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Loop diassociativity has no finite basis
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Abstract — We prove that no finite set of equations char-

acterizes diassociativity in either finite or infinite loops,

settling a 52-year-open problem.
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1 Introduction

1.1 History
Power-associativity has no finite equational basis in finite or
infinite loops. Trevor Evans and B.H. Neumann [15] in 1953
gave a beautifully simple argument for that on their page 349,
but it actually merely shows a lesser claim. §2 will provide
the additional argumentation required to fill their gap.

On the other hand, in (not necessarily associative) rings with
characteristic prime to 30, there is a finite equational ba-
sis for power-associativity [1], namely x · xx = xx · x and
xx · xx = x(x · xx).

Evans and Neumann then asked whether diassociativity has
a finite equational basis in loops. (Again, it does in rings:
alternative, Moufang, and diassociative rings all are the same

thing, according to pages 35-37 and 342-345 of [49].) The
same problem was re-posed by M.Kinyon, K.Kunen, and
J.D.Phillips [22] in 2001, and has been billed as among the
top 5 unsolved problems in loop theory.1

We shall solve it here. There is no finite equational basis for
loop-diassociativity, whether the loops are finite or infinite, or
commutative or not.

1.2 Background on Loops

A loop is a set L equipped with a binary operation ab such
that

1. There exists an identity element e so ex = xe = x for
all x ∈ L and

2. There exists a unique solution x to yx = z (usually
denoted x = y\z) and to xy = z (usually denoted
x = z/y).

(Colloquially: “a loop is a non-associative group.”) Sometimes
the loop operation is regarded as multiplication (in which case
we usually call the identity 1), other times it is regarded as
addition (in which case we usually call the identity 0). We
shall use both notations in this paper.

We shall call a loop L power-associative if xn is unambiguous
for all integer n and2 all x ∈ L. It is diassociative if any two
elements of L generate a subgroup.

An equational basis for a property P is a set of equations
which are both implied by, and imply, property P . Some
other important properties P that a loop could obey include:

Moufang The Moufang property3 (x ·yz)x = xy ·zx. Equiv-
alent to obeying both the left-Bol x(y · xz) = (x · yx)z
and right-Bol x(yz · y) = (xy · z)y properties.

Lalt the left-alternative law x · xy = xx · y;
Ralt the right-alternative law yx · x = y · xx;
Flex the flexible law xy · x = x · yx;
LIP the left-inverse-property (1/x) · xy = y;
RIP the right-inverse-property yx · (x\1) = y;
Antiaut the law 1/(xy) = (1/y)(1/x) of antiautomorphic in-

verses.

1Charles University in Prague, Czechoslovakia maintains an online list of the big ones.
2Warning: This power-associativity definition differs slightly from the one in the companion paper [44].
3 There are 4 Moufang identities, all equivalent by lemma 3.1 p.115 of [6]. The other three are x(yz · x)x = xy · zx, (xy · z)y = x(y · zy), and

y(z · yx) = (yz · y)x.
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We shall say that a loop obeying the Lalt, Ralt, and flexible
laws is alternative4. A loop obeying the LIP, RIP, and Anti-
aut laws (any two imply the third, in loops) has the inverse
property. Finally, a loop which is both alternative and inverse
property is IP-alternative. Note that each of these properties
has a finite equational basis.

Much of the research in loop theory has taken the view that
since loops are very much like groups, except for not being
associative, the important question is just what weakened-
associativity properties suffice to force loops to obey your
favorite group-theorem (or perhaps some weakened version
of it). Hence the presumed importance of investigating
loop diassociativity (this paper) as well as other associative-
resembling loop laws such as the Moufang, Bol, and alterna-
tive laws (famous older papers).

“Moufang’s theorem” of 1933 states that Moufang loops are
diassociative. (Indeed section VII.4 page 117 of [6] proves the
stronger statement that in a Moufang loop, if ab · c = a · bc
then a, b, c generate a subgroup.)

Robinson’s theorem of 1966 [38] states that left-Bol loops (and
right-Bol loops also) are power-associative.

However, the reverse implications are false because of the 10-
element counterexample in figure 1.1.

* 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 0 3 2 7 9 8 4 6 5

2 2 3 0 1 9 8 7 6 5 4

3 3 2 1 0 8 7 9 5 4 6

4 4 7 9 8 0 6 5 1 3 2

5 5 9 8 7 6 0 4 3 2 1

6 6 8 7 9 5 4 0 2 1 3

7 7 4 6 5 1 3 2 0 9 8

8 8 6 5 4 3 2 1 9 0 7

9 9 5 4 6 2 1 3 8 7 0

Figure 1.1. Unique 10-element Steiner loop. Diassociative
and commutative and xx = e, but neither left- nor right-Bol.
The 12 Steiner triples are the rows, columns, and generalized

diagonals of
(

123
456
789

)

. N

* 0 1 2 3 4 5 6 7 8 9 A B C D E F G H

0 0 1 2 3 4 5 6 7 8 9 A B C D E F G H

1 1 2 0 8 5 7 3 4 6 F G H A B 9 E C D

2 2 0 1 6 7 4 8 5 3 E C D G H F 9 A B

3 3 8 6 4 0 1 7 2 5 C D E H F G A B 9

4 4 5 7 0 3 8 2 6 1 H F G 9 A B D E C

5 5 7 4 1 8 6 0 3 2 D E C F G H B 9 A

6 6 3 8 7 2 0 5 1 4 G H F B 9 A C D E

7 7 4 5 2 6 3 1 8 0 A B 9 E C D H F G

8 8 6 3 5 1 2 4 0 7 B 9 A D E C G H F

9 9 F E D G C H B A 0 8 7 5 3 2 1 4 6

A A G C E H D F 9 B 7 0 8 2 5 3 6 1 4

B B H D C F E G A 9 8 7 0 3 2 5 4 6 1

C C A G F B H 9 D E 3 2 5 1 4 6 8 0 7

D D B H G 9 F A E C 5 3 2 6 1 4 7 8 0

E E 9 F H A G B C D 2 5 3 4 6 1 0 7 8

F F E 9 B C A D G H 1 4 6 7 8 0 2 5 3

G G C A 9 D B E H F 6 1 4 0 7 8 3 2 5

H H D B A E 9 C F G 4 6 1 8 0 7 5 3 2

Figure 1.2. 18-element loop. IP-alternative and power-
associative, but neither left-Bol, right-Bol, nor diassociative.
Indeed, it disobeys x(yy · y) = (xy · y)y. (A counterexample
loop related to, and perhaps even isomorphic to, this one was
first found by J.D.Phillips.)

Raoul E. Cawagas helped me “beautify” this loop. All
subloops are subgroups. The unique subgroup with 9 ele-
ments, namely {012345678}, happens to be both abelian (iso-
morphic to C3×C3) and a normal subloop. All subloops arise
from C6’s, C3’s, C2’s, and their direct products, and therefore
all are abelian groups of orders 2,3,6,9, with the exception
of one nonabelian subgroup {0789AB}, which is a dihedral
group D6, and also is a normal subloop. N

Plainly, diassociative loops are both power-associative and IP-
alternative. But again the reverse implication is not valid, this
time due to the 18-element counterexample in figure 1.2.

