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A Theory of

Measuring, Electing and Ranking

Michel Balinski and Rida Laraki

École Polytechnique and C.N.R.S., Paris

Introduction

The theory of social choice concerns methods for amalgamating the appre-
ciations or evaluations of many individuals into one collective appreciation
or evaluation. It has two principal applications. (1) Voting: electors in a
democracy choose one among several candidates, or committee members de-
cide on one among several courses of action. (2) Jury decisions: judges evaluate
competitors—figure skaters, gymnasts, pianists, wines, . . . —and rank them or
classify them by level of excellence.1

The fundamental problem is to find a social decision function (SDF) whose
inputs are messages of judges or voters and whose outputs are the jury or
electoral decisions, usually rank-orderings of competitors and winners. Much of
the theory of social choice has blurred the distinction between a judge’s complex
aims, ends, purposes and wishes—in short, his or her preferences or utilities—
and the messages he or she is allowed to send.2

In the traditional model, consecrated by some seven centuries of use,3 each
individual judge’s or voter’s rank-ordering of the competitors is at once his or
her message and his or her preferences. Does it mean that the judge prefers this

1Our thesis is capsuled in this article. A complete account, including proofs, many other
results and references, is given in the forthcoming book, Michel Balinski and Rida Laraki,
One-Value, One-Vote: Measuring, Electing and Ranking.

2The word “preferences” contains a misleading connotation: voters do not merely express
what they prefer, they may well express what they believe is right (e.g., R. Goodin and K.
Roberts, “The ethical voter,” American Political Science Review 69 (1975) 926-928); a judge
in a court of justice is supposed to evaluate conformity with the law, not merely express
his preferences. The real, deep preferences of a judge or voter cannot come close to being
expressed in a rank-ordering of competitors.

3Ramon Lull proposed a refinement of Condorcet’s method in 1297: it is known today as
Copeland’s method. Nicolaus Cusanus put forth what is today known as Borda’s method in
1433. See, I. McLean, “The Borda and Condorcet principles: three medieval applications,”
Social Choice and Welfare 7 (1990) 99-108; G. Hägele and F. Pukelsheim, “Llull’s writings on
electoral systems,” Studia Lulliana 41 (2001) 3-38; Gunter Hägele and Friedrich Pukelsheim,
“The electoral systems of Nicolaus Cusanus,” to appear in Hg. G. Christianson, T.M. Izbicki,
and C.M. Bellitto, eds., The Church, the Councils and Reform: Lessons from the Fifteenth
Century, Catholic University of America Press, Washington, DC.
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rank-ordering above all others; or, that the judge wishes the first competitor
on his list to be the winner, the second to be the winner if the first is not, the
third to be the winner if the first two are not, and so on down the list; or, is the
rank-ordering required and chosen strategically by the judge given his or her
“true” rank-ordering.

In the real world, a judge’s message is simply a message, nothing more.
It depends on the judge’s preferences, but it is not and cannot be his or her
preferences. And in the real world, a judge’s or a voter’s preferences or utilities
depends on a host of factors that include the decision (or output), the messages
of the other judges (a judge or voter may wish to differ from the others, or on
the contrary resemble the others), the social decision function that is used (a
judge may prefer a decision given by “democratic” function to one rendered by
an “oligarchique” function, or the contrary) and the message he or she thinks
is the right one (a judge may prefer honest behavior, or not).

Kenneth Arrow, in the first deep theoretical analysis of the theory of social
choice, uses the traditional model: each judge’s input message is a rank-ordering,
routinely interpreted to be a complete expression of his “preferences” (strategic
considerations are absent); the output is a rank-ordering and a winner (the first-
ranked competitor of the order). His celebrated “impossibility” theorem shows
that there exists no social welfare function SWF satisfying three reasonable
properties for obtaining a decision given any inputs (unless there are only two
competitors).4 Donald Saari’s algebraic analysis explains why and how the tra-
ditional model cannot but lead to paradoxical outcomes.5 Amartya Sen models
each judge’s inputs as a numerical “utility” over the competitors, i.e., the judge
assigns a real number to every competitor; the output is a rank-ordering whose
utility to a judge is not specified. The model has theoretical interest but no
practical significance because a voter’s individual utility is a much more com-
plex concept. In any case, Arrow’s theorem emerges again unless the utilities
are assumed to be comparable (that bugabear of economists!).6 The model used
to prove the well-known Gibbard-Satterthwaite impossibility theorem assumes
the output is a winner (indeed, how could preferences be modelled if the out-
put were a rank-ordering?); each judge has “true” preferences expressed as a
rank-ordering; but a judge’s input is a strategically chosen rank-ordering. The
theorem states that there exists no SWF that makes it a dominant strategy for
every judge to report his true preferences.7

Refined, extended, and reformulated in many variants, the traditional ap-
proach has continued to produce a host of related impossibility theorems. We
add to this list a negative theorem of a new kind: a fundamental incompatibil-
ity between winners and rank-orderings as outputs of the traditional model. It

4Kenneth J. Arrow, Social Choice and Individual Values, John Wiley & Sons, Inc., 1951.
5Donald Saari, “Mathematical structure of voting paradoxes. I. Pairwise votes, and II.

Positional voting,” Economic Theory 15 (2000) 1-53 and 55-102.
6Amartya K. Sen, Collective Choice and Social Welfare, Holden-Day, 1970.
7Allan Gibbard, “Manipulation of voting schemes: a general result,”Econometrica 41

(1973) 587-601; and Mark A. Satterthwaite, “Strategy-proofness and Arrow’s conditions: ex-
istence and correspondence theorems for voting procedures and social welfare functions,”
Journal of Economic Theory 10 (1973) 187-217.
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devolves from a simple observation: if the output is to be a rank-ordering and
inputs are interpreted as preferences, should not an individual’s input message
be his preferences over rank-orderings rather than a single rank-ordering?

