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AN EXTENSION OF THE GENERALIZED
WEBER PROBLEM?'

Leon Cooper*

1. INTRODUCTION

Several papers have independently presented methods for solving the gen-
eralization of the Weber problem, i.e., finding a single point (origin or source)
in two-dimensional Euclidean Space which is the minimum transport distance
and/or cost point for any number of destination points. See Cooper [1], [2], Kuhn
and Kuenne [5], Miele [6], and Palermo [7]. Some further extensions of this
Weber problem have also been bresented by the present author in Cooper (1],
[2], and [3].

A mathematical statement of the generalization of the simple Weber problem
is as follows.

Let the locations of the set of n known destination or shipping points be
given by (=, ¥j» ] =1, ..., n), their co-ordinates in two-dimensional Euclidean
space. Let the co-ordinates of the unknown origin or supply point that is to be
determined be (x, y). Let Bi.j=1,..., n be positive weights relating to amounts
to be shipped (or any other desired weights). Then the problem of finding the
point (x, y) such that the sum of distances or costs proportional to distances
shall be a minimum can be stated as:

. n 2 %
1) Min &, = ]Ell B,- [(x].—x) +( (y}.—yﬁ

In Cooper [1], [2], [3], and Kuhn and Kuenne (5], necessary and sufficient condi-
tions are stated for (x, y) to be a solution to (1). In addition, an iterative numer-
ical technique is described for obtaining the solution. This computational
technique is rapid and effective in practice and has been used for the solution
of realistically large problems in practice. See Cooper [1], [2], [3].

In this paper we shall be concerned with a modification of the problem
stated in (1). The modification concerns the fact that in realistic situations the
cost of shipment or servicing may not be simply proportional to distance (with
weights). In some situations it would be more appropriate to assume that the
costs were proportional to distance raised to some power. This gives greater
flexibility in realistically and accurately fitting cost data.
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This modification can be expressed in terms of the following problem.
Find the point in Euclidean space E’ (x, y) such that the weighted sum of
distances to the K power is a minimum, i.e.,

n , K/2
@) Mingp= = B-[(xv—x)2 + (y--y)] . K>0
o Pl j

In the remaining sections of this paper, a mathematical characterization of
this problem will be given. In addition, the results of extensive calculations
relating to the solution of (2) will be given.

9 MATHEMATICAL CHARACTERIZATION OF THE EXTENDED PROBLEM

By the ‘‘extended problem’’ we shall mean the solution of (2), i.e., looking
for a point (x, y) in E? that will yield the global (absolute) minimum of the right-
hand side of (2). Before discussing possible solution methods we shall char-
acterize the problem in the following theorems. Proofs are in the Appendix.

n K/2
Theorem 1: The function ¢ = .21 B].[(x]. —x)2 + (y]- —y)z] ,K>0
]:

is a convex function for K > 1, If K <1, ¢ is neither convex nor concave.

The proof of Theorem 1 indicates that for values of K < 1, the function ¢
may not be convex. Therefore, unlike the case of Equation (1) or Equation (®)
when K > 1, the presence of local minima, when K <1, is a distinct possibility.
The following theorem establishes the fact thatat each of the destination points,
(x]., y }.), ¢ has a local minimum.

Theorem 2: The points (x]., y].) j=1,... nare local minima in the problem:

n 2 2 |K/72
Min p = 2 B:|(x, —x) +(y.—y)] ,0<K<1
j=1 ] ] ]

We turn now to the calculation of the minimum point (x, y) for the problem of
Equation (2). For K > 1, we know that ¢ is a convex function and therefore every
local minimum is a global minimum. If we calculate the first partial derivative,
given by Equations (15) and (16) in the Appendix, the condition that these deriva-
tives be zero is both necessary and sufficient for the existence of a minimum.
We therefore have:

" \ ] K/2-1
(3) dp/ Ox = j§1 KB; (x;—=) [(x].—x) + =) ] -0

n \ , K721
4) 9/ 0x = 2 KB]- (y,—y) [(x.-—x) + (y.—y)] =0
j=1 ) ] ]
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These equations cannot be solved explicitly for x and y. However, we can use an
iterative approach similar to that employed in Cooper [1], [2], [3], and Kuhn and
Kuenne [5]. This is derived from (3) as follows. Let us define, using (20) from
the Appendix

) .2)/
5) G] = D]K 2 = [(x.-x)2 + (y‘_y)zjl.(K 2)/2
! i
Then from (3) and (20) we have:
n n
(6) Kx ]:21 BIG] = K ]'51 B]x]G]
R Y XL

Similarly, from (4),
n n
® T4 nyfcf/j:21 BiCj
Equations (7) and (8) can be used as iteration formulas for x and y in:
R n
9 D o3 B O I Bi6;0

G+ _ 2 (i)/" )
QO = B ) X B

where the superscript ; indicates the function evaluated at the ;1B iteration, i.e.,

; M2 Na (K-2)/2

In order to start the iterative process we have used as starting values the weighted
mean co-ordinates:

(O) _ n n
aw 0=/ E

(O) n n
12 = .y, ,
(12) Y ‘j§1 Bly]/j§1 B
Equations (9), (10), (11), (12) could also be employed to solve:

n
Min ¢ :]E,l B]. [(xj—x)2 + (yj"y)zJ Kr2 ,0 <K <1
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However, by Theorem 2, we know that the iteration process, if it converged, might
converge to a local optimum. The results of extensive calculations will be pre-
sented in Section 4.

3. SOME SIMPLE EXAMPLES OF THE EXTENDED PROBLEM.

As was stated in the introduction (Section 1), there are many significant,
practical problems in which the cost of shipment (for example) from a source to
many different sinks or destinations can more readily be represented in terms of a
linear combination of weighted distances which have been raised to some power,
i.e.,

(13) ¢ = adk

rather than
(14) ¢ = ad

where ¢ = cost, d = distance and « is a constant of proportionality. In Figure 1,
the differences are contrasted and illustrate the results of Theorem 1.

FIGURE 1: Powers of the Distance Variable.
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It is readily seen from Figure 1, that when K 2 1, as was proven in Theorem 1,
the cost function ¢ is a convex function. Figure 1 also shows an illustration for
K =% when ¢ is not convex. Since economies of scale are likely to lead to a cost
function of the type ¢ = ad® and & < 1, this is an important class of problems.
Whatever computational methods can be devised for this case will have use.
Unfortunately, this is the most difficult case to characterize in any simple fashion

as Theorem 1 shows. However, some empirical computational results are given in
Section 4.

As a specific illustration of how the value of K in Equation (2) affects the
value of the solution vector % = (x,y) to (2), let us consider the following problem.
Find the vector % to minimize ¢ when (xq,v,) = (0, 0), (x9,¥9) = (1, 0), (xg, y3) =
0, 1)

when K =1%, (x,y) = (0,0)
when K =1, (x,y) = (L2113, .2113)
when K =2, (vy) = (.3333, .3333)

It can be seen from this example that more realism in the fitting of cost data
can have a significant effect on the solution of a particular problem.

In Theorem 2, we showed that each destination point was a local minimum. In
this example one of these destinations is also a global minimum. It turns out,
however, that this is not always so. The global minimum can be taken on at points
other than the destination points. Evidence for this assertion is given in the next
section,

4. CALCULATION RESULTS

In Section 2 a method of iteration similar to that of Cooper (1], [2], [3], and
Kuhn and Kuemne [5] was proposed to find the optimal location point (x, y),
Extensive tests have been run using equations (9) and (10) as iteration equations
and employing (11) and (12) as starting values. Table 1 gives the result of these
calculations. The iteration technique converged easily for 180 problems. The
destination sets were generated randomly and are available from the author on
request.