1.3 Background on the prime number theo-
rem and two of its generalizations

The prime number theorem (PNT) states that the number of
primes less than x is asymptotic to x/ lnx. This was orig-
inally conjectured by C.F.Gauss in about 1792. The PNT
holds in certain nonrigorous probabilistic models of the prime
numbers. This was perhaps what Gauss had in mind. Gauss’s
student G.F.B.Riemann showed how to prove the PNT rigor-
ously under the assumption of the“Riemann hypothesis”(RH)
that all the nonreal zeroes of the Riemann zeta function have
real part 1/2. Although the RH remains unproved, Hadamard
and de la Vallée Poussin in 1896 independently showed a large
enough zero-free region to prove the PNT without depending
on any unproven assumptions.

The prime number theorem in arithmetic progressions states
that the number of primes below x in an arithmetic progres-
sion of the form an + b with a, b fixed and gcd(a, b) = 1,

4Some other authors have defined this word differently.
5The reader is warned that N.G. {Tsch, Tch, Ch, Č}ebotar{ev, eff, öw, ěv}’s name has been transliterated into English in many different ways.

He proved his theorem in about 1926. A modern proof is in chapter 7.3 of [35]; its history is discussed in note 19 p.415-416. It is also discussed in
[23] and [24]. Results considerably stronger even than the full Chebotarev theorem are available, e.g. under generalized Riemann hypotheses [4]
[18] [26] [30] [36] [37] [41] [46] [47] [48].
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is asymptotic to x/(a lnx). The proof [5] involves Dirichlet
L-functions instead of the Riemann zeta function.

Let P (y) be a fixed monic polynomial, with integer coeffi-
cients, of y. Chebotarev’s density theorem5 states that the
number of primes p < x such that the complete factorization
of P (y) mod p assumes any particular fixed form (for exam-
ple: the form 9 = 1 + 1 + 1 + 2 + 4 meaning that the degree-9
polynomial P is a product of 3 linears, 1 quadratic, and 1
quartic) compatible with (i.e. a refinement of) the form of its
full factorization over the integers (e.g. in the same example:
9 = 3 + 6 corresponding to a product of a cubic and sextic)
also is asymptotic to Cx ln x, where C is a positive constant
depending on the polynomial. The proof now involves Artin
L-functions instead of Dirichlet’s.

The generalized Riemann hypothesis states that all of the non-
real zeros of these L-functions lie on the line with real part 1/2.
Again this remains unproven, but in all cases large enough
zero-free regions have been established to prove the appropri-
ate generalized PNT.

More recently, “elementary” proofs of the PNT have been
found [11][25][29] i.e. which employ neither complex analy-
sis nor zeta functions. This was first done by A.Selberg and
P.Erdös in about 1949. However, as far as I know, nobody has
yet produced an elementary proof of the Chebotarev density
theorem. Furthermore, problems such as “are there an infi-
nite number of primes of the form n2 + 1?” and “are there an
infinite number of twin primes (pairs p, p + 2, both prime)?”
remain unresolved.

1.4 Background on the Amitsur-Levitski
theorem and the Schwartz-Zippel lemma

The Amitsur-Levitski theorem [2][40] says that there are no
degree-k identities obeyed by N ×N matrices, if k < 2N , ex-
cept for the ones implied by associativity and distributivity.
(Here the inequality k < 2N is tight since there is an extra
identity of degree 2N found by Amitsur and Levitski.) It is
totally understood what those identities are since as everyone
knows there is a simplification-to-fully-expanded canonical-
form procedure to verify or disprove any such identity.

Thus, by making N large enough, any such putative “extra”
identity will be violated in the multiplicative group generated
by two generic real N × N matrices.

The Schwartz-Zippel lemma [42][50] says that for any set I
of alleged polynomial (or rational) identities that hold in the
real numbers,

1. They also hold in Zp, the integers modulo a prime p, if
p is sufficiently large

2. If I is not a valid identity, then random variable values
will cause it to be violated in Zp with a probability that
goes to 1 as p is made large.

Thus, the previous paragraph about the “group generated
by two generic real N × N matrices,” is also valid for the
“group generated by two random N × N matrices over Zp,
with probability→ 1 when p is chosen sufficiently large and
prime.”

2 Evans, Neumann, and power-
associativity in loops

Theorem 1 (Evans & Neumann [15] p.349). No finite
set of power-associativity statements (that xn = xn for some
finite set of positive integers n and parenthesizations of the
two sides) suffice to imply power-associativity in loops, not
even in finite and/or commutative loops.

Proof: Let the maximum degree n of the power-associativity
statements be D. Construct the (2N) × (2N) Cayley +table
of the additive group of integers mod 2N . Circle all the en-
tries in that table which arise from powers≤ D of the group
elements. There will then be ≤ 2(D + 1)N circled entries
among the 4N2 total entries. Now find 4 uncircled entries in
the table forming the vertices of an axis-oriented square of
sidelength N . This square is specified by choosing its upper
left corner, and if this corner is chosen at random, then the
expected number of circled entries among the 4 entries that
are vertices of the square, is ≤ 2(D + 1)/N . This goes to 0 as
N → ∞. Since there must exist a square at or below the ex-
pectation value, there must exist one with no vertices circled
if N is sufficiently large, namely if N > 2(D + 1). Find it.
Now take its 4 vertex-entries and permute them as follows:

(

a b

b a

)

→
(

b a

a b

)

. (1)

The result is the +table of a non-power-associative, but still
commutative, loop obeying all the power-associativity state-
ments in the putative “basis.” �

Remark. It also is possible to modify the Evans-Neumann
proof to make their loops incorporate violations of commu-
tativity: alter a 4 × 4 submatrix of the abelian cyclic group
+table, rather than a 2×2 one. Or just take the direct product
of their commutative loop with some non-commutative group.
The latter idea will also be applicable to the diassociativity
result of the present paper.

The Evans and Neumann argument, although valid for the
purpose of proving theorem 1, is insufficient for the purpose
of proving power-associativity has no finite equational basis.
That is because they forgot to consider the possibility of basal
equations involving more than 1 variable.

Furthermore, since loops involve three operators \, /, and ·,
really the basal equations should be permitted to include them
also. It is equivalent, but more convenient, to restrict our-
selves to pure-polynomial basal equations but allowing them
to be linked via the word “where.” For example, the “left in-
verse property” that x · yz = z where xy = 1 is expressed by
two logically linked polynomial equations; the latter equation
says x is the left-inverse of y. We shall allow using “where”
in this way in all bases considered in the remainder of this
paper; so doing allows eliminating all occurences of / and \ in
the basis. It is easy to see that allowing this does not affect
the Evans and Neumann proof above (where now expressions
for xn are allowed to be of the form, e.g., xn+3/x3) except
that the meaning of “sufficiently large N” may now be larger.

Theorem 2 (Repair to Evans-Neumann). Any equation
not of the form xn = xn (with different parenthesizations of
its two sides) cannot be a member of any basis for loop power-
associativity.
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Part I of two-part proof: No equation of the form xa = xb

for nonnegative unequal integers a, b can be a member of a ba-
sis for power-associativity. That is because it is falsified in the
additive group of reals, or of integers, and hence (by Schwartz-
Zippel) also in the integers mod P for any sufficiently large
prime P . �

Before we can prove part II of the proof of theorem 2, we
need to discuss latin squares. A latin square is an N × N ar-
ray of numbers from the set {1, 2, 3, . . . , N} with no repeated
number in any row or column. An incomplete r × r latin
square based on N is an r× r array of either of numbers from
{1, 2, 3, . . . , N} or blank entries, with no repeated number in
any row or column.

The simplest embedding theorem for latin squares6 [14] states
that any incomplete r × r latin square based on N may be
completed (by filling in the blanks and adding N − r extra
rows and columns) to yield an N × N latin square, provided
N ≥ 2r (and this inequality is best possible if r ≥ 4). The
same reference also proves this theorem if the latin squares
are required to be the multiplication tables defining a loop.

