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Abstract —

We describe a correct, “verifiable,” and “coercion re-
sistant” cryptographically secure election scheme which
takes O(NCk + V ) (highly parallelizable) steps to process
V votes by N voters in a C-candidate election, which for
the election systems we shall be considering is best possi-
ble if k = 1, and we achieve k = 1 and/or k = 2.

Previous cryptographic election schemes had only been

able to handle “additive” election methods such as Plural-

ity, Approval Voting, Condorcet, or Borda count, or meth-

ods with “anonymizable” votes such as Instant Runoff

Voting with few enough candidates C so that votes were

not expected to be uniquifiable (i.e. if C! ≪ V ). The

new approach breaks those barriers in the three most im-

portant special cases. First, we can handle the author’s

“reweighted range voting” (RRV) at least in the case when

the number of possible scores for any given candidate is

restricted to a small-enough set (such as the integer inter-

val [0, 9]) so that useful votes cannot be uniquely identified

by consideration of the sum of its scores on the current

winners. Second, we can handle Hare/Droop-reweighted

STV (STV=single transferable vote) provided we are will-

ing to use inexact reweighting factors (truncated down to

few bits of precision, e.g. to the nearest part in 120) with

k = 2. (For STV our runtime bound with k = 2 proba-

bly is still best possible, but we have not proven this.)

Third, we can also handle STV without reweighting and

“BTR-IRV.” However, the new techniques still are not

all-powerful because Woodall’s DAC (Decreasing Acqui-

escing Coalitions) voting method still apparently cannot

be handled.

There are two previous schemes which I consider practical
for performing crypto-secure elections. The first is the “BB-
homo” scheme of Cramer, Schoenmakers, et al [4][5] which
depends on homomorphic encryptions and bulletin boards.
The second is the scheme invented by Juels, Catalano, and
Jakobsson [15], as improved to make it practical and linear-
time by Smith [23], which depends on “hidden credentials,”
“plaintext-hashing” for fast all-pairs “plaintext equality test-
ing,” and “mixnets.” (This scheme is more complicated than
the BB-homo scheme, but has the advantage of being ap-

plicable to a strictly larger class of election methods and of
providing the strongest available security guarantee, namely
the “coercion resistance” property introduced by [15].) The
scheme we shall now discuss here combines all of those old
ideas, plus some new ones.1 Although more complicated, its
computational resource consumption still is sufficently small
that it too seems practically feasible.

1 Cast of characters
Bulletin boards (BBs): Memory which may be read (with

random access) by anybody, and which may be writ-
ten by approved agencies. It is usually convenient to
assume that this writing is always of “append” (rather
than “random access”) style.

Voters: Provide votes (in encrypted form) which are posted
on a bulletin board.

Mixers: Accept N encrypted inputs, permute and re-encrypt
those inputs, and output the N results along with ZK-
proofs2 that they did so. Several mutually distrustful
mixers, one after the other, can thus perform a permu-
tation and simultaneous re-encryption of the data with
nobody knowing what the product permutation is. (This
is called a “mixnet.” It is important that the mixers dis-
trust one another because that way at least some will
refuse to collude and will not tell each other their secret
permutations.)3

Talliers: There are several, mutually distrustful, talliers.
Each tallier knows some secret information not known to
the other talliers. This allows super-threshold subsets of
the talliers to perform computations cooperatively that
would be infeasible for any subthreshold set. (It is im-
portant that they distrust one another4 because they
will refuse to collude and will not tell each other their
secrets.)

Verifiers: The voters and talliers and mixers broadcast
enough information in the form of “zero knowledge
proofs” (preferably “non-interactive” ones5) to permit
any external verifier, by examining that information, to
become confident that the talliers, voters, and mixers
are performing the computations they are supposed to

1The reader will need to be familiar with [23], otherwise the present paper will be somewhere between “sketchy” and “incomprehensible.” Also,
familiarity with [4][5] certainly would not hurt. An attempt to survey all of cryptographic voting is [22].