Table 1 provides abundant evidence that the iteration technique of Cooper
[1], [2], (3], and Kuhn and Kuenne [5] which was devised originally for the prob-
lem of Equation (1) will be just as effective for the extended problem

n
Ming = X B Nz -2+ (y,~y)?| K/2 k>4
j=1 ] ] ]

For these problems, it was shown in Theorem 1 that every local minimum is a
global minimum since we are minimizing a convex function over a closed convex
set.

The iteration procedure that is given in Equations (9), (10), (11), (12) in no
way depends upon the fact that K > 1, Hence we could also employ this procedure
for 0 < K < 1. However, as was shown in Theorem 1, the function to be minimized
in this case is not necessarily convex. Hence, the value of ¢ to which the itera-
tion procedure converges would not necessarily be the global minimum.
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TABLE 1. Calculation Results (K2 1)

Destination Number of Number of
Set No.* Destinations K ¢ min x y fterations
1 10 1.00 | 303.261 | 28.814 | 49.053 27

1.50 | 1866.70 | 29.486 | 53.537 9
2.25 31509.6 31.657 55.680 6
2.50 82459 32.604 56.201
2.75 217212 33.592 56.678 15
3.00 574938 34.573 57.119 27
2 10 1.00 341.936 60.445 30.371 15
1.50 2171.89 59.902 35.715
2.25 36265.2 61,224 40.924 6
2.50 93411.1 61.593 42.112 9
2.75 241328 61.901 43.112 16
3.00 625103 62.180 43.966 35
3 10 1.00 377.706 34.820 38.192 14
1.50 2411.86 37.530 36.082 6
2.25 39920.7 40.562 34.932 5
2.50 102324 41.304 34.735
2.75 262969 41.946 34.592 12
3.00 677531 42.506 34.491 21
4 20 1.00 793.065 52.178 52.318 20
1.50 5315.95 47.654 51.003 8
2.25 96244.1 45.634 49.835 S
2.50 255069 45.271 49.476 8
2.75 678456 44.975 49.124 11
3.00 1810248 44.727 48.783 17
5 20 1.00 690.681 37.103 56.000 61
1.50 4602.63 42.529 54.297 8
2.25 81349.3 46.954 50.942 5
2.50 213034 47.727 50.208 8
2.75 559323 48.301 49.616 13
3.00 1472151 48.726 49.138 20
6 20 1.00 786.478 54.396 50.724 12
1.50 5106.66 52.802 52.094 6
2.25 87289.0 51.467 53.035 4
2.50 226597 51.216 53.218
2.75 590295 51.029 53.360 9
3.00 1542810 50.892 53.470 13
7 30 1.00 1127.93 36.036 43.008 54
1.50 7380.62 39.602 46.604 8
2.25 128569 40.732 48.799 5
2.50 336520 40.960 49.218 8
2.75 884521 41.170 49.555 12
3.00 2333870 41.368 49.833 19
8 30 1.00 1179.02 42.277 50.488 12
1.50 7778.77 43.348 51.149
2.25 137143 44.528 50.806 4
2.50 359926 44.864 50.586
2.75 947959 45.176 50.362 11
3.00 2504871 45.678 50.145 18

*Destination sets are available from the author on request.
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TABLE 1. Calculation Results (K> 1) (Continued)

Destination Number of Number of
Set No.* Destinations 4 ¢ min x Y Iterations
9 30 1,00 | 1139.15 | 52.253 | 43.657 17