Part II of proof of theorem 2: If the equation I involves
at least two variables x, y (and cannot be re-expressed with
fewer7, e.g. is not just a statement of form (xy)a = (xy)b)
then we shall explain how to construct a power-associative
loop in which I is false.

The 3P − 2 elements of the loop are 0 and xc where x
is a nonzero integer mod P and c is a color from the set
{red,blue,green}. The loop operation ∗ is defined as follows:

1. 0 ∗ 0 = 0.
2. xc ∗ 0 = 0 ∗ xc = xc.
3. xc ∗ yc = (x + y)c.
4. if a 6= b then xa ∗ yb = (Lxy)c where c is the third color

and L is a (P −1)× (P −1) latin square on the nonzero
integers modulo P .

The fact that this is a loop may be confirmed by showing
that all right-division problems have a unique solution (the
proof for left-division is the same only mirrored). We have
0/xc = −xc, xc/0 = xc, xc/yc = (x − y)c, and if a 6= c then
zc/yb = xa where a is the third color and x is chosen so that
Lxy = z.

The latin square L is irrelevant to power-associativity since
all powers of anything always have the same color.

We now may use the previously mentioned latin square em-
bedding theorem to construct a suitable latin square L in
which I is false: if I wants some particular pq = s to be true
we simply make the pqth entry of the incomplete latin square
be something other than s (which plainly is always possible if
the square is large enough compared to the size of the identity
I) and then complete the square. �

Side Remark. Embedding theorems for latin squares can
also be applied to loop theory in other ways. For exam-
ple, J.D.Phillips asked what the possible sizes of commutative
exponent-2 loops were. His computer search showed that an
n-element loop of this type exists for all even n ≤ 10, but no
odd ones. That suggested

Theorem 3 (Commutative exponent-2 loops have an
even number of elements). A loop obeying xy = yx,
1x = x1 = 1, and xx = 1 must have an even number of
elements.

Proof: This is an easy consequence of a much more general
known theorem: Hoffman [19] gave necessary and sufficient
conditions for completing incomplete commutative n×n latin
squares with prescribed diagonals. We may use his necessary
conditions to rule out the case of odd n: following the notation
in the mathematical review of [19] and always letting y de-
note an element of L with y 6= 1, put r = n, c(1) = d(1) = n,
t(1) = 0 and t(y) = d(y) = 0 and c(y) ≥ 2. Then one of Hoff-
man’s necessary conditions gives d(y) + t(y) = 0 ≡ n(mod 2),
which rules out odd n. �

One might then ask whether theorem 3 has any generaliza-
tion to loops with xxx = 1 (exponent 3), or non-commutative
loops, but apparently the answers are no, because there is a
unique 5-element loop obeying xx = 1 (given in the book [20]
or readily constructed by hand), and because figure 2.1 gives
a 7-element commutative and power-associative loop with ex-
ponent 3.

* 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 0 4 3 6 5

2 2 0 1 5 6 3 4

3 3 4 5 6 1 2 0

4 4 3 6 1 5 0 2

5 5 6 3 2 0 4 1

6 6 5 4 0 2 1 3

Figure 2.1. 7-element loop found by J.D.Phillips using
mace4: xx · x = x · xx = 1, power-associative, commuta-
tive (and hence flexible), but not Lalt, Ralt, LIP, RIP, nor
antiaut. N

Clearly, any diassociative loop obeys the alternative laws, the
inverse property, and power-associativity, but as we have seen,
the reverse need not be the case.

The question now arises whether any IP-alternative loop is
automatically power-associative.

The answer is no, although the smallest counterexample is
remarkably large. I found it by a combination of human rea-
soning and exhaustive computer searching with W.McCune’s
powerful backtrack search program mace4.

Theorem 4 (IP-alternativity does not imply
power-associativity). There is a unique loop with ≤ 35
elements which obeys the alternative laws and the inverse
property but is not power-associative. It is commutative, has
27 elements, and is given in figure 2.3.

Proof: Let PA(n) denote the statement that in a (multiplica-
tive) loop, xn is unambiguous. We first show that in an Alt
loop which is PA(d) for all d with 0 ≤ d < a + b,
Tool#1. If a, b > 0 then xaxb = xbxa.
Tool#2. If 0 ≤ a < b then xaxb = x2axb−a.
(Proofs: flexibility, combined with the inductive PA as-
sumption that xk is unambiguous for all k < a + b, shows

6Many extensions of this theorem are available, e.g. to latin cubes, e.g. see [19][39][43][9].
7We shall discuss this notion more detail in the proof of theorem 7.
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xc · xdxc = xcxd · xc and now let a = c and b = c + d to get
tool#1. Left-alternativity and the inductive PA assumption
give xa · xaxb = xaxa · xb, proving tool#2.) Now PA(1) and
PA(2) always hold. In any flexible loop x2x1 = x1x2 so we
have PA(3). In any Alt loop x3x1 = x1x3 = x2x2 so we have
PA(4). In any Alt loop x1x4 = x2x3 = x3x2 = x4x1 so we
have PA(5). However, we hit a snag at PA(6): all our tools
give us is that x1x5 = x2x4 = x4x2 = x5x1, while x3x3 might
conceivably differ; there might be two different equivalence
classes of 6th powers. If we temporarily ignore that snag and
continue on, we find that the possible equivalence classes for
PA(n) for n = 2, 3, . . . , 36 (at each n under the assumption of
PA(d) for all d with 0 < d < n) are given in table 2.2.

We now asked mace48 to search for n-element Alt loops for
2 ≤ n ≤ 150 disobeying x3x3 = x1x5. It reported that it had
completed an exhaustive search, finding that no such loops
exist.

In retrospect, that was not surprising, because in fact, in Lalt
and Ralt loops, x3x3 = x1x5. To prove that, first realize that9

x · x(x · xy) =
L

xx(xx · y) =
L

(xx · xx)y =
L

(x · x[xx])y. (2)

Now use this leftmost and rightmost sides of this identity with
y = x · xx to get

x(x · x[x · xx]) = (x[x · xx])(x · xx) =
R

x · (x · xx)(x · xx). (3)

Finally left-cancel the x’s from the leftmost and rightmost
sides of that identity to get x1x5 = x3x3.

n equiv classes for xaxb as set of allowable a
2 {1}
3 {1}
4 {1}
5 {1}
6 {1, 3}
7 {1}
8 {1}
9 {1, 3}
10 {1, 5}
11 {1}
12 {1, 3}
13 {1}
14 {1, 7}
15 {1, 3, 5}
16 {1}
17 {1, 3}
18 {1, 3, 9}
19 {1}
20 {1, 5}
21 {1, 3, 7}
22 {1, 11}
23 {1}
24 {1, 3}
25 {1, 5}
26 {1, 13}
27 {1, 3, 9}
28 {1, 7}
29 {1}
30 {1, 3, 5, 15}
31 {1, 3, 5}
32 {1}
33 {1, 3, 5, 11}
34 {1, 3, 17}
35 {1, 5, 7}
36 {1, 3, 9}

Figure 2.2. (Computer-generated) table of equivalence
classes resulting from tools #1 and #2. (n = a + b.) N

So we next asked mace4 to search for n-element IP-Alt loops
for 2 ≤ n ≤ 38 disobeying x1x8 = x3x6. It reported that
it had completed an exhaustive search, finding that the only
such loops have either 27 or 36 elements, and the 27-element
loop is unique, namely the one in figure 2.3.

