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Abstract — We describe a new simple but more power-
ful form of linear cryptanalysis. It appears to break AES
(and undoubtably other cryptosystems too, e.g. SKIP-
JACK). The break is “nonconstructive,” i.e. we make it
plausible (e.g. prove it in certain approximate probabilis-
tic models) that a small algorithm for quickly determining
AES-256 keys from plaintext-ciphertext pairs exists – but
without constructing the algorithm. The attack’s runtime
is comparable to performing 64w encryptions where w is
the (unknown) minimum Hamming weight in certain bi-
nary linear error-correcting codes (BLECCs) associated
with AES-256. If w < 43 then our attack is faster than ex-
haustive key search; probably w < 10. (Also there should
be ciphertext-only attacks if the plaintext is natural En-
glish.)

Even if this break breaks due to the underlying models in-
adequately approximating the real world, we explain how
AES still could contain “trapdoors” which would make
cryptanalysis unexpectedly easy for anybody who knew
the trapdoor. If AES’s designers had inserted such a trap-
door, it could be very easy for them to convince us of that.
But if none exist, then it is probably infeasibly difficult
for them to convince us of that.

We then discuss how to use the theory of BLECCs to build
cryptosystems provably

1. not containing trapdoors of this sort,
2. secure against our strengthened form of linear crypt-

analysis,
3. secure against “differential” cryptanalysis,
4. secure against D.J.Bernstein’s timing attack.

Using this technique we prove a fundamental theorem: it

is possible to thus-encrypt n bits with security 2cn, via

an circuit Qn containing ≤ cn two-input logic gates and

operating in ≤ c log n gate-delays, where the three cs de-

note (possibly different) positive constants and Qn is con-

structible in polynomial(n) time. At the end we give tables

of useful binary codes.

A cryptosystem has “security level S” if the fastest low-
memory cracking algorithm with success probability≥ 2/3
performs work roughly equivalent to S encryptions. (Of
course, there is a high-memory cracking algorithm, which is
simply a giant lookup table of the key for every plaintext-

ciphertext pair. It would run almost instantaneously.) Any
secret key cipher with a K-bit key can be cracked by exhaus-
tive key search by performing ≈ 2K encryptions. It is a usual
design aim to try to make the security level attain this 2K

upper bound.

1 DES and AES, their demise, and
the demise of privacy generally

DES and its successor AES were the product of cryptosystem-
design competitions (1974, 2001) sponsored and judged by the
US Government and as such are the two most famous cryp-
tosystems.

DES’s obvious weakness was its short (56 bit) secret-key
length. That made it vulnerable to brute force key search.
Indeed, a DES-cracking engine was built by the Electronic
Frontier Foundation in 1998 for under $250,000; it typically
cracks DES in under 1 day.

DES also was shown by M.Matsui to be theoretically vul-
nerable to linear cryptanalysis. Matsui [49] argued that
DES would be breakable by anybody with access to 245 ran-
dom plaintext-ciphertext pairs. Matsui then confirmed [50]
his theory by implementing and successfully running his at-
tack. The bulk of the time consumption in Matsui’s attack
was simply producing the plaintext-ciphertext pairs; actually
processing them to determine key bits consumed only 20%
of the time. Reduced-round versions of DES are attackable
faster. Roughly, the number of pairs required grows exponen-
tially with the number of rounds, i.e. please raise it to the
power f , 0 < f < 1, if we are attacking a DES version with
only a fraction f of the usual number of rounds. 1

After DES’s deficiencies become too obvious, AES was thrust
upon us. AES was designed by Joan Daemen and Vincent
Rijmen [20] and in 2001 won a multiyear international cryp-
tosystem design competition run by the USA’s NIST (Na-
tional Standards Institute). It is an elegant and fast design.
And Daemen and Rijmen were aware of linear cryptanalysis
and specifically designed AES’s Sbox to resist it.

However, they were not aware (and neither were the evalua-

∗Non-electronic mail to: 21 Shore Oaks Drive, Stony Brook NY 11790.
1Later, Knudsen & Mathiassen [45] showed that by using chosen plaintexts aimed at the specifics of DES’s first round, Matsui’s attack could

be sped up by a factor of ≈ 4, and, e.g. an attack using 242 ciphertexts arising from chosen plaintexts would determine 12 bits of the key with
success probability ≈ 86%. (At that point the remaining 44 key bits could be determined using a much smaller search; the EFF’s DES-cracker
could do that in under a minute.) Junod [39] also explored refinements of Matsui’s attack, finding 241 DES evaluations would suffice to find the
whole DES key with success-probability 85%, and 239 with probability> 50%. He confirmed this by cracking DES 21 times.

2Who explicitly falsely stated that Sboxes were immune to timing attacks.
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tors at NIST2) of the fact that every cryptosystem involving
table-lookup Sboxes is vulnerable to timing attacks based
on data-dependent cache-miss slowdown behavior for lookup
tables, exhibited by modern computers. Daniel J. Bernstein
[4] in 2005 successfully mounted an attack on “open AES”
software included in “SSL.” The software ran on a remote
computer with a fixed key, which Bernstein interacted with
solely by sending it plaintexts, and getting back ciphertexts
with timestamps. His attack, which he described as “embar-
rassingly simple,” successfully determined the AES key in 1
day based on 2× 108 plaintext-ciphertext-time triples.3

As AES-defenders have observed, this is not really a flaw in
the AES as an abstract algorithm, but rather in its imple-
mentation. AES could still be made safe against Bernstein’s
attack if it were implemented in correctly-designed hardware.
However, as Bernstein explains [4], it is extremely difficult or
impossible to implement AES on commonly available com-
puters to be both (1) fast and (2) immune to this kind of at-
tack, and (3) even if you do, it could be very hard to be sure
that you have, and some person or compiler innocently “opti-
mizing the code” could destroy security, and hence Bernstein
concludes (and I agree) that for any cryptosystem purport-
ing to the great generality and applicability that AES does,
this is unacceptable! Sadly, almost every cryptosystem so far
designed has Sboxes.

But we shall show that AES also has genuine algorithm
weaknesses that have nothing to do with timing or imple-
mentation. First of all we shall argue that AES’s supposed
resistance to linear cryptanalysis is a myth.

In §2 & §3 we’ll outline an attack on AES-256 which plausi-
bly will deduce its key from a number of plaintext-ciphertext
pairs well below the claimed security level of 2256. We actually
have several claims.

1. We give an analytic method which makes it plausible
that a low-memory cracking algorithm exists, which will
(with high probability) determine AES keys (or merely
reduce the size of the key space by some power of 2)
from random plaintext-ciphertext pairs (“pc pairs”) and
the work and number of pairs required is far smaller
than AES-256’s alleged security level 2256.

2. Note: we do not actually write down this cracking al-
gorithm, and do not know what it is. We merely argue
nonconstructively that it probably exists. Our analysis
(for the first time?) makes it clear that there are really
two kinds of security level for cryptosystems – security
against nonconstructive cracks and security against ex-
plicit cracks.

3. Next, even if the above argument is somehow wrong, we
still can argue that AES and cryptosystems like it could
contain a “trapdoor” intentionally inserted by their de-
signers. (Actually, the above argument can be regarded

as making it plausible that such a trapdoor exists that
is unintentionally present. But now we are consider-
ing inserting one intentionally.) If so, then anybody
aware of this trapdoor could carry out a much faster-
than-expected attack against AES. This attack would
be fully explicit.

The two heuristic assumptions about AES needed to make
our cryptanalyses work are

1. The nonlinearities inside AES’s Sboxes behave enough
like independent random bits.

2. The “codes of the code” for AES (these are certain bi-
nary linear error correcting codes that may be associ-
ated with secret-key cryptosystems, §10) behave enough
like independently selected random binary linear codes.

There is considerable experimental evidence from many work-
ers for many cryptosystems (and also we give some theoretical
understanding of why this is true) indicating the validity of
assumption #1. But assumption #2 is far less clear.

Recently press reports and lawsuits by the EFF [23] have ex-
posed the fact that the US government has mounted a mas-
sive wiretapping and databasing effort to get a copy of every
email from anybody to anybody and store it forever. Ob-
viously, then, it is willing and able to muster huge attack
resources.

A second possible problem with AES – albeit currently no-
body really knows how to wield this one effectively (and nei-
ther do I) – is the fact that its byte-to-byte Sbox (its sole
source of nonlinearity over GF2) is just (aside from some lin-
ear transformations) the field-inversion map in GF(28). That
means every operation AES does, is a field operation in the
finite field GF(28). That means it is subject to algebraic
attacks.

It would have seemed superior to deny the cryptanalyst the
power of field operations and algebraic thinking. For exam-
ple, the RSA public key cryptosystem is crackable by any-
body who can factor large integers, and very sophisticated
subexponential-in-N -time algorithms (quadratic sieve, num-
ber field sieve, etc) have been developed for prime factor-
ization of N -digit integers. These algorithms are inherently
based on the fact that integers are a ring and the integers
modulo primes form a field. Hence, public key cryptosystems
based on elliptic curve groups [9] seem superior [46]. Because
groups offer the cryptanalyst far less to work with than fields,
nobody has yet found a way to break these systems in any-
thing below exponential time.

The possibility of algebraic attacks on AES was considered
by Schroeppel et al [24]. While admitting they had no ef-
fective attack, they demonstrated that the effect (and also

3Under a year later, Osvik, Shamir, and Tromer [54] gave a more refined attack which cracks AES in only 65 milliseconds with only 800 pairs!
But that required the attack program to be running on the same computer in parallel while monitoring timings of both the encryptor and of itself
conducting cache-using experiments, which is a less realistic scenario. (If you could do that, why not just listen to the keystrokes of the encryptor?)
Bonneau & Mironov [11] in 2006 improved Bernstein’s attack (exploiting a peculiarity of the last round of AES and employing a cache model) to
recover the AES-128 key after about 8000 timing measurements on a Pentium III running OpenSSL 0.9.8. (They also believe many other AES
implementations are attackable.) The Bonneau-Mironov attack not only is faster than Bernstein’s but also requires only ciphertext-timestamp
pairs (preferably exact to one CPU cycle and assuming the cache begins “cold”), not known plaintext. Bernstein’s attack would still work even if
other processes were running on the encryptor-computer and even if there were network delays – these would just add “noise” to the timings and N
times more noise would just make the attack take N2 times longer. But even assuming N = 109, which is a very conservative estimate in today’s
technological world, and no improvements whatever to Bernstein’s crude algorithm, Bernstein’s attack would still run in far less time than 2128

encryptions, so it definitely qualifies as a realistic “break” of AES.
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the backwards-direction effect) of R AES rounds could be ex-
pressed as a continued-fraction-like expression with R decks
and 32R terms. In particular (which they did not point out),
their formula shows the following. Suppose you somehow
know all bytes of the AES (expanded) key except one. To
crack AES, then, you could try all 256 possibilities for the
missing byte. If AES were well-designed, we would hope
there were no faster way than such exhaustive trial to de-
termine the missing byte. But – is there a faster way? For
2-round AES, setting the 1-round forward formula equal to
the 1-round backward-direction formula shows that the miss-
ing byte is the solution of a quartic polynomial equation, and
hence is obtainable using the quartic formula without any
search.4 This, while not a break of full AES, would seem
to suffice to demonstrate at least some kind of suspicion of
algebraic weakness.

AES’s current status. In view of both (a) Bernstein’s tim-
ing attack, (b) our nonconstructive argument for a cracking
algorithm, (c) the possibility of a “‘trapdoor,”we believe that

1. AES should be abandoned
2. cryptosystems provably immune to these attacks should

be investigated, and
3. our argument for crack-existence, since it is nonrigor-

ous5, should be investigated more carefully. In particu-
lar, for some artificial class C of cryptosystems, I would
like to see a full experimental investigation of our at-
tack on the members of C small enough to permit a full
investigation, followed by an attempt to extrapolate be-
havior to the large ones.

2 Linear Cryptanalysis Simplified

Consult the figure. Any cryptosystem (e.g. AES) of the sort
we are interested in cryptanalysing here may be written as
a “circuit” made of “wires,” “XOR gates” (see figure a), and
nonlinear multi-input, multi-output “Sboxes.”6 The “input”
bits are the key and plaintext, and the output bits are the
ciphertext.

Now, as in figure (c), each Sbox may be replaced by its best
linear approximating circuit (which is made purely of wires,
XOR gates, and “constant 1s”) plus “noise gates” (figure b)
attached to the outputs..

Here by “best approximation” we mean, among all Boolean
GF2-linear functions of the inputs, find the one which agrees

with each output at the most possible input configurations.
Put it there, and then add a “noise gate” to that output.

“Noise gates” are 1-input, 1-output gates which, with some
probability p (which is smaller, the better the approxima-
tion was) perform an inversion x→ ¬x, but with probability
1 − p just transmit the input unaltered. Actually, for this
to be an equivalent circuit, these inversion decisions have to
be nonrandom and in fact are governed by some nonlinear
function of the Sbox inputs (or outputs). However, the ap-
proximate probabilistic model is to model all the noise gates
as actually making independent random decisions. That is a
good model because cryptosystems are generally intentionally
designed to “look random.”

Anyway, you can either make this approximation, or not (i.e.
be exact). Either way is fine with us for the moment. We shall
be able to retain exactness all the way until the final cryptan-
alytic step.7 If you want to be approximate, then label each
noise gate with its characteristic probability value p. In fact
it will be more convenient not to deal with p, but rather with
the unbalance defined by u = |1 − 2p|. Note 0 ≤ p < 1/2
and 0 < u ≤ 1. If you want to be exact, then label each noise
gate with a description of exactly what nonlinear function of
what bits tell it when to invert.

Reversibility lemma. It is artificial to regard XOR gates
as having two “inputs” and one “output.” In fact all 3 wires
are equivalent; any two of them determine the other’s logical
state and according to the same function in all cases. Also,
is similarly is artificial to regard noise gates as having an “in-
put” and an “output.” Again both wires are equivalent and
the thing is reversible.

Noise gate mobility lemma. If you slide a noise gate along
a wire, through an XOR or other noise gate, and continue
along the wire (either wire is fine, if we go through an XOR
gate8) continuing as far as we want, then the new circuit will
be entirely equivalent to the old one. (For an example, see fig-
ure e. The top noise gate has slid down to the bottom right,
and whether it now is above or below the second gate, does
not matter.)

We also remark (although this is not needed for attacking
AES) that we also can slide XOR gates along wires and
through each other in various ways.

Noise gate unbalance lemma. The unbalance of each noise
gate will be at least 2−n assuming all Sboxes have ≤ 2n input
bits (by Rothaus [61], or as in part 6 of our MM theorem in
§6). Specific Sboxes may involve even-more-unbalanced noise
gates that this (worse Sbox designs have larger u and lead to

4Warning: The quartic formula was designed to work over the complex field and will not necessarily work over finite fields because the square
and cube roots it asks for, may not exist. (And indeed, polynomial equations over finite fields do not necessarily have solutions, albeit in our cases
a solution must exist.) However, square and fourth roots of GF(28)-elements always exist and for random field elements, cube roots exist with
probability> 1/3. So it will work with decent probability.

