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Abstract 

A monotonicity paradox occurs when a voting system reacts in a perverse way to a 
change in individual opinions. The vulnerability of a voting system to monotonicity 
paradoxes is defined as the proportion of voting situations that can give rise to such 
paradoxes. In this paper we provide analytical representations of this vulnerability in the 
three-alternative case for two voting systems, i.e. plurality with run-off (f~) and anti- 
plurality with run-off (fz). Our results suggest that the vulnerability to monotonicity 
paradoxes is lower with f~ than with f2. 

Keywords: Social choice; Voting theory; Run-off elections; Monotonicity paradoxes 

I. Introduction 

We consider a group of individuals or Voters N = {1, 2 . . . . .  n} who wish to 
collectively choose an alternative from a set A of m available alternatives 
(candidates in an election, competing projects, or allocations of goods between 
individuals). Each individual is assumed to have a linear p re fe rence  ordering on 
A. Suppose that the m! possible linear orders on A are numbered from 1 to m! 
and let nj be the number  of individuals with the corresponding linear order.  A 
voting situation (or simply a situation) is a vector of integers x =  
(n I . . . .  , nj . . . . .  n,,  ~) with E / n / =  n, and the set of all possible voting situations is 
denoted  by S. A voting sys tem f is a mapping defined for every x ~ S that assigns 
a non-empty subset f ( x )  of A to x. 
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This definition suggests that the social choice process is anonymous, and in fact 
the two voting systems we consider in this paper are anonymous. Both systems 
are multistage procedures belonging to the class of run-off point systems 
(Richelson, 1980), or scoring elimination methods (Moulin, 1985). At each stage 
of the process the alternatives with the lowest 'scores', computed on the basis of a 
specific type of point system, are eliminated, and the process continues until no 
further elimination can take place. The remaining alternatives constitute the 
social choice set. The plurality run-off system (fl) eliminates at each stage the 
alternatives with the fewest first-place votes, i.e. the score of an alternative is 
equal to the number of individuals who ranked it in first position. In contrast, 
under the anti-plurality run-off system (or Coombs' system), denoted f2, the 
alternatives with the greatest number of last-place votes are eliminated; the score 
of an alternative is given by the number of individuals who did not rank it last. 

Obviously, the systems f~ and f2 sequentially apply the plurality and anti- 
plurality systems respectively. One of the main reasons for introducing several 
stages in the social choice process is that run-off systems perform better than 
one-stage point systems with respect to Condorcet criteria. First, a Condorcet 
loser, i.e. an alternative that is beaten in all pairwise majority contests, cannot be 
elected under a run-off system, at least if tied elections are ignored. Secondly, the 
probability of electing the Condorcet winner, i.e. an alternative that beats 
everyone in majority comparisons, appears to be higher in run-off points systems 
than in one-stage points systems (see, for example, Gehrlein, 1982). Unfor- 
tunately, this advantage appears together with a serious flaw. We know from 
Smith (1973) that run-off point systems are not monotonic. The monotonicity 
principle is an important property in social choice theory. Roughly speaking, this 
principle requires that the reaction (or response) of the voting system to a change- 
in individual preferences should not be perverse. More precisely, if a voting 
situation is altered so that the winning alternative gains more support, then this 
alternative must remain a winner. A violation of this general principle is called a 
monotonicity paradox. In what follows we will find it useful to distinguish between 
the two following monotonicity paradoxes. 

Paradox M1 (or the more-is-less paradox): the winner is ranked higher by one or 
more individuals (all else unchanged) and becomes a loser. 

Paradox 1t42 (or the less-is-more paradox): a loser is ranked lower by one or more 
voters (all else unchanged) and becomes a winner. 

Numerous examples that illustrate paradox M1 can be found in the literature 
(see, for example, Straffin, 1980; Fishburn and Brams, 1983). The following 
example illustrates paradox M2 for both fl and f2- 
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Table 1 
Example voting situation 

135 

Preference order  n i 

1. abc 27 
2. acb 5 
3. bac 11 
4. bca 27 
5. cab 20 
6. cba 10 

Example 1. Suppose that A = {a, b, c}, n = 100, and consider the following 
voting situation x in Table 1. It is easy to check that ft(x) =fz(x) = {a}: c is 
eliminated in the first stage under f~ as well as under f2, and a beats b in the 
second stage. Consider the following modifications in individual opinions. 