Given all of these negative results, it is not surprising that the debate over
what method of voting should be used in practice goes on unabated. By and
large, it may be said to pit the supporters of Lull (alias Condorcet) against
those of Cusanus (alias Borda), though some argue for a new method, “approval
voting,”8 and diverse hybrids are regularly proposed.

We contend: (1) Arrow’s and all the other impossibility and incompatibility
results show that the fundamental problem has no acceptable solution in the
context of the traditional model. (2) The traditional approach does not ade-
quately model the messages or the purposes of the judges and voters. (3) A new
model is necessary.

Practice, curiously enough, suggests a different formulation of the inputs.
Olympic competitions in figure skating and gymnastics, wine competitions, com-
petitions among pianists, flautists or orchestras, . . . , all use measures or grades.
As Lord Kelvin proclaimed, “If you cannot measure, your knowledge is mea-
ger and unsatisfactory.” Indeed, Arrow9 himself states “there are essentially
two methods by which social choices can be made, voting,. . . and the market
mechanism”: the second uses a measure, price expressed in terms of money.

A measure or grade is a message that has strictly nothing to do with a utility.
A judge may dislike a wine yet give it a high grade because of its merits; he or she
may also like a wine and yet with great satisfaction give it a low grade because of
its demerits. A measure provides a common language—be it numerical, ordinal
or verbal—to grade and to classify. In this perspective, Arrow’s theorem means
that without a common language there can be no consistent collective decision.

When the messages are grades expressed in a common language then one
method of classifying competitors, candidates or alternatives—the majority-
grade—and one method for ranking them—the majority-ranking—emerge as the
only ones that satisfy each of various desirable properties. They are compatible.
Moreover, they best resist strategic manipulations of judges and voters under
varying assumptions concerning the judges’ and voters’ preferences or utilities.

1 The traditional model

There is a finite set of competitors (alternatives, candidates, performances, or
competing goods) C = {A, . . . , I, . . . , Z}, and a finite set of n judges (or voters)
J = {1, . . . , j, . . . , n}. Each judge’s input message is a rank-ordering of the
competitors. Together all of the input messages constitute a preference profile
(in keeping with traditional terminology we use the word “preference(s)” as a
synonym for rank-orderings in this section). A social welfare function (SWF )
renders an output—a rank-ordering—for any inputs or preference profile.

8See S. J. Brams and P. C. Fishburn, Approval Voting, Birkhäuser, Boston, 1983.
9Arrow, op. cit., p. 1.
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Take A Â B to mean that a judge ranks A ahead of B, and A ÂS B to
mean that the SWF (or “Society”) ranks A ahead of B; in examples an integer
followed by a rank-ordering is the number of judges sending that input message.

Condorcet is the first to have realized the essential difficulty of the problem.
Consider one of his examples with the 60-judge preference profile:

23 : A Â B Â C 2 : B Â A Â C 17 : B Â C Â A

10 : C Â A Â B 8 : C Â B Â A

If majority rule decides the order between each pair of competitors separately,
the result is as follows (with numbers in parentheses giving the respective votes):

A(33) ÂS B(27) B(42) ÂS C(18) C(35) ÂS A(25)

Thus majority decision says A ÂS B ÂS C ÂS A: this is the Condorcet-paradox,
no competitor is favored to all others.

Arrow showed that this is an inescapable conundrum. He imposed three
conditions that any SWF should satisfy. Unanimity : If every judge prefers
competitor A to competitor B, i.e., A Â B, then the SWF ranks A ahead of B,
i.e., A ÂS B. Non-dictatorship: The input of no one judge can determine the
output of the SWF whatever the inputs of all the other judges. Independence of
irrelevant alternatives (IIA): whether the SWF yields A ÂS B or the contrary
A ≺S B, depends only on the judges’ preferences between A and B. His theorem
shows that when there are at least three competitors, there is no SWF that
satisfies the three conditions for all possible inputs of the judges.

Nevertheless, people vote and judges rank: how? A judge accords k Borda-
points to a competitor if k opponents are ranked below him.10 A competitor’s
Borda-score is the sum of his Borda-points over all judges; equivalently, it is the
sum of the votes he receives in all pair by pair votes.11 The Borda-ranking ranks
the competitors by their Borda-scores, from highest to lowest; the highest desig-
nates the Borda-winner. The Borda-ranking for Condorcet’s 60-judge example
is (each competitor’s Borda-score is in parentheses): B(69) ÂS A(58) ÂS C(53).

Condorcet attacked Borda’s method. His argument was that when there ex-
ists a Condorcet-winner—a competitor who has a majority against every other
competitor—then he must be the winner, a property that Borda’s method vio-
lates, as the following 81-judge example of Condorcet shows:

30 : A Â B Â C 1 : A Â C Â B 29 : B Â A Â C

10Laplace justified the Borda-points by imagining that each judge wishes to assign a positive
real score in some interval [0, R] to each competitor but is asked instead to rank them. Laplace
computed the average of the lowest points, of the next to lowest, on up to the highest, and
found them to be proportional to the Borda-points. See, Pierre-Simon, Marquis de Laplace,
Théorie analytique des probabilités, 3rd ed., in Œuvres Complètes de Laplace, t. 7: pp. v and
clii-cliii.

11Le Chevalier Jean-Charles de Borda, “Mémoire sur les lections au scrutin,” Histoire de
l’Académie royale des sciences (1784) 657-665. A footnote states that the ideas were presented
before the Academy on June 16, 1770. Cusanus proposed exactly the same method in 1433.
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10 : B Â C Â A 10 : C Â A Â B 1 : C Â B Â A.