5It is not possible to prove secret-key cryptosystem security without first proving P 6=NP. In the other direction, it currently usually is not possible
to prove cryptanalyses will be successful without making heuristic probabilistic assumptions about the cryptosystem, which strictly speaking are
false. The present paper does not escape from either of these shackles.

6The Sboxes encapsulate the GF2-nonlinearity.
7Actually, exactness could be retained even then too, but at that point you apparently won’t be able to do much useful unless you make an

approximation. It may, however, be possible to retain exactness on just some noise gates but treating the rest probabilistically, thus improving
over a pure-approximate approach. That might be a good focus for future research.

8 But do not “go both ways” – the total number of noise gates is conserved! Also, it is not allowed to slide a noise gate past a “T-junction”
where two wires are soldered together, but that need not be an obstacle because it is possible to slide the T-junctions themselves, including through
XOR gates, provided appropriate duplicate XOR gates are then added to the circuit to generate the correct duplicate signals as in figure g. Or,
you can duplicate the noise gate and “slide it both ways” through the T-junction and up both foreign arms. Either way, this costs more gates –
but enables further sliding.
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easier-to-crack cryptosystems) but every noise gate will be at
least this unbalanced.

Piling-up lemma: Consider the scenario of figure (f), with
n noise-gates in succession along a wire.

1. If the noise-gate inversion decisions are modeled as sta-
tistically independent, then the net effect is the same
as a single noise gate with unbalance U = u1u2u3 · · ·un

which is the product of the individual unbalances. (And
again 0 < P < 1/2.)

2. But if two noise-gate inversion decisions perhaps are
dependent in a positively-correlated manner, then this
product is an lower bound : U ≥ u1u2u3 · · ·un.

3. To get at least constant confidence you know any par-
ticular key bit, it suffices to perform U−2 experiments
(if that bit is attached to an unbalance-U noise gate and
you only see the noise-corrupted bit each experiemnt).

Proof. The third claim is standard. To prove the first claim,
we first prove it for n = 2. The probability the circuit in
figure (f) yields a “1” at its output is

1/2− U/2 = P ≡ (1− p2)p1 + (1− p1)p2 = (1)

= (1/2− u2/2)(1/2 + u1/2) + (1/2 + u1/2)(1/2− u2/2) =

= 1/2− u1u2/2.

For n > 2 the proof is by induction. Now consider the case of
dependence. If the two gates are “positively correlated,” i.e.
one inverting makes it more likely that the other does, then
the same derivation as above still works except that the “=”
sign which we have written ≡ is replaced by “<.”
Q.E.D.

This lemma was stated by Matsui. Our only new contribu-
tion is the middle claim which largely explains why it is that
any real-world departures from the crude model of exact inde-
pendence, tend to help the cryptanalyst. If the cryptosystem
uses byte-to-byte Sboxes which permute their 256 inputs (and
AES does) then a noise-gate deciding to invert one Sbox out-
put tends to make it more likely some other output’s noise
gate will also invert (if the best-linear approximating map is
invertible, i.e. 1-to-1, there has to be another flip or we’ll
destroy bijectiveness). So case 2 of the lemma tends to ap-
ply and linear cryptanalysis ought to work better versus AES
than the naive probabilistic model says.

We are now ready to explain linear cryptanalysis, Our ver-
sion of it, which now makes a connection to the theory of
linear error correcting codes [47], is this.

Linear cryptanalysis (the algorithm), and the “code
of the code”:

1. Write down the equivalent circuit of the cryptosystem.
2. Replace all nonlinear Sboxes by their equivalent circuits

[best linear approx followed by or preceded by noise
gates] as in figure (c). The linear circuits all are to
be written in terms of XOR gates and constant 1s only.

3. Use noise-gate mobility to slide all the noise gates along
the wires until they reach key-bit inputs. (Note: the

topology of the wire-interconnections may make this
impossible for some cryptosystems, at least without
enormous duplication requirements caused by “sliding
through T-junctions” as in footnote 8; but it is trivially
possible for the AES cryptosystem, since each noise gate
(we locate them at the Sbox inputs) only needs to slide
though a single XOR gate to reach a key-bit, at which
point each and every bit of the [extended] key will talk
to a totally-GF2-linear circuit through exactly one noise
gate.)

4. We may now use reversibility to regard the plaintext and
ciphertext bits as the “inputs” and the key bits as “out-
puts.” If the number of key bits is less than or equal to
the number of plaintext bits then (in general) the values
of the key bits (albeit polluted by noise) will thus be de-
termined. We then just do this over and over again with
different random plaintext-ciphertext pairs each time to
average out the noise and determine the key bits with
confidence.

5. However, if the number of key bits is large enough
then they will not actually be determined by the plain-
text and ciphertext (underdetermined system, more un-
knowns than equations). But each pc-pair (for an n-bit
plaintext) will always give a set of n GF2-linear equa-
tions satisfied by the set of noise-corrupted-key-bits. We
shall describe how to handle that below.

To fix notation, say one of those n linear equations is

(K1 ⊕R1)⊕ (K5 ⊕R5)⊕ (K7 ⊕R7) = X (2)

where Kj is the jth key-bit, Rj is the “random noise” bit
from the noise-gate attached to Kj (which really is not ran-
dom at all), and X ∈ {0, 1} is the known right hand side
for that equation. The characteristic vector of this equa-
tion is 1000101 (since the 1s are in positions 1,5,7). These
characteristic vectors generate (by taking GF2-linear combi-
nations) a binary linear code (“the code of the code”). By
taking the correct linear combinations (i.e. by performing
the correct row-operations on our equations9) we can gener-
ate minimum-weight words in this code, i.e. we can replace
our equations by equations that each involve only w terms
(Kj + Rj) where w is this code’s minimum Hamming dis-
tance. For example, the sample equation we just wrote has
weight w = 3. Note that the code of the code depends purely
on the circuit-structure of the cryptosystem (using whatever
linear approximation schemes we chose) and is independent
of the particular plaintext and ciphertext we have (that only
affects the right hand sides of the linear equations).10

Now we may repeatedly do this with different random
plaintext-ciphertext pairs each time to average out the noise
and determine our min-weight GF2-linear combinations of key
bits with confidence. This constitutes gaining m bits of in-
formation about the key, which reduces the cardinality of key
space by a factor of 2m, if the cryptosystem’s circuit has m
linearly-independent min-weight equations.

By the piling-up lemma (after moving all w of the Rjs to the
right hand sides of our min-weight equations) the number T of

9It is crucial here to note that the “random” Rj bits cancel out, Rj ⊕ Rj = 0, because they actually are not random.
10Hence, the job of finding min-weight vectors in this code needs only to be done once even if, throughout our future lives, we plan to attack a

huge number of pc-pairs and AES instances with different keys. Since we are only arguing nonconstructively for the existence of a fast low-memory
cracking algorithm, we are free to assume foreknowledge of low-weight codewords.
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plaintext-ciphertext pairs you need to gain at least constant
confidence of getting any particular linear-combo’s Boolean
value right, is

T = U−2w (3)

where U is the unbalance of each noise gate and w is the
weight (number of key-bits involved in) that linear combina-
tion.

That formula was under the assumption, as in AES, that each
key-bit is attached to exactly one noise-gate with unbalance
value U (and all these unbalances are the same). Actually,
more generally, the unbalances on each bit would not neces-
sarily all be equal, in which case we would instead want to
find minimum weighted weight codewords, i.e. which min-
imize

∏

U−2
j where the Ujs are the unbalances of their bits.

Then

T =
∏

U−2
j (4)

pc-pairs would suffice.

More simply, the cryptanalyst could just ignore such bounds
and just keep monitoring the mean and standard deviation
of his bit estimates as they update, and just stop once he
feels confident enough he really knows the bits (or when he
independently verifies that he now knows the key). That way
he is not depending on approximate probabilistic models, but
instead on experiment.

Finally, let us explain the fact that one can also mount a
ciphertext-only attack on a cryptosystem this way if the
plaintexts are natural English text: there are certain Boolean
functions (and hence by Rothaus’s approximation theorem,
also GF2-linear functions) of natural English text which are
naturally unbalanced. For example spaces and the letter “e”
are very common, “q” is followed by “u” almost always, etc.
Attach such “English detector circuits” to your cryptosystem-
circuit’s “plaintext input bits” and set the detector outputs to
be 1 (really 1⊕noise of course). Now the plaintext bits are no
longer “inputs” of the circuit; the only inputs are now the ci-
phertext bits and 1s, and we can run the usual attack entirely
easily. And these attacks all are entirely friendly with special
purpose hardware.

3 Cracking AES (and easier if con-

tains trapdoor)

We’ve now seen that the complexity of breaking a cryptosys-
tem using linear cryptanalysis depends crucially and in an
exponential manner upon the minimum Hamming distance w
of the “code of the code.”

But finding – or even merely approximating – the minimum
Hamming distance of binary linear codes is, in general, an
enormously difficult task. (It is known [52] that even approx-
imating the minimum distance to within a constant factor is
not in RP unless RP=NP; and they also have hardness reults
even for finding worse-than-constant-factor approximations.)
However, it is trivially easy to create a binary linear code
which has amazingly low Hamming distance. Upon then pre-
senting that code (in the form of a random generator matrix)

to somebody else, they would quite likely experience extreme
difficulty in trying to find the small-weight words which you
already know.

Let us now consider AES-256’s binary code. AES-256 has 14
rounds encrypting a 128-bit chunk of data. Each round XORs
128 key bits with the current data bits, then runs the 16 data
bytes through bytewide Sboxes, then performs some GF2-
linear operations. (Plus, at the end, there is a final XORing.)
The Sbox thus occurs 224 = 14×16 times in the full AES-256
encryption circuit. This Sbox can be regarded as an 8-bit to
8-bit GF2-linear transformation preceded by 8 “noise gates”
that describe its nonlinearity. By taking the right GF2-linear
transformation, these noise gates can be made to have unbal-
ance U = 1/8. So AES-256 can be regarded as having an
associated [1920, 128, w] linear code (where 1920 = 15× 128).

Anybody who knew the min-weight codewords in AES’s code
could crack AES (or at least reduce the size of its keyspace
by a power-of-2 factor) with ≈ 64w plaintext-ciphertext pairs,
where w is the weight.

The crucial question is what is w? We shall discuss three
ways to estimate w:

1. An upper bound on w can be deduced from the “linear
programming bound” for error correcting codes. Using
an approximate (since asymptotic) form of that bound,
we find w.790. Obviously, if the AES-256 code’s w
really is close to that, then AES-256 would be highly
secure against our attack.

2. Under the approximate assumption that the AES-256
code behaves like a random code with its parameters,
then we can estimate w ≈ 670. Again, if the AES-256
code’s w really is close to that, then AES-256 would be
highly secure against our attack.

3. The above two estimates have been pretending there is
only one “code of the code.” Actually, the cryptana-
lyst’s freedom to choose any from an enormous number
of combinations of linear-approximations to Sbox out-
puts means that there are an enormous number of dif-
ferent AES-256 codes. What matters is the worst one,
i.e. the code which has the least w. We discuss how
to estimate that, and the indications are that wleast ≈ 1
is very small indeed, which would imply very efficient
ways to crack AES-256.

3.1 Linear programming upper bound on w

The asymptotic form of the linear programming bound for bi-
nary [n, k, d] error correcting codes (often called the “MRRW
bound” [51]11) is the upper bound in the following. It is
valid for all binary codes including nonlinear ones. (The lower
bound is the asymptotic form of the Gilbert-Varshamov lower
bound and is valid for the max-d binary linear code.)

1−H2(
d

n
).

k

n
. min

0≤u≤1−d/n
1+G(u2)−G(u2+2

d

n
u+2

d

n
) (5)

where H2(p)
def
= −p log2(p)− (1− p) log2(1− p) (6)

and G(y)
def
= H2(

1 −√1− y

2
) (7)

11The simpler “Elias bound” (Theorem 5.2.12 of [70] and theorem 34 in chapter 17.7 of [47]) is k/n.1 = H2(1/2 −
p

(1/2 − d/n)/2). It yields
w.873.
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For the AES-256 code, n = 1920, k = 128, and we find d.790.

If AES’s code’s min-distance w really achieves this upper
bound on d, then AES would be very secure against linear
cryptanalysis.

3.2 The behavior of random codes
However, since AES’s designers never explicitly discussed
this issue (and plausibly were unaware of this whole line of
thought) it seems more probable that the min-distance of a
random code with these parameters, is closer to the truth.12

In that case our initial guess at w would be slightly below the
Gilbert-Varshamov bound.

The Gilbert-Varshamov bound [72][47] argues that the best
(d-maximizing) among a large number of random [n, k, ?]
codes must have minimum distance at least d provided

d−2
∑

i=0

(

n

i

)

≤ 2n−k (8)

and with n = 1920, k = 128 this inequality is satisfied when
d = 677 but not when d = 678. (The crossover point, to one
decimal, is d = 677.5.)

We point out the following reasons why, a priori, we expect
w somewhat below the GV bound.
1. The Gilbert-Varshamov argument lower-bounds the mini-
mum distance of the best of a large set of random linear codes.
The typical member of this set will have smaller minimum
distance than an extreme member. E.g. if we ask the com-
puter to explore random general linear [62, 30, ?], [93, 30, ?],
and [124, 30, ?] codes, then we find the empirical distributions
of minimum distances in tables 3.1-3.3.

d = 4 5 6 7 8 9 10 11
# 0 0 3 19 58 20 0 0

Figure 3.1. The empirical distribution of minimum distances
d found in a sample of 100 random [62, 30, d] linear codes.
The Gilbert-Varshamov formula assures the existence of a
[62, 30, 10] code but not [62, 30, 11]. As you can see, the
GV bound (which is 10.02 to two decimal places) underes-
timates the true best-possible minimum distance (≥ 12 ac-
cording to the table [27] of linear code records) – as it must
– but overestimates the typical minimum distance (7.95) for
a random code, and indeed in these experiments the random
code never reached the GV bound in 100 trials. N

d = 14 15 16 17 18 19 20 21
# 0 1 4 32 48 15 0 0

Figure 3.2. The empirical distribution of minimum distances
d found in a sample of 100 random [93, 30, d] linear codes.
The Gilbert-Varshamov formula assures the existence of a
[93, 30, 19] code but not [93, 30, 20]. The GV bound (which
is 19.7 to one decimal) underestimates the true best-possible
minimum distance (≥ 24) – as it must – but overestimates
the typical minimum distance (17.7) for a random code, and
indeed in these experiments the random code never exceeded
the GV bound in 100 trials. N

d = 24 25 26 27 28 29 30 31 32
# 0 2 8 7 22 40 13 0 0

Figure 3.3. The empirical distribution of minimum distances
d found in a sample of 100 random [124, 30, d] linear codes.
The GV bound is 30.8; the best currently known code with
these parameters has distance 36; and the mean min-distance
empirically is 28.5. N

2. Pierce [57] showed that asymptotically for large random
codes, a probability-fraction tending to 100% of the codes
have minimum distance within a factor of 1 + ǫ of the GV
bound, for any ǫ > 0.

3. At present, despite 50 years of research by an entire com-
munity and an immense number of clever code-constructions,
nobody has been able to construct (or nonconstructively prove
the existence of) any nonzero- and nonfull-rate family of bi-
nary codes which asymptotically beats the Gilbert-Varshamov
distance bound arising from random codes by a factor ≥ 1+ ǫ
for any ǫ > 0.