2ZK is an abbreviation for “zero knowledge.”
3It is simplest conceptually to regard the mixers and talliers as disjoint entities. However, they could in fact be the same entities.
4Unless the election is a total sham, at least some of the competing candidates ought to distrust each other.
5To reduce communication needs, and also to allow creation of a permanent record, reviewable at a later time, of the election.
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(or confident that some – whose identities will be appar-
ent or irrelevant – are cheating, or that super-threshold
sets of cheating talliers and/or mixers are colluding).

For simplified mixer schemes, see [23][22].

2 Informal definitions of Security

guarantees
Correctness: ① Each authorized voter’s chronologically-

last-cast6 vote is incorporated – correctly – into the
computed election result, but ② no unauthorized voter
can have his vote counted and ③ no voter can have more
than one vote counted.

Verifiable: After the election, the facts that ①-③ were true
are proven by a zero-knowledge proof that is available
to external verifiers – or (if one or more were false) then
the ZK-proof protocol makes it clear which actor first
violated the protocol.

Coercion resistant: “We allow the adversary to demand of
coerced voters that they vote in a particular manner,
abstain from voting, or even disclose their secret keys.
We define a scheme to be coercion-resistant if it is infea-
sible for the adversary to determine whether a coerced
voter complies with the demands.” [15]

Our schemes shall depend on the assumed difficulty of the
discrete logarithm problem in elliptic curve groups of large
prime order.

3 Description of Reweighted Range

Voting (RRV) [21]

Let there be C candidates from whom V voters are to select
W winners, 0 < W < C, 0 < V .

procedure Reweighted-Range-Vote
1: Each voter k supplies a C-vector ~xk as his vote, each en-

try of which is a real number in [0, 1]. The cth entry of
this vector expresses that voter’s opinion of candidate c
(i.e. 1=great, 0.5=middling, 0=terrible);

2: Each C-vector vote has associated with it, a “weight”
wk ∈ [0, 1].

3: for r = 1 to W do
4: for k = 1 to V do
5: Let the weight of vote k be wk = 1/(X+1), where the

sum of vote ~xk’s winner-entries is X . (Thus, initially,
there are no winners and all weights are 1.)

6: end for
7: Compute the weighted-vote-sum vector ~s =

∑V

k=1
wk~xk

(actually, this step would be best programmed as com-
bined into step 5, but we have written it separately to
enhance clarity);

8: The candidate C with the largest ~s-entry (among can-
didates who have not yet been declared “winners”) is
declared to be the rth winner.

9: end for

In the 1-winner case, RRV reduces to range voting [24], i.e.,

it simply adds up all the vote vectors ~s =
∑V

k=1
~xk and then

declares the winner to be the index of the largest entry in ~s.
The first RRV winner in fact is always the same as the range-
voting winner, but the second RRV winner is not necessarily
the same as the candidate that ordinary range voting would
say was in second-place. That is because the reweightings
cause the supporters of the first winner to have diminished
influence on the choice of the second.7

4 Description of Hare/Droop-

Reweighted (or unweighted) STV

Here is a pseudocode description of the Hare/Droop STV pro-
cedure [25][16][13][9]. Let there be C candidates, from whom
V voters are to choose W winners (0 < W < C, 0 < V ).

procedure STV-election
1: Obtain from each voter a preference ordering (permuta-

tion) of the C candidates;
2: Associate each vote with a real“weight”w with 0 ≤ w ≤ 1,

where initially all weights are 1;
3: Compute the “Droop Quota” Q = ⌊V/(W + 1)⌋ + 1;
4: loop
5: repeat
6: for c = 1 to C do
7: Compute Fc, the sum, over all votes ranking can-

didate c first, of that vote’s
weight;

8: end for
9: g = argmaxFc;

10: {g is the “good” canddt with the most 1st-place
votes}

11: if Fg ≥ Q then
12: Multiply the weight of each vote which ranks g

first, by (Fg − Q)/Fg;
13: Declare g to be a “winner”and eliminate g from all

preference orderings;
14: end if
15: exitwhen W canddts have been declared winners;
16: until Fg < Q
17: b = argminFc;
18: {b is the “bad” canddt with fewest 1st-place votes}
19: Declare b to be a “loser” and eliminate b from all pref-

erence orderings;
20: end loop

This is a fairly complicated procedure. Many variants of it,
both less and more complicated, also exist.