Here the Borda-ranking is B(109) ÂS A(101) ÂS C(33), yet A is the Condorcet-
winner. This argument was widely accepted before the work of Donald Saari.

Consider Condorcet’s 81-judge example. 30 of the 81 judges have preferences
that constitute a Condorcet-component, a perfect symmetry among the rank-
orderings of equal numbers of judges:

10 : A Â B Â C 10 : B Â C Â A 10 : C Â A Â B.

The 30 judges together say that the competitors are tied. There is another
Condorcet-component as well:

1 : A Â C Â B 1 : C Â B Â A 1 : B Â A Â C.

The 33 judges simply cancel each other out, their messages may be dropped,
and the decision should depend on the remaining judges:

20 : A Â B Â C 28 : B Â A Â C.

B is the clear winner. Moral: the Condorcet-winner—when he exists—is cer-
tainly not the candidate who should win in every case! Borda’s method (and any
“positional” method) avoids this difficulty because the total number of points
awarded to every competitor in a Condorcet-component is the same.

Saari’s theory generalizes this fundamental cancellation idea. He asserts
that “all election difficulties” come from Condorcet-components and, to a lesser
extent, from more intricate symmetries in the preference profiles; and concludes,
“the [Borda-count] applied to all n-candidates is the unique ranking which avoids
all of the indicated problems.”12 But is Borda’s method good for ranking, or
for designating winners, or both?

Condorcet proposed a method explicitly for ranking.13 A voter contributes
k Condorcet-points to an arbitrary rank-ordering A ÂS B ÂS C ÂS . . . ÂS Z
if his input agrees in k pair-by-pair comparisons. The Condorcet-count of
the rank-ordering is the sum of the Condorcet-points over all voters. The
Condorcet-ranking is the ranking that maximizes the Condorcet-count. It ranks
the Condorcet-winner first, and the Condorcet-loser—a competitor who loses
against every other competitor—last, when either exist.14 Is it good for rank-
ing, or for designating winners and losers, or both?

The two outputs—a rank-ordering and a winner—have usually been treated
as two sides of one coin: given a rank-ordering, the winner is the first-placed

12Saari, op. cit., p. 57. However, he claims that to counter manipulation, “Instant-
Borda-Runoff” should be used to elect a winner: namely, obtain the Borda-ranking, drop the
bottom candidate, and repeat until one candidate remains. This method always elects the
Condorcet-winner when he exists. See, Donald Saari, Chaotic Elections!: A Mathematician
Looks at Voting, American Mathematical Society, 2001, p. 103.

13Condorcet, Essai sur l’application de l’analyse à la probabilité des décisions rendues à la
pluralité des voix, Paris, 1785, l’Imprimerie royale.

14The Condorcet-ranking of his 60-judge example is B ÂS C ÂS A; that of his 81-judge
example, A ÂS B ÂS C. Neither agrees with the Borda-ranking.

5



competitor; given a mechanism for determining a winner, place him first then
apply the mechanism to the remaining competitors and place that winner sec-
ond, and continue.15 These are questionable practices in the context of the
traditional model.

To see why, consider the preference profile

333 : A Â B Â C 333 : B Â C Â A 333 : C Â A Â B.

The 999 judges constitute a Condorcet-component, so cancel each other out.
Borda and Condorcet agree on the winners: A,B and C are tied. Condorcet
(reasonably) says the three stated rank-orderings are tied for first; Borda (ridicu-
lously) that all six possible rank-orderings are tied for first. Now consider the
situation with one additional judge

333 : A Â B Â C 333 : B Â C Â A 333 : C Â A Â B 1 : A Â C Â B.

Borda (reasonably) declares A the winner and B the loser, but (ridiculously)
A ÂS C ÂS B, since only 1 judge agrees with it, 666 partially agree, 333 totally
disagree. Condorcet (reasonably) declares A ÂS B ÂS C and C ÂS A ÂS B
are tied: 333 agree, 667 partially agree. But A and C should certainly not
be tied as winners. Borda’s method is appropriate for designating winners and
losers, Condorcet’s for designating rank-orderings, a fact already appreciated by
Peyton Young.16 In fact, the situation is much worse: the two outputs cannot
be reconciled.

A SWF is unanimous if whenever the inputs of all judges are the same
rank-ordering, its output is that one. It is choice-consistent if the first-placed
and last-placed competitors of the output remain the same when a Condorcet-
component of the profile is eliminated. It is rank-consistent17 if removing a first-
placed or last-placed competitor of the output does not change the order among
the remaining competitors. Borda’s method is unanimous and choice-consistent
but not rank-consistent; Condorcet’s is unanimous and rank-consistent but not
choice-consistent.

Theorem 1 (Incompatibility) There exists no unanimous, choice- and rank-
consistent method.

2 Grading: the basic model

A thorough investigation of practice shows that scores, measures or grades have
been invented to classify and to rank in an incredibly wide variety of circum-
stances. Practical people needing practical solutions have increasingly devised

15Alternatively, given a mechanism for determining a loser, place him last then apply the
mechanism to the remaining competitors and place that loser next to last, and continue.

16H. P. Young, “Optimal ranking and choice from pairwise comparisons,” in B. Grofman
and G. Owen, eds., Information Pooling and Group Decision Making, JAI Press, Greenwich
CT, 1986. We give new characterizations of Borda’s and Condorcet’s methods that make this
clear, see Balinski and Laraki, op. cit.