4. Finally, remember that really, we are not interested in
the min-weight codeword in the AES-256 code (where weight
is number of 1-bits in the codeword), but rather we want to
minimize the “weighted weight.” Because the AES-256 en-
cryption algorithm simply XORs in the final 128 key bits lin-
early without running them through a nonlinear Sbox, the
weights on the final 128 coordinates (which is 1/15 of the
coordinates, fractionally) really should be zero because these
key bits have no noise-gates attached to them. Hence typi-
cally the weighted weight of a codeword will be about 14/15
of its ordinary weight.

3.3 The worst among a large number of ran-
dom codes

The best (or nonbest, but still good) GF2-linear approxima-
tion to a nonlinear Boolean function usually is not unique,
and indeed, according to my computer, for each of the 510
nonconstant Boolean functions F of AES’s Sbox’s 8 output
bits, there are exactly 5 different GF2-linear functions of its
8 input bits which agree with F in 144 out of the 256 cases
(this p = 144/256 = 9/16 corresponds to unbalance U = 1/8;
and the same statement is true with the words “input” and
“output” swapped everywhere in this sentence). Further, if
we are willing to accept slightly worse linear approximations
which agree in only 142/256 cases, then the number “5”grows
to “21.”

This gives the cryptanalyst tremendous freedom of choice
about which linear approximations to use. Since each Sbox
has 8 output bits and there are 224 Sboxes, there are 51792 ≈
24161 different ways the cryptanalyst could replace those
224× 8 = 1792 bits by their best-possible linear approxima-
tions – and if he were willing to employ slightly-suboptimal
linear approximations, 211792 ≈ 27871 ways.

Hence there is not just one “code of the code.” Really, AES-
256 leads to an enormous number, of order 24161 or much
more, of binary codes – and what matters when discussing
AES-256’s security level against our nonconstructive crack, is
the worst (w-minimizing) among them. Note that 24161, and

12Actually, my guess would be that the AES code actually is worse than a random code, but it is only a guess.
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indeed its square root also, both are immensely larger than
21920.

This makes it seem very plausible that the min-weight in the
worst AES-256 code is very small, of order 1. A theorem
which supports that is:

THEOREM: Suppose when you sample kz random n-bit
words, the expected number of them having weight≤ d, is
≥ 2. Then the worst (w-minimizing) among z random [n, k]
binary linear codes, will (with at least constant probability)
have min-distance w ≤ 2d.

The proof is trivial. (This theorem is probably very weak,13

but suffices for our purposes because our z is so enormous.)

So, at least under the crude approximation of the AES-256
codes as independent random codes, we expect w ≈ 1 and
AES-256 should be extremely easy for God’s low-memory
cracking algorithm to crack.

We warn the reader that this crude approximation is crude.
(E.g. the AES-codes have similar “macro-structure”and thus
are not at all “sampled independently.”) However, this has to
be regarded as the natural first stab at making such an esti-
mate, and the fact that it leads to such enormous apparent
weakness for AES is certainly troubling.

3.4 One more easy security estimate
AES-256 has 256 key bits and 128 plaintext (and 128 cipher-
text) bits. Suppose you wished to predict one key bit from
the 256 plaintext and ciphertext bits. Assuming the predic-
tion error (for a random GF2-linear predictor) behaved like a
random bit, we would expect unbalance of order 2−128. For
the best, i.e. most-biased, among the 2257 possible GF2-linear
functions of the 256 bits, we would expect14 substantially bet-
ter performance > 2−124. Therefore, just trivially predict-
ing each key bit using the best GF2-linear predictors would
suffice to determine any given key bit with constant confi-
dence (and in expectation, a constant fraction of the key bits
would become known) in equivalent work to doing 2248 en-
cryptions. This trivial argument is quite convincing to me
(independently of everything else in this paper) that AES-
256 has security level against nonconstructive cracking below
the advertised 2256 level.15 This is not a matter of the poor
design of the AES-256 algorithm, it is merely a matter of a
poor choice of parameters (key size and plaintext size) – this
argument would apply against essentially any encryption al-
gorithm with those parameters. An alternative interpretation
is that the notion that security 2K ought to be achieveable
for a K-bit key is overconfident. We now see that notion is
essentially never correct versus nonconstructive cracking.

3.5 How nonconstructive is this?
The simple high-memory cracking algorithm – a giant lookup
table of all key-plaintext-ciphertext triples – may be written

down with O(22K) encryptions worth of work for a cryptosys-
tem with N -bit plaintext and K-bit keys where we employ K
bits of plaintext to determine the key reasonably uniquely.
For AES-256 that is O(2512). There are 22K table entries. If
this algorithm were available, cracking AES would just be-
come a single table lookup. However, if bits could be stored 1
bit per atom with atoms packed at the densities available on
Earth (i.e. 1 bit per cubic Angstrom), then the table’s 2520

bits would require a sphere over 1025 lightyears in diameter
and any “single table tookup” would take far longer than the
age of the universe.

To write down our low-memory AES-256 cracking algorithm,
it suffices to do 2640

∑w
j=0

(

1920
j

)

operations. To explain that,

we could compute, using all 2128 possible plaintexts, and
all 2256 possible keys, for all 2257 possible GF2-linear func-
tions A of the 256 plaintext and ciphertext bits, and for all
∑w

j=0

(

1920
j

)

possible weight≤ w GF2-linear combinations B
of the 1920 bits of the extended key, the correlation between
A and B. We then remember the most important correlations
(e.g. with greatest absolute value). If 1 ≤ w ≤ 15 where w
is an (unknown to me) suitable upper bound on the mini-
mum weight of the words in the worst of AES-256’s “codes of
the code,” then this takes 2660 to 2765 bit-operations. Once
the crack-algorithm (i.e. the output of the preceding proce-
dure) were available, then cracking AES would take about
64w encryptions worth of subsequent work. The storage re-
quirements are tiny.

3.6 Now get paranoid

Suppose AES-256’s designers had evilly arranged matters so
that some “code of the code” (known to them) unexpectedly,
contained a remarkably low-weight word (known to them),
with say, w.10. That would constitute a trapdoor enabling
cracking it with much smaller effort 64w. If w = 10, they
could crack AES with 6410 = 260 pc-pairs. If w = 7 then
AES-256 would be as easy to crack as the cited attacks on
DES (only 242 pc-pairs needed)!

This could be the case even if the random codes approxima-
tion underlying our crude analysis in §3.3 was invalid.

3.7 Expanded key versus not – would this
really crack AES?

When I said above AES would be “cracked,” I meant, more
precisely, that a cryptanalyst could discover a high-confidence
GF2-linear relation among the 1920 bits of AES’s expanded
key. But could we determine the entire key in work ≪ 2256?

The answer is yes if enough codes of the code have enough
low weight words which are linearly independent enough. In
our original attack aimed at getting 128 linear relations, we
could have used another set of linear approximations to AES’s

13For inspirational purposes, the Gilbert-Varshamov bound may be reworded as follows: THEOREM (Gilbert & Varshamov): An [n, k, d] binary
linear code exists, if when you sample 2k random n-bit words, the expected number of them having weight≤ d − 2, is ≤ 1.

14The greatest among 2257 independent samples of a standard normal random variable will be about 19, and 19 × 2−128 > 2−124.
15Admittedly this only goes mildly below it; the reason the ideas in the rest of this paper (hopefully) achieve considerably greater power than

that is because (a) we are approximately predicting not just one key bit in isolation, but all of them at once, and the “Chinese menu effect” gives
us vastly more possible ways to possibly do that; (b) the normal-density approximation (preceding footnote) fails, massively to the cryptanalyst’s
benefit, in the low tails; (c) we use the expanded key not the key, and the circuit structure of AES, to see that considerably better approximations
than “random bits” should be available.
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Sboxes. That would be a parallel and somewhat-independent
attack of the same sort.

So we could use a second set of approximations to mount a
second attack aimed at finding a second set of 128 linear re-
lations. And a third set could be used to derive a third set
of 128 linear relations. And so on. If 15 such 128-relation
sets were found (or more for safety margin) then we’d end
up with enough linear relations – provided enough of them
turned out to be independent – to simply solve for the en-
tire extended key by solving a 1920-dimensional system of
GF2-linear equations (that would take minutes at most on a
contemporary computer).

Whether this works depends on how often the minimum Ham-
ming distances of the associated linear codes are small enough
often enough (and I have no idea what these min-distances
are; the whole attack is predicated on somebody knowing
what they are16), and how independent the obtained linear
relations turn out to be. If this could all be done with say
30 times the work needed for the original 128-relation attack,
with w = 15 it would be 30 · 290 ≈ 295 work.

Note that the estimate in §3.3 is so strong that it predicts
an enormous number of “codes of the AES code” exist with
tiny minweights, so from its point of view, at least, we do not
expect any trouble.

4 What now?

Obviously, §2’s strengthened form of linear cryptanalysis will
attack a wide variety of secret key cryptosystems, not just
AES-256, and will quite often raise the worry that there might
exist some intentionally or unintentionally inserted “trap-
door.” I currently see no feasible way for AES’s designers
to disprove the existence of this kind of trapdoor. And Bern-
stein’s cache-timing attack [4] seems applicable against es-
sentially any system that employs Sboxes. That’s a lot of
territory.

In short, almost every secret key cryptosystem yet proposed is
now busted or at least suspect. We need to design new kinds
of cryptosystems immune to both kinds of attack.

To get immunity to Bernstein’s timing attack, the obvious fix
is to get rid of Sboxes. But, more generally, we also have
to get rid of all input-dependent branches, and all operations
that are known to take time that varies depending on their
data. (For example, on many processors, multiplication, di-
vision and/or cyclic shifting by data-dependent amounts take
data-dependent runtime, with, e.g. multiplication by −1, 0,
1, or 2 being faster than a general multiplication, or cyclic
shift by 0 slots being faster than a general shift.) Bernstein
[3] therefore invented salsa20, an encryption routine which
followed the lead of Helix [25], TEA [62][75], and SHA-1 [64]
by employing only +,−,∧,∨,⊕,¬, and cyclic bitshifts by data-
independent amounts. However, it isn’t that easy:

1. SHA-1 has been broken: there is an approach to find
collisions in only 263 operations as opposed to alleged se-
curity level 280 (and indeed explicit collisions have been

produced for SHA-1’s predecessor SHA-0, Rivest’s MD5
hash function, and SHA-1 reduced from 80 to 64 rounds)
[74][68][21]. This is despite the fact that SHA-1 endured
a multiyear “certification” process.17

2. I recommend jettisoning + and − from the operation-
repertoire because it seems plausible to me that on some
processors (perhaps future ones), these operations will
take data-dependent runtime (e.g. faster to compute
x + 0 than x + y). It is known that adding two N -bit
numbers necessarily consumes order log N runtime in a
circuit model, which is inferior to wordwide bitwise ∧
and ∨ and ⊕, which consume only O(1) parallel time.

3. I do not like Bernstein’s decision to employ salsa20 as
a pseudorandom number generator, i.e. to encrypt data
by XORing it with pseudorandom bits forming an arti-
ficial “one time pad.” One time pads are not secure if
they are used twice, and Bernstein’s approach makes it
too likely that a naive user might do that.

To get immunity to §2’s strengthened form of linear crypt-
analysis and trapdoor-construction, there are several obvious
approaches... but again, a second look reveals that it isn’t so
easy:

1. Wire your cryptosystem in such a way that noise-gate
“sliding” is impeded by lots of “T-junctions.” The trou-
ble is... there can be ways to slide past T-junctions
anyway (see footnote 8) by modifying the circuit; and
how are you going to prove that no equivalent circuit is
vulnerable? And even if you cannot slide, that does not
necessarily imply that (a new form of) linear cryptanal-
ysis cannot still be used. And finally, it seems just as
easy to add more nonlinear components to a system as
to add more T-junctions, so why not do that instead?

2. Design your cryptosystem’s Sboxes to be poorly approx-
imable by linear functions, so that all noise gates have
very small unbalances. I see nothing wrong with this
idea, but we need a theory of how to build good Sboxes
from the small repertoire of allowable primitives – we’ll
develop one in §6 – and this idea alone does not yield
as much security as we would like.

3. Wire your cryptosystem in such a way that the “code of
the code” has large minimum Hamming distance. The
trouble is... there are many possible “codes of the code”
arising from different linear-approximation schemes and
“sliding” decisions – and how do we assure that they
all have large minimum distances? Again, a theory is
needed, and is provided in §6-7.

Not surprisingly, both of these theories will rest heavily on
the theory of binary linear error correcting codes [47].

5 Some useful gadgets

We shall largely operate on data (plaintext and key) via word-
wide ⊕, ∨, ∧, ¬ and cyclic bitshift (by data-independent dis-
tances) operations. These were chosen because they have con-
stant runtime. We need to build useful gizmos out of these.

16Computing them would be a large computation, but it need only be done once to provide the foundation for an arbitrary number of future
attacks on AES – and this “foundation” is entirely storable in a small number of bits. This work in any event is irrelevant because we here are only
claiming that a low-space AES-cracking algorithm exists, and for that claim it does not matter how hard it is to determine that algorithm.

17Well, so did AES...
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The unique (up to GF2-linear transformations) nonlinear
Boolean function of two input bits is AND(x, y) = x ∧ y.

If you want a balanced nonlinear Boolean function (i.e. its
output is equally likely to be 1 or 0 with random input) then
we need to use three input bits. The “Fredkin gate” (well, up
to GF2-linear transformations) is

Fred(x, y, z) = (x ∧ z)⊕ (y ∨ z) (9)

The “majority function” is

Maj(x, y, z) = (x∧y)∨(y∧z)∨(x∧z) = (x∧y)∨(z∧(x∨y)).
(10)

These are (up to GF2-linear transformations of the 3 inputs
and complementation of the 1 output, and ignoring GF2-
linear combinations of z with a Boolean function of x, y) the
only two 3-input nonlinear Boolean functions with output 1-
probability exactly equal to 50% [36].

LEMMA [Basic functions]. All three of these gates
are predictable by GF2-linear predictors with correctness
probability= 3/4, i.e. unbalance= 1/2, and that is best pos-
sible. For all three, every linear predictor more accurate than
a coin toss gets exactly 3/4 correctness rate. Further, any
linear approximant that agrees with Fred (ditto for Maj) on
more than 50% of the input configurations, has balanced er-
ror, that is, when the predictor is wrong, it is equally likely
to be a 0 → 1 error as a 1 → 0 error. All these claims are
invariant under invertible GF2-linear transformations.

Proof. In all three cases, just x is a 3/4-predictor. Exhaus-
tive search shows no linear approximant does better than 3/4
(in all three cases) and verifies the balanced error claim for
Fred and Maj. There are exactly four better-than-a-coin-toss
linear predictors for Fred(x, y, z), namely x, y, x ⊕ z, and
y ⊕ z; and also exactly four such predictors, namely x, y, z,
and x⊕ y ⊕ z, for Maj(x, y, z); and also exactly 4 predictors,
namely x, y, 0, and x⊕ y, for x ∧ y. All achieve correctness
fraction 3/4, i.e. unbalance= 1/2.
Q.E.D.