To explain the concepts inside Hare/Droop STV in English:
there are two things going on: elimination of loser-candidates
top-ranked by the fewest voters (in step 19), and winner decla-

rations for candidates top-ranked by enough voters (exceeding
the “Droop quota”). After either move, the winner or loser is
eliminated from all votes. Votes then are reweighted (step 12)

6Other vote-selection conventions could also be considered.
7The reweighting formula again was carefully designed [21] to force “proportionality.” It can also confer additional benefits of “encouraging voter

honesty.” For example, a voter has incentive not to exaggerate his high opinion of some candidate Y too greatly, because then (if Y wins) that
exaggeration will decrease the weight of the voter’s vote in later RRV rounds.
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so that anybody who just voted for a winner will have smaller
vote-weight in the next round.

In unweighted STV, there are only eliminations; there are no
winner-declarations and all weights always are 1. Unweighted
STV is simpler and in the single-winner case is completely
equivalent. The reweighting assures “proportionality” the-
orems hold in the multiwinner case; unweighted STV used
as a multiwinner election system can suffer from severe pro-

portionality failures. For example,8 let C = 2W , let there
be two kinds of people (“Democrats” and “Republicans”),
and let 49.99% of the voters be Democrat and 50.01% Re-
publican. Let there be W Republican and W Democratic
candidates, with all the Republicans being indistinguishable
“clones” (whom the voters order randomly) but with one spe-
cial Democrat being more attractive to each of the Democratic
voters, than any of the other W − 1 Democratic candidates.
Then, no matter how large W is, elimination-only STV (i.e.
unweighted STV, also called Instant Runoff Voting) will elect
a committee consisting of the one special Democrat and W−1
Republicans (very unrepresentative). That is because the un-
special W − 1 Democrats will be eliminated since each has
zero first rank votes.

In contrast, the full STV-election procedure would have
elected the special democrat immediately (exceeds quota),
and then eliminations would have roughly alternated between
declaring Republican and Democrat losers, until at last a com-
mittee with 50-50 composition was attained.

5 BTR-IRV and IRV

IRV (Instant Runoff Voting) is the single-winner version of
STV. (The reweighting rules are irrelevant since no reweight-
ing ever occurs before the winner has been identified.)

“BTR-IRV” is a voting method9 intended to try to combine
the virtues of IRV with Condorcet: BTR-IRV will always
elect a Condorcet-winner if one exists. The BTR-IRV method
is this. Each “vote” is a rank-ordering of the C candidates.
The two candidates with the fewest top-rank votes (“the two
worst”) are compared head-to-head based on all the votes with
the remaining C−2 candidates erased from the picture. Who-
ever loses this comparison (“the worst”) is eliminated from the
election and from all votes. We then continue doing such elim-
inations until only one candidate remains, and declare him
winner.

6 How to do (reweighted or un-

weighted) STV elections crypto-
securely

1. Each vote in a C-candidate election consists of C differ-
ent C-vectors. The kth C-vector is a vector containing one
1-entry and C − 1 zero-entries, where the position of the “1”

indicates the kth preference vote. (Thus there are C2 num-
bers in the vote in all. All are encrypted using homomorphic
ElGamal randomized encryption.)

2. To assure that this collection of C-vectors genuinely rep-
resents a permutation (rank ordering) of the C candidates,
the voter must also provide a zero-knowledge (ZK) proof that
the C × C matrix formed by these vectors is a permutation
matrix, i.e. has exactly one 1-entry in each row and in each
column.10

3. For simplicity of exposition, we shall suppose we are go-
ing to use reweighting factors rounded off to the nearest part
in 120. In that case we need to pre-multiply all votes by
(which in the homo-encrypted world means pre-exponentiate
the votes to the power) 120C .

4. These votes are initially handled just like in the JCJ-Smith
scheme [23] using mixnets, ZK-proof checking, and“plaintext-
hashing” of “credentials” to get rid of unauthorized, fake, in-
valid, and double votes while preserving vote-anonymity and
secrecy.

5. However, unlike in [23], the votes now are not decrypted
at the end with the aim of allowing a trivial plaintext vote-
processing step as a finale. Instead we now proceed to a dif-
ferent kind of vote processing.