(i) Assume first that three individuals change their preference orders from bca 
to cba. Then b moves down and the situation becomes x' = (27, 5, 11, 24, 20, 13). 
But now a gets the lowest number of first-place votes and, finally, ft(x') = {b}. 

(ii) Suppose next that two individuals change their rankings from abc to acb; 
then x becomes x" = (25, 7, 11, 27, 20, 10) and a obtains the highest number of 
last-place votes. Thus a is eliminated under f2 and b wins the second round 
against c, i.e. f2(x") = {b}. 

In both cases, a loser (b) gets less support and becomes a winner: we say that f~ 
and f2 are vulnerable to paradox 3!2 in situation x. 

From a theoretical point of view, violation of the monotonicity principle is 
certainly a serious drawback for a voting system, and many authors (e.g. Doron 
and Kronick, 1977) have argued against f~ on the basis of its failure to satisfy 
monotonicity. However, what is the practical significance of monotonicity 
paradoxes? For a given voting system, is the occurrence of these paradoxes too 
rare to be of practical concern? Also, how do alternative voting systems compare 
with respect to their propensity to give rise to such paradoxes? The purpose of the 
present paper is to investigate these questions for f~ and f2 in the three-alternative 
case. The main results are stated in- Section 2, and some implications thereof are 
discussed in Section 3. Concluding remarks are given in Section 4. 

2. Main results 

Let A = {a, b, c}. Given three alternatives and assuming anonymous voters, the 
total number of distinguishable voting situations depends on the number of 
individuals in the following way (see, for example, Gehrlein and Fishburn, 1976): 

Isl =- (n +5)5 - (n+l)(n+2)(n+3)(n+4)(n+5)120 (1) 
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Given a monotonicity paradox M and a voting system f, we define the 
vulnerability of f to M as the proportion of voting situations in which f is 
vulnerable to M, i.e. the proportion of situations that can give rise to M under f. 
Note  that the underlying probabilistic assumption of this approach is the so-called 
'impartial anonymous culture' condition (see Berg and Lepelley, 1994, for 
comments  on this condition). 

Clearly, a voting system that is vulnerable to M1 (respectively M2) is also 
vulnerable to M2 (M1), but this does not imply that the number of situations 
giving rise to MI is equal to the number of situations giving rise to M2: the 
vulnerability to M1 a priori is different from the vulnerability to M2. For a given 
number  n of individuals, we denote by V#(n) the vulnerability of f~ to Mj, 
i,] ~ {1, 2}. Hence Vo(n ) = Ix, jl/IsI, where X~j is the set of situations for which f~ 
is vulnerable to Mj. 

To simplify our calculations, in this paper we ignore the problem of tied 
elections: we assume that one and only one alternative is eliminated in the first 
stage as well as in the second. It is clear that this assumption alters the results only 
for small values of n. 

2.1. Vulnerability to paradox M1 

The first proposition, due to Berg and Lepelley (1993), provides a characteriza- 
tion of those situations in which the plurality run-off system is vulnerable to 
paradox M1 in three-alternative elections. In this proposition and in the 
remaining sections of the paper the six possible rankings on the three alternatives 
are numbered as in Example 1, and we write n,. i for n~ + nj. 

Proposition 1 (Berg and Lepelley, 1993). Under fl ,  a situation x = (na . . . .  , n 6 )  , 

such that fl(x) = {a}, can give rise to paradox M1 if and only if 

(n34 + n 6 > n/2 and n34 >.n/4)  or (n56 + n 4 > n/2 and n56 > n /4) .  

From Proposition 1 it is possible to derive an explicit formula for VH(n ). For 
computational expediency, the result is given modulo 12. 

Corollary 1. 

V . ( n )  = 
n(26n 4 - 325n 3 - 760n 2 + 9360n + 19584) 

576(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) 
for n ~ {24, 36, 48, 6 0 , . . . }  

and lim,,._,® Vll(n ) = 13/'288 ~ 0.0451. 

