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The impossibility theorems that abound in the theory of social
choice show that there can be no satisfactory method for electing
and ranking in the context of the traditional, 700-year-old model.
A more realistic model, whose antecedents may be traced to
Laplace and Galton, leads to a new theory that avoids all impos-
sibilities with a simple and eminently practical method, ‘““the
majority judgement.” It has already been tested.

he theory of social choice concerns methods for amalgamating

the appreciations or evaluations of many individuals into one
collective appreciation or evaluation. It has two principal applica-
tions. (7) Voting: electors in a democracy choose one among several
candidates, or committee members decide on one among several
courses of action. (i) Jury decisions: judges evaluate competitors
(e.g., figure skaters, gymnasts, pianists, wines, etc.) and rank them
or classify them by level of excellence.

The fundamental problem is to find a social decision function
(SDF) whose inputs are messages of judges or voters and whose
outputs are the jury or electoral decisions, usually rank-orderings of
competitors and winners. Much of the theory of social choice has
blurred the distinction between a judge’s complex aims, ends,
purposes and wishes, in short, his or her preferences or utilities, and
the messages he or she is allowed to send.

In the traditional model, consecrated by some seven centuries of
use,d each individual judge’s or voter’s rank ordering of the com-
petitors is at once his or her message and his or her preferences.
Does it mean that the judge prefers this rank ordering above all
others; or, that the judge wishes the first competitor on his list to be
the winner, the second to be the winner if the first is not, the third
to be the winner if the first two are not, and so on down the list; or,
is the rank ordering required and chosen strategically by the judge
given his or her “true” rank ordering.

In the real world, a judge’s message is simply a message, nothing
more. It depends on the judge’s preferences, but it is not and cannot
be his or her preferences. In the real world, a judge’s or a voter’s
preferences or utilities depends on a host of factors that include the
decision (or output), the messages of the other judges (a judge or
voter may wish to differ from the others, or on the contrary
resemble the others), the social decision function that is used (a
judge may prefer a decision given by “democratic” function to one
rendered by an “oligarchique” function, or the contrary), and the
message he or she thinks is the right one (a judge may prefer honest
behavior, or not).

Kenneth Arrow (5), in the first deep theoretical analysis of the
theory of social choice, uses the traditional model: each judge’s
input message is a rank ordering, routinely interpreted to be a
complete expression of his “preferences” (strategic considerations
are absent); the output is a rank ordering and a winner (the
first-ranked competitor of the order). His celebrated “impossibil-
ity” theorem shows that there exists no social welfare function
(SWF) satistying three reasonable properties for obtaining a deci-
sion given any inputs (unless there are only two competitors).
Amartya Sen (6) models each judge’s inputs as a numerical “utility”
over the competitors, i.e., the judge assigns a real number to every
competitor; the output is a rank ordering whose utility to a judge
is not specified. The model has theoretical interest but no practical
significance because a voter’s individual utility is a much more
complex concept. In any case, Arrow’s theorem emerges again
unless the utilities are assumed to be comparable (that bugbear of
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economists!). The model used to prove the well known Gibbard-
Satterthwaite (7, 8) impossibility theorem assumes the output is a
winner (indeed, how could preferences be modelled if the output
were a rank-ordering?); each judge has “true” preferences ex-
pressed as a rank ordering; but a judge’s input is a strategically
chosen rank ordering. The theorem states that there exists no social
choice function that makes it a dominant strategy for every judge
to report his true preferences.

Refined, extended, and reformulated in many variants, the
traditional approach has continued to produce a host of related
impossibility theorems. We add to this list a negative theorem of a
new kind: a fundamental incompatibility between winners and rank
orderings as outputs of the traditional model. It devolves from a
simple observation: if the output is to be a rank ordering and inputs
are interpreted as preferences, should not an individual’s input
message be his preferences over rank orderings rather than a single
rank ordering?

Given all of these negative results, it is not surprising that the
debate over what method of voting should be used in practice goes
on unabated. By and large, it may be said to pit the supporters of
Lull (alias Condorcet) against those of Cusanus (alias Borda),
though some argue for a new method, “approval voting” (9), and
diverse hybrids are regularly proposed.

We contend that (i) Arrow’s and all the other impossibility and
incompatibility results show that the fundamental problem has no
acceptable solution in the context of the traditional model. (i7) The
traditional approach does not adequately model the messages or the
purposes of the judges and voters. (iii) A new model is necessary.