1.50 | 7433.43 | $3.612 | 44.441 6
2.25 | 128844 55.864 | 46.527 H]
2.50 335888 56.439 47.101 7
2.75 878238 56.937 47.5% 10
3.00 2302463 57.367 48.026 16
10 40 1.00 1437.89 42.554 42.720 10
1.50 9147.64 43.270 44.572 6
2.25 154653 43.737 46.814 5
2.50 401216 43.821 47.451 7
2.75 1045348 43.882 48.037 9
3.00 2733847 43.925 48.574 14
11 40 1.00 1594.14 51.517 58.597 14
1.50 10565.8 51.131 55.837 7
2.25 187212 50.619 53.843 5
2.50 492098 50.478 53.438 7
2.75 1298093 50.352 $3.113 10
3.00 3435436 50.237 52.850 14
12 40 1.00 1702.73 56.800 52.156 15
1.50 11407.84| 53.238 50.736 7
2.25 201417 51.489 49.981 4
2,50 526964 51.212 49.859 6
2,75 1381802 51.012 49.771 9
3.00 3631310 50.867 49.708 12
13 50 1.00 1927.11 47.826 59.905 7
1.50 12629.0 47.608 59.950 6
2.25 223068 47.912 59.349 4
2.50 587620 48.011 59.068 6
2.75 1555570 48.090 58.770 9
3.00 | 4136649 | 48.143 | 58.462 13
14 50 1.00 1935.66 50.803 43.181 17
1.50 12677.4 51.298 44.798 ?
2.25 218938 51.332 46.241 4
2.50 569399 51.262 46.513 7
2.75 1484741 51.183 46.718 10
3.00 3881024 51.100 48.876 15
15 50 1.00 1895.34 47.247 54.381 15
1.50 12356.9 47.976 53.226 6
2.25 215199 48.592 52.239 4
2.50 563227 48.706 52.034 6
2.75 1480204 48.788 51.875 8
3.00 3904956 48.846 51.753 11

*Destination sets are available from the author on request.
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Table 2 presents a similar set of results as Table 1 except that 0 < K <1
for these calculations.

The results of the calculations presented in Table 2 indicate that, in general,
the iterative method represented by Equations (9), (10), (11), (12) is no more dif-
ficult to use when 0 < K < 1 than when K 2> 1. However, there is the problem of
local minima to contend with. We know, from Theorem 2, that every destination is
a local minimum. However, not every local minimum (and, therefore, the global
minimum) need be at a destination. This will be demonstrated further on in this
section.

To determine whether or not the local minima, to which the iterative method
converged, were also global minima, a computer program was written to calculate
the value of ¢ over a fine rectangular grid of points which included all the desti-
nation points. This made it possible to find all the local optima.

As two examples, consider destination sets 1 and 2 in Table 2. For all of
these cases listed, the iterative calculation, starting always at the mean coordi-
nates of the destination set (all 8; = 1 for calculations in Tables 1 and 2) arrived
at the global optimum. This is aﬁ the more remarkable since the computational
method uses the equations that represent necessary (but not necessarily sufficient)
conditions for the existence of a local maximum or minimum. Yet for destination
sets 1 and 2, it never found a local maximum and always found a global minimum.
This behavior is not atypical. It occurs more often than not. Reasons for this will
be discussed later.

For example, for destination set No. 4 when K = 0.15, the global minimum
occurred at (69,61) and ¢ had a value of 32.7627. The iterative procedure found
a local minimum at (57,51) and ¢ had a value of 33.0799. Both of these points
are destination points. However, when K = 0.35, the iterative procedure found the
global minimum at (57,51), a destination point. The value of ¢ was 68.8240. When
K = 0.50 the iterative procedure converged to (57,51), the global minimum with
o) 120.299. When K = 0.75, the procedure converged to (57,51) which is the
global minimum. When K = 0.85, the procedure found (55.439, 52.068) which is the
global minimum. When K = 0.95, the procedure found (53.122, 52.423) which is the
global minimum. With destination set No. 6 and K = 0.75, the iterative procedure
converged to (55.266, 49.105) which is not a destination point but is the global
minimum. The value of ¢ at this point is 310.953. For this same destination set
and K = 0.85, the iterative procedure converged to (54.949, 49.939), the global
minimum with ¢ = 450.418. This point is not a destination point. For K = 0.95, the
procedure converged to (54.582, 50.500), the global minimum with ¢ = 652.99.