Proof. Let a b c X t x ( X t l , X l l  ) be the subset of Xxt such that a(b, ¢) is the chosen 
alternative. By the symmetry of a, b and c in S, [X~t [ --- [X~I [ = [X~l I. Moreover,  a 
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is the chosen alternative if and only if [(n34 <n12 and n34 <n~6 and n12 + n  3 > 
n/2), or (n56 < n12 and n56 .( n34 and n12 + n 5 > n/2)],  i.e. either b is eliminated in 
the first round and a beats c in the second round, or c is eliminated in the first 
stage and a beats b in the second (recall that we ignore tied elections). Hence it 
follows from Proposition 1 that a situation x belongs to X ~  if and only if 

(n34 <n12, n34 < n 5 6 ,  n12 + n 3 > n / 2  , n34 4-n6>n/2 and na4>n/4) ,  (2) 

or 

(n56 < n12, n56 <n34, n l 2 + n s > n / 2 ,  n564-n4>n/2 and n56>n/4 ) . (3) 

Let (Y', Y") be a partition of X ~  such that x E Y' if and only if (2) is true and 
x E  Y' if and only if (3) is true. By symmetry, [Y'] -- ) r " l .  Suppose now that n is a 
multiple of three and four, then (2) and nt2 + n34 4- n 5 4- n 6 = n imply that for all 
situations in Y' it must be true that 

n / 4 + 1 ~ n 3 4 ~ n / 3 - 1 ,  n344-1<-~nt2<-~n-2n34-1, 0~<nt ~<nt2, 
n /2 -n34  +1<~n~<~n-n12-n34 and n/2-n~2  +1<~n3<~n34. 

Here the cardinality of Y' is given by evaluating the number of combinations of 
the n~'s that satisfy the above inequalities. Using summation formulas for powers 
of integers, we obtain 

]y,] = n(26n 4 - 325n 3 - 760n 2 + 9360n + 19585) 
414720 (4) 

Since Ix , , I - -  Ix,  ll + Ix ,l 4- IxT,I = 3lx  [ = 3( I r ' [  + IY"l) -- 6lY'[ and Vtl(n ) = 
IXx,l/IsI, the desired result is deduced from (1) and (4). Q.E.D. 

Note that the above formula has been checked by complete enumeration for 
fairly small values of n, and this remark applies to all similar relations given in this 
paper. 

We now consider the vulnerability of fz to paradox M1. The following 
proposition makes possible the computation of V21(n ). 

Proposition 2. Under f2, a situation x = ( n l , . . .  , n6) such that f2(x ) = {a} can give 
rise to paradox MI if and only if  

(n46 + n 3 > n/2 and n25 < hi3 + n4) o r  (n46 4- n 5 > n/2 and n~a < n25 + n6) .  

Proof. Consider a situation x such that f2(x) = {a}. We denote by S~ the set of 
situations obtained from x by moving up alternative a in at least one individual 
order (all others unchanged); an element of S x is denoted by x ' =  (n'  1 . . . . .  n~). 
Observe that the definition of x', together with f2(x) = {a}, imply that a cannot be 
eliminated in the first stage under f2 in x'. 
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To prove the necessity part  of Proposition 2, we have to show that if one of the 
following statements holds 

(O[) (/146 "Jr n 3 < n / 2  and n46 + n 5 < n /2) ,  
( f l )  (n46 + n 3 > n/2 and n25 > hi3 + n4)  , 
(3") (n46 -I- 115 > n/2 a n d  n13 > n25 -I- n 6 )  , 

then x cannot give rise to M 1 ,  i.e. f2(x') = {a} for any x '  ~ S x. Suppose first that 
(or) holds. In this case, a is both the f2 winner and the Condorcet  winner in x, and 
it is easily checked that this remains true in x ' ;  hence f2(x') = {a} for any x '  E S x. 
Suppose now that (/3) holds; the first inequality in (/3) means that more than 
one-half  of the individuals prefer b to a in x. Since f2(x) = {a}, a majority of  
individuals prefer  a to c in x, and this is also true in x'. Hence,  f2(x') ~ {c} for 
any x ' E S  x. Suppose that f 2 ( x ' ) =  {b} for some x '  in Sx; this implies that the 
number  of last positions of  b is smaller than the number of last positions of c in x' ,  

P f i.e. n25 < nt3. However ,  the definition of x '  lmphes" " n25' >~ n2s and hi3' + n~ = nl3 + 
n4 (since the majority relation between b and c is unchanged).  From these 
relations we deduce that n13-I-n4 > n25, which contradicts (/3). Hence,  b cannot 
be the winner in x '  and we conclude that f2(x') = {a} for every x '  E S~. Replacing 
b by c in the above analysis, we obtain a similar conclusion for the case where (3') 
holds. 