Practice, curiously enough, suggests a different formulation of
the inputs. Olympic competitions in figure skating and gymnastics,
wine competitions, competitions among pianists, flautists, or or-
chestras, etc., all use measures or grades. As Lord Kelvin pro-
claimed, “If you cannot measure, your knowledge is meager and
unsatisfactory.” Indeed, Arrow (5) himself states “there are essen-
tially two methods by which social choices can be made, voting, . . .
and the market mechanism”; the second uses a measure: price
expressed in terms of money.

A measure or grade is a message that has strictly nothing to do
with a utility. A judge may dislike a wine and yet give it a high grade
because of its merits; he or she may also like a wine and yet, with
great satisfaction, give it a low grade because of its demerits. A
measure provides a common language, be it numerical, ordinal or
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“The word "‘preferences’’ misleads: voters do not merely express what they prefer, they may
well express what they believe is right (1); a judge in a court of justice is supposed to
evaluate conformity with the law, not merely express his preferences. In fact, the real, deep
preferences of a judge or voter is a complicated function that depends on the SDF itself.

dRamon Lull proposed a refinement of Condorcet’s method in 1299: it is known today as
Copeland’s method. Nicolaus Cusanus put forth what is today known as Borda’s method
in 1433 (2-4).
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verbal, to grade and classify. In this respect, Arrow’s theorem means
that, without a common language, there can be no consistent
collective decision.

When the messages are grades expressed in a common language,
then one method of classifying competitors, candidates, or alter-
natives, the majority-grade, and one method for ranking them, the
majority-ranking, emerge as the only ones that satisfy each of
various desirable properties. They are compatible. Moreover, they
best resist strategic manipulations of judges and voters under
varying assumptions concerning the judges’ and voters’ preferences
or utilities.

The Traditional Model

There are a finite set of competitors (alternatives, candidates,
performances, or competing goods) C={4,. . ., 1. .., Z} and afinite
set of n judges (or voters) 9 = {1,...,j,..., n}. Each judge’s input
message is a rank ordering of the competitors. Together, all of the
input messages constitute a preference profile (in keeping with
traditional terminology we use the word “preference(s)” as a
synonym for rank orderings in this section). A SWF renders an
output—a rank ordering—for any inputs or preference profile.

Take A > B to mean that a judge ranks 4 ahead of B, and A >3 B
to mean that the SWF (or “Society”) ranks A ahead of B; in
examples an integer followed by a rank ordering is the number of
judges sending that input message.

Condorcet is the first to have realized the essential difficulty of
the problem. Consider one of his examples with the 60-judge
preference profile:

23:A>B>C 2:B>A>C
10: C>A>B 8:C>B>A.

17:B>C>A

If majority rule decides the order between each pair of competitors
separately, the result is 4 >g B >5 C >g A. This is the Condorcet
paradox: no competitor is favored to all others.

Arrow showed that this is an inescapable conundrum. He im-
posed three conditions that any SWF should satisfy. (i) Unanimity:
If every judge prefers competitor A to competitor B, i.e., 4 > B,
then the SWF ranks A ahead of B, i.e., A >sB. (ii) Non-dictatorship:
The input of no one judge can determine the output of the SWF
whatever the inputs of all the other judges. (iii) Independence of
irrelevant alternatives (ILA): whether the SWF yields A > B or the
contrary A < g B depends only on the judges’ preferences between
A and B. His theorem shows that, when there are at least three
competitors, there is no SWF that satisfies the three conditions for
all possible inputs of the judges.

Nevertheless, people vote and judges rank, but how? A judge
accords k Borda-points to a competitor if k£ opponents are ranked
below him.© A competitor’s Borda-score is the sum of his Borda
points over all judges; equivalently, it is the sum of the votes he
receives in all pair by pair votes (11). The Borda-ranking ranks the
competitors by their Borda-scores, from highest to lowest; the
highest designates the Borda-winner. The Borda-ranking for Con-
dorcet’s 60-judge example is (each competitor’s Borda-score is in
parentheses): B(69) >g5 A(58) >g C(53).

Condorcet attacked Borda’s method. His argument was that,
when there exists a Condorcet-winner, a competitor who has a
majority against every other competitor, then he must be the
winner, a property that Borda’s method violates, as the following
81-judge example of Condorcet shows:

300A>B>C
10: B>C>A4

1:A>C>B 29:B>A>C
10:C>A>B 1:.C>B>A.

€Laplace (10) justified the Borda-points by imagining that each judge wishes to assign a
positive real score in some interval [0, R] to each competitor but is asked instead to rank
them. Laplace computed the average of the lowest points, of the next to lowest, on up to
the highest, and found them to be proportional to the Borda points.
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Here the Borda-ranking is B(109) >s.A4(101) >¢ C(33), yet A is the
Condorcet-winner.