REMARK [“Differentials”]. The two-input logic gates
x∧y and x∨y are“immune to differential analysis”in the sense
that, if the 2-bit input word is XORed with some nonzero
two bit word ∆, the effect on the output bit is utterly unpre-
dictable from ∆, i.e. it has exactly 50% probability of flipping
(assuming all 4 input configurations are equally likely). But
that property is not enjoyed by Fred, Maj, and GF2-linear
functions such as x ⊕ y: changing all three Maj inputs is
guaranteed to flip the output, while changing both x and y is
guaranteed to flip Fred(x, y, z) and not flip x⊕ y.

REMARK [Fred versus Maj]. Fred is preferable over Maj
because it is easier to compute (3 operations versus 4). How-
ever, Fred has the disadvantage for some purposes that, if the
z input bit is held fixed, Fred(x, y, z) is a linear function of
the other two inputs.18

Here is a useful way to compute an arbitrary GF2-linear
function of many bits. Suppose the bits you are interested
in are the bits in words r1, r2,..., rk at which the masks m1,
m2,..., mk respectively have 1 bits. We want to compute F ,

the XOR of all these bits. Proceed thus. First compute

x = (r1 ∧m1)⊕ (r2 ∧m2)⊕ · · · ⊕ (rk ∧mk) (11)

and then perform

for n = 1 to log2 W do x← ROT(x, 2n−1)⊕ x; od;

(we assume each word is W bits long and W is a power of 2).
The final binary word x will consist of W copies of the same
bit, and that bit is the desired value F .

REMARK [Combining Sboxes with Sboxes does not
necessarily work]. If two Sboxes (on disjoint inputs) are
combined GF2-linearly, the unbalances multiply, so that (if
you keep going) you can build an n-input Sbox, n large, with
exponentially small unbalance. But if one instead combines
Sboxes using a good nonlinear Sbox to do the combining, the
performance can be far worse, only yielding power-law unbal-
ance for n large.

6 How to build highly nonlinear

Sboxes from constant-time primi-
tives

The maximization problem confronting us is: how to design
Sbox functions with maximum resistance to the attacks we’ve
mentioned, but which are as simple and fast as possible and
use only the few and proud constant-time primitive operations
we listed to open §5.

In this section we shall show how to construct Sboxes with
provably high nonlinearity (small unbalance) from binary lin-
ear error correcting codes. Of particular interest are “cyclic,”
“extended cyclic,” and “multicyclic” codes, because they lead
to fast Sboxes on computers that have “barrel shifter” hard-
ware, and often with no loss of quality because often the best
known code parameters happen to be achievable by codes of
these types.

6.1 General construction
To construct an Sbox which inputs 2n or 3n bits, and out-
puts k bits (1 ≤ k < n) such that every nonconstant GF2-
linear function of these k outputs has unbalance U with
0 ≤ U ≤ 2−d, with respect to any GF2-linear combination
of the inputs, proceed as follows.

1. Compute n “intermediate bits” by taking the AND
and/or OR of pairs of input bits (or Fredkins and/or
Majs of triples of input bits, if there are 3n inputs).

2. Compute k GF2-linear combinations of these n bits,
namely the ones specified by the rows of a k×n Boolean
“generator matrix” for an [n, k, d] binary linear code.

3. These will be the k Sbox outputs.

This construction (using ANDing at the first stage) runs in
n + (d− 1)k bit operations, each a 2-input logic gate, if each
row of the generator matrix achieves the minumum weight d
(otherwise somewhat more logic gates will be required). These

18It is important not to employ nonlinearity only in a bilinear way, e.g. such that for a fixed key the ciphertext is a GF2-linear function of the
plaintext. Such a cryptosystem would be trivial to break.
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gates may be arranged so that the number of gate-delays be-
tween any input and any output is ≤ 1 + ⌈log2(d)⌉.
Why this works. Observe that any nonconstant GF2-linear
function of the k output bits is a GF2-linear combination of
the n intermediate bits with weight (number of bits involved)
always at least d. Each intermediate bit has unbalance= 1/2,
and all intermediate bits are independent, which in view of
§2’s piling up lemma forces unbalance≤ 2−d.
Q.E.D.

REMARK [“Differentials”]. This construction (assuming
we employ AND or OR gates at the initial layer) is “immune
to differential analysis” in the sense that, if the 2n-bit input
word is XORed with some nonzero 2n-bit word ∆, the effect
on the k output bits is utterly unpredictable from ∆, i.e. all
2k possibilities are exactly equally likely for the output XOR-
difference.19

REMARK [“Avalanching”and the dual code]. If a ran-
dom generator matrix for the code is used, then this Sbox will
usually do ≈ n + kn/2 bit-operations, and changing a single
input bit will with probability 1/2 cause usually ≈ k/2 of the
k output bits to change, but with probability 1/2 will change
nothing. (The “probability 1/2” is the probability that the
intermediate bit changes, assuming all the other input bits
are random.) If a low-weight generator matrix is used then
we save work (only ≈ n+dk bit-operations) but at the cost of
reducing the avalanching: now changing a single input bit will
with probability 1/2 cause usually ≈ dk/(2n) of the k output
bits to change. For some kinds of computation-method, e.g.
if based on wordwide operations (not bit by bit), this work-
savings actually does not exist in which case the former choice
is preferable. However, when the work savings does exist it is
best to grab it because you’ll get more avalanching with less
work by using the cheaper Sbox a few more times.

The word “usually” in the last paragraph is unfortunate; we
would prefer guarantees. That can be got by using a form
of the generator matrix which has at least B one-bits in each
column; then changing a single intermediate bit always will
change at least B output bits. That kind of guarantee of-
ten happens effortlessly if we are using, e.g, double-circulant
generator matrices. Further, if we change < d⊥ intermedi-
ate bits, where d⊥ is the minimum Hamming distance of the
dual code (§10), then no matter which such intermediate-bit-
subset is selected, the output will always change. For this
reason it is desirable to choose codes whose distance and
dual distance both are large. That happens effortlessly if
we use a “formally self dual” rate-1/2 code, for example any
“nonsingular pure double circulant” code.

6.2 Linear time secure encryption theorem

THEOREM [Linear time secure encryption].
Choose an ǫ > 0. Define Cm to be the least positive root of
H2(Cm) = 1/m where H2(x) from EQ 6 is the binary entropy
function;

C2 = 0.1100278644 . . . , C3 = 0.061490470 . . . , and

C4 = 0.04169269 . . . (12)

Then there exists an infinite set S of numbers n, such that
there is an Sbox with 4n input bits and n output bits such
that every nonconstant GF2-linear function of these n out-
puts has unbalance U with 0 ≤ U ≤ 2−d with respect to any
GF2-linear combination of the inputs, where d ≥ (2C − ǫ)n.
The sets S, constants C, and amounts of computation needed
to use these Sboxes are:

1. We may take S = {all large-enough multiples of 4}, and
C = C2 and then if at least some self-dual codes from
[48] may be generated by words of asymptotically mini-
mum weight, then the computation takes ≤ (2C2 + ǫ)n2

bit operations; without needing any assumption about
weights, n2 + O(n) bit operations suffice.

2. We may take S = {all sufficiently large Artin primes},
and C = C2 and then a circuit exists that imple-
ments the Sbox using T (n) bit-operations where T (n)
is bounded for n < 100 and for larger n we may bound
T (n) via a recurrence T (n) = O(n log n)T (log2 n).

3. We may take S = {all sufficiently large numbers}, and
C = C2 and then under the assumption that matrix
products (in GF2 arithmetic) of O(n) different matrices
that each differ from the identity matrix in O(1) entries,
yield some 2n× 2n matrix “random enough” so that its
lower half generates a code obeying Pierce’s theorem
[57], then O(n) bit-operations suffice for an Sbox use.

4. We may take S = {a certain sequence with bounded
gap lengths}, and C = C3/6 (actually, more strongly,
one may take C = 0.015) and then a polynomial-time
constructible family of circuits for all these Sboxes ex-
ists. Each circuit implements its Sbox using ≤ κn bit-
operations for some constant κ.

If we instead ask for Sboxes with 8n input bits then
this is still true (now with C = C2

5/540) but also we
can make the maximum signal-delay for a bit to pass
through all the logic gates in the circuit be O(log n).
Also for Sboxes with 8n input bits we can get S =
{(2m − 1)2m}m=1,...,∞ with C = C1/2 with double cir-
culant codes, with polynomial(n) expected construction
time. These circuits can be implemented with signal-
delay O(log n), or with O(T (n)) total logic gates.

We may use this Sbox R times successively (as we will de-
scribe in §7) to build an R-round cryptosystem, R ≥ 5 (recom-
mend20 R ≥ 10), which encrypts 5n bits using a (4nR+6n)-bit
enlarged key and achieves security level≥ 22d against linear
cryptanalytic attacks.

PROOF. Before we begin the proof, we first summarize
some known existence results for rate-1/2 binary linear codes.
Pierce [57] following Gilbert and Varshamov, showed that for
all sufficiently large n, a random [2n, n] binary linear code
has minimum Hamming distance d satisfying C2− ǫ < d/n <
C2 + ǫ for any fixed ǫ > 0 with probability→ 1 as n → ∞.
MacWilliams, Sloane, and Thompson [48][55] showed that for
all sufficiently large n, a [8n, 4n, d] doubly-even self-dual bi-
nary linear code exists with C2 − ǫ ≤ d/(8n) ≤ ǫ + 1/6.
Chen, Peterson, and Weldon [15] showed that if n is an
“Artin prime” (i.e. prime such that 2 is a generator of
the multiplicative group of integers mod n) then a random

19See the earlier remark on “Differentials” in §5.
20With the 8n-input Sbox described in the final claim, we need R ≥ 9 with R ≥ 18 recommended.

Apr 2007 10 6. 2. 0



Smith typeset 2:18 22 Jun 2007 AES bust

doubly-nonsingular double circulant binary linear [2n, n] code
achieves d/n ≥ C2− ǫ with probability→ 1. This latter result
suffers from the slight flaw that it is a famous open problem in
number theory whether there are an infinite number of Artin
primes. For practical purposes this flaw is irrelevant because,
e.g. 100-digit Artin primes may readily be produced, but
for those who care, similar results but not depending on any
number-theoretic conjectures were produced by Kasami [41]
and Chepyzhov [18]. All of the above were nonconstructive ex-
istence results – i.e. the algorithms they imply for construct-
ing and verifying the codes that these theorems assure exist
in great multitudes, are computationally expensive. Construc-
tive existence results – with cheap code-constructions and ver-
ifications – were found by Sipser and Spielman [65] by using
“expander codes.” For example, theorem 19 of [65], special-
ized to the rate-1/2 case, states that there exists a polynomial-
time constructible infinite family of [2n, n, d] “expander”codes
where C2

4 − ǫ < d/(2n). An improved version of their ideas by
Barg & Zemor [2] gives (their theorem 14 specialized to rate-
1/2) the same result but now with d/(2n) > 0.026 (over ten
times larger!). Justesen in a famous 1972 paper [40] showed
that [4n, n, d] double-circulant codes (but note the 2n × 4n
double-circulant generator matrix has only half of full rank)
exist for each n of form n = (2m− 1)2m with d/(4n) ≥ C2/2,
and the generator matrix is constructible in expected time
polynomial in n.

Finally, Guruswami & Indyk [34] found (a weakened form of
their theorem 5 specialized to the rate-1/2 case) that there ex-
ists a polynomial-time constructible infinite family of [2n, n, d]
binary codes, each of which can be encoded and decoded21 in
O(n) steps, where C3/6− ǫ < d/(2n).

Spielman also gave [66] linear-time encoding algorithms (how-
ever, these are instead for [4n, n, d] codes with d/(4n) ≥
C2

5/2160; these codes also form an polynomial time con-
structible infinite family) which may be implemented in par-
allel in O(log n) stages still with only O(n) bit operations
total.

The theorem then follows from using the above facts about
codes in our above Sbox construction, with the following
notes:

1. Multiplying a binary n-bit vector by a Boolean circulant
matrix may be done using FFTs or other fast circular
convolution algorithms in O(n log n) arithmetic opera-
tions on O(log n)-bit-long numbers. (These “numbers”
can be complex with arithmetic being approximate but
carried out with enough decimal places that the answer
at the end comes out right, or elements of a suitable fi-
nite field with exact arithmetic.) These multiplications
in turn may be done using fast convolution algorithms.

2. The linear-time encoding algorithms of [34] (or of the
earlier [66]) consist of a sequence of matrix-vector mul-
tiplications using bit-vectors and Boolean matrices. We
start with an n-bit vector and end with a 2n-bit vector.
Because the matrices only differ from the identity ma-
trix on sparse sets, the total number of bit-operations

in all these matrix-vector multiplications is O(n). The
net effect is equivalent to a single matrix-vector multi-
plication of a 2n× n Boolean (product) matrix M by a
n-bit vector, albeit just doing that directly would take
superlinear time. For our purposes in constructing an
Sbox, we are not interested in encoding (and especially
not interested in decoding22). What we want is to mul-
tiply MT by a 2n-bit vector to get an n-bit output vec-
tor. But this may be accomplished by multiplying the
vector successively by all the individual matrices in the
product defining M , albeit taking the factors in reverse
order and transposed.

3. For the parallel log-time claim we need that the num-
ber of multiplicand matrices is O(log n) and that each
matrix-vector multiplication may be done in O(1) par-
allel time because the number of nonzero entries in each
row and column is bounded.

The proof of the final claim about cryptosystems (not just
about Sboxes) will be deferred to §7.
Q.E.D.

This theorem seems the final word at least as far as asymp-
totic behavior is concerned and aside from the precise values
of the constants – obviously linear time is best possible, secu-
rity 2O(n) is then best possible, and logarithmic parallel time
also is best possible for any Boolean circuit made of 2-input
logic gates whose output depends on all n of its inputs.

However, real-world cryptographers are highly concerned
about nonasymptotic behavior for highly specific input sizes,
and they care about keeping constant factors small, and pro-
gramming it on real machines whereupon what matters is not
the number of bit-operations, but rather the number of ma-
chine instructions. Most computers can perform word-wide
Boolean operations and cyclic shifting of entire words in a
single instruction, for, e.g. 32-bit-wide words. That leads us
to consider...

6.3 Cyclic codes and their friends
Let us now consider cyclic, extended cyclic, and multicyclic
binary linear codes. A set of n-bit words is a “cyclic code” if
every cyclic shift of every codeword is also a codeword.

There is an elegant theory [47][56][19][42][17] which unfortu-
nately has never been stated entirely in one place, that makes
it possible to find the best cyclic codes much more quickly
than a naive exhaustive search. To recapitulate its essen-
tials, codewords correspond to their “generator polynomials”
(e.g. 011001 ↔ x + x2 + x5), and cyclic shifting of an n-
bit codeword corresponds to multiplying its polynomial by
x modulo xn − 1 mod 2. A cyclic linear code is an “ideal”
of polynomials modulo xn − 1 mod 2 and may be proven to
consist exactly of multiples of a single “generator polynomial”
(“principal ideal”). Then the dimension k of the cyclic code
generated by P (x) is k ≥ n − deg(P ) with equality for the
minimum-degree generator. To find all equivalence classes
of cyclic codes with n bits it suffices to investigate only the

21Actually their decoding claim only pertains to errors with few-enough erroneous bits – we cannot decode efficiently out to the full code-distance,
only to the “design distance” – but that shall be irrelevant for us.