To prove the sufficiency part of Proposition 2, we assume first that (n46 + n3'> 
n / 2  and n 2 5 < n l 3 + n 4 ) .  Consider a situation x '  = ( n ' l , . . .  ,n'6) defined in the 
following way: n '  1 = nx, n[ = n 2, n[ = n 3 + n 4 = 0, n~ = n 5 and n~ = n 6. Observe 
that n4 > 0 (if n a = 0, then n25 < n13 and, as a result, c and not b would have been 
removed in the first round,  which would have led to b and not a being the winner 
in the second round).  Thus, from x to x',  some individuals (at least one) change 
their preference orders from bca to bac. Hence x '  belongs to Sx. Moreover ,  we 

P I ' and ' -t- n 4. Since < + ha,  we obtain n25 < n l 3  , and have n25 = n25 /213 "~/213 /225 /213 
from this inequality the result is that c is eliminated in the first stage under  f2 in x '  
(recall that a cannot be eliminated in the first stage in x ' ) .  Since n 3 +/2'4 +/26 = 
n 3 + n 4 + n 6 > n / 2  by hypothesis, we finally obtain f2(x') = {b}, i.e. paradox M 1  
occurs. Let  us assume now that (n46 + n 5 > n / 2  and n13 < n2s + n6) and consider a 

t situation x '  defined as follows: n '  t = nl ,  n '  2 = n2, n 3 = n3, n 4 = n 4 ,  n 5 = n 5 + n 6 and 
n 6 = 0. We then obtain f2(x')  = {c}, and this completes the proof. Q .E .D.  

Corollary 2. 

n(2n 4 -- 15n 3 + 60n 2 -- 180n -- 432) 
V21(n) - 36(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) 

and  lim,__,® V21(n ) = 1/18 --- 0.0556. 

f o r  n ~ {24, 36, 48, 60 . . . .  } 

The proof  of this result is easy and very similar to the proof  of Corollary 1. 
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2.2. Vulnerability to paradox M2 

We now turn to the study of paradox M2, or the less-is-more paradox. We begin 
by characterizing the situations for which the plurality run-off system fl is 
vulnerable to M2. 

Proposition 3. Under f l ,  a situation x = (n 1 . . . . .  n6)  such that f l (x  ) = {a} can give 
rise to paradox M2 if  and only i f  

(nt2 < n/3)  
and 

[(n34 > n12, n 4 > n12 - n56 and n12 + n 2 < n/2)  or 
(n56 > nl2 ,  n 6 > n12 -- n34 and nl2 + n I < n /2 ) ] .  

Proof. See Appendix A. 

Corollary 3. 

V12(n ) = 
n(17n 4 - 495n a + 4200n 2 -6480n  - 24192) 

864(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) 
for  n ~ {24, 36, 48, 60 . . . .  } 

and limn_,® V12(n ) = 17/864 ~ 0.0197. 

The proof follows closely the proof of Corollary 1. 
The final proposition characterizes those situations for which f2 is vulnerable to 

M2. 

Proposition 4. Under f2, a situation x = (n t . . . . .  n6)  such thatf2(x ) = {a} can give 
rise to paradox M2 if  and only i f  

n46 > n/3  
and 

[(n46 > n25 and n46 + n 4 > n l2 )  or (n46 > n13 and n46 + n 6 > n /2 ) ] .  

Proof. See Appendix A. 

