# Inverse of the Square Wave Matrix 

David J. Grabiner<br>then a grad. student at Math. dept. Harvard University<br>Cambridge, MA 02138<br>Warren D. Smith<br>then at NEC Research Institute<br>4 Independence Way, Princeton, NJ 08540;<br>now 21 Shore Oaks Drive, Stony Brook NY 11790;<br>WDSmith@fastmail.fm<br>Sushanta Srivastava<br>then at AT\&T Bell Laboratories<br>East Windsor, NJ 08512

January 27, 2005

Consider the $N \times N$ matrix $A$, whose $i j$ th element $A_{i, j}, 1 \leq i, j \leq N$, is defined by

$$
\begin{equation*}
A_{i, j}=(-1)^{\lceil j / i\rceil+1} \tag{1}
\end{equation*}
$$

The $i$ th row of $A$ represents a $\pm 1$-valued "square wave" function of $j$ with halfperiod $i$. Thus $\mathbf{x} A$, where $\mathbf{x}$ is a (row) $N$-vector, gives a picture of the waveform that is a linear combination of square waves with weights in $\mathbf{x}$. Similarly $\mathbf{y} A^{-1}$ finds weights so that a given waveform $\mathbf{y}$ is a weighted linear combination of these square waves.

This matrix has a surprisingly simple inverse. More generally, we can invert any matrix in which the first row is arbitrary, except that it cannot begin with 0 , and the $i$ th row repeats each term in the first row $i$ times until it reaches the end of the row, thus spreading out the function with larger periods. The matrix $A$ will thus have entries

$$
\begin{equation*}
A_{i, j}=f\left(\left\lceil\frac{j}{i}\right\rceil\right) \tag{2}
\end{equation*}
$$

Let $g(n)$ be the Dirichlet inverse [1, p. 30] of the function $f(n)-f(n+1)$, that is, the function which satisfies

$$
\begin{equation*}
\sum_{k \mid n} g\left(\frac{n}{k}\right)[f(k)-f(k+1)]=\delta_{n, 1} \tag{3}
\end{equation*}
$$

where $\delta_{i, j}$ is Kronecker's delta function, and $k$ dividing $n$ is denoted by $k \mid n$. Extend the domain of $g(x)$ to $x \in \overline{\mathbf{R}}$ by defining $g(x)=0$ for $x \notin \mathbf{Z}^{+}$, including $x=\infty$.

Theorem. The inverse of the matrix $A$ is the matrix $B$ given by

$$
B_{i, j}= \begin{cases}g\left(\frac{j}{i}\right)-g\left(\frac{j}{i-1}\right), & \text { if } 1 \leq j<N  \tag{4}\\ \frac{1}{f(1)} \delta_{i, 1}-\sum_{1 \leq k<N} B_{i, k}, & \text { if } j=N\end{cases}
$$

Remark. This theorem shows that $A^{-1}$ is a sparse matrix. Since $B_{i, j}$ can only be nonzero if $j=N$, or if $j / i$ or $j /(i-1)$ is an integer, the number of nonzero entries in $B$ (or in $A^{-1}$ ) is at most $2 N \ln N+O(N)$.

Proof. Let $A B=C$ and consider $C_{i, k}$. We wish to show $C_{i, k}=\delta_{i, k}$.
Every element in the $n$th row of $A$ is $f(1)$. Thus, if $1 \leq k<i=N$, then we have

$$
\begin{equation*}
C_{N, k}=f(1) \sum_{1 \leq j \leq N}\left[g\left(\frac{k}{j}\right)-g\left(\frac{k}{j-1}\right)\right]=0 \tag{5}
\end{equation*}
$$

as required, by telescopic cancellation. (Since $g(k / 0)=g(k / N)=0$, no problems can arise at the ends of the summation.) Similarly, if $i=k=N$ we have $C_{N, N}=1$ by summing (5) along rows.

Therefore we see that proving (4) is equivalent to showing the identity

$$
\begin{equation*}
\sum_{1 \leq j \leq N} f(\lceil j / i\rceil)\left[g\left(\frac{k}{j}\right)-g\left(\frac{k}{j-1}\right)\right]=\delta_{i, k} \tag{6}
\end{equation*}
$$

if $1 \leq i, k<N$. (Once this is proven, $C_{i, N}=0$ will follow from summing (6) along rows.)