(If we instead do not require IP and just ask mace4 to seek
n-element Alt loops for 2 ≤ n ≤ 23 disobeying x1x8 = x3x6,
then it reports that there are exactly two such loops10 both
with 21 elements, and both commutative.)

If we now continue on through the PA-equivalence-class table,
asking mace4 next for the n-element Alt loops for 2 ≤ n ≤ 100
disobeying x1x9 = x5x5, x1x13 = x7x7, x1x14 = x3x12 =
x5x10, x1x16 = x3x14, x1x17 = x3x15 = x9x9, x1x17 = x5x15,
x1x20 = x3x18 = x7x14, x1x21 = x11x11, x1x23 = x3x21,
x1x24 = x5x20, or x1x25 = x13x13, it always reports that no
such loop exists.

8As supplied, Mace4 had a built-in loop-size limit of 100, which we changed to 200 by recompiling the code. W.McCune, the author of mace4,
had not imagined that it could exhibit such tremendous power that it could perform exhaustive searches over all 100-element loops. However, the
constraints in our present problem are so severe and enable so much pruning of the backtracking that mace4 is able to handle all loop sizes ≤ 150
in under 10 minutes.

9“=
L

” means “= as may be realized from the Lalt law.

10One of them is given in the companion paper [44]. They may be isomorphic.
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Finally, x1x11 = x3x9 is violated by our unique 27-element
IP-Alt loop, but by no other IP-alt loops with ≤ 35 elements.
(It also is violated by both the 21-element alt loops, but no
others with ≤ 23 elements.) �

* 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S

0 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S
1 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S 0

2 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S 0 1
3 3 4 5 6 7 8 J̈ A B M̈ D E F G H 9̈ K L C̈ N P Q R S 0 1 2
4 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S 0 1 2 3

5 5 6 7 8 9 A B C D E F G H J K L M N P Q R S 0 1 2 3 4
6 6 7 8 J̈ A B C D E Q̈ G H 9̈ K L M N P F̈ R S 0 1 2 3 4 5

7 7 8 9 A B C D E F G H J K L M N P Q R S 0 1 2 3 4 5 6
8 8 9 A B C D E F G H J K L M N P Q R S 0 1 2 3 4 5 6 7

9 9 A B M̈ D E Q̈ G H J K L 3̈ N P 6̈ R S 0 1 2 C̈ 4 5 F̈ 7 8
A A B C D E F G H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9
B B C D E F G H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A

C C D E F G H 9̈ K L 3̈ N P Q R S 0 1 2 M̈ 4 5 6 7 8 J̈ A B
D D E F G H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C

E E F G H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D
F F G H 9̈ K L M N P 6̈ R S 0 1 2 3 4 5 Q̈ 7 8 J̈ A B C D E
G G H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F

H H J K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G
J J K L C̈ N P F̈ R S 0 1 2 M̈ 4 5 Q̈ 7 8 9 A B 3̈ D E 6̈ G H

K K L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J
L L M N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K

M M N P Q R S 0 1 2 C̈ 4 5 6 7 8 J̈ A B 3̈ D E F G H 9̈ K L
N N P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M
P P Q R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N

Q Q R S 0 1 2 3 4 5 F̈ 7 8 J̈ A B C D E 6̈ G H 9̈ K L M N P
R R S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q

S S 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R

Figure 2.3. The unique (< 36)-element IP-Alt loop which
is not power-associative (since 1+8=9 6=J=3+6). Entries a + b
not agreeing with integer addition mod 27 have been deco-
rated with umlauts (M̈ versus M). Note that these exceptions
occur only on the index-3 subgrid and that the diagonal en-
tries a + a, the first row and column 0 + a = a + 0, and the
antidiagonal (−a) + a = 0 never are umlauted. This loop has
27 elements and is commutative, Lalt, Ralt, Flexible, LIP,
RIP, antiaut, but not power-associative, L-Bol, nor R-Bol. N

The 27-element loop in the preceding proof plainly exhibits a
very interesting structure – and both of the 21-element loops
mentioned (but not exhibited) there also have the same kind
of structure. Understanding this structure is the key to all
the results that will follow that will ultimately settle the loop-
diassociativity-basis problem. Indeed, all of the constructions
that will follow are successively more and more refined vari-
ants of the same construction idea. That idea, in an abstract
form from which all inessential details have been removed, is
this:

Lemma 5 (Construction of IP-alt but not
power-associative loops). Let (ZN , +) be the additive
(cyclic) group of integers modulo some composite number
N . Let (H, +) be a nontrivial subgroup (necessarily cyclic
with 1 < |H | < N). Let π be a permutation of the elements
of H. Define (H, ◦) to be the new group isomorphic to (H, +)
via π, that is x ◦ y = π{π−1(x) + π−1(y)}. Choose π so that
x + x = x ◦ x for all x ∈ H, so that the two-sided inverse x−1

is the same in both groups [i.e. so π(−x) + π(x) = 0], and
so that (H, +) 6= (H, ◦), i.e. so that there are x, y ∈ H with
x + y 6= x ◦ y. Further assume x 6∈ H implies x + x 6∈ H, or
equivalently that the index of H in ZN is odd. Define a new

operation ∗ on ZN as follows:

x ∗ y
def
=







x ◦ y if x, y ∈ H

x + y otherwise.
(4)

Then (ZN , ∗) is an IP-alternative but not power-associative
loop.

Proof: To show flexibility x ∗ (y ∗x) = (x ∗ y) ∗ x: if x, y ∈ H
this is obvious since H is a group. If x 6∈ H then x ∗ (y ∗ x) =
x∗(y+x) = x+(y+x) = (x+y)+x = (x+y)∗x = (x∗y)∗x.

To show Lalt (x∗x)∗y = x∗(x∗y): If x, y ∈ H this is again ob-
vious since H is a group. if x 6∈ H then x∗x = x+x 6∈ H and
so (x∗x)∗y = (x+x)∗y = (x+x)+y = x+(x+y) = x∗(x∗y).
Finally if x ∈ H and y 6∈ H then (x ∗ x) ∗ y = (x ◦ x) ∗ y =
(x + x) + y = x + (x + y) = x ∗ (x ∗ y) since x ◦ x = x + x.

Ralt is shown in the same (but mirrored) way.

To show LIP: x−1 agrees in (ZN , +) and in our loop. Now
to show x−1 ∗ (x ∗ y) = y: If x, y ∈ H the property is obvi-
ous since H is a group. If x 6∈ H we have x−1 ∗ (x ∗ y) =
x−1 + (x + y) = y. If x ∈ H , y 6∈ H we have x−1 ∗ (x ∗ y) = y
since x ∗ y = x + y 6∈ H .

RIP is shown in the same (but mirrored) way.

Finally, to show that power-associativity does not hold: Let g
be a generator of G and h of H . Since (H, ◦) 6= (H, +) there
are exponents a, b with ha ∗ hb = ha ◦ hb 6= ha + hb = ha+b.
Writing h = gc we have that powers of g are ambiguous. �

Example. One may readily check that π defined by11

x 0 1 2 3 4 5 6 7 8

π(x) 0 2 4 3 8 1 6 5 7

obeys π(x + x) = π(x) = π(x) and π(−x) = −π(x) both mod
9; and x ◦ y = π{π−1(x) + π−1(y)} does not coincide with
(Z9, +) since 1 ◦ 2 = π(5 + 1) = 6 6= 3. Therefore this choice
of π using as H the 9-element subgroup of Z27 consisting of
the multiples of 3 yields an IP-alternative 27-element loop
that is not power-associative; in fact it is the loop in figure
2.3.