There is no obvious a priori reason for this iterative calculation to converge
most of the time to the global minimum, whether the global minimum is a destina-
tion point or not. In fact this seems very surprising, since when the global mini-
mum is found it is in the presence of many “‘pearly’’ local minima.

From extensive perusal of computer output of the fine grid calculation of the
value of the objective function, the reason for the above phenomenon becomes
apparent. The local minima which are not global minima are very “‘shallow’’ or
weak minima compated to the global minimum which is usually found by the itera-
tive calculation. An example of a portion of the grid for a typical local minimum
is as follows.

1
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TABLE 2. Calculation Results (0 < K < 1)

Destination Number of Number of
Set No. Destinations X ¢ min x Yy Iterations
1 10 0.15 15,256 32.00 44.000 l6*

0.35 30.058 32.00 44.000 10+
0.50 50.885 32.00 44.000 12+
0.75 123.93 32.00 44.000 30+
0.85 177.50 29.577 46.049 33
0.95 253.59 28.905 48,084 29
2 10 0.15 15.654 67.000 23,000 T*
0.35 31.350 67.000 23.000 8+
0.50 | 54.149 | 67.000 | 23.000 11+
0.75 136.72 67.000 23.000 B9
0.85 197.52 62.210 28.062 25
0.95 284.70 60.848 29.691 17
3 10 0.15 15.927 27.000 53.000 10+
0.35 33.352 27.000 53.000 IR
0.50 58.833 27.000 53.000 25+
0.75 150.40 33.856 41.978 36
0.85 217.27 34.133 39.830 25
0.95 314.07 34.566 38.618 17
4 20 0.15 | 33.080 | 57.000 | S1.000 7*
0.35 68.824 57.000 51.000 g
0.50 120.30 57.000 51.000 10*
0.75 307.99 57.000 51.000 20*
0.85 449.86 55.439 52.086 37
0.95 656.43 5§3.122 52.423 23
5 20 0.15 31.820 37.000 56.000 B
0.35 63.649 37.000 56.000 LA
0.50 108.85 37.000 56.000 [:Ad
0.75 271.41 37.000 56.000 9*
0.85 393.50 37.000 56.000 11+
0.95 572.18 37.000 56.000 20+
r
6 20 0.15 33.076 60.000 32.000 17¢
0.35 69.650 52.000 30.000 40*
0.50 123.37 55.191 35.810 68
0.75 310.95 55.266 49.105 25
0.85 450.42 54.949 49.939 18
0.95 652.99 54.582 50.500 14
7 30 0.15 49.855 36.000 43.000 6*
0.35 102.46 36.000 43.000 6*
0.50 177.06 36.000 43.000 7*
0.75 444.68 36.000 43.000 9+
0.85 644.54 36.000 43.000 10*
0.95 935.64 36.000 43.000 lae
8 30 0.15 50.361 37.000 41.000 17+
0.35 106.08 37.959 47.380 99
0.50 183.90 39.475 48.363 39
0.75 463.71 41.407 49.617 20
0.85 672.91 41.814 50.015 16
0.95 977.70 42.136 50.347 13

*Solution point is a destination.

Copyright © 2001. All Rights Reserved.



190

JOURNAL OF REGIONAL SCIENCE, VOL. 8, NO. 2, 1968

TABLE 2. Calculation Results (0 <K < 1) (Continued)

Destination Number of Number of
Set No. Destinations K 4 =in x Y Iterations
9 30 0.15 50.121 $3.000 46.000 1+

