
W.D. Smith typeset 873 Jun 21, 2003 vector calculus

A new theorem in vector calculus

Warren D. Smith∗

WDSmith@fastmail.fm

15 June 2003

Abstract — Two well known theorems in 3D vec-

tor calculus are Gauss’s divergence theorem (actu-

ally valid in n dimensions), and Stokes’ theorem. We

present several formulations of a third natural Theo-

rem of this ilk, which seems to have escaped previous

notice.
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1 Recapitulation of the theorems of Gauss

and Stokes

In the below, let all functions, curves, and surfaces be
sufficiently smooth1, and assume all integrals are finite
and exist. Assume a right-handed x, y, z coordinate sys-
tem. For standard vector notation (e.g. ~c = ~a × ~b,

` = ~a · ~a = |~a|2) meanings see [1][2]; ~∇ denotes (in 3D)
the differential operator

~∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)

. (1)

Gauss’s divergence theorem states the equality of
these two scalars:

∫∫

V

· · ·

∫

︸ ︷︷ ︸

n integrals

~∇ · ~F dn~x =

∫∫

∂V

· · ·

∫

︸ ︷︷ ︸

n−1 integrals

~F · dÃ (2)

where V is some n-dimensional domain, ∂V is its (n−1)-

dimensional bounding surface, d ~A is the (outward point-
ing) vectorial element of surface (n− 1)-area, and dn~x =
dx1 dx2 dx3 . . . dxn is the vectorial element of n-volume.
Stokes’s theorem states the equality of these two
scalars: ∫∫

D

(~∇× ~F ) · d ~A =

∫

∂D

~F · d~̀ (3)

where D is a topological disk in 3-space (i.e., a region
homeomorphic to

{(x, y) such that x2 + y2 ≤ 1},
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1It will suffice if all surfaces have piecewise continuous unit out-

ward normal vector, all curves have piecewise continuous unit tan-

gent vector, and all functions have continuous derivatives.

and ∂D is its bounding curve (homeomorphic to
{(x, y) such that x2 + y2 = 1}). The infinitesimal ele-
ment of arc length pointing in the tangent direction to
the curve (going clockwise as viewed looking in the d ~A

directions) is d~̀.

2 Our new Theorem and its proof

The present paper’s New Theorem states the equality
of these two 3-vectors :

~B − ~C =

∫

∂D

~F × d~̀ (4)

where

~B =

∫∫

D

TDD(~F ) d ~A (5)

and

~C =

∫∫

D

−−−→
TDG(~F ) · dA. (6)

Here TDD(~F ) is the two-d imensional d ivergence of the

projected version of ~F (projected down into the 2D tan-
gent plane to the surface D) at the present point in 3-

space. Finally
−−−→
TDG(~F ) is the two-d imensional gradient

(as a 3-vector) of the normal component of ~F (normal to
the tangent plane to the surface D, and with the gradi-
ent taken in that tangent plane at the current point [of
tangency]). Just as in Stokes’ theroem, D is a topologi-
cal disk in 3-space and ∂D is its bounding curve (going
clockwise as seen looking along the directions of the nor-
mals ~a to the surface D). [See also EQs 7 and 8 below
and the reformulation EQ 16.]
Proof sketch: Let ~x = (x, y, z). It suffices to prove it

for linear functions ~F (~x) only. Also it suffices to prove it
merely in the case when D is a triangle in 3-space. [The
rest will then follow by using the fact that all smooth
functions are locally linear; subdividing our arbitrary
smooth topological disk into tiny triangles, proof it is
OK (in limit of tinyness) to neglect quadratic terms aris-
ing from non-flatness of the triangles, non-straightness of
the triangle edges, and non-linearity of ~F ; and cancella-
tion of the 1D integrals on interior triangle edges going
both ways to get a − sign cancelling a + sign due to the
bilinearity of the vector cross product × operation.]