The only terms in (6) which do not telescopically cancel are the $g(k / j)$ with $i$ dividing $j$. Since $g(k / j)=0$ unless $j \mid k$, the left hand side of (6) is

$$
\begin{equation*}
\sum_{\substack{1 \leq j<N \\ i|j| k}}\left[f\left(\frac{j}{i}\right)-f\left(1+\frac{j}{i}\right)\right] g\left(\frac{k}{j}\right) . \tag{7}
\end{equation*}
$$

and this is $\delta_{k / i, 1}=\delta_{k, i}$ by (3) with $n=k / i$.
The usefulness of this theorem is exemplified in the following corollary.
Corollary. Multiplication of an $N$-vector by either $A$ or $B=A^{-1}$ can be accomplished in $O(N \log N)$ operations, once the matrix $B$ is known.

Proof. Since $B$ has only $O(N \log N)$ nonzero entries, it can be multiplied by an $N$-vector in $O(N \log N)$ operations. Multiplying an $N$-vector by $A$ may also be accomplished in $O(N \log N)$ operations, since $B$ is upper Hessenberg $\left(B_{i, j}=0\right.$ if $\left.i>j+1\right)$. More precisely: If the first element of $\mathbf{y}$ were known,
then computing the remaining elements of $\mathbf{y}=\mathbf{x} A=\mathbf{x} B^{-1}$ from the first $N-1$ elements of $\mathbf{x}$ would be a sparse back substitution problem, since the minor obtained from $B$ by deleting row 1 and column $N$ is upper triangular. This first element may be found by using only the first column of $A$; from (2), we have $y_{1}=f(1) \sum_{i=1}^{N} x_{i}$.

Thus, if the first $N$ values of $g$ can be computed in $O(N \log N)$ steps, then a vector can be multiplied by either $A$ or $A^{-1}$ in $O(N \log N)$ steps. Once they have been computed, regardless of the complexity of this computation, any vector of length $N$ or less can be multiplied by the appropriately-sized matrix $A$ or $B$ in $O(N \log N)$ steps.

Now, consider the special case in which $f(n)=(-1)^{n+1}$, giving the square wave matrix (1).

Lemma. The inverse function $g(n)$ in (3) in this case is given as follows. If $n$ has the prime factorization

$$
\begin{equation*}
n=2^{r} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{\omega}^{e_{\omega}} \tag{8}
\end{equation*}
$$

where the $p_{i}$ are odd primes, then $g(n)=Q(n) / 2$, where

$$
\begin{equation*}
Q(n)= \begin{cases}0, & {\text { if } \max _{i} e_{i} \geq 2}_{(-1)^{\omega} 2^{\max (r-1,0)},} \text { otherwise }\end{cases} \tag{9}
\end{equation*}
$$

Proof. Note that $f(n)-f(n+1)=2 f(n)$, so we need to show that $f(n)$ and $Q(n)$ are Dirichlet inverses, that is,

$$
\begin{equation*}
\sum_{d \mid n}(-1)^{d+1} Q(n / d)=\delta_{n, 1} \tag{10}
\end{equation*}
$$

Let oddpart $(n)$ denote what is left after $n$ is repeatedly divided by 2 until it becomes odd, and let $d=2^{a} b$ where $b=\operatorname{oddpart}(d)$. We may now rewrite (10) as

$$
\begin{equation*}
-\sum_{a} \sum_{b \text { odd }, b \mid n}(-1)^{2^{a} b} Q\left(\frac{n}{2^{a} b}\right) \tag{11}
\end{equation*}
$$

Define $m$ by $n=2^{m} \operatorname{oddpart}(n)$. We now use the fact that, for positive integer $k=2^{r} \operatorname{oddpart}(k)$,

$$
\begin{equation*}
Q(k)=2^{\max (r-1,0)} \mu(\operatorname{oddpart}(k)), \tag{12}
\end{equation*}
$$

where $\mu(n)$ is the Möbius function from number theory [1], to rewrite (11) as

$$
\begin{equation*}
-\sum_{a} \sum_{b \text { odd }, b \mid n}(-1)^{2^{a} b} 2^{\max (m-a-1,0)} \mu\left(\text { oddpart }\left(\frac{n}{2^{a} b}\right)\right) . \tag{13}
\end{equation*}
$$