17This property is equivalent to “local stability” in H. P. Young, “Condorcet’s theory of
voting,”” American Political Science Review 82 (1988) 1231-1244.
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mechanisms to transform judges’ grades (instead of rank-orderings) into a jury’s
grades to determine final rank-orderings. A set of grades—numbers from 0 to
20, to 25 or to 100; medal nominations from none to bronze, silver or gold; let-
ters from F to A; or words or phrases from bad to excellent—becomes, in effect,
a common language used to assess performances, just as grades determine the
standing of students in schools and universities.18

Formally, a common language Λ is a set of grades α, β, . . . that are strictly
ordered. It may be finite or an interval of the real numbers. α º β means that
either α is a higher grade than β, in symbols, α Â β, or α = β.

There is a finite set of m competitors C = {A, . . . , I, . . . , Z}, and a finite set
of n judges (or voters) J = {1, . . . , j, . . . , n}. A problem is completely specified
by an input or profile Φ = Φ(C,J ): an m by n matrix of the grades Φ(I, j) ∈ Λ
assigned by each of the judges j ∈ J to each of the competitors I ∈ C.

A method of grading is a function F that assigns to any input or profile Φ
one output or final grade in the same language for every competitor:

F : Λm×n → Λm.

Designed to assign grades, it must satisfy certain basic properties.

Axiom 1 F is neutral: F (ρΦ) = ρF (Φ), for any permutation ρ of the com-
petitors (or rows).

Axiom 2 F is anonymous: F (Φτ) = F (Φ), for any permutation τ of the judges
(or columns).

Axiom 3 F is unanimous: If a competitor is given an identical grade α by
every judge, then F assigns him the grade α.

Axiom 4 F is monotonic: If Φ = Φ′ except that one or more judges give higher
grades to competitor I in Φ than in Φ′, then F (Φ)(I) º F (Φ′)(I). Moreover, if
all the judges give higher grades to competitor I in Φ than in Φ′, then F (Φ)(I) Â
F (Φ′)(I).

Axiom 5 F is independent of irrelevant alternatives (IIA): if the grades as-
signed by the judges to a competitor I ∈ C in two profiles Φ and Φ′ are the same
then F (Φ)(I) = F (Φ′)(I).

A function f : Λm → Λ that transforms a set of judge’s grades into a single
grade will be called an aggregation function if it satisfies the following three
properties:

• anonymity : f(. . . , α, . . . , β, . . .) = f(. . . , β, . . . , α, . . .);

• unanimity : f(α, α, . . . , α) = α; and

18The history of the use of grades to evaluate students and employees; competitive pianists
and flutists; Olympic skaters, divers and gymnasts; cities; and wines proves these claims. See,
Balinski and Laraki, op. cit.
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• monotonicity :

αj ¹ βj ⇒ f(α1, . . . , αj , . . . , αn) ¹ f(α1, . . . , βj , . . . , αn)

and
α1 ≺ β1, . . . , αn ≺ βn ⇒ f(α1, . . . , αn) ≺ f(β1, . . . , βn).

Theorem 2 (Possibility) A method of grading F satisfies the five axioms if
and only if F (Φ)(I) = f

(
Φ(I)

)
for every I ∈ C, for some one aggregation

function f .

The average or mean value function is the universally used aggregation function
in practice, though sometimes highest and lowest grades are dropped. This
means that almost always the output language is richer than the language of
the input grades (inputs are usually restricted to discrete levels).

In conformity with most practical applications, the common language is
parametrized as a subset of real numbers and whatever aggregation is used,
small changes in the parametrization or the input grades should imply small
changes in the output or the final grades. Hence, even if the initial language
is finite, all possible parametrizations must be considered. It is thus natural to
take the common language to be [0, R] for some positive real R (as did Laplace),
and impose

Axiom 6 F (or its aggregation function f) is continuous.

A social grading function (SGF) F is a method of grading that sat-
isfies the six axioms of the basic model.

Thus F defines—and is defined by—a unique continuous aggregation function
f . In the sequel—since a SGF and its aggregation function go hand in hand—
properties are defined in terms of aggregation functions, theorems stated in terms
of SGFs. Also, r = (r1, . . . , rn) represents a competitor’s grades, superscripts
designate competitors.

Enriching a language by embedding it into a real interval opens the door to
vastly more possible methods of grading, but it will turn out that the aggregation
functions that emerge as those that must be used are directly applicable in the
seemingly more restrictive finite languages as well.

3 Order functions

A judge of the jury knows the SGF (equivalently, the aggregation function f)
that determines the final grades: what strategies will he use in the “game” of
assigning his grades? A judge undoubtedly wishes to give the grade he believes
is the “right one;” he may, however, assign it so that the final grade is as close
as possible to the “right one;” or, he may try to manipulate the outcome for
extraneous reasons (as did a judge of the pairs figure skating in the 2002 Olympic

8



games). This is why in practice, highest (1 or 2) and lowest (1 or 2) grades are
often eliminated.

The “utility” of a judge j is a complicated function uj(r∗, r, f, Λ), where
r∗ = (r∗1 , . . . , r∗n) are the grades the judges believe are the right ones and r =
(r1, . . . , rn) the grades they give. The utility of judge j might include a term
−|r∗j−rj | if he wished to grade honestly; it might contain a term −∑

i 6=j |r∗i −ri|
if he wished that the other judges graded honestly; it might include a term −|Λ−
Λ∗j | if he wished a language Λ∗j were used; and it is often assumed to be “single-
peaked,” uj(r∗, r, f, Λ) = −|r∗j − f(r1, . . . , rn)|. In fact, judges’ utilities, judges’
beliefs, their beliefs about the others’ beliefs, . . . , are all completely unknown
and change from one competition to another. The theory we develop depends
only on what in practice can be known.19 It does not formulate a formal game
theoretic model (as does classical “mechanism design”). The mechanisms that
are singled out are “strategy-proof” for large classes of reasonable “utilities;”
when they are not, they best combat manipulability.