Further, due to linearity of all three integrals with re-
spect to ~F , it suffices if we prove it only for a suitable
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set of basis functions ~F . There are 12 obvious basis func-
tions for the arbitrary linear functions mapping 3-vectors
to 3-vectors, namely (0, 0, 1), (0, 1, 0), (1, 0, 0), (x, 0, 0),
(y, 0, 0),..., (0, 0, z). Finally, by rotational invariance, it
suffices if our triangle lies in a plane parallel to the xy
plane. We now proceed to the details.
(1) If ~F is any constant vector the statement is obviously
just 0 = 0 due to the fact the vector sides of a triangle
sum to ~0 since the triangle is a closed curve.
From now on by considering adding a constant offset in
the z direction we may assume without loss of generality
that our triangle lies in the xy plane itself, not just some
parallel translate of it.
(2) If ~F = (0, 0, x) then the statement comes down
to −

∫

D
(1, 0, 0)dA =

∫

∂D
(−xdy, xdx, 0) = (−A, 0, 0)

where A is the area of our triangle D (which lies in the

xy plane). Similarly if ~F = (0, 0, y) and the triangle
lies in the xy plane then the statement comes down to
−
∫
(0, 1, 0)× d ~A =

∫

∂D(−ydy, ydx, 0) = (0,−A, 0).

(3) If ~F = (0, 0, z) then the statement comes down to
0 = 0 (the integrals of zdx and of zdy round a closed
curve in an xy-parallel plane are both 0).

(4) If ~F = (z, 0, 0) and the triangle lies in the xy plane
then the statement comes down to 0 = 0. The right hand
0 is since

∫

∂D(0,−zdz, zdy) = (0, 0, 0) if ∂D is a closed
curve bounding a topological disk in the xy plane.
(5) If ~F = (y, 0, 0) then the statement comes down to
(0, 0, 0) =

∫

∂D
(0,−ydz, ydy) = (0, 0, 0) since dz = 0 and

integrating ydy leads to ± cancellation.
(6) If ~F = (x, 0, 0) then the statement comes down to
(0, 0, A) =

∫

∂D
(0,−xdz, xdy) and since dz = 0 the first

two coordinates are both 0. The integral of xdy is the
area by a slabs argument (slabs dy wide and x2 − x1 in
width). These 6 cases are the only ones that arise (any
others are equivalent) so, Q.E.D.
Clearer formulation: How can the new Theorem be
formulated purely as math (instead of using English

words in the description of the integrals ~B and ~C)?
Here’s one way: Let the surface of a topological disk
D be parameterized (x, y, z) = ~W (p, q). Let ~t = ∂ ~W/∂p

and ~u = ∂ ~W/∂q. Let ~a = ±~t × ~u be a normal 3-vector

to the surface D in 3-space so that d ~A = ~adpdq. is the
infinitesimal element of surface area. (The sign is chosen
to make ~a have the correct orientation.) Then the first
integral in the Theorem is

~B =

∫∫

D

[

~t ·
∂ ~F

∂p
|~t|−2 + ~u ·

∂ ~F

∂q
|~u|−2

]

d ~A. (7)

The second integral is

~C =

∫∫

D

(

~a ·
∂ ~F

∂p
|~t|−2~t + ~a ·

∂ ~F

∂q
|~u|−2~u

)

dpdq. (8)

Remark: Stokes’ and Gauss’s theorems may be proven
in much the same “subdivide into triangles and consider
a basis set of linear functions” manner as our new The-
orem (only proving them is easier).

3 Confirmatory Examples

Example #1. Let the surface D be the disk x2+y2 < 1,
z = 0 and its bounding curve ∂D be the unit circle x2 +
y2 = 1, z = 0. Let ~F = (x2yz2, xyz+3z+9, 5x+y2z+7).
Then we have

~F × (dx, dy, dz) = ([(xy + 3)z + 9]dz − (5x + 7 + y2z)dy, (9)

(5x + 7 + y2z)dx − x2yz2dz, x2yz2dy − [(xy + 3)z + 9]dx)

The integral of this around the unit circle (which is
∫

∂D
~F × d~̀) is

(0 − 5π, 0 − 0, 0 − 0) (10)

since everything cancels out (by symmetry or dz = 0)
except for

∫

∂D
−5xdy = −5area(D) = −5π. Meanwhile

the first surface integral (using as parameters p, q just
p = x and q = y) is

~B =

∫∫

D

[2xyz2 + xz] (0, 0, 1) dxdy (11)

which is (0, 0, 0) by odd symmetry. The second surface
integral is

~C =

∫∫

D

(5, 2yz, 0) dxdy = (5π, 0, 0). (12)