Corollary 4. 
n(7n 4 + 30n 3 - 600n 2 + 6048) 

V22(n) - 108(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) 

and lim,_,® V22(n ) = 7/108 ~ 0.0648. 

for  n ~ {24, 36, 48, 60 . . . .  } 
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Table 2 
Vulnerability 
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of f~ and f2 to monotonicity paradoxes 
Paradox M1 Paradox M2 

n V.(n) v~(n) v~(n) v,~(n) 
24 0.01152 0.02274 0.00202 0.03739 
36 0.01936 0.03036 0.00493 0.04591 
48 0.02439 0.03518 0.00723 0.05046 
60 0.02781 0.03848 0.00898 0.05237 
72 0.03027 0.04087 0.01031 0.05516 
84 0.03213 0.04267 0.01136 0.05654 
96 0.03357 0.04408 0.01220 0.05757 

108 0.03473 0.04522 0.01289 0.05837 
120 0.03568 0.04615 0.01347 0.05901 
132 0.03647 0.04693 0.01396 0.05954 
144 0.03714 0.04759 0.01437 0.05998 
156 0.03771 0.04815 0.01473 0.06035 
168 0.03821 0.04864 0.01505 0.06067 
180 0.03864 0.04907 0.01532 0.06094 
192 0.03903 0.04945 0.01557 0.06119 

Limit 0.04514 0.05556 0.01968 0.06481 
Note: .f~, plurality run-off system; f2, anti-plurality run-off system. 

Proof.  Omitted.  

Table  2 gives the V~j(n) values for each i E { 1 , 2 } ,  j E { 1 , 2 }  and n E 
{24, 34, 48 . . . .  ,192}. These figures show that the proport ion of situations that 
can give rise to monotonicity paradoxes increases with the number  of voters, 
ranging from 0.2% to 4.5% for the plurality run-off system f~ (according to the 
number  of individuals and the paradox),  and from 2% to 6.5% for the anti- 
plurality run-off system f2. Hence,  f~ appears to be less vulnerable than f2, 
especially when we consider paradox M2.  Comparing ft and f2, we find that f2's 
vulnerability to M 2  is greater by a factor of 3.2 when the electorate is large and 
by a factor of  18.5 when the election involves 24 voters. 

3. Extensions 

The analysis we have presented in the preceding section can be extended in at 
least three directions. 

3.1.  Globa l  vulnerabil i ty  

Our results allow us to calculate a global  measures for the vulnerability of f~ 
and f2 to monotonicity paradoxes, i.e. a measure that takes into account both M I  
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and M2. Let ~(n) be the global vulnerability of f,., i = 1, 2. In what follows we 
compute the limiting values 171(~) and t72(~). Let p / =  n//n be the proportion of 
individuals with the preference order /': a situation is now a vector p = 
(P~, • • •, P6) with p/I> 0 and ~ pj = 1. From Propositions 1 and 3 it is easy to see 
that there exist situations in which both paradoxes M1 and M2 can occur under 
fl. Moreover, these situations are characterized by the following inequalities when 
the winner is a (we use the notation p~j =Pi +Pj):  

(P34 <Pl.2, Pt2 <P56, P12 -I-p3 > 1/2, P34 +P6 > 1/2, P34 > 1/4, PI2 < 1/3, 
P6 >P12 --P34 and P12 +Pl  < 1/2) ,  (5) 

or 

(P56 <P12, P12 <P34, Pl2 +P5 > 1/2, P56 +P4 > 1/2, P56 > 1/4, Pt2 < 1/3, 
P4 >P:2 -P56 and P12 +P2 < 1/2).  (6) 

Since E p / =  1, the set of inequalities (5) is equivalent to 

1/4 <P34 < 1/3, P34 <Pt2 < 1/3, 1/2 -Px2 <P3 <P34, 
1/2 -Pa4 <P6 < 1 -P34 -P~2 and 0 <P l  < 1/2 -P12 • (7) 

When n tends to infinity, the proportion of situations that satisfy these 
inequalities can be computed by evaluating the following multiple integral over 
the domain defined by (7): 

fffff120dp3, dp, dp3dp dp,. 
We obtain 17/13824. By observing that 

(i) the proportion of situations that verify (5) is equal to the proportion of 
situations that verify (6), and 

(ii) a, b and c are symmetric in the set of all possible situations, 
we conclude that the proportion of situations that can give rise to both M1 and 
M2 under fl is given by (2 x 3 x 17)/13824= 17/2304. Hence, from the corol- 
laries following Propositions 1 and 3, we obtain 

17~(o0) = 13/288 + 17/864 - 17/2304 = 397/6912 ~ 0.0574. 