Suppose that r is a competitor’s final grade. An aggregation function is
strategy-proof-in-grading if, when a judge’s input grade is r+ > r, any change
in his input can only lead to a lower grade; and if, when a judge’s input grade
is r− < r, any change in his input can only lead to a higher grade.

Strategy-proof-in-grading implies that it is a dominant strategy for a judge
to honestly assign the grade he believes is the correct one, whenever the more
a grade deviates from the correct one the less he likes it (“single-peaked prefer-
ence,” a reasonable assumption for most judges who grade). There is a class of
SGFs that is easily seen to be strategy-proof: the order functions.

The kth highest grade is called the kth-order function fk.

Theorem 3 The unique strategy-proof-in-grading SGFs are the order functions.

They are “group strategy-proof-in-grading” as well.20 The result holds without
the continuity assumption and also when the language is finite.

How can the effects of strategic manipulation be countered when judges’
appreciations or utilities are more complex? To manipulate a judge must be
able to raise or to lower the final grade by raising or lowering the grade he
assigns. In some situations a judge can only change the final grade by increasing
his grade, in others only by decreasing his grade. A judge who can both lower
and raise the final grade has greater opportunity to manipulate.

Theorem 4 There exists no SGF that, for every profile of grades, prevents
every judge from both increasing and decreasing the final grade. The unique
SGFs for which at most one judge may both increase and decrease a final grade
are the order functions.

Given an aggregation function f and input grades r = (r1, . . . , rn), let
µ−(f, r) be number of judges who can decrease the final grade, µ+(f, r) be

19As does Vickrey’s second price auction mechanism.
20Hervé Moulin proves a related technical result but in an entirely different context. See,

H. Moulin, “On strategy-proofness and single peakedness,” Public Choice 35 (1980) 437-455.
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the number of judges who can increase the final grade, and µ(f, r) = µ−(f, r)+
µ+(f, r). Define the manipulability of f , to be

µ(f) = max
r=(r1,...,rn)

µ(f, r).

At worst, a judge can both increase and decrease the final grade, so µ(f) ≤ 2n.
In particular, when f is taken to be the arithmetic mean of the grades (as does
Borda’s method) the manipulability is maximized, µ(f) = 2n. On the other
hand, when f is the kth-order function, µ(f) = n + 1.

Theorem 5 The unique SGFs that minimize manipulability are the order func-
tions.

Suppose that after the members of a jury have assigned their grades, some
judge wishes to revise his grade by assigning a grade closer to the final grade of
the jury. An aggregation function f is reinforcing when f(r1, . . . , rk, . . . , rn) = r
and rk > r̂k ≥ r or r ≥ r̂k > rk implies f(r1, . . . , r̂k, . . . , rn) = r.

Theorem 6 The unique reinforcing SGFs are the order functions.

If every judge assigns a grade in a subset of the grades, then the final grade
should belong to that subset. This may be seen as restricting outputs to the lan-
guage of inputs, or generalizing unanimity. An aggregation function f conforms
with the assigned grades if {r1, . . . , rn} ⊂ S implies f(r1, . . . , rn) ∈ S.

Theorem 7 The unique SGFs that conform with the assigned grades are the
order functions.

The particular language used in grading should make no difference in the
ultimate outcomes. An aggregation function should give equivalent grades when
one language is faithfully translated into another. This is the “meaningfulness”
problem of measurement theory in the context of a jury decision.21 An aggrega-
tion function f is language-consistent if f

(
φ(r1), . . . , φ(rn)

)
= φ(f(r1, . . . , rn)

)

for all increasing, continuous functions φ : [0, R] → [R, R], φ(0) = R, φ(R) = R.

Theorem 8 The unique language-consistent SGFs are the order functions.

This result depends crucially on the judges using a common language. When
there is no common language, a judge’s only meaningful input is the order of
his grades. An aggregation function f is preference-consistent if f(r1, . . . , rn) ≥
f(s1, . . . , sn) implies f

(
φ1(r1), . . . , φn(rn)

) ≥ f
(
φ1(s1), . . . , φn(sn)

)
, for all in-

creasing, continuous functions φj : [0, R] → [R, R], φj(0) = R, φj(R) = R.

Theorem 9 (Arrow’s impossibility) There exists no preference-consistent
SGF.

21See, D. H. Krantz, R. D. Luce, P. Suppes and A. Tversky, Foundations of Measure-
ment, Vol. I: Additive and Polynomial Representation, Academic Press, New York, 1971;
J. Pfanzagl, Theory of Measurement, Physica-Verlag, Wien, 1971; and F. S. Roberts, Mea-
surement Theory, with Applications to Decision Making, Utility and the Social Sciences,
Addison-Wesley, Reading, MA, 1979.
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This shows that in order to arrive at meaningful final grades it is essential for
judges to share a common language: otherwise, the road is barred by Arrow’s
fundamental result. But that only stands to reason: imagine the leaders of the
world’s powers negotiating an agreement with no common language (and no
translators)!22

4 The majority-grade

The evidence supports the use of order functions when juries grade. There
are many. Different arguments single out one method. Sir Francis Galton had
the key idea23 just one century ago, namely:“[The] middlemost estimate, the
number of votes that it is too high being exactly balanced by the number of
votes that it is too low. Every other estimate is condemned by a majority of
voters as being either too high or too low . . . The number of voters may be odd
or even. If odd, there is one middlemost value . . . If the number of voters be
even, there are two middlemost values, the mean of which must be taken . . . ”24

He erred in the even case.
A middlemost aggregation function f , for r1 ≥ . . . ≥ rn, is

f(r1, . . . , rn) = r(n+1)/2 when n is odd, and

rn/2 ≥ f(r1, . . . , rn) ≥ r(n+2)/2 when n is even.