Result: −(5π, 0, 0) = (0−5π, 0−0, 0−0). The Theorem
worked.
Example #2. Let ~F = (x, y, z), let the curve be the
unit circle x2 + y2 = 1, z = 0, and let the surface D
be the hemisphere x2 + y2 + z2 = 1, z > 0. Then the
curve integral is 2π~1z. The surface integrals are ~B =
∫∫

2d ~A = 2 · 2π · 1
2
~1z = 2π~1z and ~C =

∫∫
~0dA = ~0

respectively. (In computing ~B we have used the fact

that the TDD of ~F is 2, as opposed to ~∇ · ~F = 3, we
have used the fact the surface area of the hemisphere
is 2π, and we have used the fact (due to Archimedes’
correspondence between the surface area of a sphere and
the cylinder enclosing it) that the average height of the

surface of a hemisphere is half its radius. ~C = ~0 is since
the integrand is everywhere 0 since ~F (~x) is normal to
the sphere surface and of constant length on it.) The
Theorem worked: ~0 = ~0.
Example #3. Let ~F = (0, 0, 1), let the curve be the
unit circle x2 + y2 = 1, z = 0, and let the surface be
the hemisphere x2 + y2 + z2 = 1, z > 0. Then the
curve integral is ~0 by symmetry. The surface integrals are
~B =

∫∫
0d ~A = ~0 (since the TDD of a constant vector is

0) and ~C =
∫∫

~0dA = ~0 (since the gradient of a constant

vector is 0) respectively, proving once again that ~0 = ~0.
Example #3 reveals a subtlety: The 2D divergence

of ~F ’s projection into the tangent plane to our surface
(TDD(~F )), is generally not the same as the 2D diver-

gence of ~F ’s projection onto the surface itself. Similarly,
the 2D gradient of the normal-to-plane component of ~F
(within that plane, i.e. TDG( ~F )) is generally not the

same as the 2D gradient of ~F ’s normal component to
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the surface, on that surface. (The former, plane-based
quantities are the ones my Theorem wants; the latter
surface-based quantities are not. In example #3 the for-
mer both are ~0, but the latter are both nonzero.)
Example #4. I have, with the aid of the computer-
algebra package MAPLE, confirmed the Theorem for
a fully general nonhomogeneous-quadratic polynomial
map ~F (x, y, z) from R3 → R3 in two cases:

1. where D is the hemisphere x2 + y2 + z2 = 1, z ≥ 0,

2. where D is the flat disk x2 + y2 ≤ 1, z = 0.

In both cases ∂D is the unit circle x2 + y2 = 1, z = 0.
Also, I tried adding in some (not fully general) cubic

terms, and the Theorem still passed the resulting tests.
In these cases all the integrals are of trigonometric poly-
nomials (if we employ spherical, or polar, coordinates,
respectively) hence expressible in closed form.

The full details are too messy to include here, but the
MAPLE scripts that confirm this are available electroni-
cally on my web page2 and I’ll now sketch how it goes
for the hemisphere-quadratic. First we define

~F (~x) = (13)

(c
(1)
11 x2 + c

(1)
12 xy + c

(1)
13 xz + c

(1)
22 y2 + · · · + c

(1)
3 z + c(1),

c
(2)
11 x2 + c

(2)
12 xy + · · · + c(2), c

(3)
11 x2 + c

(3)
12 xy + · · · + c(3))

The curve integral ~I =
∫

∂D
~F × d~x may be done by

computing ~F × d~x and then making the substitutions
x = cos θ, y = sin θ, z = 0, dx = − sin θdθ, dy = cos θdθ,
dz = 0 and integrating from θ = 0 to 2π. The param-
eterized hemisphere is ~x = (sin φ cos θ, sin φ sin θ, cosφ)
for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/2. We then compute
~v = ∂

∂θ~x, ~w = ∂
∂φ~x, ~a = ~w×~v. We now compute the two

surface integrals (using EQs 7 and 8 where we are here
using φ and θ as the parameters, not p and q):

~B =

∫ π/2

0

∫ 2π

0

[

~v ·
∂ ~F

∂φ
|~v|−2 + ~w ·

∂ ~F

∂θ
|~w|−2

]

~adθdφ

(14)

~C =

∫ π/2

0

∫ 2π

0

(

~a ·
∂ ~F

∂φ
|~v|−2~v + ~a ·

∂ ~F

∂θ
|~w|−2 ~w

)

dθdφ.