The inner sum may be evaluated by using the simplest form of the Möbius inversion formula

$$
\begin{equation*}
\sum_{d \mid n} \mu(d)=\delta_{n, 1} \tag{14}
\end{equation*}
$$

valid for all positive integers $n$. Since $(-1)^{2^{a} b}=(-1)^{2^{a}}$, the result is

$$
\begin{equation*}
-\sum_{0 \leq a \leq m}(-1)^{2^{a}} 2^{\max (m-a-1,0)} \delta_{\text {oddpart }(n), 1} \tag{15}
\end{equation*}
$$

and now using the geometric sum

$$
\begin{equation*}
2^{\max (m-1,0)}-\sum_{1 \leq a \leq m} 2^{m-a-1}=\delta_{m, 0} \tag{16}
\end{equation*}
$$

(for $m \geq 0$ ) yields

$$
\begin{equation*}
2 \delta_{\text {oddpart }(n), 1} \delta_{m, 0} \tag{17}
\end{equation*}
$$

But if $m=0$, then $n$ is odd, so that $\operatorname{oddpart}(n)=n$. Hence this is $2 \delta_{n, 1}$, and the proof is complete.

This gives us a formula for $A^{-1}$. If $A$ is the square wave matrix (1), then $B^{\prime}=2 A^{-1}$ is given by

$$
B_{i, j}^{\prime}= \begin{cases}Q\left(\frac{j}{i}\right)-Q\left(\frac{j}{i-1}\right), & \text { if } 1 \leq j<N  \tag{18}\\ 2 \delta_{i, 1}-\sum_{1 \leq k<N} B_{i, k}^{\prime}, & \text { if } \mathrm{j}=\mathrm{N} .\end{cases}
$$

Square waves are readily generated by digital circuitry, and the response of linear circuits to square waves is readily predicted. It is computationally feasible to resolve a signal into square waves, because multiplication of an $N$-vector by $A$ or $A^{-1}$ can be accomplished in $O(N \log N)$ shift and add operations only. Every entry of $B^{\prime}$, except in the last column, is a sum or difference of at most two powers of 2 . Thus every multiplication by these numbers takes at most two shifts and adds. The last column of $B^{\prime}$ can be handled by using the summation in (4), which requires an additional $O(N \log N)$ adds. In the back substitution process, no divisions are required because the subdiagonal entries of $B^{\prime}$, which become the divisors during the back substitution, are all -1 ; the multiplications can again be done with $O(N \log N)$ shifts and adds.

Even if bit shifting takes time proportional to the distance shifted, we still need only $O(N \log N)$ time, because the bit shifts due to $Q\left(\frac{m i}{i}\right)$, excluding the terms in the last column, occur only in the terms $A_{i, m i}, A_{i, n}, A_{i+1, m i}$, and $A_{i+1, n}$. Thus the total length of all the bit shifts for a fixed $i$ is

$$
2 \sum_{m=1}^{\left\lfloor\frac{N}{i}\right\rfloor} \max (0,(\text { exponent of } 2 \text { in factorization of } m)-1)
$$

$$
\begin{aligned}
& =2\left(\left\lfloor\frac{N}{4 i}\right\rfloor+\left\lfloor\frac{N}{8 i}\right\rfloor+\left\lfloor\frac{N}{16 i}\right\rfloor+\cdots\right) \\
& <\frac{N}{i}
\end{aligned}
$$

and the total length for all $i$ is thus $N \ln N+O(N)$. This is all the shifts that are needed, since the last column can be handled by summation.

By using column operations to make $A$ upper triangular, one easily verifies that $\operatorname{det}(A)=2^{N-1}$ for the square wave matrix.

Another interesting case is $f(n)=n$, which gives the matrix $A_{i, j}=\lceil j / i\rceil$. Here, $f(n)-f(n+1)=-1$, so we get $g(n)=-\mu(n)$. Thus the inverse matrix $B$ is given by

$$
B_{i, j}= \begin{cases}\mu\left(\frac{j}{i-1}\right)-\mu\left(\frac{j}{i}\right), & \text { if } 1 \leq j<N  \tag{19}\\ \delta_{i, 1}-\sum_{1 \leq k<N} B_{i, k}, & \text { if } j=N\end{cases}
$$

The third author [2] discovered the inverse of the square wave matrix several years ago while investigating signal representation. He also invented the function $Q(x)$ and used several of its properties to prove the identity $A B^{\prime}=2 I$. The compact proof presented here is largely a contribution of the first two authors.

## References

[1] Apostol, Thomas M., Introduction to analytic number theory, SpringerVerlag 1976.
[2] Srivastava, Sushanta, Analysis of Digital Signals by a Set of Equitransition Binary Functions, unpublished manuscript, November 1984.