When n is odd, it is the order function f (n+1)/2. When n is even, there are
infinitely many; in particular, fn/2 and f (n+2)/2 are the upper-middlemost and
lower-middlemost order functions. The middlemost interval is the point r(n+1)/2

when n is odd, and the interval [r(n+2)/2, rn/2] when n is even.
Whatever the parity of n, every grade other than a grade in the middlemost

interval is condemned by an absolute majority of the judges as being either
too high or too low. Three other properties justify the middlemost aggregation
functions; it is then shown why there is a single best choice.

Theorem 10 The unique aggregation functions that assign a final grade of r
when a majority of judges assign r are the middlemost.

22Properties close to language- and preference-consistency are known under different names
in the literature on measurement theory; in particular, Theorems 8 and 9 are known in one
guise or another. See: A. Orlov, “The connection between mean quantities and admissible
transformations,” Mathematical Notes 30 (1981) 774-778; S.-R. Kim, “On the possible sci-
entific laws,” Mathematical Social Sciences 20 (1990) 19-36. Work on welfarism initiated
by Sen, op. cit., has considered similar invariance properties; see also W. Bossert and J. A.
Weymark, “Utility in social choice,” in S. Barberà, P. J. Hammond and C. Seidl, eds., Hand-
book of Utility Theory, Vol. 2: Extensions, Kluwer Academic Publishers, Boston, 2004, pp.
1099-1177.

23Discarded as “a small contribution” by Duncan Black, The Theory of Committees and
Elections, Cambridge University Press, 1958, p. 188.

24Francis Galton, “One vote, one value,” Letter to the Editor, Nature 75, Feb. 28, 1907, p.
414.
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Practical mechanisms of grading often eliminate extremes to counter cheaters,
to guard against cranks, and to emphasize the significance of place in order
rather than magnitude. A SGF counters crankiness25 if for r1 ≥ . . . ≥ rn, n ≥
3, its aggregation function f satisfies f(r1, r2, . . . , rn−1, rn) = f(r2, . . . , rn−1),
where in going from left to right the highest and lowest grades have been
dropped.26 Iterating, f(r1, r2, . . . , rn−1, rn) = f(r+, r−) where [r−, r+] is the
middlemost interval (a point r− = r+ when n is odd).

When a judge dislikes a final grade the further it departs from his ideal grade,
it is a dominant strategy for him to assign his ideal grade. But judges may have
different incentives. A judge may wish to either increase or decrease the final
grade. The kth-order function allows n−k+1 judges to increase the final grade
and k to decrease it. It is desirable to thwart potential manipulation as much as
possible. Letting λ be the probability a judge wishes to increase the grade and
1− λ that he wishes to decrease it, the probability of effective-manipulability of
the aggregation function f is

EM(f) = max
r=(r1,...,rn)

max
0≤λ≤1

λµ+(f, r) + (1− λ)µ−(f, r)
n

.

Theorem 11 The unique aggregation functions that minimize the probability
of effective-manipulability or that counter crankiness are the middlemost that
depend only on the middlemost interval.

Many physical measures have the property that equal intervals have the same
significance: they are “interval measures” in the jargon of measurement theory.
The grades invented to assign to competing skaters, pianists or politicians could
be interval measures, but more likely are not. As a grade approaches “per-
fection,” each additional point often represents much more than an additional
point added to a middling grade; and at the other end of the scale, the same
phenomenon exists. It is reasonable to suppose that an interval measure exists
in theory. In fact, points are routinely added and averaged, so treated as if they
were interval measures! It suffices to postulate the existence of much less to
imply the existence of an interval measure.

For suppose there exists a distance function d that measures the judge’s
discontent: when the judge assigns the grade r and the final grade is s, his
disutility is d(r, s) ≥ 0. Thus d satisfies: d(r, r) = 0, d(r, s) = d(s, r), and
r < s < t implies d(r, s) + d(s, t) = d(r, t). The last equation says that the
improvement in a competitor’s performance in going from a grade of r to s
plus the improvement in going from s to t equals that of going from r to t;
or, that the disutility of a judge who believes the grade should be r when the
final grade is t equals his disutility when the final grade is s plus his disutility
when he believes it should be s when the final grade is t. This accommodates
the possibility that, for example, on a scale of 0 to 100, d(98, 99) = 5d(75, 76).
Several points of view suggest that it is reasonable to assume that all the judges

25The word honors Galton, who wished to avoid giving “power to ‘cranks’ in proportion to
their crankiness,” ibid.

26The two fs are in fact different, but expressing the idea in this manner simplifies notation.
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share this same language: one judge teaches all others; or, the rules impose by
fiat that the meaning of the grades meets exactly this test; or, equity among
the judges imposes that their disutilities must be modelled identically.

A SGF with aggregation function f maximizes the social grade when the
final grade f(r1, . . . , rn) = r minimizes the total disutility of all of the judges,
∆(r) =

∑
j∈J d(r, rj).

Theorem 12 The unique aggregation functions that maximize the social grade
are the middlemost.

Thus imposing an equity condition—namely, that judges compare performances
with the same measure—together with the assumption that the measure is a
distance function, implies that the optimal mechanism must be a majority de-
cision. A distance function is equivalent to the existence of an interval measure
(not necessarily compact).27

Characterization A SGF rewards consensus when all of A’s grades belong to
the middlemost interval of B’s grades implies that A’s final grade is at least as
high as B’s final grade (when the number of judges is odd the condition means
A’s grades are all equal to B’s unique middlemost grade).

The majority-grade fmaj is the SGF defined by the order function
f (n+1)/2 when n is odd, and by the lower-middlemost order function
f (n+2)/2 when n is even.

Theorem 13 The unique middlemost aggregation function that rewards con-
sensus is the majority-grade fmaj.