We now consider the global vulnerability of fz. Starting from Propositions 2 and 4 
and using a similar approach as above, we obtain 

172(00 ) = 1/18 + 7/108 - 5/1296 = 151/1296 70.1165.  

Hence, for large electorates, the global vulnerability of f2 to monotonicity 
paradoxes is twice as high as the global vulnerability of fl. 
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3.2. Monotonicity paradoxes and strategic manipulation 

It is important to emphasize that the results given here evaluate the proportion 
of situations that are potentially paradoxical: paradoxes occur if and only if some 
individual preferences are modified in a specific way. However, are such 
modifications likely to occur? In other words, can we find rational arguments that 
justify these modifications? If the answer is negative, then monotonicity paradox- 
es remain nominal and their practical relevance is limited. We show in this 
subsection that such rational (strategic) arguments can, indeed, be found in some 
cases, but not in every case. 

Consider Example l(i) and assume that preferences are sincere in situation x. 
The three individuals who change their preference orders prefer b to a. Since this 
modification makes b the winner, they have a good reason for doing so. In this 
case the occurrence of paradox M2 can be expected. On the other hand, the two 
individuals who change their preferences in Example l(ii) prefer a (the winner in 
x) to b (the winner in x"). In such a case it is difficult to find a convincing 
argument that justifies a change in preference orders, 

One can easily prove (see Appendix B) the following assertion for three- 
alternative elections: under fl (respectively f2), every situation that can give rise to 
M2 (M1) involves a modification in individual preferences that can be justified by 
strategic arguments. A similar conclusion holds neither for f2 and M2 (as shown by 
Example l(ii)), nor for f~ and M1, i.e. strategic arguments can be found in some 
cases, but not in every case. 

Thus, if individuals are rational and perfectly informed, the proportion of 
situations in which monotonicity paradoxes are likely to occur in three-alternative 
elections with large electorates is at least 1.97% for fx and at least 5.56% for f2. 
This result suggests that manipulation possibilities are more frequent under f2 
than under f~. This is in accordance with the conclusions of LepeUey and Mbih 
(1994), who compare the vulnerability of these two voting systems to strategic 
manipulation by coalitions of individuals. 

3.3. Single-peaked preferences 

Our calculations assume that every voting situation is equally likely to occur. In 
some political or economic contexts such an assumption is questionable, in view 
of the fact that some preference rankings appear to be very unlikely. One 
common way to take this into account is to assume that preferences are single- 
peaked. When preferences are single-peaked and three alternatives are in 
contention, every voter agrees to consider that (at least) one of these alternatives 
is not the worst. Without loss of generality, we assume that this alternative is b. 
Hence, in our framework, the single-peakedness assumption implies n 2 = n 5 = 0. 
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Table 3 
Vulnerability of ft and f2 to monotonicity paradoxes with single-peaked preferences and large 
electorates (n --, m) 

Paradox M1 Paradox M2 

ft 0.0174 0 
f2 0 0.0463 

Using this observation and Propositions 2 and 3, it can be shown (see Appendix 
C) that with single-peaked preferences 
• M 2  never  occurs under  f~; 
• M1 never  occurs under  f2. 
Now, let us assume that every single-peaked situation is equally likely to occur. 
Under this assumption, and following an approach developed by Lepelley (1993), 
it is easy with the help of Propositions 1 and 4 to calculate the vulnerability of f~ 
to paradox M1 and the vulnerability of f2 to paradox M2.  For large electorates 
(n ~ oo), we obtain 5/288 and 5/108, respectively. Table 3 summarizes the results. 

It is clear from Table 3 that the single-peakedness assumption significantly 
reduces the vulnerability of both f~ and f2; and it turns out that f~ performs better 
than f2, also when preferences are single-peaked. 