Suppose a profile is split into two parts and a method is applied
to each to obtain solutions S; and S, that have an element in
common. The method is join-consistent if it selects a solution from
S1 N S, for the entire profile. Young (12) introduced this idea to
characterize Borda’s method (and positional methods). Saari (13)
reinvented it and applied it to Condorcet’s example. Let the first
part of the profile be

200A>B>C 28:B>A>C,

and the second part be

10:A>B>C 10:B>C>A 10:C > A > B.
1:4A>C>B 1:C>B>A 1:B>A>C.

Each line of the second part is a Condorcet-component, a perfect
symmetry among the candidates. B is the clear winner of the first;
symmetry shows that all the candidates are tied in the second part;
join-consistency implies B is the winner for the entire profile. This
result indicates that the Condorcet-winner, when he exists, is
certainly not the candidate who should win in every case! Borda’s
method (and any “positional” method) avoids this difficulty be-
cause the total number of points awarded to every competitor in a
Condorcet-component is the same.

Saari (14) then asserted that “all election difficulties” come from
Condorcet-components and, to a lesser extent, from more intricate
symmetries in the preference profiles; and concluded, “the [Borda-
count] applied to all n-candidates is the unique ranking which
avoids all of the indicated problems.”f However, is Borda’s method
good for ranking, or for designating winners, or both?

Condorcet (15) proposed a method explicitly for ranking (as was
recognized by Young, ref. 16). A voter contributes k& Condorcet-
points to an arbitrary rank ordering 4 >sB >sC >s. .. >sZ if his
input agrees in k pair-by-pair comparisons. The Condorcet-count of
the rank ordering is the sum of the Condorcet-points over all voters.
The Condorcet-ranking is the ranking that maximizes the
Condorcet-count. It ranks the Condorcet winner first, and the
Condorcet-loser, a competitor who loses against every other com-
petitor, last, when either exist. Is it good for ranking, or for
designating winners and losers, or both?

The two outputs, a rank-ordering and a winner, have usually been
treated as two sides of one coin: given a rank-ordering, the winner
is the first-placed competitor; given a mechanism for determining
awinner, place him first then apply the mechanism to the remaining
competitors and place that winner second, and continue. These are
questionable practices.

To see why, consider the preference profile

333:4A>B>C 333:B>C>A 333:C>A>B.

The 999 judges constitute a Condorcet-component, and so cancel
each other out. Borda and Condorcet agree on the winners: 4, B,
and C are tied. Condorcet (reasonably) says the three stated rank-
orderings are tied for first; Borda (ridiculously), says that all six
possible rank orderings are tied for first.

Now, consider the same situation with one additional judge
A > C > B. Borda (reasonably) declares A the winner and B the
loser, but (ridiculously) the ranking 4 >sC >gB, because only
one judge agrees with it, 666 partially agree, and 333 totally
disagree. Condorcet (reasonably) declares the rankings 4 >sB
>¢C and C >g¢A >¢B are tied: 333 agree and 667 partially agree.
However, A and C should certainly not be tied as winners.

fSaari (13) proposes “'Instant-Borda-Runoff”’ to counter manipulation: namely, obtain the
Borda ranking, drop the bottom candidate, and repeat until one candidate remains. This
method always elects the Condorcet winner when he exists.
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Borda’s method is appropriate for designating winners and
losers, Condorcet’s method is appropriate for designating rank
orderings, a fact already appreciated by Young (17). In fact, the
situation is much worse: the two outputs cannot be reconciled.
A SWEF is winner—loser-unanimous if, whenever all voters rank a
candidate first (respectively, last), he is the winner (the loser). It is
choice-compatible if whenever all voters rank a candidate first
(respectively, last) and a Condorcet-component is added to the
profile, that candidate is the winner (the loser). It is rank-compatible
if, whenever a winner is removed from the set of candidates, the new
ranking on the remaining candidates agrees with original ranking.
Borda’s method is choice-compatible but not rank-compatible;
Condorcet’s is rank-compatible but not choice-compatible.

Theorem 1 (Incompatibility). There exists no winner—loser-unanimous,
choice- and rank-compatible method.

Grading: The Basic Model

A thorough investigation of practice shows that scores, measures, or
grades have been invented to classify and to rank in an incredibly
wide variety of circumstances. Practical people needing practical
solutions have increasingly devised mechanisms to transform
judges’ grades (instead of rank orderings) into a jury’s grades to
determine final rank orderings. A set of grades (e.g., numbers from
0 to 20, to 25, or to 100; medal nominations from none to bronze,
silver or gold; letters from F to A; or words or phrases from bad to
excellent) becomes, in effect, a common language used to assess
performances, just as grades determine the standing of students in
schools and universities.