0.35 103.54 53.000 46.000 6*
0.50 179.38 53.000 46.000 7
0.75 450.75 $3.000 46.000 24
0.85 652.75 52.146 44,008 30
0.95 945.85 $2.178 43.694 20
10 40 0.15 65.187 25,000 33.000 27
0.35 137.12 37.482 39.358 53
0.50 234.37 40.125 40.296 33
0.75 577.61 41.815 41.607 16
0.85 830.95 42.169 42.07) 12
0.95 1197.2 42.440 42,510 11
11 40 0.15 67.594 44.000 61.000 15*
0.35 139.82 58.000 73.000 19¢
0.50 244.72 58.000 73.000 29¢
0.75 625.08 51.972 60.966 25
0.85 908.25 51.697 59.886 18
0.95 1321.2 51.564 58.995 15
12 40 0.15 68.003 68.000 56.000 T
0.35 143.95 68.000 56.000 9
0.50 254.02 68.000 56.000 12+
0.75 659.48 62.167 53.892 32
0.85 963.79 59.302 £3.025 22
0.95 1408.4 57.488 52.407 17
13 50 0.15 | 84.493 | 53.000 | 5).000 12+
0.35 174.89 53.000 53.000 25*
0.50 303.93 51.429 58.12) 33
0.75 | 762.00 | 48.667 | 59.533 19
0.85 1103.3 48.199 59.733 14
0.95 1599.6 47.919 59.860 9
14 50 0.15 84.315 49.000 46.000 6*
0.35 174.57 49,000 46.000 B
0.50 302.84 49.000 46.000 13*
0.75 763.03 50.699 41.426 43
0.85 1106.3 50.668 42.403 27
0.95 1605.9 50.749 42.961 20
15 50 0.15 84.266 48,000 50.000 7
0.35 173.62 48.000 50.000 11+
0.50 299.28 47.000 64.000 46*
0.75 751.05 46.719 55.581 28
0.85 1086.4 46.956 54.971 21
0.95 1573.9 47.156 54.551 16

*Solution point is a destination.
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K =0.85 y
Destination Set No. 1 97.9999900000 98.0000000000 98.0000100000
11.9999900000 %86.1615756351  286.1615909728  286.1616448381
12.0000000000 286.1615407302 [286. 1615190976] 286.1616099332
12.0000100000 286.1615443539  286.1615596911 286.1616135568

(12, 98) is a local minimum.

The example below gives the neighborhood of the global minimum for this
destination set.

K=085
Destination Set No. 2 45.0 46.0 47.0
29.0 177.6723 177.5346 177.9097
30.0 177.5757 177.6051
31.0 177.6417 177.7408 177.9097

It can be seen that the global minimum at (30, 46) is a much stronger minimum
than the local minimum at (12, 98), Actually (30, 46) are not the correct co-ordinates
of this point. The value found by the iterative calculation is (29.577, 46.049), How-
ever this minimum is sufficiently strong to appear on the grid as shown above at
(30, 46). There were local minima not far from the global minimum, e.g., one at the
destination point (32, 44).

Several perturbation studies were made to see how general this behavior is,
What was done was to perturb the starting values from the usual starting values
given by equations (11) and (12). In one case using Destination Set No. 1 with
K = 0.75 where the global optimum occurred at (32, 44) and which had local optima
at each of the destinations, such diverse starting values as (30.80, 55.10),
(32.50, 44.10), (22.50, 71.90) all converged to (32, 44) when, for example, there is
a local optimum at (22, 71).

This does not always occur, of course. However, it occurs sufficiently often
to make this iterative calculation often produce the global optimum when K <1,
In any case, one can ‘‘reasonably’’ be sure of a global optimum by trying a series
of widely scattered starting values. The convergence of the iterative calculation
is very powerful, regardless of what it converges to. No case of divergence was
ever observed. This agrees with experience with this method with K = 1. (See
Cooper [1], [2], [8], and Kuhn and Kuenne [51)

5. SUMMARY

An extension of the generalized Weber problem has been presented which
should allow greater realism and greater ease of fitting cost data to be present
in location studies in many areas of operations analysis. The nature of the solu-
tion has been characterized mathematically and a solution method has been pre-
sented. The results of extensive computation on a digital computer have also
been presented.
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APPENDIX
Theorems 1 and 2 are proved below.