Theorem 6 (An infinite set of different IP-alternative
but not power-associative loops). Let P be a prime such
that the set {+2,−2,−1} does not suffice to generate the mul-
tiplicative group of integers modulo P (for example if ±2
both are squares modulo P ). There are an infinite number
of such primes. Then there is a loop with N = 3P elements
which is both IP-alternative and commutative but not power-
associative. 12

Proof: The fact that an infinite (indeed, constant density)
suitable subset of primes exist is a consequence of the Cheb-
otarev density theorem using P (y) = (y2 − 2)(y2 + 2). The
ones less than 100 are P = {17, 31, 41, 43, 73, 89, 97} and 423
among the first 1000 primes work.

We employ the construction of the Lemma using as H the
P -element cyclic subgroup of ZN consisting of the multiples
of 3.

11Equivalently, π(x) = 2x mod 9, except that π(x) = x if x is a multiple of 3.
12It is also possible to construct IP-alternative but not power-associative loops which feature noncommutativity, by, e.g. taking the direct

product of one of the present theorem’s loop constructions with a nonAbelian group.
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Why does a suitable permutation π exist? Because the
multiplicative group of integers mod P is not generated by
{+2,−2,−1}, they therefore generate some subgroup. Then
the permutation can interchange some of the cosets of this
subgroup without destroying the agreement of doubling and
of negation in our subgroup, with those in the integers mod
3P . (Think of the nonzero residues mod P as being the ver-
tices of a graph whose edges link x to 2x and −x modulo P .
The different cosets correspond to disconnected components
of this graph, and thus interchanging them cannot destroy
any relationship corresponding to a graph edge.) Conversely,
if {+2,−2,−1} do generate the full multiplicative group mod
P , then there is no freedom to permute its elements in any
manner and no suitable π exists. �

Remarks. As a check, I have explicitly constructed loops
of orders 51 = 3 · 17 and 93 = 3 · 31 that arise as the first
two cases of the construction in this proof. We have already
mentioned our exhaustive computer searches verifying that all
IP-alt loops with N elements are power associative if N ≤ 35
and N 6= 27. These forbidden N include 9 = 3×3, 15 = 3×5,
21 = 3× 7, and 33 = 3× 11, all of which arise from primes P
not of the form specified in theorem 6, c.f. the last sentence
of the proof.

Of course, the same sort of construction as in our proof can
work even for nonprime13 P . Thus our 27-element loop in
figure 2.3 arose from P = 9, and I have also constructed loops
of this sort with 36 = 3 · 12 and 45 = 3 · 15 elements. Also,
both the 21-element alternative (but not IP) loops mentioned
in the proofs of theorem 4 are of the same sort, except that
there the prime P = 7 is required only to have multiplicative
group not generated by 2, since the need for −1 and therefore
−2 arise from the inverse property, which we here aren’t im-
posing. (Verification: {2, 4 = 22, 1 = 23} indeed is a subgroup
of {1, 2, 3, 4, 5, 6} mod 7.) We do not claim to understand the
full set of (possibly nonprime) integers P that are permitted
and the full set of permitted permutations π. Therefore the
present theorem has restricted itself to the (easier to under-
stand) cases where P is prime.

3 Negative solution of loop diasso-

ciativity basis problem

This section will prove that there is no finite basis14for dias-
sociativity in loops.

3.1 There is no finite basis for diassociativity
in (possibly infinite) loops, even commu-
tative ones

Our proof proceeds in two steps:

Theorem 7 (The only things the basis could contain).
Any equation which is not equivalent to an obvious diassocia-
tivity statement (e.g. necessarily involving ≥ 3 variables, or
if it involves ≤ 2 variables with different orderings of or num-

bers of those two variables in the products on the left and right
side of the identity) is falsified by some diassociative loop.

Corollary 8 (What the basis must be). Hence if there is
a finite equational basis for loop-diassociativity, it must con-
sist solely of (≤ 2)-variable statements, and hence must simply
be all the diassociativity statements of degree≤ D, for some
finite D.

Theorem 9 (Insufficiency of putative basis). Any set of
(≤ 2)-variable equations is insufficient even to imply power-
associativity in (possibly infinite) loops, even in commutative
ones.

Theorem 10 (Main result∞). There is no finite equational
basis for loop-diassociativity, even in commutative loops.

Proof: Corollary of the last two theorems. �

Note. We call theorem 10 “main result∞” since it allows the
loops to be infinite. For the extension of the main result to
cover finite loops, see §3.2. Indeed §3.2 largely obsoletes the
present section; nevertheless the present section has not been
discarded because it illustrates an interesting technique and
because I doubt I would have thought of §3.2 if I had not
first discovered theorem 10. For discussion of possible further
extension to allow power-associativity, see §3.3.

Proof of theorem 7. First we need to make the theorem
statement more precise so we know exactly what we are prov-
ing. The reason this is tricky may be comprehended by con-
sidering a few examples. The identity

(ab)c · (c · ab) = ab · c(c · ab)

is not really a 3-variable identity because a and b only occur
in the combination ab, which we may rename d, getting

dc · cd = d(c · cd),

which is an obvious disassociativity statement. Similar, but
slightly more difficult, is

[(a · bb)c · c(a · bb)]f = [(ab · b)c · c(ab · b)]f

which by right-cancelling the f ’s, renaming d = a · bb, and
then realizing that d = ab · b is an obvious diassociativity
consequence, also is seen to be an obvious diassociativity con-
sequence.

So: by an “obvious diassociativity statement” we shall mean
an identity of the form abaabbb = abaabbb, i.e. equating two
products of two variables only, both products having the same
length and with the variables in them occurring in the same
order, but the two sides possibly could be parenthesized dif-
ferently.

We call two identities “diassociativity equivalent” if one may
be converted into the other either by

1. renaming some common subexpression, or
2. using an obvious diassociativity statement to convert

some subexpression of one, which involves only two
variables, into another expression that is a product of
the same two variables in the same order, but perhaps
parenthesized differently, or

13We have concentrated on prime P merely because primes are easier to understand – the multiplicative structure mod P is a cyclic group for
prime P – and because of the availability of the Chebotarev density theorem (which is about primes) for seeing an infinite set of examples exist.

14 I.e., there is no finite set of polynomial equations implied by and implying diassociativity. As usual we shall allow the polynomial equations
to be logically linked by means of the word “where,” which shall not affect our reasoning.
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3. Cancelling some common multiple,
4. Multiplying both sides by some common multiple, or
5. some finite chain of steps of the preceding four forms.

Similarly two identities are “diassociativity-commutativity
equivalent” if one may be converted into the other by the
above plus perhaps using commutativity.

An identity which has the fewest variables among all its
diassociativity-equivalent forms, will be said to be “minimal.”

Then our more precise statement of theorem 7 is that
(i) any 1-variable or 2-variable identity which is not an obvi-
ous diassociativity statement is violated in some diassociative
loop.
(ii) any minimal identity with ≥ 3 variables is violated in
some diassociative loop.

Proof of i: There are two subcases:

1. The two words of x’s and y’s on each side of the identity
have different numbers of x’s and/or y’s – for example

xxyy = xxxy.

Any such identity is violated in the additive subgroup
of R generated by 1 and

√
2. Therefore no such identity

is allowed to be in a diassociativity basis.
2. The two words have the same numbers of x’s and y’s

on both sides, but they occur in a different order, for
example

xyxxxy = xxyxyx.