5 The majority-ranking

A competitor bestowed a higher grade than another is naturally ranked higher
in the order of the competitors than the other: grades imply orders. The es-
sential incompatibility between the designation of winners (or losers) and rank-
orderings inherent to the traditional model (Theorem 1) simply does not arise
in the context of grades. On the other hand, although in some applications
a complete ordering is not sought—e.g., wine competitions—there are other
applications—notably sports and elections—where an ordered list from first to
last and a clear winner is absolutely necessary.

When rank-orderings are the principal goal instead of grades, the strategic
behavior of the judges may change. A SGF is strategy-proof-in-ranking if for
any judge j final grades rA < rB opposed to the judge’s grades rA

j > rB
j implies

he can neither decrease B’s final grade nor increase A’s final grade; and it is
partially strategy-proof-in-ranking if any judge in the same situation can decrease
B’s final grade implies he cannot increase A’s and if he can increase A’s final
grade implies he cannot decrease B’s.

27Defining φ(s) = d(R
2

, s) if s ≥ R
2

and = −d(R
2

, s) if s ≤ R
2

implies d(r, s) = |φ(r)− φ(s)|.
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Theorem 14 There exists no SGF that is strategy-proof-in-ranking. The unique
SGFs that are partially strategy-proof-in-ranking are the order functions.

Given a profile of grades Φ, let ρ = (ρI) be independent permutations of
each of the rows I. The anonymity of f implies

F (ρΦ)(I) = f
(
Φ(I)

)
.

This says that since only a candidate’s set of grades count, there are (n!)m other
profiles that give the identical final grades. Among them is the ordered profile

Φ∗ =




rA
1 ≥ . . . ≥ rA

j ≥ . . . ≥ rA
n

...
...

...
rI
1 ≥ . . . ≥ rI

j ≥ . . . ≥ rI
n

...
...

...
rZ
1 ≥ . . . ≥ rZ

j ≥ . . . ≥ rZ
n




.

The majority-grades fmaj(I) of the competitors I ∈ C are the entries of the
(n + 1)/2-th column when n is odd, and those of the (n + 2)/2-th column when
n is even. When the majority-grades of two competitors A and B differ, the one
with the higher majority-grade ranks ahead of the other. When the majority-
grades of two competitors are equal, no more useful information concerning
these two competitors can be drawn from this grade.

The majority-ranking (Âmaj) between two competitors is determined
by:
(1) If fmaj(A) > fmaj(B) then A Âmaj B.
(2) If fmaj(A) = fmaj(B), the majority-grade is dropped from the
grades of each of the competitors, and the procedure is repeated.

Theorem 15 The majority-ranking always ranks one competitor ahead of an-
other unless the two are assigned an identical set of grades by the judges.

The 1st-majority-grade of a competitor is the majority-grade of the entire
jury; the 2nd-majority-grade is the majority-grade of the grades that remain
after the 1st-majority-grade has been dropped; the ith-majority-grade is the
majority-grade of the grades that remain after the first i − 1 majority-grades
have been dropped. A competitor’s majority-value is a vector of n components
that assigns, in order, his 1st-, 2nd-, 3rd,. . . , nth-majority-grades.

Theorem 16 A Âmaj B if and only if A’s majority-value is lexicographically
higher than B’s.

The majority-value assigns a specific value to each competitor expressed in terms
of the common language. It may be transformed into a rational number when
the language is finite. E.g., if the language of grades is 0, 1, . . . , 13 (as are
school grades in Denmark) and a competitor receives the grades (7, 7, 9, 10, 11)
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then his majority-value is 9, 07100711. Dividing by 1.01010101 rescales the final
values so that the minimum is 0, the maximum 13, and a candidate assigned
the same grade α by all judges has a rescaled majority-value of α.

Juries of different sizes In practice, contests with many competitors have
many juries which sometimes may be of different sizes. How are two competitors
to be compared if they have the same majority-grade bestowed by juries of
different sizes? Two procedures naturally suggest themselves.

Annex the majority-grade of each competitor considered by the smaller
jury to its grades as many times as necessary to equal the number
of grades of the larger jury.

The rationale for this is that the most reliable collective information concerning
the final grade of a competitor given by any jury is its majority-grade, so it is
added. It has been characterized as the only method that “compensates fairly”
when a grade is adjoined. The second procedure takes the dual point of view.

Remove the majority-grade of each competitor evaluated by the
larger jury from its grades. If either their new (or 2nd-majority)
grades distinguish them from the competitors considered by the
smaller jury or their number of grades is the same as those of the
smaller jury, they can be ranked. Otherwise, repeat.

The two procedures result in identical rankings. The general majority-
ranking (Âgmaj) between two competitors A and B when B’s jury is no larger
than A’s jury is defined by the majority-ranking (Âmaj) applied to two sets of
grades of equal size: A’s grades, and B’s grades supplemented, to the extent
necessary, by its majority-grade.

Theorem 17 The general majority-ranking Âgmaj is a complete, transitive or-
der of all competitors.

Hence a judge need not assign a grade to every competitor.

Characterization Given input grades rA = (rA
1 , . . . , rA

n ), rB = (rB
1 , . . . , rB

n )
of two competitors, how should they be ranked? Write A ÂS B to mean A is
ranked ahead of B, and A ºS B to mean either A is ahead of B or they are
tied. If n ≥ 3, the highest and the lowest grade are r’s residual grades; its set
of center grades is obtained by dropping the residual grades.

A social ranking function (SRF) should satisfy several properties. It should
be (1) monotone: if A ºS B and one judge raises the grade he gives to A then
A ÂS B. It should be (2) decisive for the center grades: the ranking between
A and B is the ranking determined by the center grades unless that ranking is
a tie; in that case, the ranking is determined by the residual grades. Finally, it
should (3) reward consensus.