Formally, a common language A is a set of grades «, B, etc., that
are strictly ordered. It may be finite or an interval of the real
numbers. a > (3 means that either « is a higher grade than S, in
symbols, a > B, or a = B.

There are a finite set of m competitors C = {A4,...,I,..., Z} and
a finite set of n judges (or voters) 9 = {1,...,j, ..., n}. A problem
is completely specified by an input or profile ® = ®(C, J): an m by
n matrix of the grades ®(Z, j) € A assigned by each of the judges;j €
J to each of the competitors I € C.

A method of grading is a function F that assigns to any input or
profile ® one output or final grade in the same language for every
competitor F:A”*" — A, Designed to assign grades, it must satisfy
certain basic properties.

Axiom 1. F is neutral: F(p®) = pF(®), for any permutation p of the
competitors (or rows).

Axiom 2. F'is anonymous: F(®t) = F(®), for any permutation of the
Judges (or columns).

Axiom 3. F is unanimous: If a competitor is given an identical grade
a by every judge, then F assigns him the grade c.

Axiom 4. F is monotonic: If ® = @' except that one or more judges give
higher grades to competitor I in ® than in ®', then F(P)(1) = F
(®")(I). Moreover, if all the judges give higher grades to competitor [
in ® than in @', then F(®) (I)> F(P") ().

Axiom 5. F is independent of irrelevant alternatives (IIA): if the grades
assigned by the judges to a competitor [ € Cin two profiles ® and @'
are the same, then F(®)(I) = F(®')(I).

A function f: A" — A that transforms a set of judge’s grades into
a single grade will be called an aggregation function if it satisfies the
following three properties:

e anonymity: f(..., 0, .., By .. ) =f. B L)

* unanimity: f (e, o, ..., @) = o; and
* monotonicity:

8722 | www.pnas.org/cgi/doi/10.1073/pnas.0702634104

O[j < B/ :}f(al,. N .y Bj" .oy Oln)

o Qe ooy ) < flay,.

and

(&3 < Blr < Oy < Bn jf(alr . an) <f(Bl,~ R Brz)
Theorem 2 (Possibility). A method of grading F satisfies the five axioms
if and only if F(®)I) = f(P(I)) for every I € C for some one
aggregation function f.

The average or mean value function is the universally used
aggregation function in practice, though sometimes highest and
lowest grades are dropped. This means that the output language is
almost always richer than the language of the input grades (inputs
are usually restricted to discrete levels).

In conformity with most practical applications, the common
language is parametrized as a subset of real numbers and whatever
aggregation is used, small changes in the parametrization or the
input grades should imply small changes in the output or the final
grades. Hence, even if the initial language is finite, all possible
parametrizations must be considered. It is thus natural to take the
common language to be [0, R] for some positive real R (as did
Laplace), and impose:

Axiom 6. F (and its aggregation function f) is continuous.

A social grading function (SGF) F is a method of grading
that satisfies the six axioms of the basic model.

Thus, F defines, and is defined by, a unique continuous aggre-
gation function f. In the sequel, because a SGF and its aggre-
gation function go hand in hand, properties are defined in terms
of aggregation functions, theorems stated in terms of SGFs.
Also, r = (r,...,rn) represents a competitor’s grades, super-
scripts designate competitors.

Enriching a language by embedding it into a real interval opens
the door to many more methods of grading, but it will turn out that
the aggregation functions that emerge as those that must be used
are directly applicable in the seemingly more restrictive finite
languages as well.

Order Functions

A judge of the jury knows the SGF (equivalently, the aggregation
function f) that determines the final grades: what strategies will he
use in the “game” of assigning his grades? A judge undoubtedly
wishes to give the grade he believes is the “right one;” he may,
however, assign it so that the final grade is as close as possible to the
“right one;” or, he may try to manipulate the outcome for extra-
neous reasons (as did a judge of the pairs figure skating in the 2002
Olympic games). This is why, in practice, highest (one or two) and
lowest (one or two) grades are often eliminated.

The “utility” of a judge j is a complicated function u; (r*, r, f, A),
where r* = (r*,...,r,") are the grades the judges believe are the
right ones and r = (ry, ..., 1), the grades they give. The util-
ity of judge j might include a term —[;* — r| if he wished to
grade honestly; it might contain a term — 2, [r;* — r;| if he wished
that the other judges graded honestly; it might include a term
—|A — A;*| if he wished a language A;* were used; and it is often
assumed to be “single-peaked,” u;(r*, 1, f; A) = —|rf = f(r1,. . ., 12)|-
In fact, judges’ utilities, judges’ beliefs, their beliefs about the others’
beliefs, etc., are all completely unknown and change from one
competition to another. The methods we develop depend only on
what in practice can be known, as does Vickrey’s second price
auction mechanism. So (unlike “mechanism design”) judges’ util-
ities are never explicitly assumed. The methods that are singled out
are nevertheless “strategy-proof” for large classes of reasonable
“utilities;” when they are not, they best combat manipulability.