By Amitsur-Levitski, if N > 2k then any such k-term
identity is violated in the multiplicative group generated
by two generic real N × N matrices. Therefore no such
identity is allowed to be in a diassociativity basis.

Proof of ii: For a long time it puzzled me how to show
the seemingly “clear” fact that there cannot be any (≥ 3)-
variable minimal identity satisfied in all finite diassociative
loops. The solution strategy is, for each such putative iden-
tity, to construct a diassociative loop violating that identity15.
The beautiful construction that solves this puzzle was found
buried deep in a rather obscure paper by Hart and Kunen
(it is theorem 5.2 in [17]) where it was used for a different
purpose.

The Hart-Kunen construction. Let p be a prime. Con-
sider the additive group (Zn

p , +) of integer n-vectors modulo
p. We shall define a loop-operation ∗ on the pn elements of
this set.

For each 2D subspace T of Z
n
p (defined by 2 nonzero points,

not multiples of each other mod p) pick a “radial” map ΨT .
More precisely, this map is defined by, for each 1D subspace S
of T , (defined by 1 nonzero point) choosing a nonzero“stretch-
ing constant”CST ∈ Zp; then ~x ∈ T is mapped to CST ~x where

S is the unique 1D subspace containing ~x if ~x 6= ~0. Meanwhile
~0 is of course mapped to itself. Then

~x ∗ ~y
def
= Ψ−1

T [ΨT (~x) + ΨT (~y)] (5)

where T is the 2D subspace containing both ~x and ~y. Note
this uniquely defines T unless ~x and ~y are linearly dependent

in which case we get ~x ∗ ~y = ~x + ~y regardless of which T ’s,
S’s, and CST ’s are chosen. Note: in the above, all arithmetic
is mod p.

Since EQ 5 is a group isomorphism on T , it preserves di-
associativity, commutativity, and indeed the validity of ev-
ery 2-variable identity valid in Zp. Nevertheless, there is
tremendous freedom here since for each ordered pair of a 2D
subspace T and a 1D subspace S within it, we may choose
the corresponding stretching constant CST completely arbi-
trarily. That freedom is enough to destroy every (≥ 3)-
variable identity except for those that are really just dis-
guised (≤ 2)-variable obvious diassociativity-commutativity
statements, i.e. except for those in which we can never leave
a 2D subspace. (And by considering the direct product of
our loop with the group generated by two generic N ×N real
matrices, N sufficiently large, we may remove commutativity
while leaving associativity unaffected.) Indeed, if the prime
p and the dimension n are chosen large enough and the CST

are independently chosen at random from {1, 2, 3, . . . , p− 1},
we claim that it is obvious that the probability any particu-
lar such identity is violated, tends to 1. Essentially, once the
two sides of the “identity” get out of the same 2D subspace,
they in general never can return to a common 2D subspace
again. (For an explicit verification of that in the case of the
associativity identity xy · z = z · yz, see the end of the proof
of theorem 5.2 in [17].) �

Remarks. In the proof of theorem 7ii it also is possible
to work, not over Zp, but instead over the real numbers R,
in which case the cardinality of our loop, and the number
of freely alterable CST ’s, are both continuum-infinite instead
of finite, and the probability of identity-violation is 1. This
whole construction may be viewed as a way of converting pu-
tative (≥ 3)-variable identities to “identities”over R involving
a much larger number of variables once all the CST ’s are in-
cluded. The point is that every departure of the input identity
from being a pure consequence of diassociativity is associated
with its own private CST , and so by freely varying these CST ’s
slightly we can cause the output identity obviously to be false.

It would also be possible (and some may prefer this) to define
the set of identities that hold in the R-based loop construc-
tion regardless of the CST choices to be the “diassociativity-
commutativity-equivalent identities” – and regard them alone
as permissible members of a diassociativity basis.

Finally, those readers (primarily logicians?) who feel there is
still something lacking in the proof of theorem 7ii are urged
to consult the alternate proof presented at the end of this
section.

Proof of theorem 9. Consider some 2-variate polynomial
equation arising from diassociativity, for example the state-
ment (in an additive loop) that

A + B + A + A + A

is unambiguous. What does this imply about power-
associativity? In a multiplicative loop in which we (max-
imally optimistically) already have power-commutativity

15A large class of such identities are ruled out by appropriate Steiner loops, which may be constructed by using either “embedding theorems,”
or theorems about “independent sets,” in Steiner triple systems [3] [8] [12] [27] [28]. But unfortunately Steiner loops obey xx = e where e is the
identity, so that such identities as xx · (yy · zz) = (xx · yy) · zz are never violated by them.
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xcxd = xdxc and in which we already know there is power-
associativity for all powers less than 4a + b, this would imply
that

x4axb = x3axa+b = x2ax2a+b = xax3a+b

The point is that this is a set of equivalences among different
ways of factoring xp into two smaller powers of x, where in the
present case p = 4a+ b. Any such 2-term factoring xp = xcxd

may be represented for short by its lefthand power alone, here
c. The first 4 in our set of equivalences shows that

a ∼ 2a ∼ 3a ∼ 4a

and considering also power-commutativity (if we assume it),
we have also

a ∼ p − a.

The point is that this set of equivalences is always among
certain nonzero integer linear multiples of a modulo p. In
the present case the multiples are {1, 2, 3, 4,−1}. (If rational
multiples arise, we multiply them by their least common de-
nominator to convert them to all-integer form. For example
2a/3 ∼ a/2 would become 4a ∼ 3a.)

No matter what finite set of 2-variable loop-equations we
started with, we always get in this way a finite set of equiv-
alences among integer linear multiples of a single variable,
modulo p.

Now, consider p to be some suitable large prime and consider
the graph Gp whose p − 1 vertices are the nonzero residues
mod p. Two vertices x and y of this graph are joined by
an edge if there is some equivalence relation x ∼ y, i.e. if
k1x = k2y (mod p) for some 2-tuple of fixed nonzero inte-
gers (k1, k2) arising from our identity-set as described above.
Because we only have a finite set of loop-equations, our k1’s
and k2’s all are bounded. Denote the least upper bound on all
these kj by K.

The statement that our loop is power-associative, would be
compatible with the statement that each of these graphs is
connected, i.e. that every factorization xp = xcxd is equiva-
lent (via some path of equivalences) to every other, for each
p ≥ 1. However, we shall show that there are an infinite set
of primes p such that Gp is a disconnected graph, which will
ultimately allow violating power-associativity.

If p is prime, then Gp is the Cayley graph of the abelian
multiplicative group of integers modulo p using as generators
multiplications by the k1/k2 and k2/k1.

As is well known (it was first proven by Galois), the full mul-
tiplicative group of integers (and it is a group) mod p is cyclic
with p − 1 elements. Our Cayley graph may have more than
one connected component. For example if p is odd, but all our
kj happened to correspond to an even number of “steps along
the (p − 1)-cycle,” i.e. happened all to be squares modulo p,
then we would have two connected components, one of the
“even numbered” and the other of the “odd numbered” ver-
tices along the (p − 1)-cycle (for a numbering scheme where
vertex x = gℓ is numbered by its discrete logarithm ℓ rather
than by x; here g is a generator, or “primitive root” modulo
p). That is, the squares and non-squares mod p would be in
different connected components of Gp.

