An

ehAn +
µn − An

Bn − An

ehBn

)

≤ exp(−ht) exp
N
∑

n=1

Ln(hn) (5)

where

hn = (Bn − An)h and Ln(hn) = ln (1 − pn + pn exp(hn)) − pnhn where pn =
µn − An

Bn − An

. (6)

Now

L′(u) = −p +
peu

1 − p + peu
, L′′(u) =

(1 − p)peu

(1 − p + peu)2
. (7)
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By considering maximizing L′′(u) with respect to p (which uniquely happens when p = 1/(1+ eu)) we find that L′′(u) ≤ 1/4.
Therefore by Taylor’s formula L(hn) ≤ L(0) + L′(0)hn + (1/8)h2

n. And evidently L(0) = L′(0) = 0. So the proof continues

. . . ≤ exp(−ht) exp

N
∑

n=1

(Bn − An)2h2/8. (8)

We now choose h = 4t/
∑N

n=1(Bn − An)2 to minimize this, yielding the theorem.

In the case of independent Xn this result is called “Hoeffding’s inequality” and we have just re-proved it.

Now let us consider what happens if we allow dependence among the Xn. There was only one step in the above proof where
independence was used: EQ 3.

We can justify that step (as a ≤ ratehr than an =) without independence by instead relying on the following

Lemma 2 (Expectation of product). Let X and Y be random variables and let X be a non-negative random variable.

Then

E(XY ) ≤ E(X) max
k

E(Y |X = k) (9)

where E(Y |X = k) means the conditionally expected value of Y given that X = k.

Proof:

E(XY ) =

∫

x≥0

xE(Y |X = x) prob(x) dx ≤

∫

x≥0

x

(

max
k

E(Y |X = k)

)

prob(x)dx = E(X) max
k

E(Y |X = k). (10)

Q.E.D.

Because exp(x) > 0 for all x and because EQ 3 concerned the expectation of a product of exponentials, we now have a product
of non-negative random variables and the lemma is applicable. Because our EQ 4 gives an upper bound on the expectation of
any such exponential Y valid regardless of what the other Xm do, it is at least as large as maxk E(Y |other Xm) and therefore
it is valid to use it in the lemma.

The theorem follows. Q.E.D.
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