Suppose that r is a competitor’s final grade. An aggregation
function is strategy-proof-in-grading if, when a judge’s input grade is
r* >, any change in his input can only lead to a lower grade; and
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if, when a judge’s input grade is 7~ < r, any change in his input, can
only lead to a higher grade.

Strategy-proof-in-grading implies that it is a dominant strategy for
a judge to honestly assign the grade he believes is the correct one,
whenever the more a final grade deviates from the correct one the
less he likes it (“single-peaked preference,” a reasonable assump-
tion for most judges who grade). There is a class of SGFs that is
easily seen to be strategy-proof: the order functions.

The kth highest grade is called the kth-order function f.

Theorem 3. The unique strategy-proof-in-grading SGFs are the order
functions.

They are “group strategy-proof-in-grading” as well. [Moulin (18)
proves a related technical result but in an entirely different context.]
The result holds without the continuity assumption and also when
the language is finite.

How can the effects of strategic manipulation be countered when
judges’ appreciations or utilities are more complex? To manipulate,
a judge must be able to raise or to lower the final grade by raising
or lowering the grade he assigns. In some situations, a judge can only
change the final grade by increasing his grade, in others only by
decreasing his grade. A judge who can both lower and raise the final
grade has greater opportunity to manipulate.

Theorem 4. There exists no SGF that, for every profile of grades,
prevents every judge from both increasing and decreasing the final
grade. The unique SGFs for which at most one judge may both increase
and decrease a final grade are the order functions.

Given an aggregation function f and input grades r = (4, . . ., 7,),
let w™(f, r) be number of judges who can decrease the final grade,
w*(f r) be the number of judges who can increase the final grade,
and u(f r) = u (f r) + u*(f r). Define the manipulability of f;
to be

w(f) = max pu(f, r).

r=(r1,. . ..rn)
At worst, a judge can both increase and decrease the final grade, so
w(f) = 2n. In particular, when fis taken to be the arithmetic mean
of the grades (as does Borda’s method) the manipulability is
maximized, u(f) = 2n. On the other hand, when f is the kth-order
function, u(f) =n + 1.

Theorem 5. The unique SGFs that minimize manipulability are the
order functions.

Suppose that, after the members of a jury have assigned their
grades, some judge wishes to revise his grade by assigning a grade
closer to the final grade of the jury: more consensus for that final
grade should confirm it. An aggregation function f is reinforcing
when f(r1, .. 1k, .. 1n) = rand rg > Ty = ror r = > ry implies
flry, oo ofi oo sty) =1

Theorem 6. The unique reinforcing SGFs are the order functions.

If every judge assigns a grade in a subset of the grades, then the
final grade should belong to that subset. This may be seen as
restricting outputs to the language of inputs, or generalizing una-
nimity. An aggregation function f conforms with the assigned grades
if {ry, ..., r} C S implies f(ry, .. .,1,) € S.

Theorem 7. The unique SGFs that conform with the assigned grades
are the order functions.

The particular language used in grading should make no differ-
ence in the ultimate outcomes. An aggregation function should give
equivalent grades when one language is faithfully translated into
another. This is the “meaningfulness” problem of measurement
theory (19) in the context of a jury decision. An aggregation

function f is language-consistent if f(Pp(r1), ..., (rn)) = S(f(r1,
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... 1)) for all increasing, continuous functions ¢ : [0, R] = [R, R],

$(0) =R ¢(R) =R

Theorem 8. The unique language-consistent SGFs are the order
functions.

This result depends crucially on the judges using a common
language. When there is no common language, a judge’s only
meaningful input is the order of his grades. An aggregation function
fis preference-consistent if f(r1, . . ., 1) = f(s1, . . ., $,,) implies f(p1(r1),
oo On(rn)) = f(di(s1), - .., P(sn)), for all increasing, continuous
functions ¢; : [0,R] — [R R], $;(0) = R, $;(R) = R.

Theorem 9. (Arrow's Impossibility). There exists no preference-
consistent SGF.