(15)

Finally, we confirm that ~I = ~B − ~C.

4 3D-only reformulation of the Theorem

Adding ~Q to both ~B and ~C leaves the difference ~B − ~C
unaltered. Choose ~Q to be the directional derivative of
the component of ~F normal to the tangent plane to D
(in the normal direction to that plane) to get this Slick
Reformulation of the Theorem:

∫∫

D

(~∇ · ~F )d ~A − (~∇ ~F )d ~A =

∫

∂D

~F × d~̀. (16)

2http://math.temple.edu/∼wds/homepage/works.html

Here ~∇~F denotes the 3×3 matrix whose i-down j-across
entry is ∂

∂xi

Fj . It multiplies the column-vector d ~A.
EQ 16 has the advantage that it is formulated purely in

terms of the usual 3D differential operator ~∇ rather than

our invented 2D-inside-3D operators TDD and
−−−→
TDG.

[On the other hand, in some applications, the original
2D-in-3D formulation might be more advantageous. I
have successfully tested example #4 (extended with cu-
bic terms) for the reformulated theorem too.]

5 How to view it as Stokes in disguise

At first I suspected the present Theorem was only a tiny
consequence of an ultra-general theorem of Poincare [3]
about differential forms on manifolds. Poincare’s theo-
rem subsumes both Stokes’ theorem and the divergence
theorem on n-manifolds as special cases. But that cannot
be directly true because (on our 2-manifold D) it involves
3-vectors rather than 2-vectors; and any differential form
on an n-manifold has some power of n components, but
3 is not a power of 2. That led me to believe that the
present result really is new.

But the reformulation in §4 suggested that the new
Theorem is really just Stokes’ theorem used 3 times with
results linearly combined, with various altered functions
employed inside the different Stokes invocations. This
turns out indeed to be true; in a conversation with Yury
Grabovsky (Temple Univ. Math. dept.) we were able to
produce such a second proof.

Here it is. Consider the jth component of EQ 16, i.e.
(letting ~ej denote the unit vector in the xj direction)

∫

∂D

~ej · (~F × d~̀). (17)

Using the vector identity ~a · (~b × ~c) = (~a ×~b) · ~c this is

=

∫

∂D

(~ej × ~F ) · d~̀. (18)

Applying Stokes’ theorem this is

=

∫∫

D

~∇× (~ej × ~F ) · d ~A. (19)

Now employing the vector identity ([1] 10.31#7)

~∇× ( ~A× ~B) = ~A(~∇· ~B)− ~B(~∇· ~A)+( ~B · ~∇) ~A− ( ~A · ~∇) ~B
(20)

and taking advantage of the facts that ~∇ · ~ej = 0 and
~∇× ~ej = ~0 since ~ej is a constant vector, this is

=

∫∫

D

[

~ej(~∇ · ~F ) − (~ej · ~∇)~F
]

· d ~A (21)

= ~ej ·

∫∫

D

(~∇ · ~F )d ~A − (~∇ ~F )d ~A (22)

proving the Theorem. Q.E.D.3.

3Of course all results in real analysis depend on the same set of

Axioms of real numbers, hence are not independent except in the

extremely rare cases that they depend on disjoint axiom subsets.

So the question of “newness” is a subjective one.
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6 Consequences in electromagnetism

The right hand side of our Theorem is of course a very
natural vector quantity, which arises in electromagnetism
when computing the Lorentz force exerted by a mag-
netic field ~F (~x) on a loop of wire ∂D circulating an elec-
tric current.

One immediate corollary of our Theorem’s 3D-only
reformulation in §4, is the following. Suppose a magnetic
field ~F (~x) obeys the Maxwell equation

~∇ · ~F = 0 (no magnetic monopoles) (23)

Suppose D is a topological disk surface in R3 which is
such that, at all points ~x ∈ D, the component of ~F (~x)
normal to D is constant. Then the Lorentz force on the
current loop ∂D is zero:

∫

∂D
~F × d~̀ = ~0.
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