Theorem 1: The function

1M 3
L

¢ =3 B {(xf‘x)z + (yf‘y){‘ K72 K>0

]

is a convex function for K > 1, If K <1, ¢ is neither convex nor concave.

Proof: A twice differentiable function ¢ (x,y) in an open convex set is convex if
and only if
Q= (32d/0x)N + 2B/ Ixdy) hu + 9%/ dy)u’

is positive semi-definite for any scalars A, u. (See [4, p. 80].) We first compute
some necessary quantities.

(15) ap/dx = — § KB. (x.-x) [(x‘-x)2 + (y--y){\ K/2-1

a8 ap/dy = - %, KB, (y,-y) [(xj_x)z . (y,--y)z] K/2-1

a7n 9%/ 9x* = K(K-2) g B_(x_-x)z (x.-%)% + ()’~‘:)’)2 Ks2-2
j=1 I ] j j

n

+ K ‘21 Bj [(xj_x)z + (yj_y)z]x/2-1

j=
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(18) 02¢/3y2 = K(K-2) ],:Enl B]_ (yj_y)z [(xj-x)z + (yj-y)z] K/2-2

+ Kj:Zl ,8]. [(x].-x)2 + (y/--y)z] Krz-1

(19) *p/dxdy = K(K-2) g B. (x.-x) (y.-y) Ex._x)z + (y‘_y)ﬂ K/2.2
j=1 7 ] ] ]

Let

@) D = [(x,'"‘)z + (y,--y)z] /2

il

We rewrite (17), (18) and (19) as:

@) 9%¢/ox?

n n
K(K-2 (x.-x)2 pK-4 DK-2
(K-2) ]‘§1 B/ (x/ #) DJ +K ,-51 BJD]

(22) P/t - KK-2) S B, (-prpk-t , g
]':1 7 ] ] j

n K.2
s B!
@) o/oxdy = KK-D) I B; (-2 Gpmy) DE-*

]:

Using (21), (22) and (23) we evaluate Q:

n n
Q= KE-2)2 3 B, (-0 DK, gy 3 BDK-*
]= ]=

n K_4
+ 2K(K—2))\/1 ]El B]. (x/.-x) (y].-y) D].

22 s -y)2 pk-4 : 5 K-2
+ K(K-2)p ,-§1 B -»* D; + Ku ]51 BD!
(24)
0= KK-2) 3 B,.{ [<x,-x>u“<-4>/2 A] ; [<yi-y>D;K-4>/2#]}
fn

2

i

n
+ K3 BDK-R (\2y
j=1 1

It is obvious that since ﬁ]._> 0 and K>0, then Q2 0 for K 2.
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As a first result we see that Q is positive semi-definite for K > 2 and hence
¢ is a convex function for K > 2. This result can be sharpened, however. Let us
examine the quantity B — |A| where, referring to (24) we have:

o 2
4= KK-2 S B.{[(x.-x)D(.K'4)/2A] . [(y,-y)D(_K-‘*)/z“]}

n K 2
P BDKZ 0+ )

B — |4] = K ]El ,8]. [(x]__x)z + (yj_y)z](K-2)/2()\2+u2)
+ K(K-?) -§1 Bi {(xj-x) [(x].-xV N (y]--y)z](K"‘)/“)\
j=
2
+ (yj-y) [(xj-x)2 + (y],_y)2] (K-4)/4#}

-x)? _a)2 - § = 2
Let [(x]. x)? + (yj y)] = b]. D]. , then

B — 4] (K-2)/2y2 (K-2)/2 »
@) —3 _El B, {s]. x v s M

-4)/ R
S?K ) #2

+

(K-2) [(xj-x)z s§K-4>/ W r ey

+

2 (xj-x) (yj-y) S}K'M/E)\p] }

which reduces to

B |4 n
@7 K‘ L. El B,-S}K -D/2 [(K-l) (ah + bgo™ + (ot~ b].)\)z]

and

il
®
|
®
o
-
i
4
-
|
<

where a.