This theorem shows that, to arrive at meaningful final grades,
it is essential for judges to share a common language: otherwise,
the road is barred by Arrow’s fundamental result. However, that
only stands to reason: imagine the leaders of the world’s powers
negotiating an agreement with no common language (and no
translators)!e

The Majority-Grade

The evidence supports the use of order functions when juries grade.
There are many such functions. Different arguments single out one.
Sir Francis Galton (23) had the key idea just one century ago,
namely: “[The] middlemost estimate, the number of votes that it is
too high being exactly balanced by the number of votes that it is too
low. Every other estimate is condemned by a majority of voters as
being either too high or too low .. .The number of voters may be
odd or even. If odd, there is one middlemost value . . . If the number
of voters be even, there are two middlemost values, the mean of

which must be taken ...” He erred in the even case.
A middlemost aggregation function f, forry = ... =r,, is
flri,. . ., 1) = r41)2 when n is odd, and

T = f(ry,.. . 1y) = P42 when n is even.
Whenn is odd, it is the order function f* * 2, When n is even, there
are infinitely many; in particular, f#? and f® * 272 are the upper-
middlemost and lower-middlemost order functions. The middlem-
ost interval is the 7, + 1)2 when n is odd, and [, + 2)2, 2] when
n is even.

Whatever the parity of n, every grade other than a grade in the
middlemost interval is condemned by an absolute majority of the
judges as being either too high or too low.

Theorem 10. The unique aggregation functions that assign a final grade
of r when a majority of judges assign r are the middlemost.

Practical mechanisms of grading often eliminate extremes to
counter cheaters, to guard against cranks, and to emphasize the
significance of place in order rather than magnitude. A SGF
counters crankiness® if for r; = ... = r,, n = 3, its aggregation
function f satisfies f(ri, 72, . . ., 7n — 1,74) = f(r2, . . ., 74 — 1), Where in
going from left to right the highest and lowest grades have been
dropped (the two fs are, in fact, different, but expressing the idea
in this manner simplifies notation). Iterating, f(ri, 72, . . ., Tu—1,7n) =
f(ry, r-) where [r—, r.] is the middlemost interval (a point r— = r..
when 7 is odd).

When a judge dislikes a final grade the further it departs from his
ideal grade, it is a dominant strategy for him to assign his ideal

9Properties close to language- and preference-consistency are known under different
namesinthe literature on measurement theory; in particular, Theorems 8 and 9 are known
inone guise or another (20-21). Work on welfarism (22) initiated by Sen (6) has considered
similar invariance properties.

hThe word honors Galton (23), who wished to avoid giving “‘power to ‘cranks’ in proportion
to their crankiness.”
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grade. But judges may have different incentives. A judge may wish
to either increase or decrease the final grade. The kth-order
function allows n — k + 1 judges to increase the final grade and k&
to decrease it. It is desirable to thwart potential manipulation as
much as possible. Letting A be the probability a judge wishes to
increase the grade and 1 — A that he wishes to decrease it, the
probability of effective-manipulability of the aggregation function fis

Ap(f,r) + (L= Mp (f, 1)

EM() = max max p

r=(r,. .., ) 0=A=1

Theorem 11. The unique aggregation functions that minimize the
probability of effective-manipulability or that counter crankiness are
the middlemost that depend only on the middlemost interval.

Many physical measures have the property that equal intervals
have the same significance: they are “interval measures” in the
jargon of measurement theory. The grades invented to assign to
competing skaters, pianists or politicians could be interval mea-
sures, but more likely are not. As a grade approaches “perfection,”
each additional point often represents much more than an addi-
tional point added to a middling grade; and at the other end of the
scale, the same phenomenon exists. It is reasonable to suppose that
an interval measure exists in theory. In fact, points are routinely
added and averaged, so treated as if they were interval measures.
This is why some parametrizations attempt to linearize the lan-
guage. It suffices to postulate the existence of much less to imply the
existence of an interval measure.

For example, suppose there exists a distance function d that
measures the judge’s discontent: when the judge assigns the grade
r and the final grade is s, his disutility is d(r, s) = 0. Thus, d satisfies:
d(r, r) = 0,d(r, s) = d(s, r), and r < s < t implies d(r, s) + d(s, t) =
d(r, t). The last equation says that the improvement in a compet-
itor’s performance in going from a grade of r to s plus the
improvement in going from s to ¢ equals that of going from r to #;
or, that the disutility of a judge who believes the grade should be
when the final grade is ¢ equals his disutility when the final grade
is s plus his disutility when he believes it should be s when the final
grade is £. This accommodates the possibility that, for example, on
ascale of 0to 100, d(98, 99) = 5d(75, 76). Several arguments suggest
that it is reasonable to assume that all the judges view changes in
performances similarly: one judge teaches all others; or, the rules
impose by fiat that they do; or, equity among the judges demands
that their disutilities must be modelled identically.

A SGF with aggregation function f maximizes welfare when the
final grade f{(ry,. . ., 7,,) = r minimizes the total disutility of all of the
judges, A() = ey d(, ).