22The fact that Spielman et al have efficient decoding algorithms, improving versus naive exponential-time decoding algorithms, is irrelevant to
us. All we need is their fast encoding algorithms. Much earlier work – in the 1970s – by Dobrushin et al showed the existence of good code families
with linear time encoders.
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generators that are factors (mod 2) of xn − 1 (a tremendous
reduction of the search space). Further, it is possible to avoid
needing to factor this polynomial by using the theorem that
every length-n cyclic code is generated by23 exactly one idem-
potent polynomial p(x), i.e. one obeying p2 = p mod 2, and
the theorem that every idempotent is of the form

∑

j∈S xj

where the set S is closed under mod n multiplication by 2.
All possible such subsets S of {0, 1, 2, . . . , n − 1} are readily
exhaustively enumerated and they are in 1-to-1 correspon-
dence with the idempotents and hence with the cyclic codes.
Further, given a generator it is possible to find a good lower
bound (the “BCH bound” [47][56][60]) on the min-distance
of the cyclic code that it generates. The BCH bound may
be evaluated very quickly from the roots in GF(2m), where
m > 1 is chosen so that n divides 2m − 1, of the generator
polynomial.24

It is also possible to find low-weight codewords (i.e. good up-
per bounds) more quickly than a naive exhaustive search (see
the lemma in [19]). Using these techniques, every binary lin-
ear code record that arises from a length-n cyclic code with
n ≤ 130 has been found [14][58][63], although the reader is
warned that (irritatingly) these authors did not provide the
codes in fully explicit form and it often is not trivial25 to get
them.

A particularly useful kind of cyclic code for us are the “binary
narrow sense BCH codes” (BNSBCH) [47][56][60]. These are
length-n cyclic codes (n ≥ 3 odd) specifically designed to have
a large BCH lower bound ℓ (which, it turns out automatically
without loss of generality also is odd) on their minimum dis-
tance. Let m > 1 be the minimum integer such that 2m−1 is
divisible by n. Let w be a primitive root of unity in the finite
field GF(2m) with 2m elements i.e. zu 6= 1 if 1 ≤ u < 2m − 1
but zu = 1 if u = 2m − 1. See [76][77] for tables of prim-
itive roots. Then y = z(2m−1)/n is a primitive nth root of
unity. Then the polynomial p(x) whose roots are yk2j

for k
odd with 1 ≤ k ≤ ℓ−2 and integer j ≥ 0 (note: this set is not
intended to contain any repeated roots; so please eliminate
all duplicates before using it) automatically has coefficients
in GF(2m) which in fact, magically, lie in GF(2). This poly-
nomial generates the BNSBCH code of odd length n, dimen-
sion n − deg(p), and odd “designed distance” ℓ. BCH codes
are rather annoying to construct due because you need to do
polynomial arithmetic over, and have primitive elements for,
(sometimes large) finite fields. Fortunately

1. The most important BNSBCH codes are the ones with
length n = 2m − 1 (called “primitive” BCH codes) for
which the finite field is the smallest and the construc-
tion task is the easiest. Table 9.1 of [56] gives primitive
BNSBCH code parameters (with designed distances; no
generators are given) for all m ≤ 10.

2. A large table of BNSBCH codes will be available elec-
tronically with the electronic version of this paper.26

The “extension” of a linear [n, k, d] code with d odd is the
[n + 1, k, d + 1] code that arises by adding an overall parity
check bit.

A set of n-bit words is a “quasicyclic code with skip s” if every
cyclic shift by s steps of every codeword is also a codeword.
For our purposes, quasicyclic codes are best reinterpreted as
“multicyclic codes”with s different cycles. We shall be partic-
ularly interested in “multicirculant” codes whose k× n gener-
ator matrix consists of n/k ≥ 2 different k × k circulant ma-
trices, and we shall be particularly interested in the “multiply
nonsingular” case when all of these circulants are invertible
over GF2.

6.4 Sboxes from extended cyclic codes
Because most (all?) computers have even wordlengths while
cyclic codes with even wordlengths are poor, it is best to focus
on extended cyclic codes.27

A good Sbox which inputs two W -bit words A, B and outputs
k bits may be built from an [n, k, d] cyclic code with n = W−1
odd, 1 ≤ k < n, as follows. First, compute intermediate bits
via y = A ∧ B where ∧ denotes wordwide bitwise ANDing.
(One may also employ OR, or with three input words A,B,C
one could employ Fred or Maj, and it is permissible to XOR
y with any constant word before using it.) Let b be the W th
bit of y. Then compute28

M = y⊕ROT′(y, g1)⊕ROT′(y, g2)⊕· · ·⊕ROT′(y, gj) (13)

Here ROT′(s, v) denotes the result of cyclically shifting the
W − 1 bits of s by v spots in a cycle of length W − 1 (the
prime indicates the exclusion of the W th bit b) and the gs are
integer constants arising as the exponents in the generator
polynomial

1 + xg1 + xg2 + · · ·+ xgj (14)

of the cyclic code modulo xn − 1, where j is even. Now the
k output bits are the first k bits of M , after each is XORed
with b.

This Sbox will achieve unbalance U = 2−d−1.

EXAMPLE. Take the [255, 71, 59] cyclic BCH code (gen-
erator in our table 9.2), which [43][1] actually has distance
61. Extend it with a parity bit to yield a [256, 71, 62] code.
That yields a 512-input 71-output Sbox with all unbalances
U ≤ 2−62. It contains 4587 logic gates assuming a min-weight
generator exists.29 There are ≤ 7 gate delays between each
input and each output. Also this Sbox may be implemented
in software doing W gate operations at once on a machine

23Adding or multiplying two idempotent polynomials mod 2 yields another.
24Further, BCH-like bounds superior to BCH’s original bound but more complicated, are available [71]. These seem to have remained largely

unused by the people who keep track of coding theory records. That is unfortunate because probably a large number of new-record distance bounds
would result if they were used.

25The work needed is tiny compared to the work these authors did, but generally too large to do without a computer, and it’s a lot of programming.
26http://math.temple.edu/∼wds/homepage/works.html #100.
27 One could also consider “shortened” and “punctured” cyclic codes. For example, the [257, 241, 114] cyclic 16th-power residue code (generator

polynomial=x16 + x13 + x12 + x10 + x8 + x6 + x4 + x3 + 1) has a dual which is a [257, 16, 114] cyclic code. From it we get [256, 16, 113] and
[256, 15, 114] codes. One could also take the subcode of the cyclic [257, 129, d] quadratic-residue code that is 0 in the omitted coordinate, to get a
[256, 128, d] code (here d is not known but 17 ≤ d ≥ 44).

28⊕ denotes wordwide XOR.
29Long-enough BCH codes are always generated by a min-weight word [44].
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with W -bit-wide words. The first 64 outputs of this Sbox
(only need 4709 logic gates for that) can be used R times suc-
cessively (as we will describe in §7) to build an R-round cryp-
tosystem, R ≥ 9 (recommend R ≥ 18 or 27), which encrypts
576 bits using a (512R + 640)-bit enlarged key and achieving
security level≥ 2124 against linear cryptanalytic attacks.

EXAMPLE. Take the [255, 65, 63] Tjhai-Tomlinson cyclic
code [69] (generator in our table 9.2). Extend it with a par-
ity bit to yield a [256, 65, 64] code. That yields a 512-input
65-output Sbox with all unbalances U ≤ 2−64. Ignore one of
the outputs so we only have a 64-output Sbox. Then it con-
tains 4288 logic gates assuming a min-weight generator exists
and then there are ≤ 7 gate delays between each input and
each output. Also this Sbox may be implemented in software
doing W gate operations at once on a machine with W -bit-
wide words. The first 64 outputs of this Sbox can be used
R times successively (as we will describe in §7) to build an
R-round cryptosystem, R ≥ 9 (recommend R ≥ 18 or 27),
which encrypts 576 bits using a (512R+640)-bit enlarged key
and achieving security level≥ 2128 against linear cryptanalytic
attacks.

EXAMPLE. Take the [455, 152, 69] cyclic BCH code defined
by the generator word (given as 76 hexadecimal digits)

87E53AC6 160391A1 FD365610 6DA866B5 C12B864D

CC23E413 00EEA8B9 5267D182 A185B835 35DD. (15)

Extend it with a parity bit to get a [456, 152, 70] code.30

This yields a 456-input 152-output Sbox with all unbalances
U ≤ 2−70. It contains 10944 logic gates assuming a min-
weight generator exists. There are ≤ 8 gate delays between
each input and each output. Also this Sbox may be imple-
mented in software doing W gate operations at once on a
machine with W -bit-wide words. The outputs of this Sbox
can be used R times successively (as we will describe in §7) to
build an R-round cryptosystem, R ≥ 7 (recommend R ≥ 14
or 21), which encrypts 1064 bits using a (912R + 1216)-bit
enlarged key and achieves security level≥ 2140 against linear
cryptanalytic attacks.

EXAMPLE. Take a [511, 175, 93] cyclic BCH code, with gen-
erator

185749DE CF747EFF 4749F011 8BE9914C 0ADC7233

3B272FC6 EEB7F0FB 7604D328 59457C7E C54C7B2E

86905. (16)

This actually [1][43] has distance 95 (exceeding its designed
distance by 2). Extend it with a parity bit to yield a
[512, 175, 96] code. This yields a 1024-input 175-output Sbox
with all unbalances U ≤ 2−94. It contains 16787 logic gates
assuming a min-weight generator exists. There are ≤ 8 gate
delays between each input and each output. Also this Sbox
may be implemented in software doing W gate operations at
once on a machine with W -bit-wide words. The first 171 out-
puts of this Sbox can be used R times successively (as we
will describe in §7) to build an R-round cryptosystem, R ≥ 7
(recommend R ≥ 14 or 21), which encrypts 1195 bits us-
ing a (1024R + 1366)-bit enlarged key and achieving security
level≥ 2192 against linear cryptanalytic attacks.

EXAMPLE. Take a [511, 103, 123] cyclic BCH code, with
generator

1F1102FB 8DEEAF8D B9AD06DA 49CBD838 3CA3DB40

B8D5622E BCF7183B 6EF3A918 4B19732C DE89FB14

5901082F 93CFADF1 C1217B5. (17)

(18)

This actually [1] has distance 127, exceeding its designed dis-
tance by 4. Extend it with a parity bit to yield a [512, 103, 128]
code. This yields a 1024-input 130-output Sbox with all un-
balances U ≤ 2−128. It contains 17022 logic gates assuming
a min-weight generator exists. There are ≤ 8 gate delays be-
tween each input and each output. Also this Sbox may be
implemented in software doing W gate operations at once on
a machine with W -bit-wide words. The outputs of this Sbox
can be used R times successively (as we will describe in §7) to
build an R-round cryptosystem, R ≥ 11 (recommend R ≥ 22
or 33), which encrypts 1127 bits using a (1024R + 1230)-bit
enlarged key and achieving security level≥ 2256 against linear
cryptanalytic attacks.

6.5 Sboxes from multicyclic codes
We define an Sbox called “MM.”

MM Definition. MM first computes t = A∨B, x = A ∧B,
y = C ∧D, z = C ∨D, and then

MM(A, B, C, D) = (19)

x⊕ ROT(x, g1)⊕ ROT(x, g2)⊕ · · · ⊕ROT(x, gk)

⊕y ⊕ ROT(y, h1)⊕ ROT(y, h2)⊕ · · · ⊕ROT(y, hj)

except that in this formula any subset of the ys may be re-
placed by zs and also any subset of the xs may be replaced
by ts. Here ROT(s, v) denotes the result of cyclically shift-
ing the W bits of s by v spots and the gs and hs are in-
teger constants with 0 < g1 < g2 < · · · < gk < W and
0 < h1 < h2 < · · · < hj < W .

THEOREM [MM Properties].

Let d
def
= j + k + 2. Suppose the gs and hs are chosen so that

a [2W, W, d] linear binary code (i.e. wordlength 2W , dimen-
sion W , and minimum Hamming distance d) is generated by
the W × 2W matrix consisting of a W ×W circulant with
1s in its first row in positions given by 1, g1, g2, . . . , gk and a
second W ×W circulant with 1s in its first row in positions
given by 1, h1, h2, . . . , hj. Also suppose that some subset of
the ys (consisting of half of them, “half” meaning more pre-
cisely either ⌊j/2⌋ or ⌈j/2⌉) are replaced by zs and also some
subset (also half) of the xs by ts. Finally suppose that the
patterns of these replacements are such that any of the 4 thus-
defined subsets (perhaps cyclically shifted mod W ) intersects
any other, (no matter which cyclic shifts mod W are chosen,
so long as they aren’t the same) in such a way that their
symmetric-difference set (elements in exactly one of the two
intersecting sets) always has cardinality ≥ cab where the sub-
scripts a and b are each either “g” or “h” and indicate from
what kind of generator the two subsets came from.

Then MM has these properties:
30The distances 69 and 70 here are only lower bounds on the true distance d; if d is larger then better security levels will result than what we

shall say.
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1. MM(0, 0, 0, 0) = 0.
2. [Time-reversal symmetry].

MM(A, B, C, D) = MM(B, A, C, D) = MM(A, B, D, C).
3. [Bit counts]. MM is a function of 4W input bits that

produces W output bits.
4. But each output bit depends on exactly 2d input bits.
5. [Nonlinearity]. Let L(A, B, C, D) be a GF2-linear func-

tion of the same 4W input bits. Any GF2-linear com-
bination of MM’s W output bits, is a Boolean-valued
function of its 4W input bits which disagrees with L in
at least a fraction 1/2−1/2d+1 of the 24W input config-
urations. (Indeed this will always be the exact number
of disagreements or agreements.)

6. [Optimality of nonlinearity]. The preceding two claims
are best possible; i.e. for any Boolean function F of 2d
input bits, there exists a GF2-linear function L which
disagrees with F on exactly a fraction ≤ 1/2 − 1/2d+1

of their input configurations.
7. [Everything involves everything]. If the underlying

double-circulant binary linear code is doubly nonsin-
gular (that is, both circulants are invertible matrices
over GF2) then every nonconstant GF2-linear function
of MM’s output bits, involves (when expressed as an
XOR of ANDs of pairs of bits) bits from both A,B and
from C,D.

8. [Expansion I]. Changing any single bit of A or of B
causes at least ⌊k/2⌋ output bits to change.

9. [Expansion II]. Changing any single bit of C or of D
causes at least ⌊j/2⌋ output bits to change.

10. [Expansion III]. Changing any two bits of A ⊕ B (by
changing exactly two input bits) causes at least cgg out-
put bits to change.

11. [Expansion IV]. Changing any two bits of C ⊕ D (by
changing exactly two input bits) causes at least chh out-
put bits to change.

12. [Expansion V]. Changing any one bit of C ⊕D and one
bit of A⊕B (by changing exactly two input bits) causes
at least cgh output bits to change.

(end of theorem.)

REMARK [Multicyclic codes]. One could also reach even
better properties, at the cost of higher complexity, by using
multi-circulant (“quasi-cyclic”) codes to build MM functions
with more input words. E.g.

