Tail bound for sums of bounded random variables

Warren D. Smith*
wds@math.temple.edu

April 1, 2005

Abstract

We bound the tail probability for a sum $X_{1}+X_{2}+\cdots+X_{N}$ of N bounded random variables. The variables are not assumed to be independent, but the mean and upper and lower bounds on each X_{n} are assumed independent of all the other X_{m}.

Keywords -

In 1963 Hoeffding [1] (as his "theorem 2" on page 16) gave an excellent bound on the tail probability of a sum of independent bounded random variables.
We now improve this situation by showing that the same bound still holds under a much weaker independence assumption. Let $S=X_{1}+X_{2}+\cdots+X_{N}$ be the sum of N random variables.
We assume each random variable X_{i} is has a mean $\mu_{i}=E\left(X_{i}\right)$ and is bounded: $A_{i} \leq X_{i}-E\left(X_{i}\right) \leq B_{i}$. We shall not assume that the x_{n} are independent, but we do assume this amount of "independence": the mean μ_{n} of each X_{n}, and the lower and upper bounds A_{n} and B_{n} on it, are unaffected by (i.e. valid regardless of) what the other X_{m} do.
One way this scenario often arises is this. The X_{n} each are bounded by $\left|X_{n}\right|<B_{n}$ and have mean $\mu_{n}=0$; and although the X_{n} are quite interdependent, the sign of X_{n} is gotten by a coin toss independent of all the other X_{m}.

Theorem 1 (Main result). Let E denote expectation. For $t \geq 0$

$$
\begin{equation*}
\operatorname{Prob}(S-E(S) \geq t) \leq \exp \left(\frac{-2 t^{2}}{\sum_{i=1}^{N}\left(B_{i}-A_{i}\right)^{2}}\right) \tag{1}
\end{equation*}
$$

Proof: We first prove the theorem under the assumption that the X_{n} are independent; our proof follows Hoeffding [1] page 22.

Consider the indicator variable $1_{S-E(S) \geq t}$. This indicator variable is dominated by $\exp ((S-E(S)-t) h)$ for any constant $h>0$. So

$$
\begin{align*}
\operatorname{Prob}(S-E(S) \geq t) & =E\left(1_{S-E(S) \geq t}\right) \leq E \exp ((S-E(S)-t) h)=\exp (-h t) E \exp (S-E(S)) \tag{2}\\
& =\exp (-h t) \prod_{n=1}^{N} E \exp \left(h X_{n}-h E\left(X_{n}\right)\right) \quad \text { (due to independence) } \tag{3}
\end{align*}
$$

We now upper-bound $E \exp \left(h X_{n}-h E\left(X_{n}\right)\right)$ by using the inequality (a special case of Jensen's inequality for convex- \cup functions arising when the function is e^{x})

$$
\begin{equation*}
E e^{h X} \leq \frac{B-E X}{B-A} e^{h A}+\frac{E X-A}{B-A} e^{h B} \tag{4}
\end{equation*}
$$

Let $\mu_{n}=E X_{n}$. Then the proof continues

$$
\begin{equation*}
\ldots \leq \exp (-h t) \prod_{n=1}^{N} E\left(\frac{B_{n}-\mu_{n}}{B_{n}-A_{n}} e^{h A_{n}}+\frac{\mu_{n}-A_{n}}{B_{n}-A_{n}} e^{h B_{n}}\right) \leq \exp (-h t) \exp \sum_{n=1}^{N} L_{n}\left(h_{n}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{n}=\left(B_{n}-A_{n}\right) h \text { and } L_{n}\left(h_{n}\right)=\ln \left(1-p_{n}+p_{n} \exp \left(h_{n}\right)\right)-p_{n} h_{n} \quad \text { where } p_{n}=\frac{\mu_{n}-A_{n}}{B_{n}-A_{n}} \tag{6}
\end{equation*}
$$

Now

$$
\begin{equation*}
L^{\prime}(u)=-p+\frac{p e^{u}}{1-p+p e^{u}}, \quad L^{\prime \prime}(u)=\frac{(1-p) p e^{u}}{\left(1-p+p e^{u}\right)^{2}} \tag{7}
\end{equation*}
$$

*21 Shore Oaks Drive, Stony Brook NY 11790.

By considering maximizing $L^{\prime \prime}(u)$ with respect to p (which uniquely happens when $p=1 /\left(1+e^{u}\right)$) we find that $L^{\prime \prime}(u) \leq 1 / 4$. Therefore by Taylor's formula $L\left(h_{n}\right) \leq L(0)+L^{\prime}(0) h_{n}+(1 / 8) h_{n}^{2}$. And evidently $L(0)=L^{\prime}(0)=0$. So the proof continues

$$
\begin{equation*}
\ldots \leq \exp (-h t) \exp \sum_{n=1}^{N}\left(B_{n}-A_{n}\right)^{2} h^{2} / 8 \tag{8}
\end{equation*}
$$

We now choose $h=4 t / \sum_{n=1}^{N}\left(B_{n}-A_{n}\right)^{2}$ to minimize this, yielding the theorem.
In the case of independent X_{n} this result is called "Hoeffding's inequality" and we have just re-proved it.
Now let us consider what happens if we allow dependence among the X_{n}. There was only one step in the above proof where independence was used: EQ 3.
We can justify that step (as a \leq ratehr than an $=$) without independence by instead relying on the following
Lemma 2 (Expectation of product). Let X and Y be random variables and let X be a non-negative random variable. Then

$$
\begin{equation*}
E(X Y) \leq E(X) \max _{k} E(Y \mid X=k) \tag{9}
\end{equation*}
$$

where $E(Y \mid X=k)$ means the conditionally expected value of Y given that $X=k$.
Proof:

$$
\begin{equation*}
E(X Y)=\int_{x \geq 0} x E(Y \mid X=x) \operatorname{prob}(x) \mathrm{d} x \leq \int_{x \geq 0} x\left(\max _{k} E(Y \mid X=k)\right) \operatorname{prob}(x) \mathrm{d} x=E(X) \max _{k} E(Y \mid X=k) \tag{10}
\end{equation*}
$$

Q.E.D.

Because $\exp (x)>0$ for all x and because EQ 3 concerned the expectation of a product of exponentials, we now have a product of non-negative random variables and the lemma is applicable. Because our EQ 4 gives an upper bound on the expectation of any such exponential Y valid regardless of what the other X_{m} do, it is at least as large as $\max _{k} E\left(Y \mid\right.$ other $\left.X_{m}\right)$ and therefore it is valid to use it in the lemma.
The theorem follows. Q.E.D.

References

[1] Wassily Hoeffding: Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58,301 (March 1963) 13-30.