Theorem 18 The majority-ranking is the unique monotone social ranking func-
tion (SRF) that is decisive for the center and rewards consensus.28

28The majority-value with Borda-points or Condorcet-points as inputs provide SWFs for the
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The majority-ranking is IIA in the sense of Arrow: the order between two com-
petitors depends only on their respective grades. It is also a grading compatible
SRF : it depends only on the ordered profile Φ∗ of grades.

Remark This theory is not “cardinal”: adding grades is meaningless. Nor
is it “ordinal”: a voter’s message depends upon the particular words of the
language that is used, so different common languages with the same number of
words may lead to different rankings. And yet, a grade in a common language
has an absolute meaning.

6 Practice

Jury decisions The majority-grade and ranking are described in the new edi-
tion of the French “Bible” on wines.29 The majority-grade was tested in a wine
competition, Les citadelles du vin, held June 15-17, 2006 in the Bordeaux region
of France. 1,247 different wines competed, 60 judges were organized in juries
of five members (sometimes fewer). As usual, judges completed the “Sensorial
analysis tasting sheet for wine judging competitions” of the Organisation In-
ternationale de la Vigne et du Vin for each wine: fourteen attributes of the
wine were assigned points (from 0 “bad” to 6 or 8 “excellent”); their sum deter-
mined whether the wine was bestowed a gold, silver, bronze or no medal at all.
But the sum misses the point because it “has difficulty in detecting exceptional
wines by overly favoring those that are ‘taste-wise correct.’ ”30 Moreover, there
is strong evidence showing that judges work “backwards”—they first decide the
grade they wish to bestow, then assign points to attributes whose sum yield
the grade. The judges preferred to answer “For you, this wine is:” with one
of five descriptions that constituted the common language in this experiment:
Excellent, Very good, Good, Average, or Mediocre. A preliminary evaluation of
the experiment concludes: “The ‘majority-grade’ correctly distinguished . . . the
wines, in accordance with the traditional objectives of wine competitions. This
system seems better adapted than the [old system] . . . [However], the scale of five
levels—97% of the grades were confined to three levels—should be extended.”31

Voting Approval voting (AV) uses a common language of two words, 1 “ap-
prove” and 0 “disapprove.” The majority-ranking with a 0,1-language is the
approval voting ranking, so AV is a special case of the majority-value. AV has

traditional model that combat strategic manipulation. The 1rst-majority grade with Borda-
points was used to rank figure skaters prior to 2004, with ad hoc rules to resolve ties. See
Balinski and Laraki, op. cit.

29Émile Peynaud and Jacques Blouin, Le goût du vin, Dunod, Paris, 2006. We are deeply
indebted to Jacques Blouin for having contacted us in 2002, suggesting that our work on
voting should be useful in the classification of wines. His suggestion led to the development
of our approach.

30É. Peynaud and J. Blouin, Découvrir le goût du vin, Dunod, Paris, 1999, p. 109.
31J. Blouin, “Essai d’application de la ‘note majoritaire’ à un concours de vins,” unpublished

note, July 2006.
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been tested in a variety of settings, notably professional scientific societies. It
was also tested in parallel with the first round of the French presidential elec-
tion of 2002, when sixteen candidates presented themselves: voters were clearly
happy to be able to express themselves better with AV than casting at most
one solitary vote.32 The arguments for and against AV have been cast in the
context of the traditional model and have not addressed the real problem. The
only solid results assume “dichotomous preferences,”33 but “like” and “dislike”
(or the very different “for” and “against”) is much too limited a language.

Why do electors vote at all, since they hardly expect to determine the out-
come?34 They feel the moral imperative to express themselves: why else do
so many cast blank votes? A richer language should encourage greater public
participation. Even in an election having one candidate, the majority-grade
permits electors to express themselves whatever language is used! Exactly what
common language should be used in, say, a presidential election, is not clear.
Perhaps the common language should be the grading system used in the nation’s
educational system: from a low of F to a high of A in the USA, from 0 to 20
in France, or 0 to 13 in Denmark. Alternatively, an election of an official might
ask each voter: “For you, this candidate is Exceptional, Accomplished, Capable,
Average, Limited, or Incompetent to undertake the high responsibilities of [the
office].”

Common language How to define a common language in general remains
an open question, though in many applications—skating, diving, gymnastics,
piano competitions—languages already exist. Different applications naturally
call for different common languages. Experimentation will be necessary to define
a language; and, as is true of any language, it will alter over time. The Les
citadelles du vin experiment suggests that judges (and voters?) shun the highest
and lowest grades. It may be best to define a language with an even number
of words in order to prevent voting in the middle, or not. The nature of the
words or numbers used will illicit different voting and judging behavior: the
words themselves matter! The environment in which judging and voting take
place may also. Just imagine, how would responsible voters behave were they
to read Ramon Lull’s solemn proclamation of 1297 before casting their ballots:

. . . [It] is necessary to ascertain that in the election three things
should be considered, of which the first is honesty and holiness of
life, the second is knowledge and wisdom, and the third is a suitable
disposition of the heart. Each person having a vote in the chapter
should take an oath by the holy gospels of God to consider these
three things and to always elect the person in whom they are best
[embodied].35

32M. Balinski, R. Laraki, J.-F. Laslier and K. van der Straeten, “Résultats du vote par
assentiment,” Pour la science, June, 2002, p. 13.

33S. Barberà, H. Sonnenschein, and L. Zhou, “Voting by committees,” Econometrica 59
(1991) 595-609; and A. Bogomolnaia, H. Moulin, and R. Strong, “Collective choice under
dichotomous preferences,” Journal of Economic Theory 122 (2005) 165-184.

34Goodin and Roberts, op. cit.
35Quoted in G. Hägele and F. Pukelsheim, “Llull’s writings on electoral systems,” op. cit.
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