MM′(A, B, C, D, E, F ) = (20)

w ⊕ ROT(w, f1)⊕ ROT(w, f2)⊕ · · · ⊕ ROT(w, fk)

⊕x⊕ ROT(x, g1)⊕ ROT(x, g2)⊕ · · · ⊕ROT(x, gk)

⊕y ⊕ ROT(y, h1)⊕ ROT(y, h2)⊕ · · · ⊕ROT(y, hj),

where w = E∧F , would be related similarly to triple-circulant
codes.

REMARK [Balanced Sboxes]. The theorem’s function
MM, while fine in many ways, is not exactly“balanced.” That
traces to the underlying use of the unbalanced nonlinear AND
and OR functions in the definitions of t, x, y, z. If you want
balance, then instead define

x = Fred(A, B, C), y = Fred(D, E, F), (21)

say, where now MM is a function of six words A, B, C, D, E,
F . Then every output bit (and every GF2-linear combination

of output bits) will be a balanced nonlinear Boolean function,
such that every GF2-linear approximant to it still will have
error fraction ≥ 1/2 − 1/2d, and further, every GF2-linear
approximant that is a better predictor than a fair coin will
exhibit balanced error as in the lemma in §5.

Proof. Claims 1-3 and 8-12 are immediate consequences of
the definitions. Claim 6 is a standard known fact about 2d-
input Boolean functions (functions meeting the bound are
called “bent”) proven by Rothaus [61], in particular see the
Parseval equality argument on his first page. To get claim 5,
combine these facts:

1. Bent functions still are bent if their inputs and outputs
are pre-transformed by any invertible GF2-linear func-
tions.

2. F ⊕G is a bent function if F and G are bent functions
of disjoint sets of input bits, i.e. “with disjoint inputs,
no nonlinearity cancels out.”

3. x ∧ y and x ∨ y are bent functions of two bits x, y (in
fact both are the same function up to linears).

4. (Hence by induction) more generally the “vector dot
product” x1 ∧ y1 + x2 ∧ y2 + · · · + xn ∧ yn where any
subset of the ∧s may be replaced by ∨s, is a bent func-
tion of its 2n input bits.

5. (x ∧ y) ⊕ (x ∧ y) = 0, (x ∨ y) ⊕ (x ∨ y) = 0, and
(x∧y)⊕ (x∨y) = x⊕ y are linear functions of their two
input bits, i.e. with the same inputs “their nonlineari-
ties exactly cancel out.”

6. If a bit x changes, then either x ∨ y or x ∧ y has to
change.

7. Any linear combination of the W output bits of MM has
to be (up to linears) a vector product of two bit-vectors
each with ≥ d bits, by the definitions of“minimum Ham-
ming distance” and “binary linear code.”

Finally, claim 7 is because any linear function of the output
bits which does not involve A,B (say) has to correspond to a
codeword zero on the coordinates of the first circulant, which
by nonsingularity implies the other half of the coordinates
must also be zero, which implies the function must be a con-
stant.
Q.E.D.

REMARK [Even split for best expansion]. Best de-
sign is to split the d bits approximately evenly between the
two types, i.e. have j ≈ k, because that tends to maximize
the expansion factor for a 1-bit alteration of the input to two
composed MM() applications (due to the theorem that pq is
maximized subject to p + q = d, p > 0, and q > 0 if p = q).

EXAMPLE. The following C-language code

/*Note ^=XOR, &=AND, |=OR, >>=right shift, <<=left*/

/*ROT(X,Y) rotates 32-bit word x by y bits:*/

uint ROT(uint x, uint y){return (x<<y)|(x>>(32-y));}

uint MM(uint A, uint B, uint C, uint D){

uint w,x,y,z;

w = A|B; x = A&B; y = C&D; z = C|D;

return w ^ ROT(w,5) ^ ROT(w,7) ^ ROT(x,8) ^

ROT(x,13) ^ ROT(x,30) ^ ROT(x,31) ^ z ^

ROT(y,5) ^ ROT(z,10) ^ ROT(y,12) ^ ROT(y,30);

}
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implements a 128-input 32-output Sbox MM with these prop-
erties:

1. Each output bit is a “bent” function of exactly 24 input
bits, and each GF2-linear combination of output bits
disagrees with each GF2-linear Boolean-valued function
of the 128 input bits on at least a fraction 1/2− 1/213

of their 2128 configurations (unbalance U = 2−12)
2. Each GF2-linear combination of output bits is a func-

tion of some bits from both x and y.
3. Changing any single bit of A or of B causes at least 3

bits to change in the output.
4. Changing any single bit of C or of D causes at least 2

bits to change in the output.
5. Changing any two bits of A ⊕ B (by changing 2 input

bits) changes at least 4 output bits.
6. Changing any two bits of C ⊕D (by changing 2 input

bits) changes at least 2 output bits.
7. Changing both one bit of C⊕D and one bit of A⊕B (by

changing 2 input bits) causes at least 3 bits to change
in the output.

8. Changing any b bits among the 128 inputs, if 1 ≤ b ≤ 11,
always causes the output word to change.

9. MM is invariant under exchanging A ↔ B and/or ex-
changing C ↔ D.

10. MM’s runtime is independent of the data it operates on,
so it is immune to timing attacks.

This design was based on the binary linear [64, 32, 12] code
with 32 × 64 generator matrix arising from the two 32 × 32
Boolean circulants with the following index sets:

{0, 5, 10, 12, 30} and {0, 5, 7, 8, 13, 30, 31}. (22)

No three members of the 7-set are congruent mod 32 to an
arithmetic progression. Any two cyclic shifts of the 5-set mod
32 have Hamming distance≥ 8. Any two cyclic shifts of the
7-set mod 32 have Hamming distance≥ 8. Any cyclic shift
of the 5-set mod 32 has Hamming distance≥ 8 to any cyclic
shift of the 7-set.

7 How to build fast cryptosystems

quantifiably resistant to linear
cryptanalysis

Cryptosystem designs that simply throw a lot of Sboxes to-
gether suffer from the problems that (1) the Sboxes might
interact in strange ways including across “round” boundaries,
and (2) we can get a tremendous number of “codes of the
code.”

The only way I know to overcome these two problems is to
design the cryptosystem such that

1. Even if the cryptanalyst is given “for free,” not only
plaintext-ciphertext pairs, but in fact all intermediate
results at each“round boundary,” then still linear crypt-
analysis is infeasibly hard.31

2. By designing the Sboxes and/or the way in which they
are used carefully, the fact that there are a tremendous
number of“codes of the code”won’t matter. Essentially,
they are all the same code; more precisely they all lead
to the same work-lower-bound on

∏

j U−2
j .

The simplest design is to make each “round” of the cryp-
tosystem just be one big Sbox. Namely, create an Sbox with
(R − 1)n inputs and n outputs. Then to encrypt an Rn-bit
plaintext:

1. Initially, XOR the first n input bits with n key bits.
2. Now perform R rounds. The jth round, 1 ≤ j ≤ R, is

as follows.

(a) Make the (R − 1)n inputs of the Sbox be32 (R −
1)n message bits (where we exclude message bits
(j− 1)n to jn− 1) XORed with (R− 1)n key bits.

(b) XOR the n Sbox output bits with the excluded
message bits.

3. After those R rounds, the entire message is encrypted.
But to play it safe (see §7.1) I would actually recom-
mend doing one or two more cycles of R rounds (for 2R
or 3R total).33 Finally, XOR the entire message with
Rn more key bits and output it as the ciphertext.

This is the method that proves the last part of the theorem
in §6.2. Here R is a constant; in that theorem R = 5 but
by use of Fredkin rather than AND gates at the Sbox’s input
layer we could make R = 7, and by use of [4n, n, d] rather
than [2n, n, d] codes in the Sbox design we could make R = 9.
(R − 1)n key bits are consumed each round, plus the ini-
tial/final “wrapper” stages consume in net (R + 1)n more key
bits.

Note that we still get the same
∏

U bound no matter what
approximating circuit is used. That is, every nonvoid ap-
proximate GF2 linear relation between Sbox inputs (key and
plaintext) and Sbox outputs always involves at least d Sbox-
input Fredkin or AND gate outputs; and hence (considering
the lemma in §5 and §2’s piling up lemma) no matter what
linear approximations are used for each Fredkin or AND gate
– and this include the possibility of using several for each gate
depending on which output bit we want to approximate – any
linear approximating circuit must involve noise gates with un-
balances Uj such that

∏

j U−2
j ≥ 22d.

This completes the proof of the theorem in §6.2, but: a skep-
tic might ask “why must we approximate the AND gates at
the beginning and then combine our approximations GF2-
linearly? Might there be a better approximation circuit?” To
answer, the entire Sbox construction in §6.2 is, up to linear
equivalence, simply n independent AND gates. Any linear
circuit attempting to approximate those AND gates which
does not consist of n independent official AND-approximator
circuits must yield the the same or worse approximation to
each of their output bits, and indeed each AND-gate output
not approximated by one of the four 3/4-approximators (or
their negations, i.e. 1/4-approximators) must have exactly

31While this approach seems like wasteful overkill that hurts efficiency, I do not know a less-wasteful idea. AES definitely fails this, i.e. a
cryptanalyst with plaintext, ciphertext, and intermediate AES data could definitely determine AES keys.

32The inputs in each n-bit chunk can, of course, be reordered between rounds.
33There is no reason the partitioning of the Rn bits into n-bit chunks has to be the same in the next cycle.
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50% error by the lemma in §5. Now any linear circuit com-
bining those approximations must have exactly 50% error on
any Sbox output depending on any such unapproximated bit.
Any bit with exactly 50% error has unbalance 0, i.e. causes
∏

j U−2
j =∞.

Q.E.D.

REMARK [Algebraic structure]. With the Sbox con-
struction of §6.1, anybody attempting to deduce the key bits
from some plaintext-ciphertext pairs (or to deduce the plain-
text bits from some key-ciphertext pairs) will be faced with
solving a system of simultaneous quadratic equations over
GF2. Although solving systems of linear equations is easy
(polynomial time) solving systems of quadratic equations over
the reals is polynomially equivalent in difficulty to solving an
arbitrary system of multivariate polynomial equations (“ETR-
complete”) as you can readily see by considering adding ex-
tra varibales for the purpose of reducing polynomial degrees
down to 2. Similarly, Cook’s famous SAT problem concern-
ing arbitrary boolean circuits is readily re-expressed as a GF2
quadratic equation system solution-existence problem, hence
the latter is NP-complete. So this “algebraic structure” seems
really not exploitable “structure” at all.

There is another, more complicated cryptosystem de-
sign that now uses, not one big Sbox, but rather many small
Sboxes (say, each producing one machine word worth of out-
put bits and inputting z machine words), each cryptosystem
round. The idea is simple. To combine n such small identical
Sboxes to produce one big Sbox, apply them all to zn disjoint
data words to produce n disjoint words. Say the word size is
W bits. Now use an [n, k, d] error correcting code as before
to linearly combine the most significant bits of each word to
get k bits out. Then do the same for the next most significant
bit of each word, etc. The net effect is “one big Sbox” that
inputs zWn bits and outputs Wk bits. The unbalance of any
GF2-linear combination of its output bits is U ≤ ud where u
upperbounds the unbalances of the output bits of the small
Sboxes. Now this big Sbox can be used as before to create a
cryptosystem.

EXAMPLE. We use the C-code for MM (from the previous
example) as the small Sbox. It inputs four 32-bit words and
outputs one. We combine these with the [24, 12, 8] extended
Golay code (here regarded as a double circulant code with
the first circulant being I12×12 and the second having first
row 101111011000) to produce a “big Sbox” which inputs 96
words x[0..95] and outputs 12 words z[0..11], where each
word is 32 bits long:

BigSbox(uint x[96], uint z[12]){

int i,j; uint y[32];

for(i=0; i<24; i++){/*Intermediate words y[0..23]:*/

j = i*4;

y[i] = MM(x[j], x[j+1], x[j+2], x[j+3]);

}

for(i=12; i<20; i++){ y[i+12]=y[i]; }/*extra copies*/

for(i=0; i<12; i++){/*Golay combinations z[0..11]:*/

z[i] = y[i] ^ y[i+12] ^ y[i+14] ^ y[i+15] ^

y[i+16] ^ y[i+17] ^ y[i+18] ^ y[i+20];

}

}

The resulting big Sbox has unbalance U ≤ 2−96 where 96 =
8 × 12. It now can be used in the usual manner to produce
an R-round cryptosystem (R ≥ 9 with R ≥ 18 or 27 recom-
mended) encrypting 108 = 96+12 words, i.e. 108×32 = 3456
bits, with security≥ 2192. It consumes 3072R+3840 key bits.

7.1 Are these cryptosystems really secure?

We’ve shown how to use error-correcting codes to build cryp-
tosystems provably secure against our form of linear crypt-
analysis, “differential” cryptanalysis, and Bernstein’s timing
attack. But does that mean our constructions are secure
agaist all attacks?

No! In fact, rather annoyingly, we can prove that our
cryptosystems are not secure against a new kind of attack,
the bounded polynomial-degree attack invented specifically for
them (but it also kills a fairly wide class of cryptosystems).

THEOREM [Insecurity against bounded polynomial-
degree attack.] Every secret key cryptosystem which out-
puts ciphertext bits that are (multivariate) polynomial func-
tions (over GF2) of the n plaintext and key bits with bounded
polynomial degree, can be cracked in polynomial(n) time.

PROOF SKETCH. There are nO(1) possible monomials of
bounded degree. The ciphertext bits are GF2-linear combi-
nations of them. From (2n)O(1) pc-pairs and GF2-linear alge-
bra solve for the values of all the monomials. When those all
are known we (effectively even if not actually) know the key.
Q.E.D.

This attack devastates all our cryptosystem-constructions
above with any bounded number of rounds – but if the number
of rounds is increased to order log n then this theorem’s attack
takes exponential(n) time, i.e. is no longer a concern. That
is because the polynomial degree doubles (and the number of
monomilas involves roughly squares) each round, so after or-
der log n rounds we have the maximum possible degree n and
a good fraction of all 2n possible monomials should be present
– too many for any naive attack of the sort on the Theorem
to handle in subexponential time. However, this would de-
stroy our vaunted “linear time secure cryptography” theorem,
converting it to an“O(N log N)-time secure cryptography the-
orem”! (In all our concrete cryptosystem-design examples in
this paper, using our higher round-count recommendations al-
ways suffices to stop the bounded-polynomial-degree attack.)

Can we salvage linear-time cryptography from this
attack? I believe the answer is “yes.” Here is the fix.

Recall that in our cryptosystem constructions, we in each
round partitioned the bits into two linear-size subsets, and
then XORed the smaller subset with Sbox outputs (where
the Sbox inputs were the larger bit-set). The fix is instead to
partition into three linear-size subsets A, B, and C.

Say B has b bits. By using a Fred or Maj gate to input 3 bits
of B and output one (which we then XOR into a fourth bit
of B) we alter B. Perform O(b) random34 alterations of this
kind and then delete a constant fraction of B’s bits. Continue
on in this way with the new smaller B-set until its cardinality
is reduced to, say, b2/3. The result is that b bits have been
converted by a circuit of depth O(log b) in total work of order

34That is, the interconnection pattern is, roughly speaking, random; the circuit once designed is totally deterministic.
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O(b) bit operations, into b2/3 bits which are highly nonlinear
functions of the original bits, each described by a multivariate
polynomial with polynomial degree of order b and involving
order 2b monomials in its monomial expansion.35

Each round, we XOR the bits of A with Sbox outputs (where
the Sbox inputs are the bits of C) and also GF2-linearly com-
bine in the b2/3 highly nonlinear bits from last paragraph.
36

Another approach would be to use the original 2-part (A and
C only) partition each round, but also intermingle a constant
number of extra rounds each intended purely to boost poly-
nomial degree (these rounds involve A and B only).