It is clear from (27) that it K > 1, then (B —|4]
definite and hence, ¢ is a convex function for K Z 1.

)/ K > 0 and Q is positive semi-
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Let us now consider K < 1. Let

—14] n (K-4)/2
(@8) —p— = 151 B;S; F,

= - 2 _ 2
where F}. = (K-1) (ai)\ + b].[,t) + (a].y b}.)\)

Let us examine each F. when K < 1. It can readily be seen that by the choice of
a suitable set of destination points and hence a Suitable choice of a; and b]. and
therefore F,. we can determine

B-14] = (K-4)/2 .
= =X B].S]. F]. to be either greater than zero or less than zero

since A,y are completely arbitrary real numbers. Therefore, for K < 1, ¢ is neither
convex nor concave,

Theorem 2: The points (x]., y].) j=1,..., nare local minima in the problem:
n
Min ¢ = .21 B]- [(x].-x)z + (yj-y)z:, Krz ,0<K <1
]:

Proof: First, we may note that at the destination points (x, y.) j=1,...,n, the
first partial derivatives (components of the gradient of &) are not defined. We see
this as follows:

(R9)  9d¢/ox =2n [KB- (x-x.)/c(?'K)/K ]
j=1 ] ] j

(30) d¢p/dy = § [KB' (y-y.) /d.%-l()/[(]
j=1 7 ] j

where

@) ¢ (7)= [(x].-x)z + <y]‘,y)z] K/2

and X = (x,y)

It can be seen from (29), (30) and (31) that when x = x; and y = Yo the derivatives
become infinite.
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We can abbreviate the above as follows.

B2) ¢(x) :Elﬁi [C].(Z)]

I

(33) ¢/ dx % . B]. (8/9x) C]. (%)
]:

34) I/ dy

El B; (9/9y) C; (%)

M=

- = = - 12-K /K . _ —
@ Ve -3 B {K(x].-x) /[c]_(m } 3B

1

where x]. = (x]., y].)

Equation (35) expresses the negative of the gradient vector of ¢ which is of in-
terest in the determination of local minima. Since the derivatives are not defined
at points (x]., yj) we can not use the usual necessary and sufficient conditions

(which assume differentiability) to determine local minima.

Let LVC].(EJ,) | = C,;where ¥, = (x,, y,) and define C, = m;mx Ciir # i
Now let us choose a ¢, -neighborhood of x ; such that

@) V6, (%, +7)] < 2C,

for j # i and for any y with [¥] < ¢;. Now let us consider a change from ¥, tox;
+tz, where x; is any destination point, and where |z =1and 7 = lzqs z2]

G @) G5+ D) = 3 BWACE,+ D) v B/ € D)
]:
i

But from (36) 1t follows that:
(38)  (@/do) ;G v 1D) 2 —2C,
From (37) and (38) it can be seen that:

@9 (Wd) b, +5) Z - 3 2,0, + B (d/d) C v i)

oM =

j=1
j#i
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Let us compute the second term of (39):

(40) C;, &, +:z) = ,:(xl.-xl.-tzl)2 + (yl,-yi-tz,g)Z:'K/g

(e%22 + ¢%22) K/z, tK(zf +22) K2, K

therefore (d/dt) C, (a?l. +1z2) = (25 + zg)K/2 (K) tK'l = KtK. 1

since |z | = 1.

From (39) and (40) we have:

@) W) ¢ G+ ) > — 5 280+ KB/ (K
i j=1 Ji [

j#i
. (1-K)_ 2 .
Now, if we choose ty < t; such that Kﬁi/z1 > _21 2[3].6‘. since 0 < K <1,
/:
j#i

it is clear that in this zl-neighborhood (d/dt) oy (;?i +tz) > 0 for0<t< ty-

We therefore have a local minimum of q,’)(;i) for all destinations x,i=1,.,., ¢
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