We claim that, for any fixed finite set of rational numbers mod
p, there always exists an infinite set of primes p such that all

of these rational numbers taken together only suffice to gen-
erate a strict subgroup of the full multiplicative group mod p;
in fact such that all the numerators and denominators of all
the rational numbers all are squares mod p. The claim seems
“intuitively obvious” because the “probability” a number is a
square mod p is 1/2 (unless it is an obvious square such as
9, in which case the probability is 1 and our argument only
becomes more true) so that “therefore,” the probability that
all of our numbers are squares exceeds 2−K , which is a fixed
constant. So if primes and quadratic residues behave “ran-
domly enough”we would expect a constant fraction ≥ 2−K of
all primes will do, proving the theorem.

This intuition may instantly be made rigorous (although per-
haps not with the numbers 1/2 and 2−K , but instead with
certain other positive constants playing their roles) by invok-
ing the Chebotarev density theorem. In fact, all we need is a
statement considerably weaker than, and easier to prove than,
the full Chebotarev theorem. That is because Chebotarev was
concerned with factorization of a general but fixed univariate
polynomial with integer coefficients mod p. He proved that
that every possible kind of factorization would occur (e.g., for
a degree-4 monic polynomial irreducible over Z, factorizations
of degrees 1+1+1+1, 1+1+2, 1+3, 2+2, and 4 all would
occur), each on sets of primes p of nonzero-constant density.
But we here are instead considering a very special polynomial
of form P (x) =

∏

i(x
2 − ri). For us the situation is actually

far simpler since the quadratic residue behaviors of primes p
with respect to any fixed set S of integer putative residues are
periodic, that is, depend only on p mod N for some large but
fixed modulus N determined by S. (This may be seen using
Gauss’ quadratic reciprocity laws.) One may now merely em-
ploy the theorem (often ascribed to Dirichlet) that there are
an infinite number of primes in every arithmetic progression
P = ak + b with the constants a, b obeying gcd(a, b) = 1. In
other words, the full power of Chebotarev was not needed.

Now our theorem will follow from our claim, by considering
the infinite commutative free loop with one generator obey-
ing the identities in our basis and the ones they imply, but no
others. Let us be specific about how we construct this loop.
Denote the elements of the loop by the integers (of both sign).
Let the (two-sided) inverse of any element whose integer label
is x be the one whose integer label is −x. Call the identity el-
ement 0. Let the loop operation be called +. Define 2 = 1+1,
3 = 1+2, 4 = 1+3,... Now we demand that a+ b 6= p (where
the integer labels a and b do sum to p) for some suitable a
such that a and 1 are not in the same connected component
of Gp, and where p is some suitable sufficiently large prime.
The purpose of this demand is to prevent power-associativity.
Now, to construct the +table of the loop, we simply proceed
by means of an “infinite backtrack search.” That is: we order
the entries of the +table in some manner (such as spiralling
outward from the center at 0 + 0) and we fill them in with
numbers in that order. Each time we fill in a +table entry
x + y (assuming we have already filled in some finite number
of entries) that, via our identity-set, yields a finite number
of consequences about other entries in the +table, thus ei-
ther enabling them to be instantly filled in also, or yielding
a contradiction. In the latter case we “backtrack” – go back
and erase our choice of x+ y, replacing it with the next avail-
able choice (“next” according to this ordering of the integers:
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0, 1,−1, 2,−2, 3,−3, . . .) and try again, up until the choice
CNM where C is some sufficiently large constant, N is the
number of entries filled in so far, and M is the maximum ab-
solute value among them16. If all choices fail, that means we
have to backtrack one further back into the past.

The backtracking choices conceptually form a tree of possi-
bilities for the loop’s +table (each tree node is a table entry
to be filled in, and its child subtrees arise from the different
choices at that node) and the backtrack procedure is system-
atically examining root-down paths through that tree. Our
goal is to prove the backtracking cannot be stopped.

For each N > 0, we know that there some root-down path in
this tree N choices long. That is because the only way no such
path could exist, i.e. the only way the backtracking could be
forced to halt, would be if there were some contradiction –
which would have to arise from a finite chain of linear equiv-
alences connecting a + b = p to 1 + (p − 1) = p, i.e. showing
a ∼ · · · ∼ 1. Why is this the only possible way a contradic-
tion could arise? Since we know that diassociativity in loops
is logically consistent, the only possible way a contradiction
could arise would have to be from the only other axiom we
have supplied the backtracker, namely, that xaxb 6= x1xp−1

for some x for some fixed pre-chosen a, b with a + b = p. But:
since we know that a and 1 are in different connected compo-
nents of the equivalence graph Gp, no such chain, and hence
no such contradiction, is possible. The backtracking cannot
be halted17.

Now by Denes König’s “infinity lemma” (discussed in section
2.3.4.3 of [21] we know that any tree with a root-down path of
length N for every positive integer N , must be an infinite tree,
containing an infinite root-down path. Therefore, there is a
way to fill in the entire infinite +table, and furthermore for
any given entry of that table, this backtracking procedure will
ultimately spit out the right value for that entry and never
backtrack to revise it again, forever after. Perhaps the proce-
dure will do this extremely slowly, e.g. superexponential time
using the CNM bound, but if that bound is not valid then
still in finite time although conceivably the amount of time
cannot be bounded by any computable function – the slowness
does not matter for the purpose of proving existence. �

Remark. Our proof technique involving an “infinite back-
track tree” turns out to have a distinguished provenance. It
was first used by Kurt Gödel in his 1929 PhD thesis [16] to
prove the “Gödel completeness theorem” in logic. (Of course,
Gödel used considerably different language, since the concept
of a “backtracking algorithm” had not yet been invented, but
the idea was the same. See, e.g., pages 124, 128, and 141 in
[13]. Also proven in [34][10].) This states, essentially, that
any sound set of axioms in first order logic (i.e. which do
not provably lead to a contradiction) is instantiated by some
model, possibly of countably-infinite-size.

Alternate proof of theorem 7ii: It is important to note
[10] that Gödel’s completeness theorem for first order logic re-
mains valid whether the sets of axioms, variable names, con-
stant names, predicates, and functions used to define the first
order language are finite or countably infinite.

Regard diassociativity as being defined by a countably in-
finite set of axioms, namely, all the obvious diassociativity
statements. These axioms plus the loop axioms lead, via fi-
nite chains of logical deductions, to certain consequences C.
Plainly no such consequence can be a minimal identity with
(≥ 3) variables. Now it is an immediate consequence of the
Gödel completeness theorem, that there is no other statement
(i.e not in C) valid in every (at most countably infinite) di-
associative loop. Any attempt to produce such a statement
would be confronted with a countermodel produced by the
usual proofs of Gödel’s theorem. �

3.2 Extension to finite loops
The previous proofs, especially of theorem 9, seemed to de-
pend on the infinite size of the constructed loops, and left the
hope that diassociativity in finite loops might have a finite
equational basis. That hope is destroyed by:

Theorem 11 (Main resultF). There is no finite equational
basis for diassociativity in finite loops, even in commutative
ones.

Proof: The proof will actually be surprisingly easy, at least
for the reader familiar with the ideas of the previous proofs.

We employ theorems 7 and 9 as before, but these both have to
be modified to make all the loops become finite. In the case of
theorem 7 this modification is easy: it suffices to replace the
two generic real matrices with random integer matrices over
GFp for sufficiently large prime p, and the additive group
generated by 1 and

√
2 by the additive group Zp of integers

modulo some sufficently large prime p. (To see why this must
work with overwhelming probability as p → ∞, employ the
Schwartz-Zippel lemma.)