8 Strange Epitaph

Humanity went to considerable effort to devise a very diffi-
cult mathematical problem – breaking AES. As we’ve seen,
this effort probably failed.

In the other direction, the creators of the Clay million-dollar
problems (e.g. the Riemann hypothesis, the question of ex-
istence and uniqueness of the solutions of the Navier Stokes

equations, etc.) tried to make important problems that would
not be too hard to solve. In almost all of those cases, they
(so far) also failed. Evidently it is not easy to estimate the
difficulty of mathematical problems.

9 Tables of useful binary codes

We first tabulate good cyclic codes of length n = 2m − 1
bits, 15 ≤ n ≤ 255. For cyclic BCH binary linear codes with
wordlength n = 511 = 29 − 1, see [1][13].

Next we tabulate the best known nonsingular pure double,
triple, and quadruple circulant [n, k, d] codes for k ≤ 32, and
double circulants ones for k a multiple of 4 up to a few hun-
dred.

Finally we tabulate some miscellaneous good nonsingular
pure-multicirculant codes. Some good ones were also found
by Gulliver & Bhargava [28] but unfortunately they did not
actually state the code, only its parameters, in most cases. I
thank Markus Grassl for independently checking the distances
on most of the multi-circulant codes here.

35Note that each level of the circuit – which we shall design to involve bounded fan-out and fan-in – can be made to multiply each bit’s polynomial
degree by a constant and to raise the number of monomials involved to a constant power. The net effect of O(log b) levels is then as claimed.

36Of course (you complain) the cryptanalyst could simply guess the sublinear number (b2/3) of nonlinear bits (subexponential number of guesses
suffice to get them right!) and then apply the bounded-degree attack as usual. But the trouble with that is, the bounded-degree attack requires a
polynomially large number of plaintext-ciphertext pairs and that means you’d really need to guess a polynomially large number – not a sublinear
number – of highly nonlinear bits. So that complaint fails.
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[n k d] generator polynomial in hex
7 4 3 D
15 11 3 19
15 7 5 117
15 5 7 765
15 2 10 6DB6 = 110 binary
31 26 3 29
31 21 5 4B7
31 16 7 F5F1
31 11 11 156C8D
31 6 15 3915ED3
63 57 3 61
63 51 5 1395
63 46 7 3B15D [56]
63 39 9 1DDC9B7
63 36 11 C881761
63 30 13 39B5C2CFB
63 28 15 EA3E88C97 [43]
63 24 15 849043596F
63 21 18 5E36C356F89 [56][43]
63 19 19 1A8AB0BEDE41 [56]
63 18 21 2AF2E52B433D
63 16 23 D4DCBBD0C9B3
63 11 26 1FD2CDA11475AF [56]
63 10 27 2D82AEAD1926B9
63 7 31 1F79D6171B48995
63 3 36 5CB972E5CB972E5C = 1011100 binary
63 2 42 6DB6DB6DB6DB6DB6 = 110 binary
127 120 3 C1
127 113 5 5F15
127 106 7 360325
127 99 9 1F93D4A3
127 92 11 EAD953887
127 85 13 7B2BE5AF377
127 78 15 33915DDA30D25
127 71 19 11069939123FDA9
127 64 21 F8541A9D18AA212F
127 57 23 4CB2B66FBCDCC4ADC1
127 50 27 3D9DD80E178D643E3225
127 43 31 [43] 17461ECD160E8E8A18D0B3
127 36 35 [63][27] D3193DD5793D210D82AC75D
127 29 43 4A392B0318253C32F43ADB045
127 22 47 351D5D6457F297B007AE42F6127
127 15 55 1BAD16CB34E1028393FC18A07BD4D
127 8 63 FDF3D70DD31582F1DB252139688CD5

Figure 9.1. Cyclic codes with wordlength n = 2m − 1.

When n ≤ 127 we give the exact distance for the best of all cyclic codes, from [14][58][63]. The narrow sense BCH code of
designed distance d is the set of polynomials mod xn − 1 mod 2 which have all of g1, g2,..., and gd−1 as roots where g is here
a primitive nth root of unity in some GF(2m) in which such a root exists, i.e. in which n divides 2m − 1. For n = 2m − 1
(“primitive” BCH codes) the true distance is known [1][63][43] for all n ≤ 255. It occasonally exceeds the maximum design
distance of narrow sense primitive BCH codes, which is how [43] we got [127, 43, 31].

There also are cases [43][1][69] in which some non-BCH cyclic code is superior to any BCH code: [63, 28, 15] has generator
(x2 + x + 1)g(x) where g(x) is the generator for a BCH [63, 30, 13] code; [63, 19, 19] was kindly provided by Markus Grassl;
[127, 36, 35] is a nonBCH cyclic code found by Schomaker & Wirtz’s computer search [63].

Any cyclic [n, k, d] code with d odd may be converted to a cyclic [n, k − 1, d + 1] code by taking its even-weight subcode;
hence we do not tabulate the cyclic codes with even distances that arise in this way.

All BCH code generators and designed distances were computed by a computer program written by the author. N
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[n k d] generator polynomial in hex
255 247 3 11D
255 239 5 16F63
255 231 7 1BBA1B5
255 223 9 1EE5B42FD
255 215 11 1337DD3AD11
255 207 13 1C7EB85DF3C97
255 199 15 1F36195C443A4E1
255 191 17 16CE707E26B6F9977
255 187 19 157B5976000B493CE9
255 179 21 12CA7239EE08D439812D
255 171 23 1B0E46229C4EE1F8C7319F
255 163 25 1E810DA40F70569BE7529981
255 155 27 1FBE960583ED41BD2A34D37F9B
255 147 29 1D1160F75F3AD55887562C8413C9
255 139 31 13180F68607DB8DE3A5D853CAEEF25
255 131 37 11BCB6CCE6906958AA17F2231050EB39
255 123 39 143182A510D807CF4435A9C614B2EA8CB7
255 115 43 1855B6B7A2029D679E826017CEAB732E75DF
255 107 45 1242FE9A4365732A1EC04EB9E207EBE7A0D921
255 99 47 11AEDBAAE767C497861C81BE36955091F4698719
255 91 51 1BD0B50C35E487AE9E67A9DAA48F6D1F2E8751C971
255 87 53 120BDF38678D3D1D4CE718E7A1321BA5655DB27A2CF
255 85 55 7E331DA936A3B352E6B54AB6679E427A3A901F66C6D [43]
255 79 55 1B7003B9FD7D0020B87221DEC7CC8835ADC9FB585C4ED
255 71 61 [1] 140A722A1A468D36D87A25364E685922A1E56FD1A478C1D
255 65 63 θ(0, 19, 31, 39, 47, 55, 63, 91, 127) [69]
255 63 65 θ(0, 11, 21, 47, 55, 61, 85, 87, 119, 127) [69]
255 60 66 θ(7, 17, 23, 39, 45, 47, 55, 127) [69]
255 57 68 B5603BFC4B7F64DDD5D8BFF09EF219348FD848082D65 [69][27]
255 55 70 1A9C665A63B747BB4F4E32088428A547A6F281030493A9479E9 [69][27]
255 53 72 5FB77E606888D7CD3D1A54DE079C2CFFFE7AB9FF19B0C79AB8F [69][27]
255 51 74 1D40D0CBB61CF0251F97566A0232B2E39B09D55946D802C70E93 [69][27]
255 49 75 603C184CD9F0610DAC3C6281FEA762354158D46FD7E1A23A3083 [69][27]
255 47 85 156EC40F1969AE61B10BFE0C9B3E94DB865930940A360A5AAC67B
255 45 87 6A085C2D4E1C4B241733FA27C1B9EE02938F93EC3682378545361
255 37 91 52F3615A3703C30FF2752C7EB110EEF18F8D38D39F48ECEFC0C4803
255 33 95 6DDAAB8A835EB767B736F22165829654828229C733857BA8BE672831 [59]
255 29 95 615E6D7B76399AD5C680A78BFC9AE251351027C260C159AF8440EEA1F
255 21 111 55C8D578C1B5AE00FECD787C510D2EE182EAC7962A89ACA38C9B52E77D5
255 13 119 4D0F680A2ABA5922D7BE62A06C046C6FE4B3EB8C0CF9BF45DE162E4C28167
255 9 127 6F582A8F9D4CD021911AB5DA5CC61C9EE8A120F2CA4AFB136CFC5B8EFE9C2F
255 4 136 100110101111000 binary
255 2 170 110 binary

Figure 9.2. Cyclic binary linear codes with wordlength n = 255 = 28 − 1. All are narrow sense primitive BCH codes
[47][70][56] except for the two repetition codes at the end and: [255, 85, 55] has generator (x2 + x + 1)g(x) where g(x)
is the generator for a BCH [255, 87, 53] code; this is from corollary 5 in [43]. [255, 63, 65] and various others citing [69]
are nonBCH cyclic codes found by Tjhai & Tomlinson in a huge computer search. Some of them are specified in terms
of elementary idempotents: θ(a, b, ...) means that the generator word has 1-bits in locations a2m, b2m,... mod 255 where
m ∈ {0, 1, 2, 3, 4, 5, 6, 7}. Those have not yet been independently confirmed by anybody. Finally, [255, 33, 95] arises [59] from
taking the dual of the extension [256, 223, 10] of a [255, 223, 9] BCH code – this is a [256, 33, 96] extended-cyclic code – and
then removing the parity bit to get a [255, 33, 95] cyclic code. N

Apr 2007 19 9. 0. 0



Smith typeset 2:18 22 Jun 2007 AES bust

[n k d] several randomly-chosen example generators
4 2 2 1, 3
6 3 3 3, 5, 6
8 4 4 7, D, B, E
10 5 4 13, B, 16, 19, D, 1C, 1D
12 6 4 17, 1F, 13, 16, 37, 2C, 3A, 25
14 7 4 4F, 56, 62, B, 1C, 6A, 34
16 8 5 47, 53, 65, 71, 2B, 74
18 9 6 6B, 1A5, B3, 4F, 127, 79, 1E4
20 10 6 171, 28D, 7A, 2F9, 2FC, 3C2, 1C3
22 11 7 6D1, 5C5, 476, 1DA, 6E2
24 12 8 7B1, 1BD, 62F, B17, A37
26 13 7 89E, 10D5, 1227, AC3, 1C89, 9E4
28 14 8 1F63, DF6, EB8, 1CAA, 2A72, 2A72, 14FE
30 15 8 6159, 29D8, 1C33, 7AE7, 3FB9, 7988, 3435, 6E5F
32 16 8 C193, BC6C, 3E41, DE86, E93, F680, E176, B258
34 17 8 1E83, 1C398, 30CD, 1253E, 19DC2, 1A45E, 1F353
36 18 8 29C4B, 4EA1, 248B2, 30DA3, 14DD4, 3F973, 3DD54
38 19 8 18D5D, 391A5, 4569B, 5CB09, 27236, 5D756, E31F
40 20 9 D041D, BA16C, 2BEC8, 1A3F1, C468F, 77609, E05E6, 68FB
42 21 10 1D7BEC, 15D676, 1D7BEC, 5F3BF, 16EA57, 1C3BB3, 16F56
44 22 10 C224F, 16C984, 1F3D61, 18E2B5, 34674, 26E255, 2474B3
46 23 11 1BFD4C, 71EC6E, 71DD8D, 6DF255, 2A73ED, 6EE3D8, BCFDA
48 24 12 3D2F57, 7AF92B, B5FC1D, A5EAE7, 3B6BF8, FEB6E, 57787E
50 25 10 1C810C5, 16D700C, 1D5F447, 1A025D, 384706, 4D6EB2, 777612
52 26 10 1059F63, 114B1A3, F0CA2, 2469465, 3B0DD2D, 3C26640, 222C84A
54 27 11 5736508, 57767CB, 3A83DBB, 345496F, 6EE0F9, 4326D73
56 28 12 CF5A902, C29A413, 6EAC225, 86A4A89, 79F32C8, E6AA0A3
58 29 12 F304D2C, EF54BA3, 1C3064BC, D0E17BC, 1DFB891F, 10AFC129
60 30 12 1D2653E4, CC4805D, 3B47EEA, 83F0A90, 156D526, 1D2653E4
62 31 12 30E6045D, 1324DE6, 65BCA9B8, 7AD1543D, 30F1B946, 1957B021
64 32 12 26CC09D4, 2BADE40, 1C8A6F80, 18C01F44,18C01F44, 35BBA78D, 21D8CAB

Figure 9.3. Largest possible min-distance d for a binary linear pure double circulant nonsingular code with block length n,
and dimension k = n/2. (“Nonsingular” means we assume at least one of the circulants is invertible over GF2; then it may
be taken to be the k× k identity matrix.) Every code listed here is in fact optimal (maximum d) over all binary linear codes,
i.e. the restriction to pure double circulant nonsingular form does not hurt for [2n, n] codes with n ≤ 32. (I do not know
whether it ever hurts; n = 36 might be a good candidate for a counterexample.) Found by exhaustive computer search by
the author. Essentially the same exhaustive search was also performed independently by Gulliver & Ostergard [32] with the
same results. (For the putative next few entries, see [10].) There usually are many codes meeting the bound, so we give at
least 5 example generators in each case. However in the cases k = 8, 16, 18, 22, 24, 28 the optimal linear code is known to be
unique up to isomorphism [32]. The example generators give the right k bits of the n-bit binary word which is the top row of
the generator matrix (written in hexadecimal); the omitted left half is 1000 · · ·00 binary. Warning: The generators we give,
when written out in full, are not necessarily minimum-weight codewords. N
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[n k d] code type example generators in hexadecimal
8 4 4 JxQR S4 7
18 9 6 JxQR F2
24 12 8 JxQR S4 46F
32 16 8 JxQR S4 7D2
42 21 10 JxQR 581A7
48 24 12 JxQR S4 D5E979
66 33 12 BJKS two circulants with top rows 235 and 557; & see [29] for SD
68 34 13 BJKS two circulants with top rows 8CD and BA9
70 35 13 BJKS two circulants with top rows 697 and E61
72 36 14 BJKS two circulants with top rows 93B and 3589
74 37 14 JxQR 18F8C90024
76 38 14 BJKS two circulants with top rows 265 and E7B
78 39 14 BJKS two circulants with top rows 33B and 4BD
78 39 14 SD 401AEAB08F; 4026366D47 [30]
80 40 16 JxQR S4 C573115202
82 41 14 BJKS two circulants with top rows 26F and 72D
82 41 14 SD 182EF3D3 [22]
84 42 14 BJKS two circulants with top rows 26F and 72D
86 43 15 BJKS two circulants with top rows 149B and 2ECF
86 43 16 SD 7F7101712E2 [22]
88 44 16 SD 37F8B6B; AFA6A7B; 5F7E665
88 44 16 S4 BEFCCCB; 6FF16D7; 10576A3B [7][30]
90 45 18 JxQR missing since no xQR double circulant exists
90 45 16 BJKS two circulants with top rows 1179 and 3B5F
94 46 16 BJKS two circulants with top rows B27 and 23BD
96 48 16 BJKS two circulants with top rows A5D and 193F
98 49 16 JxQR 7FBD52AF7F84
100 50 16 BJKS two circulants with top rows 8AF and 1B9D
102 51 16 SD 43F8A4E38 [31]
104 52 20 JxQR S4 36212E595B3EB; BBE06C72 [31]
106 53 16 BJKS two circulants with top rows 48EB and 56F1
106 53 16 SD 4C93E1A98 [31]
108 54 16 BJKS two circulants with top rows 36E5 and 4EF3
108 54 16 SD 2E32DA2F [31]
110 55 16 BJKS two circulants with top rows 5C9D and 66DF
110 55 16 SD 4023BCC5D4 [31]
112 56 ? ? wanted but missing!
114 57 16 JxQR 22F8847D1077DC
118 59 18 Moore locate 1-bits at squares mod 59 [33][53]
120 60 ? ? wanted but missing!
128 64 20 JxQR S4 F6EE37DF1F21263D
134 67 22 Moore locate 1-bits at squares mod 67 [33][53]
138 69 22 JxQR 156235414D0DEC2CA
152 76 20 JxQR S4 AA5B7A42497EA3151DD
166 83 16-28 Moore locate 1-bits at squares mod 83 [33][37]
168 84 24 JxQR S4 (no xQR double circulant exists)
192 96 24 or 28 JxQR S4 DDE6AC8F2CBE2536CBCBBCF
194 97 22, 24, 26, or 28 JxQR 1F4A979E952FF25116AB44527
200 100 32, [69] JxQR S4 E7D0AA9EAAC9D550257CCAE51
214 107 18-34 Moore locate 1-bits at squares mod 107 [33][37]
256 128 ? ? wanted but missing!
262 131 20-42 Moore locate 1-bits at squares mod 131 [33][37]