6. To add up all the first-preference votes, we multiply all
the first-preference C-vectors elementwise to get (because of
the homomorphic nature of the encryption) the encrypted C-
vector of vote totals. The elements of this vector may then be
cooperatively-decrypted by the mutually distrustful election
authorities (none of whom know the decryption key individ-
ually).

7. With the first-round totals now broadcast in plaintext
form, we now publicly eliminate a candidate or declare one
a winner (whichever follows from that set of totals). If can-
didate j is eliminated, we erase all the jth entries of all C-
vectors in all votes, thus decreasing C to C − 1, and skip to
step 11.

8. If candidate w is declared a winner, then we compute
and broadcast the reweighting factor (which depends on how
many votes w got above and beyond the “Droop quota”) and
round it off to the nearest part in 120, with the result being,
say, F/120 for some integer F ≥ 0.

9. We then go through all votes: for each, if it voted for w, we
reweight it by multiplying all numbers by F/120, i.e. in the
homo-encrypted world by exponentiating everything to the
power F/120. Note the “division” by 120 here is performed
mod P . Throughout, we assume we are doing everything in a
publicly known elliptic curve group of large publically known
prime order P where P ≫ 120C.

10. Finally, we “rotate” the votes for w by making their first
C-vector (which was their first preference vote) now be their
last by moving the vector data around. (This can be done
obliviously and regardless of the encryptions.)

8Brian A. Wichmann showed me this example.
9“BTR” stands for “bottom two ranks” and it also has been suggested that it be pronounced “better.” It was invented by Rob LeGrand, a

graduate student at Washington University in St. Louis. However, there are some reasons to claim that BTR-IRV is in fact a less desirable voting
system than ordinary IRV, e.g. it seems more vulnerable to “strategic voting.”

10 Such a ZK-proof could consist of single-bit ZK-proofs (0 or 1) for each entry, and then multiply all the homomorphic encryptions of the entries
in each row (or column) together to get the homomorphic encryptions of the row (column) totals, and finally ZK-prove each of those totals are
encryptions of 1. Both of these ZK-proofs can be done via a “ZK-proof of discrete log equality” [23][22] if we are using ElGamal encryptions.
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11. We then mix and re-encrypt all votes using a mixnet.

12. We are now ready to perform the second STV round (by
looping back to step 6). We continue on for C − 1 rounds
(or if it is a multiwinner election with M winners, for C −M
rounds) in all, at which point we are done. Each round, the
weighted-total first-rank votes for all C candidates are an-
nounced, and the eliminated or declared-winner candidate for
that round is announced.

Discussion. The votes themselves are never decrypted – only
the vote-total vectors are decrypted – except that each round,
each top-rank-vote (or nonvote) for that round’s winner (if
there is a Droop-quota-exceeding “winner” that round) is de-
crypted thus revealing a single plaintext bit per vote.

The author of that vote is not known at the time the bit is
revealed (due to previous mixnet steps) and then the revealed
bits are erased and forgotten and the votes are modified, re-
mixed, and re-encrypted (in step 11) before the next STV
round. If the bits were not “erased and forgotten” that is OK
because the votes have now been mixed so that the associa-
tion of the bits with the (new mixed) votes is effectively erased
and forgotten.

Finally: the scheme we have just outlined also can handle
“IRV” (instant runoff voting) [25], i.e the unweighted vari-
ant of STV, and “BTR-IRV” elections with appropriate slight
modifications in the latter case.

7 How to do RRV elections crypto-
securely

We shall initially assume that the “real number” scores that
each voter awards to each candidate in RRV voting, in fact
are, integers in the interval [0, 9] (or [0, 99]), i.e. we are us-
ing “low precision fix point” reals. That leads to the simplest
protocols. However, it is also possible (with more effort and
complexity) to handle reals with arbitrary (but fixed) preci-
sion by use of “bit splitting” or “radix splitting” techniques
(provided we then agree to round all reweighting factors to,
e.g. the nearest part in 120 instead of using the exact RRV
reweighting formula).