4. Conclusion 

This paper investigates the likelihood of monotonicity paradoxes in run-off 
elections. Although the results given here are limited to the three-alternative 
cases, they are sufficient to suggest two main conclusions. First, it seems difficult 
to claim that monotonicity paradoxes are extremely rare and have no practical 
relevance (at least when the electorate is large). Secondly, the plurality run-off 
system appears to be less vulnerable to these paradoxes than the anti-plurality 
run-off system, and this conclusion proves an argument for choosing the former 
system rather than the latter. 
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Appendix A: Proofs of Propositions 3 and 4 

Preliminaries 

Let x be a situation such that alternative a is the winner under a run-off point 
system (fl  or f2). Two cases can be distinguished, according to the alternative that 
is eliminated in the first stage (b or c). In what follows we assume that c is 
eliminated first (the proofs are similar for the case where b is eliminated first). 
Given this assumption, it is easily seen that the condition in Proposition 3 reduces 
to 

(nl2 < n/3 and n 4 > nl2 - n56 and hi2 q- n 2 < n/2) (A1) 

since, when c is eliminated first under f~, n56 >n12 is impossible and n34 >h i2  
becomes redundant (n~2<n/3 implies n34>n12 ). Similarly, the condition in 
Proposition 4 reduces to 

(n46 > n/3 and n46 + n 4 > n/2) (A2) 

since n46 > n~3 is impossible and n46 > n25 is redundant when c is eliminated first 
under f2. 

We denote by S~ (resp. S~) the set of situations obtained from x by moving 
down b (c) in at least one individual order. Observe that the definition of S~ 
together with the assumption that c is eliminated first in x imply that, for any 
x'  ~ S~, c is eliminated first under fl as well as under f2. Consequently, paradox 
M2 occurs if and only if ihere exists some x'  E S~ such that b is the winner. 

Proof of Proposition 3. 
Necessity. Given the above observation, we have to show that, if (A1) does not 

hold, i.e. if one of the following holds 
(or) n12 > n/3 
( /3 )  n4 < n12 - n56, 
(3') n12 +n2>n/2,  

then fl(x') ~ {b} for any x'  = ( n ~ , . . . ,  n6) E S~. Suppose first that (a) holds. 
t t r I Since nl2>>-nl2 for any x 'ES~ (with nq=n i +nj), it follows from (~t) that 

n't2 > n/3. Hence,  a is not eliminated first in x '  under fl .  Moreover,  a majority of 
individuals prefer a to b in x and it is also true for any x'  E S~. Hence f~(x') ~ (b} 
for any x'  E S~. Suppose next that (/3) holds. Since n~6 ~> n56 for any x'  E S~ b, we 
have n'56<--.n56+n4 and the conjunction of  this inequality with (/3) implies 

' ' >- hence Thus, a is not n56 < hi2; but from the definition of S~, n12 ~ n]2; n~6 < n'12. 
eliminated in the first stage under fl and it follows that f z ( x ' ) ~  {b} for any 

t x ' E  S~. Finally, suppose that (3") holds. Since n12 ~n12 and n 2 --->n2, it follows 
t f t f t t I ~ I from (3") that n~2+n2>n/2. Now either n56>~n12 or n56<nl2.  If n56~n12, 

w I I t 
h i2  -I- n 2 >n/2 implies n56 -t- n 2 > n / 2 ,  i.e. a majority of individuals prefer c to b; 
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I I hence, for any x '  ~ S ~ ,  b cannot be the winner. If n56 <n~2, we obtain the same 
conclusion. 

Sufficiency. Assume that (A1) holds. From x, construct a situation x '  in the 
t I I following way: nj = nj for any j ~ {1, 2, 3, 5}, n 4 = n 4 -- n12 4" n56 -- 1 and n 6 = 

n 6 + h i e  --  n56 4- 1, which is possible since by (A1) n 4 > nl2 -- n56. Clearly, x '  E S~ 
(b moves down in at least one individual preference order).  We obtain n~2 -----nl2 , 
n34=n34--n12+n56--1=n-2n12--1>-n12 since En~=n and nl2>n/3 by 
(A1); and n56 = n56 4- n12 -- n56 + 1 = nt2 + 1. Consequently,  the number  of first 
positions of a is smaller (or equal, but we exclude from consideration tied 
elections) than the number of first positions of both b and c: a is eliminated. By 
(A1), we have n12 4"n2<n/2, i.e. n'56 +n 2 <-n/2: the number  of individuals 
preferring c to b is smaller than n/2, and we conclude that f~(x') = {b}. Q.E.D.  