Theorem 12. The unique aggregation functions that maximize welfare
are the middlemost.

Thus imposing an equity condition, namely, that judges compare
performances with the same measure, together with the assumption
that the measure is a distance function, implies that the optimal
mechanism must be a majority decision. A distance function is
equivalent to the existence of an interval measure (not necessarily
compact).!

Characterization: A SGF rewards consensus when all of A’s grades
strictly belong to the middlemost interval of B’s grades implies that
A’s final grade is higher than B’s final grade.

The majority-grade % is the SGF defined by the order function
f@*+D2when n is odd, and by the lower-middlemost order function
F@+272 when n is even.

Theorem 13. The unique middlemost aggregation function that rewards
consensus is the majority-grade f™.

iDefining ¢(s) = d(R/2, s) if s = R/2 and = —d(R/2, s) if s = RI2 implies d (r, s) = |b(r) — &(s)|.

8724 | www.pnas.org/cgi/doi/10.1073/pnas.0702634104

The Majority-Ranking
A competitor bestowed a higher grade than another is naturally
ranked higher in the order of the competitors than the other: grades
imply orders. The essential incompatibility between the designation
of winners (or losers) and rank orderings inherent to the traditional
model (Theorem 1) simply does not arise in the context of grades.
On the other hand, although in some applications a complete
ordering is not sought, e.g., wine competitions, there are other
applications, notably sports and elections, where an ordered list
from first to last and a clear winner is absolutely necessary.
When rank orderings are the principal goal instead of grades, the
strategic behavior of the judges may change. A SGF is strategy-
proof-in-ranking if for any judge j final grades r! < r® opposed to
the judge’s grades ry! > r,% implies he can neither decrease B’s final
grade nor increase A’s final grade; and it is partially strategy-proof-
in-ranking if any judge in the same situation can decrease B’s final
grade implies he cannot increase A’s and if he can increase A’s final
grade implies he cannot decrease B’s.

Theorem 14. There exists no SGF that is strategy-proof-in-ranking. The
unique SGFs that are partially strategy-proof-in-ranking are the order
functions.

‘When the majority-grades of two competitors 4 and B differ, the
one with the higher majority-grade ranks ahead of the other. When
the majority-grades of two competitors are equal, no more useful
information concerning these two competitors can be drawn from
this grade.

The majority-ranking (> ;) between two competitors is deter-
mined by:

(1) If fmai (4) > fma (B) then A >,,4; B.

(2) If fmai (A) = fm9 (B), the majority-grade is dropped from the
grades of each of the competitors, and the procedure is
repeated.

Theorem 15. The majority-ranking always ranks one competitor ahead
of another unless the two are assigned an identical set of grades by the
Judges.

The first-majority-grade of a competitor is the majority grade of
the entire jury; the second-majority-grade is the majority grade of
the grades that remain after the first-majority grade has been
dropped; the ith majority grade is the majority grade of the grades
that remain after the first/ — 1 majority grades have been dropped.
A competitor’s majority-value is a vector of n components that
assigns, in order, his first, second, third, . . ., nth-majority-grades.

Theorem 16. A >,,,,; B if and only if A’s majority-value is lexicograph-
ically higher than B's.

The majority-value assigns a specific value to each competitor
expressed in terms of the common language. It may be transformed
into a rational number when the language is finite. For example, if
the language has ten grades 0, 3, 5, 6, . . ., 11, 13 (Denmark’s school
grades; the absence of certain numbers is an attempt to linearize)
and a competitor receives the grades (7, 7, 9, 10, 11), then his
majority-value is 9, 07100711. Dividing by 1.01010101 rescales the
final values so that the minimum is 0, the maximum 13, and a
candidate assigned the same grade « by all judges has a rescaled
majority value of a.

Characterization: Given input grades r' = (4, ..., 1), ¥8 = (4,
.. 75) of two competitors, how should they be ranked? Write 4 >
B to mean A is ranked ahead of B, and 4 >¢ B to mean either A
is ahead of B or they are tied. If n = 3, the highest and the lowest
grades are r’s residual grades, its set of center grades is obtained by
dropping the residual grades.

A social ranking function (SRF) should satisfy several properties.
It should be (i) monotone: if A >¢ B and one judge raises the grade
he gives to A then A >g B. It should be (ii) decisive for the center
grades: the ranking between 4 and B is the ranking determined by
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the center grades unless that ranking is a tie; in that case, the
ranking is determined by the residual grades. Finally, it should (i)
reward consensus.