Figure 9.4. Good binary linear pure double circulant codes with block length n, dimension k, and minimum Hamming
distance d. BJKS=tailbiting code [10]; JxQR=Jensonized [38] extended QR [47][67] code; bounds on minimum distances
from [47] as updated by Boston [12], Coppersmith & Seroussi [19], Grassl [26], and Tjhai & Tomlinson [69].37 SD=self-dual

37“Extended quadratic residue codes” have parameters [n, n/2, d] where n = p+1 and p = ±1 mod 8 is prime. These (in their usual presentation)
are length-p cyclic codes with circulant generator whose first row is the binary word with 1-bits located at the nonzero quadratic residues mod p.
This matrix has rank (p + 1)/2 not full rank p. Then an extra parity bit is added to each codeword. But a theorem by Jenson [38] is that these
(for many but not all p) may be rewritten as pure-double-circulant codes.
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code; best such code (restricted to pure double circulant) is known for n ≤ 88 from exhaustive searches [35][29][30]. Results for
n > 88 unfortunately are sparser and arise from nonexhaustive searches. S4 means “doubly even” code (all weights divisible
by 4). QC means quasi-cyclic code without self-duality properties. Distance upper bounds are from computer discoveries of
low-weight codewords, distance lower bounds are from theorems or exhaustive enumerations of codewords. All these results
are from previous authors and are merely copied, not checked, by me. N

[n k d] several randomly-chosen example generators (hex)
6 2 4 2,3; 3,1
9 3 4 2,6; 3,7; 1,6; 2,7
12 4 6 D,6; E,C; D,3; C,B
15 5 7 1C,1A; B,E; 16,7; D,19
18 6 8 35,38; 35,7; 35,E; 2E,7; 17,7
21 7 8 71,3B; 2F,61; 6E,42; 54,4D; 35,61
24 8 8 65,8F; 35,5E; 90,E5; 63,8A; 72,31
27 9 10 16F,C5; 16,1B3; 136,1C8; 11E,9C; 183,9B
30 10 10 107,3C6; 391,2EF; 71,34D; 276,322; F1,38E
33 11 11 688,35F; 21F,1A1; 4F7,1D9; 307,24D; 3EE,F5
36 12 12 EE3,D7E; 36F,615; CF6,855; 7C1,D28; 827,6E7
39 13 12 4C6,1523; DFD,CB9; 1737,1D63; 1698,23E; 56B,53A;
42 14 13 1DA5,2585; 8D8,2335; BEB,206F; 121E,239B; 2CA9,C6E
45 15 14 F1C,6115; 58F2,2C5; 393F,793; 386E,6C8C; 7890,7F72
48 16 14 6C31,E2A0; 1379,823D; 1B8F,CC28; 333D,CE62; 1571,4FB6
51 17 16 C15E,C07D; 150E6,29E6; D52C,EC52; EAE0,47E2; B34E,5AD3
54 18 16 238B9,112D5; 2B4A6,2FB48; 3564C,35A81; DE33,587E; 2482F,2C851
57 19 16 72D85,785EA; 526EA,177CA; 4025E,7CCEF; 4D8A,39A9C; 6E34B,2233A
60 20 17 9C70F,A867E; B2350,452C6; 5A4F9,6F4F3; BC390,76AE4; C5ED0,5DCCE
63 21 18 12DB03,182A21; 1DFB4D,1DFDE0; 19B46B,5B3E4; D8466,D79A3; 9D928,14638B
66 22 18 3723BF,1F3CAB; 10A34F,342386; 296CF6,103D9A; BE1B9,2187D5; 1C673D,EF4FA
69 23 19 74201A,2E40EA; 470B92,5442C8; 74AAF,490DAA; 5AC1EA,3C09AA; 6ECED8,4DA555
72 24 20 6B8069,9A21E; F0C872,C20F04; D61CFB,63F36; CCDE17,732F31; 949F15,F754C7
75 25 20 13EC8D0,1D477CF; D0BC7E,1864F00; EA90F3,1F17E90; 17D01EB,DCC93E; 1E9EF9F,1BB5C43
78 26 20 35F5FB6,3AEE445; 2F91218,159A397; 3B92C1B,2156CBA; 13D5272,318B2D8; 1E55DDF,38577C3
81 27 21* 50EDAF6,24FBECF; 5EB168E,54DD201; 68C6EBB,29E6927; 1505F96,66D47C6; 86C9B9,E461B3
84 28 22 8FDDC60,31504BE; 6C2ADCD,A8B1C08; 5B8B400,9D08FB3; 300FF36,C408BD8; 87A8955,3D34AF3
87 29 24 C2EDD0D,13D122F30; [6][5]
90 30 24* 7A398E9,2CE225F6; CB2057B,19AF2E5A; 38F373A1,1AC73EF4; 2CA5713D,1840C5AA
93 31 24 2FCE6FE7,1C1CDA74; 47238AAB,718B675C; 4F42E036,2B198C37; 140EB06B,67163998
96 32 24 68696422,79290BCA; 9839965,7AC16CCF; 1F45032,46C2C5D7; C3BECA6,55EAF9F3; 334BAC2D,150825B8

Figure 9.5. Putative largest possible min-distance d for a binary linear pure triple circulant nonsingular code with block
length n, and dimension k = n/3. All, except for Bhargava et al’s38 remarkable [87, 29, 24] code which arises from the
quadratic residues and nonresidues mod 29, were found by nonexhaustive computer search by the author. The example
generators are the right k and k bits of the n-bit binary word which is the top row of the generator matrix (written in
hexadecimal); the omitted left third is 1000 · · ·00 binary. Warning: The generators we give, when written out in full, are
not necessarily minimum-weight codewords. Our search rediscovered all previously-known record parameter sets except for
[87, 29, 24], and found two new records according to [16] (indicated as *). Also our entries for k = 20, 23, 24, 25 improve over
[28]’s table of records from 1995. (For the putative next few entries, see [10].) N

38Actually, this code was known earlier to Assmus and Mattson in 1968, see Information Processing 68 (North Holland 1969) pp. 205-206.
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[n k d] several randomly-chosen example generators (hex)
60 15 20 EE,298B,3A21; 6876,B28,32A8; 430E,4C8,6FE5;
64 16 22 62A0,9B87,82B5; 1EAE,DFA,69A2; 5EF7,D1F2,53E4; A78E,DC0C,3E05
68 17 23 10875,BB19,D841; D65,165F8,D05F; 6B08,3676,149A1;
72 18 24 929E,2042E,306BC; 3AF8A,307B2,4EC8; 259FA,1A873,CEDD; 36D8B,2AB04,33BBB;
76 19 24 3C71,14C71,C07A; D6AF,44283,5E490; 1447C,1C702,4836F; 4BBB4,4577A,5CA76;
80 20 25 2C2BD,AE3F,112E1; C2677,7B31F,B1C09; 71FED,35F32,DFEE6
84 21 27 106260,CE09C,A3AF8; 28C7C,1AEA84,815A2; 1F2122,1C3825,34D14;
88 22 28 14A505,1989,ECF99; 5C7ED,28037D,8EA90; 273C3,308716,17D6D0; 491F,2A2BBF,3B694B
92 23 28 672C04,57234C,668860; 6ABB31,14D5D2,167EBB; 5B25B3,A857C,278B0A
96 24 28 1FFB95,58B722,60C92D; E1DB10,28C51E,69F911; D4CE47,5C44AC,F23546;
100 25 30 DF66B8,363977,1972FD; 13CD999,11E2EBD,16E1386; 3618D7,171EFC8,263631;
104 26 32 5D1450,3ECDD21,173197E; 1E7A4FD,1D37A82,117E233 [10]
108 27 32 4C1C5E6,661B626,341C736; 36D92C2,18B7A7,7F2DD07; 2D0032,4175DD9,47789EF
112 28 32 F8A5B16,D966159,DD6DD77; 98D644C,C4911F7,BF68711; 4578549,87E12BE,8D76679
116 29 33 12DBC9CD,CAAA1AF,A25D73E;
120 30 34 026BBE,380BDF6B,16B611A6; C6D5EAA,187882DF,2F6BBC5A;
124 31 34 57E21B5B,567428B,3E3BD01F; 2D5A1B79,7AB77E2C,29009890; 308FEF36,56577632,1C24562;
128 32 36 667BB4A1,4047883C,1AE54E70; 65458FED,49ECE954,1CA756D6; 2E3D34F3,6979DC51,4E73E14C

Figure 9.6. Putative largest possible min-distance d for a binary linear pure quadruple circulant nonsingular code with block
length n, and dimension k = n/4. All were found by nonexhaustive computer search by the author, except for [104, 26, 32]
where the second of the two codes we give was found by Markus Grassl [27]. The example generators are the right k, k
and k bits of the n-bit binary word which is the top row of the generator matrix (written in hexadecimal); the omitted left
quarter is 1000 · · ·00 binary. Warning: The generators we give, when written out in full, are not necessarily minimum-weight
codewords. New records starred, and also our entries for k = 16, 20, 21, 24, 25, 26 improve over [28]’s table of records from
1995. (For the putative next few entries, see [10].) N

[n k d] example generators (hex)
64 8 28 4C,D,7,BD,79,69,2C; 7E,17,E,F6,49,4,35
128 8 64 83,15,C8,EC,E5,A7,DF,49,EA,37,B,4C,6B,1F,D,1; 82,B1,1B,28,93,39,FA,C9,41,EB,FA,50,63,EB,B1,93
80 16 28 DB01,F664,213F,3526; C43C,6CFA,3902,2492; 4C04,3D9F,9442,60AE; D805,3A52,EA98,4992
96 16 36 60F1,E29C,EAA5,4898,4698; 47CD,1807,5EA,2CCA,5FF8; 2FCF,EFD,FF2B,5C76,87D5
112 16 42 2533,E8DC,370,BEAD,246D,6732; 5525,10E6,BA4D,51C3,767B,91EB; 7CB2,EEAC,8A78,95A1,8171,EB74
256 16 113 5E10,4681,D654,444,3857,2C45,3EC9,C00E,99FB,DE68,6842,4397,E3DB,642B,E7FF,8BE7
160 32 48* 3EE5ECF4,2D20C360,1732A1A,6FF015E; 20CDC201,794E8F80,3E8604FA,DAEB533
192 32 60 79C09B76,69744FAA,79A9A68A,433BB7DD,62C26CF7
256 32 87 308F4D32,4FE2FF3F,73608F6C,40039CEA,4F347864,58663AF2,39D16E7A;

80000001,6B6AD3F7,B632D179,91A7D33F,F785CF91,C350577F,26AF14D1,931CBDD

Figure 9.7. Miscellaneous nonsingular multi-circulant linear codes [n, k, d] with k a power of 2 generated by k×k circulants.
New record indicated by *. The [128, 8, 64] codes are optimal and arise from 128×128 Hadamard matrices (one was found by
Grassl, the other by me, both using the same construction idea). The [256, 16, 113] code is remarkable. My new construction
of it involved starting from the [257, 16, 114] cyclic code described in footnote 27 and considering a permutation consisting
of 16 disjoint 16-cycles which is an automorphism of this code and which leaves the first coordinate fixed; delete that first
coordinate and rearrange the other coordinates of the code to conform to the cycles. Then shortening by deleting the best
subsets of its 16 cycle-generators yields quasicyclic codes with the following parameters: [128, 16, 50], [144, 16, 57], [160, 16, 64],
[176, 16, 72], [192, 16, 80], [208, 16, 86], [224, 16, 94], [240, 16, 103]. Quasicyclic codes with all 9 of these parameter sets had
been found by a computer search by Gulliver & Bhargava [28] but they did not actually state codes that proved it.39 Markus
Grassl contributed our second [256, 32, 87] code, given here as the first rows of 8 circulants, and note unlike the other codes,
Grassl’s circulants do not include (by convention) the identity matrix. Quasicyclic codes with the following parameters are
wanted, but not available: [256, 64], [192, 64]. N
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10 Appendix on Notation

AES = Advanced Encryption Standard.
DES = Data Encryption Standard.
Pc-pair = plaintext-ciphertext pair.
BNSBCH code = binary narrow-sense BCH code (§6.3).

We denote the AND of two binary words x, y bitwise (or x
and y could each just be single bits) by x ∧ y; OR is x ∨ y,
and XOR is x⊕y. The bitwise complement of x is ¬x. GF(q)
denotes the finite field with q elements.

A “linear” function F () is one with the property that

F (x + y) + F (0) = F (x) + F (y)

where addition is over some appropriate field(s).

A “binary code” is a set of distinct fixed-length binary words.
It is “linear” if whenever two words x and y are in the code,
then so is x⊕ y. Binary linear codes with 2k elements may be
described concisely by stating their k× n Boolean “generator
matrix”whose rows form a linear basis for it. The entries Mjk

of a “circulant”n×n matrix M depend only on j− k mod n.
A binary linear code is “pure double circulant” if its k × 2k
generator matrix consists of two k×k circulant matrices next
to each other. The parameters of a code are [n, k, d] meaning
each codeword has length n bits, there are 2k codewords, and
the minimum Hamming distance between two codewords is d.
The “dual code” is the new set of codewords which have dot
product zero with any codeword in the original code. Viewed
“geometrically,” it is an orthogonal subspace, hence also is a
linear code.
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