Proof of Proposition 4. 
Necessity. Suppose that (A2) does not hold: either n46 < n/3 or n46 4- n 4 < n/2. 

Noting that n46 ~n46,  n 4 ~<n 4 and that a majority of voters prefer a to b for any 
x ' E S  b, it is easily checked that if follows from na6<n/3 as well as from 
n46 4" n 4 < n/2 that f2(x') ~ {b} for any x '  E S~. 

Sufficiency. Suppose that (A2) holds. Observe that this implies that n46 > n3: if 
n 3 ~" n46 , t h e n  n 3 4" n4 > n46 4" n4 and we conclude by (A2) that n 3 4" n 4 > n/2, 
contradicting the fact that a beats b in the second round. Moreover ,  n46 > n  3 

implies n t > n ~ 3 - n 4 6 .  Thus f r o m  x we can construct a situation x '  defined as 
! I I follows: n 1 = n  1 - ( n l 3 - n 4 6  ) - 1 ,  n 2 = n  2 4"n13-n46 4" 1 and nj =n~ for any j ~  

( 3 , 4 , 5 ,  6}. Using the fact that n46 >n/3 by (A2), it is easily seen that a is 
t I eliminated (n~6 is higher than both n13 and n25 ) and in the second stage b beats c 

(this follows from n46 + n 4 > n / 2 ) .  Q.E.D.  

Appendix B 

Consider a situation such that a is the winner under f~. Suppose that an 
alternative other  than a---say b - -moves  down in some preference orders. Clearly, 
this change can make b a winner under f~ only if the numbers of first-place votes 
are modified, and this implies that b must move down in individual orders where 
b is ranked first. Hence,  any occurrence of M2 under f~ implies that the 
individuals who change their votes.prefer  b to a. Let  us now consider a situation 
such that a is the winner under f2. If a moves up in some preference orders,  then 
this move can make a a loser under fz only if the number  of last-place votes is 
modified. Consequently,  for M1 to occur under f2, a must move up in individual 
orders where a is ranked in last position: the individuals who change their orders 
prefer  any alternative to a. 
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Appendix C 

Observe  first that  a necessary  condi t ion for the occurrence  o f  M1 a n d / o r  M2 
u n d e r  f~ a n d / o r  f2 is that  there  exists an al ternative different f rom the winner  
which a major i ty  o f  individuals prefer  over  the winner .  Suppose  that  f l (x)  = {b} 
or  f2(x) = {b}; by the above  observat ion and the s ingle-peakedness  assump-  
t ion,  M1 or  M2 occur  only  if n ~ > n / 2  or  n 6 > n / 2  (recall that ,  unde r  the 
s ingle-peakedness  assumpt ion,  n 2 = n 5 = 0); but  this contradicts  the fact that  b is 
elected.  Hence ,  ne i ther  M1 nor  M2 can occur  when  b is the winner  and the 
pre fe rences  are s ingle-peaked.  Suppose  now that  f l ( x )=  {a}. As preferences  are 
supposed  to be s ingle-peaked,  this implies 

n l > n / 2  or (n34~nl , / ' /34~r/6  and r/46<n/2). (A3)  

M o r e o v e r ,  we obta in  f rom Proposi t ion  3 that  M2 occurs  under  f~ if and only  if 

(n~ < n/3,  n34 > n 1 and n 4 > n I - n6) 

or  ( n 6 > n l , n 6 > n l - n a 4 a n d n  l < n / 4 ) .  (A4)  

It  is s t ra ight forward to check that  (A3)  and (A4) cannot  bo th  hold. The re fo re ,  
M2 canno t  occur  unde r  f~ when  a is the winner ,  and by the symmet ry  o f  a and  c 
in the set o f  si tuations with s ingle-peaked preferences ,  the same conclusion holds  
when  c is the winner .  Similarly, it can be deduced  f rom Proposi t ion  2 that  MI 
never  occurs  unde r  f2 when a is the winner  and preferences  are s ingle-peaked,  
and  the same conclusion holds when c is the winner.  We conclude  that  when  
s ingle-peakedness  is assumed,  M2 never  occurs under  f~ and M1 never  occurs  
u n d e r  f2. 
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