Theorem 17. The majority-ranking is the unique monotone SRF that
is decisive for the center and rewards consensus.}

The majority-ranking is IIA in the sense of Arrow: the order
between two competitors depends only on their respective grades.

Remark. This theory is not “cardinal”: adding grades is mean-
ingless. Nor is it “ordinal”: a voter’s message depends on the
particular words of the language that is used, so different common
languages with the same number of words may lead to different
rankings. And yet, a grade in a common language has an absolute
meaning.

Practice

Jury Decisions. The majority grade and ranking are described in the
new edition of the French “Bible” on wines (24). They were tested
in a wine competition, Les citadelles du vin, held June 15-17, 2006,
in the Bordeaux region of France. A total of 1,247 different wines
competed, 60 judges were organized in juries of five members
(sometimes fewer). As usual, judges completed the “Sensorial
analysis tasting sheet for wine judging competitions” of the Organi-
sation Internationale de la Vigne et du Vin for each wine: 14 attributes
of the wine were assigned points (from 0 “bad” to 6 or 8 “excel-
lent”); their sum determined whether the wine was bestowed a gold,
silver, bronze, or no medal at all. However, the sum misses the point
(25) because it “has difficulty in detecting exceptional wines by
overly favoring those that are ‘taste-wise correct.” ” Moreover, there
is strong evidence showing that judges work “backwards,” they first
decide the grade they wish to bestow, then assign points to attributes
whose sum yield the grade. The judges preferred to answer “For
you, this wine is:” with one of five descriptions that constituted the
common language in this experiment: Excellent, Very good, Good,
Average, or Mediocre. A preliminary evaluation of the experiment
concludes: “The ‘majority-grade’ correctly distinguished. . .the
wines, in accordance with the traditional objectives of wine com-
petitions. This system seems better adapted than the [old system]. . .
[However], the scale of five levels—97% of the grades were
confined to three levels—should be extended” (J. Blouin, personal
communication).

Voting. The majority ranking’s first-ranked candidate designates the
winner of an election. Approval voting (AV) uses a common
language of two words, 1 “approve” and 0 “disapprove.” The

iThe majority-value with Borda or Condorcet points as inputs provide SWFs for the tradi-
tional model that combat strategic manipulation. The first-majority-grade with Borda
points was used to rank figure skaters prior to 2004, with ad hoc rules to resolve ties.
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majority-ranking with a 0,1-language is the approval voting ranking,
so AV is a special case of the majority-ranking. AV has been tested
in a variety of settings, notably professional scientific societies. It
was also tested (26) in parallel with the first round of the French
presidential election of 2002, when 16 candidates presented them-
selves: voters were clearly happy to be able to express themselves
better with AV than casting at most one solitary vote. The argu-
ments for and against AV have been cast in the context of the
traditional model and have not addressed the real problem. The
only solid results assume “dichotomous preferences” (27, 28) but
“like” and “dislike” (or the very different “for” and “against”) is
much too limited a language.

Why do electors vote at all, when they hardly expect to determine
the outcome (1)? They feel the moral imperative to express
themselves: why else do so many cast blank votes? A richer language
should encourage greater public participation. Exactly what com-
mon language should be used in, say, a presidential election, is not
a trivial choice. Perhaps it should be the grading system used in the
nation’s educational system: from a low of F to a high of A in the
U.S., from 0 to 20 in France, or 0 to 13 in Denmark. Alternatively,
an election of an official might ask each voter: “For you, this
candidate is Exceptional, Accomplished, Capable, Average, Lim-
ited, or Incompetent to undertake the high responsibilities of [the
office].” The method was tested in the 2007 French presidential
elections (www.ceco.polytechnique.fr/jugement-majoritaire.html).

Common Language. How to define a common language in general
remains an open question, though in many applications (e.g.,
skating, diving, gymnastics, piano competitions) languages already
exist. Different applications naturally call for different common
languages. Experimentation will be necessary to define a language;
and, as is true of any language, it will alter over time. The Les
citadelles du vin experiment suggests that judges (and voters?) shun
the highest and lowest grades. It may be best to define a language
with an even number of words in order to prevent voting in the
middle, or not. The nature of the words or numbers used will illicit
different voting and judging behavior: the words themselves matter!
The environment in which judging and voting take place may also.
Just imagine, how would responsible voters behave were they to
read Ramon Lull’s (3) solemn proclamation of 1299 before casting
their ballots:

.. .[It] is necessary to ascertain that in the election three
things should be considered, of which the first is honesty
and holiness of life, the second is knowledge and wis-
dom, and the third is a suitable disposition of the heart.
Each person having a vote in the chapter should take an
oath by the holy gospels of God to consider these three
things and to always elect the person in whom they are
best [embodied].
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