Theorem 9 is the difficult case. For any given finite set S of
obvious diassociativity statements, we are going to construct
an infinite family of commutative but not power-associative
finite loops which satisfy all the identities in S. Let D ≥ 2 be
the maximum degree of (i.e. number of terms on each side of)
any diassociativity statement in S and let I be the number of
statements in S.

Let P and Q be18 sufficiently large primes. Choose P such
that {±1,±2,±3, . . . ,±DI+D} do not suffice to generate the
multiplicative group of integers mod P , e.g. because all these
numbers are squares mod P . As before, the Chebotarev den-
sity theorem assures us that an infinite (indeed, constant den-
sity) set of such primes P exists, for any fixed I and D. Our
loop will have N = PQ elements.

16Actually, conceivably this upper bound CNM is not large enough, but our backtracking procedure below can be altered to make it double C
each time a backtrack is needed, in which case that objection, even if valid, is made moot.

17Incidentally, it is is important to note that because our loop obeys the inverse property, left-division and right-division are simply multiplying
on the left or right by x−1, which by construction is the loop element with integer label −x. Thus we automatically know the x/y and x\y tables.
It is considerably trickier to construct infinite loops not obeying the inverse property. There is one such construction in the companion paper [44].

18Making P and Q be primes may not be necessary, but it definitely makes the proof easier. Choosing P prime causes the multiplicative structure
mod P to be easy to understand. (Multiplicative structure modulo primes is a cyclic group, i.e. is maximally simple.) We also want to use the
Chebotarev density theorem – which is about primes – to show an infinite set of possible P exist. Choosing Q to be a large prime prevents any
small-length sum of a’s and b’s (not both multiples of Q) from being a multiple of Q and thus getting into the subgroup, except for possibly in a
unique way k1a + k2b, where k1 and k2 are small integers dependent on a and b and unique up to taking common small-integer multiples.
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Let the loop operation be ∗ and let 0 be the identity. Let the
∗table of the loop (telling us what a ∗ b is) agree with + in
the additive group of integers mod N except that if both

1. Both a and b are nonzero multiples of Q.
2. The sum is not of the form a+b with the integers a, b re-

lated by k1a = k2b mod N where k1 and k2 are integers,
not both 0, and both with absolute values ≤ DI+D.

then disagreement is permitted. Our loop will have a P -
element subgroup consisting of the multiples of Q. This all
is achieveable by making ∗ inside that subgroup agree with
the additive group of integers mod P (ignoring the overall
multiplication by Q) but with the nonzero elements permuted
away from sorted order, i.e. a∗b = π−1(π(a)+π(b)) if a, b are
both in the subgroup. We now demand that the permutation
π must respect condition 2, i.e. a ∗ b = a + b if loop-elements
a and b happen to be related by k1a = k2b mod N where k1

and k2 are integers, not both 0, and both with absolute values
≤ DI+D.

Such a permutation π exists, as in the proof of theorem 6 due
to the way P was chosen. (The point is that the P -vertex
graph of integers mod P with x joined to y by an edge if
k1x = k2y for k1 and k2 integers, not both 0, and both with
absolute values ≤ DI+D, is not connected.)

Why will this loop not be power-associative? Because the
permutation was nontrivial so that some a + b with a,b both
multiples of Q will not agree with integer addition mod N .

Let our two variables be called a and b. We shall from here
on assume Q > DI+D.

It is then not possible to sum b with itself more than DI+D

times by using our identities (even logically linked with the
use of the word where as in footnote 14; just one identity act-
ing alone cannot even sum b with itself more than D times)
hence no achievable sum of b’s can be in the subgroup if b
is outside it. If a is in the subgroup but b is not then simi-
larly no achievable sum of a’s and b’s can enter the subgroup.
However, if both a and b lie outside the subgroup, then some
combined sum such as c = a + a + b + b + b might be in the
subgroup. Due to Q being a large prime, this c will necessarily
be unique (up to small-rational multiples) among achievable
sums.

Why will this loop obey all the diassociativity statements in
S? If both variables are in the subgroup, this is trivial since
groups are power associative (even after isomorphisms π have
been applied to them). If a is in the subgroup but b is not
then all +’s will operate on at least one summand not in the
subgroup, or will be a sum of small-rational numbers of pure
a’s, hence either way will agree with integer addition mod N ,
and hence will satisfy S.

If both of the variables avoid the subgroup (but possibly some
sum of them is in it) then all the ∗’s on both sides of the iden-
tity will agree with addition in the additive group of integers
mod N (and hence will trivially satisfy S) if either

1. One or more summands is not in the subgroup;
2. Both summands are in the subgroup – because then the

two summands necessarily will satisfy some linear rela-
tion with small integer coefficients k1, k2.

�

Remarks. If linking the statements in S via the use of the
word “where” is disallowed, then it is impossible to use a long
string of ‘where’s to make an exponentially long sum (e.g.
d + d where d = c + c where c = b + b where b = a + a). In
that case the uses of the expression DI+D in the proof could
be replaced simply by D.

This sort of construction sometimes also will work for non-
prime P , Q, although we do not claim any full understanding
of which. Again the essential core of the argument may be
abstracted in the form of a lemma:

Lemma 12 (Abstractified essence). Let (ZN , +) be the
additive (cyclic) group of integers modulo some composite
number N . Let (H, +) be a nontrivial subgroup (necessarily
cyclic with 1 < |H | < N). Let π be a non-identity permutation
of the elements of H. Define (H, ◦) to be the new group iso-
morphic to (H, +) via π, that is x ◦ y = π{π−1(x) + π−1(y)}.
Choose π so that x + y = x ◦ y for all x, y ∈ H such that
k1x = k2y mod N for any nonzero k1, k2 with |k1|, |k2| < K.
Further assume x, y 6∈ H implies that at most one number
of the form k1x + k2y mod N (up to integer multiples, where
again k1,k2 are integers with |k1|, |k2| < K) is in H or equiv-
alently that the index of H in ZN is relatively prime to all
numbers below K. Define a new operation ∗ on ZN as fol-
lows:

x ∗ y
def
=







x ◦ y if x, y ∈ H

x + y otherwise.
(6)

Then (ZN , ∗) is a commutative loop which is not power-
associative but obeys every obvious diassociativity statement
with < K occurences of each variable on each side of the equa-
tion, and thus every diassociativity statement of degree≤ K.
Example. A 75-element loop arises by letting G be Z75, let-
ting H consist of the 15 elements within G which happen to
be multiples of 5, and letting π(x) map every x ∈ H to itself
except for interchanging 25 and 50. It therefore is commuta-
tive and obeys all degree≤ 5 diassociativity statements such
as a(bb · b) = ab · bb and (aa · ba)b = a(ab · ab).

The computer tells us that this loop is the unique IP-
alternative 75-element loop whose loop operation a ∗ b agrees
with integer addition mod 75 for all a, b which are not both
nonzero multiples of 5, but which disobeys x5x25 = x1x29

when x = 1.

3.3 Extension to finite power-associative
loops?

The previous results might suggest that somehow the essence
of why diassociativity has no finite basis, is merely Evans and
Neumann’s fact that power-associativity has no finite basis.
So one might conjecture that diassociativity does have a finite
basis in power-associative loops. But the 18-element loop in
figure 1.2 makes me conjecture the opposite!

4 Open questions

1. Is there a finite equational basis for diassociativity in
power-associative loops?

2. Can all identities that hold in all Moufang loops be un-
derstood, and can an efficient simplification-to-canonical-form
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procedure be constructed which will reduce any polynomial,
via Moufang-loop identities, thus enabling quick verification
or refutation of any identity in generic Moufang loops?
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