1. In a C-candidate election, each vote is a C-vector of scores,
where the scores are normally considered to be reals in [0, 1],
but we shall, for the purpose of considering this algorith-
mic implementation, assume they are integers in [0, 9]. We
assume the voters provide all these scores in homomorphic-
ElGamal-encrypted form with ZK-validity proofs (integer-
interval-membership ZK-proofs).

2. These votes are initially handled just like in the JCJ-Smith
scheme [23] using mixnets, ZK-proof checking, and“plaintext-
hashing” of “credentials” to get rid of unauthorized, fake, in-
valid, and double votes while preserving vote-anonymity and
secrecy. However, unlike [23], the votes now are not decrypted
at the end with the aim of allowing a trivial plaintext vote-
processing step as a finale. Instead we now proceed to a dif-
ferent kind of vote processing.

3. We begin by multiplying all scores by (1+9C)! (i.e. in the
homo-encrypted world, exponentiating them all to the power
(1+9C)!) to allow easy reweightings by reciprocals of integers
in [1, 9C + 1] later. If the weights are to be approximate and
rounded to the nearest part in 120 (say) then we could use
the factor 120 instead of the factor (1 + 9C)! here.

4. At all times each vote will be publicly associated with a
publicly known reciprocated-weight value (“X + 1” in step 5
of the RRV algorithm description in §3). We begin by set-
ting all vote-weights to 1. Each weight will monotonically
decrease (and hence its reciprocal will increase) as the elec-
tion proceeds.

5. We add up all the weighted votes by multiplying their
homomorphic encryptions (each exponentiated to the power
1/Fj where the weight 1/Fj is associated with vote j). Due
to the homomorphic nature of the encryption scheme, we now
have the C-vector of totals – in encrypted form.

6. We now apply cooperative decryption to decrypt the to-
tals.11 These can now be broadcast publicly. That tells us
both the RRV first round results, and in particular it tells
everyone the first-round’s winner w.

7. We now find the new public weight (see step 5 in the RRV
algorithm in §3) to give to each vote by going through all the
votes, for each vote cooperatively-decrypting that vote’s score
for w and using it to additively-adjust that vote’s public re-
ciprocated weight, i.e. to adjust the X-value in step 5 of the
RRV algorithm description in §3.

8. We then mix and re-encrypt all votes using a mixnet12 –
and eliminate all the scores for w within each vote, i.e. turning
all votes into (C − 1)-vectors instead of C-vectors.

9. We are now ready to perform the second round by looping
back to step 5. We continue on for M rounds in a multiwinner
election with M winners, 1 ≤ M < C, at which point we are
done.

Discussion. The votes themselves are never decrypted – only
the vote-total vectors are decrypted – except that each round,
each vote’s score for that round’s winner is decrypted reveal-
ing a single integer in [0, 9] per vote, and used to update the
public weight of that vote. The author of that vote is not
known at the time this integer is revealed (due to previous
mixnet steps) and then the scores are erased and forgotten
and the votes are modified, re-mixed, and re-encrypted before
the next round. If the scores were not “erased and forgotten”
that is OK because the votes have now been mixed so that
the association of the scores with the (new mixed) votes is
effectively erased and forgotten. If the scores and score-sums
on the winners-so-far for any given vote lie in a small-enough-
cardinality set so that many voters are expected to have votes
with those same scores and score-sums-so-far (i.e. if V ≫ 9C
in our case with [0, 9] score range...), then this revelation is not
enough to reveal the identity of any voter, so that anonymity
is preserved.

That ends the description of the simplest version of the
crypto-secure RRV election scheme. But we can do better.

11See [22] for discussion of how to use Pollard-λ or the Shanks “baby-step giant-step” method to performthe final step of this decryption in public
in time sublinear in the number V of votes, if the allowed score range, such as [0, 99], is sublinear in V .

12Note that the “mixing” permutation will no longer be perfectly zero-knowledge hidden, in the sense that everybody will know that a vote with
weight k could not have been permuted into a vote with weight 6= k.
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By “bit-splitting” the reals into their binary bits, and updat-
ing weights one bit at a time, we can reduce the amount of
publicly revealed information about each vote, to a single bit
(in addition to its current public weight), and we also can
handle arbitrary-precision real numbers.
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